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• Outline:

– Conversion pathways solar-to-fuel

– Hybrid pathways

– Solar thermochemistry

– Photochemistry

Renewable Energy
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• Solar fuels:

– How can solar energy be converted into fuels?

– What is a hybrid pathway? 

– Why using fossil fuels together with solar energy?

– What is solar thermochemistry and how can it be used for solar fuel 

processing?

– Why is solar water-splitting via multi-step water splitting cycles 

preferred compared to direct thermolysis?

– What is photoelectrochemistry and how can it be used for solar fuel 

processing?

– What other chemical commodities or materials can be processed using 

solar energy?

Learning outcomes of todays lecture
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• Solar to fuels:

Conversion pathways

water, CO2, biomass, 

methane, carbon, …

Solar reactor hydrogen, CO

Methanol synthesis

or Fischer-Tropsch

liquid fuels
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• Solar to hydrogen:

Conversion pathways

Solar 
Thermolysis

Solar Thermo-
chemistry

Photoelectro-
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• Solar to synthesis gas (H2+CO):

Conversion pathways

Solar 
Thermolysis

Solar Thermo-
chemistry

Photoelectro-
chemistry
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+ electrolyser
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• General considerations:

– What solar radiation concentration technology can be used (if needed)? 

– What solar reactor can be used and what are the requirements?

– How can the sun be coupled into the process? 

– What can the reactor look like? 

• Reactor concepts:

Conversion pathways

Decoupled receiver+reactor Coupled receiver-reactor

Possibly with high-temperature storage
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• Reactor concepts:

Conversion pathways

indirectly irradiated              directly irradiated indirectly irradiated

packed-bed                           vortex-flow                      entrained flow
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• Reactor concepts:

• Also: open versus closed systems

Conversion pathways

Tube receiver Volumetric receiver
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• Reactor concepts:

– Stationary

– Moving:

• Fluidized particle bed 

• Falling particle film 

• Rotating kiln 

• Moving particle bed 

Conversion pathways
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• In the transition to a renewable future, hybrid pathways using fossil fuels 

exclusively as chemical source for the fuel production and solar energy as 

the process heat

Hybrid solar conversion



RE, Haussener | Mai, 2021 11/55

Hybrid solar conversion

• Thermal cracking: complex organic molecules such as heavy 

hydrocarbons are broken down into simpler molecules such as light 

hydrocarbons, by the breaking of carbon-carbon bonds in the 

precursors at high temperatures and by using catalysts

CH4 → C + 2H2 (ΔH = 74.85 kJ/mol)

• General:

CnHm → nC + (m/2)H2
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Hybrid solar conversion

• Solar reactors developed for thermal cracking:

ETHZ and PSI
Maag et al., 2010.
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Hybrid solar conversion

• Solar reactors developed for thermal cracking: CU Boulder
Dahl and Weimer et al., 2004.
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Hybrid solar conversion

• Steam reforming: uses light hydrocarbon feedstock, usually 

methane, reacts it at elevated temperatures with steam and 

catalytically converts the feed into hydrogen

CH4 + H2O → CO + 3H2 (∆H = 206 kJ/mol)

– Operates around 700 – 925°C

– Can achieve 65 – 75% efficiency

water gas shift: CO + H2O -> CO2 + H2 (∆H = -41 kJ/mol) 
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• Solar reactors developed for steam reforming

Solar gasification of methane (CH4 + H2O → CO + 3H2), DLR

SOLREF project

Hybrid solar conversion
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Hybrid solar conversion

• Gasification: uses carbonaceous materials, reacts it at high 

temperatures (>700 °C), without combustion, with a controlled 

amount of steam, oxygen, and/or CO2. Results in CO, H2, and 

CO2.

• E.g. for coal, or C-sources

C + H2O → CO + H2

• More realistic (especially for biomass, or C-waste):
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Trommer, Diss ETH, 2006.

Hybrid solar conversion

• Consists of (sequential or simultaneous):

• Dehydration

• Pyrolysis (thermal decomposition in the absence of O2, 

devolatilization)

• Gasification (heterogeneous gas-soild reaction of pyrolysis 

residue with reactive gas)

• Combustion

• Water-gas-shift



RE, Haussener | Mai, 2021 18/55

Hybrid solar conversion

• Gasification (thermographimetric experiment):
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• Solar reactors developed for gasification:

– Steam gasification of petcoke, ETH

Hybrid solar conversion

Z’Graggen et al., 2008.
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• Solar reactors developed for gasification:

– Steam gasification of carbonaceous waste material (ETH, PSI)

Hybrid solar conversion

H2O/CO2

Piatkowski et al., 2010.
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Hybrid solar conversion

• Hydrogen derived from fossil fuels has many impurities:

• From combustion: CO2, CO, N2

• From the feedstock: sulfur

• Purification:

• Desulfurization for gaseous feedstock: calcium-based slurries (SO2 to 

sulfites and sulfates)

• Desulfurization from solid/liquid feedstock: via catalysts into H2S

• CO2 removal: 

• temperature swing adsorption (solubility variation of CO2 with temperature)

• pressure swing adsorption (pressure dependent absorption of e.g. zeolites)

• special membranes (cellulose)

• CO removal from H2 mixture: Hydrogen-permeable membranes made 

of metals (palladium)
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• Hybrid solar conversion

– Advantage of hybrid process vs. 

conventional autothermal processes:

• the gaseous products are not 

contaminated by combustion’s 

by-products

• the discharge of pollutants to the 

environment is reduced

• the calorific value of the feedstock 

is upgraded

• the fuel is decarbonized

• there is no need for energy-intensive 

processing of pure oxygen

Hybrid solar conversion
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• Outline:

– Conversion pathways solar-to-fuel

– Hybrid pathways

– Solar thermochemistry

– Photochemistry

Renewable Energy



RE, Haussener | Mai, 2021 24/55

• In the transition to a renewable future, hybrid pathways using fossil fuels 

exclusively as chemical source for the fuel production and solar energy as 

the process heat

Solar thermolysis and thermochemistry



RE, Haussener | Mai, 2021 25/55

• Solar thermolysis

– Solar energy is used as process heat of chemical reaction 

– Direct thermolysis of water: H2O → 1/2O2 + H2

Solar thermolysis
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• Reactor concept for solar thermolysis

– Product separation by:

• High temperature membranes

• Rapid quenching of products

Solar thermolysis

Kogan et al., 1998.
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• Solar thermochemical cycles

– Solar energy is used as process heat of chemical reaction 

– Multi-step water-splitting reactions:

– Omit explosive hydrogen and oxygen mixture since produced in 
separate steps

– Requires lower temperatures

– Possible redox pairs (Me/MeO):

• Fe2O4/FeO

• Ce2O3/CeO2,

• ZnO/Zn

• SnO/SnO2 …

Solar thermochemistry

H2

MeO ↔ Me+1/2O2

MeO+H2 ↔ Me+H2O

1/2O2

H2O
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• Possible redox pairs for two-step cycles:

Solar thermochemistry



RE, Haussener | Mai, 2021 29/55

• Three-step water-splitting cycles, e.g. sulfur-iodine:

• further lower temperatures 

• but run in corrosive environment

Solar thermochemistry
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• Reactor concepts: two-step cycles

Solar thermochemistry

Moving material                                    Stationary material
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• Zn/ZnO-based proposed reactors, e.g. at ETH Zürich and PSI:

• High-temperature reactor

– 10 kW reactor

– Reactor temperature: 2000 K

– Peak concentration: 5800 suns

• Hydrolysis reactor:

– Reactor temperature: 1263 K

Solar thermochemistry

Schunk et al., 2008.

Melchior et al., 2009.
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• Ceria-based proposed reactors, e.g.:

ETH Zürich University of Minnesota

Temperature in reduction reaction: ~ 1800 K

Temperature in oxidation reaction: ~ 1200 K

Solar thermochemistry
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• SI-cycle, DLR Germany

Solar thermochemistry

H2SO4,l

N2

SO3+H2O+ N2

O2+H2O+SO2

610 K
1500 K

400 K

500 K

SO2+2H2O+I2  H2SO4+2HI

H2SO4  ½O2+H2O+SO2

2HI  I2+H2
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• Outline:

– Conversion pathways solar-to-fuel

– Hybrid pathways

– Solar thermochemistry

– Photochemistry

Renewable Energy
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• Photoelectrochemical processes

– Solar energy is used as photon energy for the internal production of 

charge, which is separated at the solid-liquid junction 

– Multi-step water-splitting reactions (E0=1.23 V):

– Works at room temperature

– Spectral distribution of solar radiation important

– Processes:

• Solar absorption

• Electron-hole generation

• Use electron and holes at liquid-solid interface

• Ionic transport 

Photoelectrochemistry

1/2O2

2H++2e-↔ H2

2H++2e-+1/2O2 ↔ H2O

H2

H2O

semiconductor
e-

h+

2H++2e- → H2

H2O → 2H++2e-+1/2O2

electrolyte

H+
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Solution pH=1

• Stringent material requirements:

– band gap size

– suitable band edge position

– high chemical stability in the dark and under illumination, as well as 

under highly acidic or base conditions

– efficient charge transport in the semiconductor

– selective and efficient electrochemical reactions

– earth-abundance and low costs

Photoelectrochemistry
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Solution pH=1

• Stringent material requirements:

– band gap size

– suitable band edge position

– high chemical stability in the dark and under illumination, as well as 

under highly acidic or base conditions

– efficient charge transport in the semiconductor

– selective and efficient electrochemical reactions

– earth-abundance and low costs

Photoelectrochemistry
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• Band gap and band position of photoelectrode material must match 

reaction potentials:

• Various possible architectures:

Photoelectrochemistry

Walter et al., 2006
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• Calculations:

– Photoactive material(s) will show 

diode-like current-potential behavior:

– Electrochemical system shows losses:

• Reaction overpotentials

• Ohmic losses

• Concentration losses

– Electrochemical load curve will show electrolyzer like load curve

– Intersection between both is operating point 

Photoelectrochemistry

Surendranath et al., 2012
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• Calculations:

– Electrochemical system shows losses:

• Reaction overpotentials

– E.g. via Tafel equations:

– Or Buttler-Volmer:

• Ohmic losses account for resistances in electrolyte, membrane, and 

solid conductor:

Photoelectrochemistry
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• Proposed devices

Photoelectrochemistry

Grätzel et al., 2007

Parkinson et al., 2011

Carver et al., 2012Spurgeon et al., 2011

Turner, 2008

Miller et al., 2007
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• Proposed devices

Photoelectrochemistry
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Photoelectrochemistry US Patent 62/376923 

EP Patent 16020308.9

InGaP-InGaAs-Ge 

Ir/RuOx - Pt

diagnostics
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Experimental demonstration

Output power of PEC at 474 kW/m2: 27 W

Current density in electrolyzer component: 0.88 A/cm2

Current density in photoabsorber component: 6.04 A/cm2

Efficiency: 17.1% solar-to-fuel

Tembhurne, Nandjou, Haussener, Nature Energy, doi: 10.1038/s41560-019-0373-7, 2019
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• Community outreach: dynamic and online: – http://specdc.epfl.ch/

Photoelectrochemistry - Comparison

No multi-module 
demonstrations

Tembhurne, Nandjou, Haussener, Nature Energy, doi: 10.1038/s41560-019-0373-7, 2019

w/o multi-module demonstrations

w/o multiple electrolyzer demonstrations

http://specdo.epfl.ch/
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• Proposed devices

Photoelectrochemistry

Pinaud et al., EES, 2013.
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Scaling – ongoing @LRESE

kW-scale, long-term, on-sun demonstration, 0.5 kg of hydrogen per day
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Scaling – ongoing @LRESE
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• Outline:

– Conversion pathways solar-to-fuel

– Hybrid pathways

– Solar thermochemistry

– Photochemistry

Renewable Energy
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• Solar to fuels:

Sustainability issue

water, CO2, biomass, 

methane, carbon, …

Solar reactor hydrogen, CO

Methanol synthesis

or Fischer-Tropsch

liquid fuelsMobility 
services

CO2 and
water

capturing
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Solar materials

• Solar to materials:

– In principle any other chemical reaction could be driven by solar 

thermochemistry or photoelectrochemistry if enthalpy of reaction 

matches solar irradiation, or equilibrium potential and band edge 

position matches solar irradiation and material combinations

– E.g.:

• Carbothermic reduction of alumina under near vacuum conditions

• Ammonia production
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• Thermochemical:

Solar materials

Bader et al., 2016
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• (Photo)electrochemical:

Solar materials

Palmer et al., Technoeconomics of Commodity Chemical Production Using Sunlight, ACS Sustainable Chemistry & Engineering, 2018

Maximum net value per 

energy input (log scale) 

plotted versus minimum 

voltage required for all 

electrochemical 

processes or 

electrochemical 

equivalents of 

thermochemical 

processes. For each 

point, the width of the 

circle corresponds to the 

relative market size. 

Processes highlighted in 

green are conducted 

electrochemically in 

industry, to any 

appreciable extent. The 

lower bound of feasibility 

(LBF) is plotted as the 

horizontal dashed line
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• Solar fuels:

– How can solar energy be converted into fuels?

– What is a hybrid pathway? 

– Why using fossil fuels together with solar energy?

– What is solar thermochemistry and how can it be used for solar fuel 

processing?

– Why is solar water-splitting via multi-step water splitting cycles 

preferred compared to direct thermolysis?

– What is photoelectrochemistry and how can it be used for solar fuel 

processing?

– What other chemical commodities or materials can be processed using 

solar energy?

Learning outcomes of todays lecture
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• Literature

– Review articles:

• Meier et al., Solar thermochemical production of fuels, Advances in 

Science and Technology, vol. 74, pp. 303-312, 2010.

• Lipinski et al., Review of heat transfer research for solar 

thermochemical applications, Journal of Thermal Science and 

Engineering Applications, 5: 021005, 2013.

• Walter et al., Solar water splitting cells, Chemical Reviews, vol. 

110, pp. 6446–6473, 2010.

Solar energy conversion systems


