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Problem definition
‣ Social media technologies are very prominent in guiding our access to 

information and news 

‣ Little known about their contribution to falsity online
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How and why do truth and falsity diffuse differently? 
Are there categorical differences that influence diffusion? 

What factors of human judgement explain these differences?
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Some terminology
‣ “True” and “false” news 

- Any story or claim with an assertion in it 

- Any asserted claim made on Twitter

‣ Rumor 

- Social phenomena of a news story/claim spreading through Twitter 

- Involves sharing of claims between people

‣ Rumor cascade 

- Starts with a user making an assertion on Twitter (text, photos, links, etc.) 

- Unbroken retweet (RT) chain with a common & singular origin 

- Rumor diffusion through one or more cascades
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Overview
‣ Investigating the differential diffusion of true, false, and mixed news stories 

‣ Dataset of ~126,000 rumor cascades on Twitter 

- Spread by ~3M people more than ~4.5M times 

- Between 2006-2017. Access to all tweets ever posted. 

- Investigated by six independent fact-checking organizations (95-98% 
agreement on classifications)
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Data collection
‣ Collect all English tweets with link to the organizations’ websites (500k)

‣ Consider only the replies. For each reply tweet, extract the original tweet and 
all of its RTs (= RT cascades).

‣ Each RT cascade = rumor propagating on Twitter 

- Veracity of the RT cascade - through the reply with link

‣ Manually and automatically ensure that replies address the original tweet 

- Only considered replies that target the original tweet (no replies to replies) 

- Compared the headline of the linked article to that of the original tweet 

• Cosine similarity
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Rumor cascades

‣ Depth: number of RT hops (by a unique user) from the origin tweet over time

‣ Size: number of users involved in the cascade over time

‣ Max. breadth: max number of users in the cascade at any depth

‣ Structural virality: average distance between all pairs of nodes in the 
cascade
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Diffusion dynamics of rumors



Falsehood diffused significantly farther, faster, 
deeper and more broadly than the truth in all 

categories of information.
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Diffusion dynamics of false political news
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False political news diffused farther, faster, deeper 
and more broadly than any other type of false 

news.
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the users explain why falsehood travels faster than the truth?
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Falsehood diffused farther and faster than the truth despite the 
differences in the network structure, not because of them.
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Novelty of information
‣ Novel information: 

- Attracts human attention 

- Contributes to decision-making 

- Encourages information sharing  

- More valuable both from an information theoretic perspective and from a 
social perspective

‣ Q1: Was falsity more novel than the truth?

‣ Q2: Were Twitter users more likely to RT information that was more novel?
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‣ Latent Dirichlet Allocation Topic model with 200 topics and trained on 10M 
English tweets 

- Calculate information distance between the rumor tweets and exposed 
tweets

‣ Compare topic distributions of the rumor tweets and exposed tweets
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False rumors were significantly more novel than the truth.
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Validation of findings (1)
‣ Multiple cascades for every true and false rumor

‣ Variance and error terms associated with cascades corresponding to the 
same rumor will be correlated

‣ Solution: 

- Specified cluster-robust standard errors and calculated variance at rumor-
cluster level 

- Clustering reduced precision but the significance of the results did not 
change 
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to them
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Validation of findings (2)
‣ Potential selection bias 

- Restricting sample to tweets that are fact-checked by the six organizations 

- Fact checking may select certain types of rumors or draw additional attention 
to them

‣ Solution: 

- Independently verified another sample of rumor cascades that was not 
verified by any fact-checking organizations 

- Manually fact-checked by three undergrads (agreed on the veracity of 90% 
of the 13,240 cascades) 

- Diffusion dynamics of true & false rumors are nearly identical to the main 
data set
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Validation of findings (3)
‣ Potential presence of bots that can bias conclusions about human 

judgement

‣ Solution: 

- Bot-detection algorithm to identify and remove all bots before the analysis 

- Adding back bot traffic into the analysis did not change the main 
conclusions 

- Inclusion of bots accelerated the spread of both true and false news and 
affected their spread equally
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Conclusion
‣ False news spread more pervasively than the truth online 

- Faster, farther, deeper and more broadly than the truth in all categories of 
information

‣ Effects are more pronounced for political news

‣ Network structure and individual characteristics of spreaders do not favor 
promoting false news

‣ False news are more novel than true news - greater likelihood of being 
shared with others

‣ Bots accelerated the spread of true and false news at the same rate
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