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Problem definition

» Social media technologies are very prominent in guiding our access to
information and news

> Little known about their contribution to falsity online

How and why do truth and falsity diffuse differently?

Are there categorical differences that influence diffusion?

What factors of human judgement explain these differences?
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Some terminology

» “True” and “false” news
- Any story or claim with an assertion in it
- Any asserted claim made on Twitter
» Rumor
- Social phenomena of a news story/claim spreading through Twitter
- Involves sharing of claims between people
» Rumor cascade
- Starts with a user making an assertion on Twitter (text, photos, links, etc.)
- Unbroken retweet (RT) chain with a common & singular origin

- Rumor diffusion through one or more cascades



Overview

> |nvestigating the differential diffusion of true, false, and mixed news stories

» Dataset of ~126,000 rumor cascades on Twitter

- Spread by ~3M people more than ~4.5M times
- Between 2006-201/. Access to all tweets ever posted.

- Investigated by six independent fact-checking organizations (95-98%
agreement on classifications)
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Data collection

» Collect all English tweets with link to the organizations” websites (500k)

» Consider only the replies. For each reply tweet, extract the original tweet ano
all of its RTs (= RT cascades).

» Each RT cascade = rumor propagating on Twitter

- Veracity of the RT cascade - through the reply with link
» Manually and automatically ensure that replies address the original tweet
- Only considered replies that target the original tweet (no replies to replies)

- Compared the headline of the linked article to that of the original tweet

» Cosine similarity
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» Depth: number of RT hops (by a unique user) from the origin tweet over time
» Size: number of users involved in the cascade over time
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Rumor cascades

Time

» Depth: number of RT hops (by a unique user) from the origin tweet over time
» Size: number of users involved in the cascade over time
» Max. breadth: max number of users in the cascade at any depth

» Structural virality: average distance between all pairs of nodes in the
cascade

10
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Rumor cascades
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Diffusion dynamics of rumors
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Diffusion dynamics of rumors
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Diffusion dynamics of rumors
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Falsehood diffused significantly farther, faster,
deeper and more broadly than the truth in all
categories of information.



Diffusion dynamics of false political news

‘ !
= = False: Other |
- False: Polmcs',

‘
@ > v mtremg = = ety — = ® = et emmg— - -

| 10 - ”“100
Cascade Depth

— amaend ansed . PO TSRS |

10 100 1000 10K 100K
Cascade Max-Breadth

B 100+
10{

0.10+

CCDF (%)

0.01

0.001- : . , |
1 10 100 1000 10K 100K

Cascade Size

1

CCDF (%)

0.10;

0.01+

0.001 S——— S
1 10 100

Structural Virality

23



Diffusion dynamics of false political news
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Diffusion dynamics of false political news
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False political news diffused farther, faster, deeper
and more broadly than any other type of false
news.
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Network structure

» What if the structural elements of the network or individual characteristics of
the users explain why falsehood travels faster than the truth?

| median mean mean (log) stdv (log)

: : : : KS-test

false—true false—true false—true false—true
followers 410 466 2234 5240 2.62 268 0.69 0.88 D=0.104, p~0.0
followees 383 509 1002 1707 2.59 2.72 0.85 096 D=0.136, p~0.0
verified 0 0 0.002 0.006 nd nd nd nd D=0.005, p<0.001
engagement 952 954 19.70 24.65 091 090 0.65 0.76 D=0.054, p~0.0
account age 982 1214 1072 1269 290 297 039 042 D=0.125, p~0.0




Network structure

» What if the structural elements of the network or individual characteristics of
the users explain why falsehood travels faster than the truth?

A

median mean mean (log) stdv (log)

false—true false—true false—true false—true
followers 410 466 2234 5240 2.62 2.68 0.69 088 D=0.104, p~0.0
followees 383 509 1002 1707 2.59 2.72 0.85 0.96 D=0.136, p~0.0

verified 0 0 0.002 0.006 nd nd nd nd D=0.005, p<0.001
engagement 9.52 954 19.70 24.65 091 090 0.65 0.76 D=0.054, p~0.0
account age 982 1214 1072 1269 290 297 0.39 042 D=0.125, p~0.0

ks-test

Falsehood diffused farther and faster than the truth despite the

differences in the network structure, not because of them.
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Novelty of information

4

Novel information:
- Attracts human attention

- Contributes to decision-making

- Encourages information sharing

- More valuable both from an information theoretic perspective and from a
social perspective

Q1: Was falsity more novel than the truth?

Q2: Were Twitter users more likely to RT information that was more novel?

28
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Novelty of information

» Randomly selected ~5000 users

» Extracted a ra
days prior to t

Nndom sa

Mmple of ~25,000 tweets they were exposed to in the 60

neir RT of a rumor

» Latent Dirichlet Allocation Topic model with 200 topics and trained on 10M

-nglish tweets

- Calculate information distance between the rumor tweets and exposed

tweets

» Compare topic distributions of the rumor tweets and exposed tweets

False rumors were significantly more novel than the truth.
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Perceived novelty

» False rumors are measurably more
novel than true rumors

» But is this how users perceive
them as well?

» Compared the emotional content
of replies to true and false rumors

- ~140,000 English words & their
associations with eight emotions

- ~32,000 Twitter hashtags & their
weighted associations with the
same emotions

Surprise.

g
Disgust st
Fear et
Anger ol
Sadness} _w
Anticipation; o
Joyt . ™
Trust .
.05 % | 15 2 25
% User Responses
1rearl \'é'lll‘.l'-é'll'l(f(? k ‘ 1
(S-tes
_ false—true  false—true T
surprise 0.172 0.116 0.0167 0.0072 D=0.205, p~0.0
disgust 0.240 0.205 0.0260 0.0227 D=0.102, p~0.0
fear 0.108 0.102 0.0120 0.0095 D=0.021, p~0.164
anger 0.122 0.126 0.0074 0.0111 D=0.023, p~0.078
sadness 0.061 0.068 0.0038 0.0065 D=0.037, p~0.0
anticipation 0.140 0.150 0.0093 0.0154 D=0.038, p~0.0
joy 0.071 0.087 0.0054 0.0104 D=0.061, p~0.0
trust 0.087 0.104 0.0058 0.0119 D=0.060, p~0.0
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Validation of findings (1)

» Multiple cascades for every true and false rumor

» Variance and error terms associated with cascades corresponding to the
same rumor will be correlated

» Solution:

- Specified cluster-robust standard errors and calculated variance at rumor-
cluster level

- Clustering reduced precision but the significance of the results did not
change
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» Potential selection bias
- Restricting sample to tweets that are fact-checked by the six organizations

- Fact checking may select certain types of rumors or draw additional attention
to them
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Validation of findings (2)

» Potential selection bias

- Restricting sample to tweets that are fact-checked by the six organizations

- Fact checking may select certain types of rumors or draw additional attention
to them

» Solut
- Ind

1on:

ependently verified another sample of rumor cascades that was not

verified by any fact-checking organizations

- Ma

- Dif

nually fact-checked by three undergrads (agreed on the veracity of 90%

of the 13,240 cascades)

‘usion dynamics of true & false rumors are nearly identical to the main

data set
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» Potential presence of bots that can bias conclusions about human
judgement
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Validation of findings (3)

» Potential presence of bots that can bias conclusions about human
judgement

> Solution:
- Bot-detection algorithm to identity and remove all bots before the analysis

- Adding back bot traffic into the analysis did not change the main
conclusions

- Inclusion of bots accelerated the spread of both true and false news and
affected their spread equally
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Conclusion

» False news spread more pervasively than the truth online

- Faster, farther, deeper and more broadly than the truth in all categories of
information

‘ects are more pronounced for political news

» Network structure and individual characteristics of spreaders do not favor
oromoting false news

» False news are more novel than true news - greater likelihood of being
shared with others

» Bots accelerated the spread of true and false news at the same rate

34



