EPFL - Printemps 2021
Géométrie Riemannienne I
Série 12

M. Troyanov, G. Buro Exercices 18 mai 2021

Définition Soit $\gamma:[0,1]\to M$ une géodesique de (M,g). L'opérateur de Jacobi est l'endomorphisme $J_{\gamma}:\Gamma_{\gamma}\to\Gamma_{\gamma}$ agissant sur les champs de vecteurs le long de γ défini par

$$J_{\gamma}(Z) := (\nabla_t)^2 Z + R(Z, \dot{\gamma}) \dot{\gamma}$$

On dit que Z est un champ de Jacobi si $J_{\gamma}(Z) \equiv 0$

12.1. Soit (M,g) Une variété Riemannienne de courbure sectionnelle non positive $(K \leq 0)$, et γ : $[0,1] \to M$ une géodésique de M. Montrer que si Z est un champ de Jacobi le long de γ , alors

$$t \to ||Z_t||$$

est une fonction convexe.

Indication: Montrer d'abord que $t \to ||Z_t||^2$ est convexe.

12.2. Montrer qu'on peut réécrire la formule de variation seconde sous la forme suivante :

Si $\varphi: (-\epsilon, \epsilon) \times [0, 1] \to M$ est une variation de la géodésique γ , alors

$$\frac{d^2}{ds^2}|_{s=0}\ell(\varphi_s) = \frac{1}{\ell} \left\{ (\langle \nabla_Y Y, \dot{\gamma} \rangle + \langle \nabla_t Y^{\perp}, Y^{\perp} \rangle) \Big|_{t=0}^{t=1} - \int_0^1 \langle J(Y^{\perp}), Y^{\perp} \rangle dt \right\},\,$$

où
$$\ell = \ell(\gamma)$$
 et $Y := \frac{\partial \varphi}{\partial s}$.

12.3. (Lemme de Schur) Soit (M,g) une variété Riemannienne connexe de dimension $n \geq 3$. Supposer que la courbure sectionnelle $K(p,\sigma)$ de M au point p ne dépend pas du 2-plan $\sigma \subset T_pM$. Montrer qu'alors $K(p,\sigma)$ ne dépend pas de p, c'est à dire K est constante sur M.

Indication: Définir R'(W, Z, X, Y) := g(W, X)g(Z, Y) - g(Z, X)g(W, Y), exprimer ce tenseur en fonction du tenseur de courbure, puis appliquer la deuxième identité de Bianchi sur des vecteurs bien choisis.

- 12.4. a) (Théorème de Weinstein) Soit f une isométrie préservant l'orientation d'une variété orientée et compacte M de courbure sectionnelle positive. Alors f admet un point fixe.
 - b) (Théorème de Synge) Soit M une variété Riemannienne compacte de dimension n à courbure sectionnelle positive. Si M est orientable et n est pair, alors M est simplement connexe.

Indication: Déduire du point a) en considérant le revêtement universel $\pi: \tilde{M} \to M$ avec la métrique induite de telle sorte que π préserve l'orientation. Conclure que \tilde{M} est compact et comprendre pourquoi ceci implique le résultat.

12.5. Soit M une variété Riemannienne orientable de courbure positive et de dimension paire. Soit γ une géodésique fermée de M, c'est à dire, γ est une immersion d'un cercle dans M qui est une géodésique en chaque point. Montrer que γ est homotope à une courbe fermée dont la longueur est strictement plus petite que $\ell(\gamma)$.