Conversion in Fuel Cells

Contents

- 1. Fuel cell operating principle. Components of fuel cells.
- 2. Fuel-to-electricity efficiency
- 3. Applications, strengths & challenges
- 4. Fuel issue: hydrogen and hydrocarbons

A fuel cell at a glance

works like a gas battery

 chemical fuel is <u>directly</u> converted into electricity and useful heat

typical sizes and applications:

1-20 W_e / H₂, MeOH / portable electronics

– 1 kW_e / natural gas / a house ⊏

- 50 kW_e / H₂ / an electric car

– 1 MW_e / biogas / CHP

status: R&D, P&D, pre-commercial

Electrical efficiency as fct(power size)

Part 1: operating principle; components

- Electrochemistry of a battery
- Electrochemistry of a fuel cell
- Components of fuel cells
- Types (5) of fuel cells

$$Pb + PbO_2 + 2H_2SO_4 \Leftrightarrow 2PbSO_4 + 2H_2O$$

electrodes are consumed (« active mass »)

Units exist from 50 kW_e to several MW_e

Typical PAFC size is 200 or 400 kW_e, operated on natural gas (NG)

(source: Thoma & Renz AG, Basel, CH)

polymer membrane (50 μm thin)

series connection (« stack »)

http://www.youtube.com/watch?v=yowRvfFtMgQ

5 - 50 W_e

Fuel cell power box

Professional camera with fuel cell

Comment (1)

- The 2 fuel cell types seen so far use **proton** (H⁺) **conduction**, in a liquid (acid) or a wet membrane (polymer)
- They operate at 200C (acid) or below 100C (polymer)
- At such **low temperature**, the **only fuel** reactive enough to be (electrochemically) oxidized is **hydrogen** (H₂)
 - ...and methanol (MeOH), but with much reduced power output
- Moreover, the only electrodes capable to catalyze this reaction (H₂ + ½O₂ → H₂O) at such low temperature are the noble metals (Pt-group)

=> limited to H₂ and Pt

Comment (2)

- The following 3 fuel cell types use a form of oxygen ion conduction
- Two of them use a ceramic resp. molten salt conductor, which operate at high temperature (>600C)
- At such high temperature, other fuels than H₂ become reactive enough for (electrochemical oxidation) (CO, CH₄,..)
- Moreover, high temperature is favorable for fast electrode kinetics, making cheaper catalysts than noble metals possible (Ni, oxides,..)

=> possible with <u>hydrocarbons</u>, on Ni catalyst

Alcaline Fuel Cell (AFC) – type 3

 12 kW_{e}

Photos courtesy of: FCE, AFC, MTU, NEDO, KEPRI

Full View of 300kW-class Compact System in KAWAGOE Test Station

MCFC cogeneration units of 300 kW_e - 3 MW_e

Overview of the 5 fuel cell types

	Type	Electrolyte	Temperature	Fuel
	AFC	liquid alcaline	20-100° C	H ₂
"direct" methanol	PEFC ← DMFC	membrane polymer	20-100° C	H ₂ (or methanol)
	PAFC	liquid acid	200° C	H ₂ (from nat. gas)
	MCFC	molten salt	650° C	hydrocarbons
	SOFC	ceramic	600-1000° C	hydrocarbons

Current status

The 2 most developed types are:

- PEFC for electric mobility
 - almost all car companies have a FC development
 - Toyota, Hyundai, (Honda) most advanced
 - 10-30kWe in cars, 100-200kWe in trucks/buses
- SOFC for stationary (small scale) cogeneration
 - Europe, Japan: kWe-units for residential natural gas
 - USA: also MWe scale (clean distributed power on NG)

Fuel cell units and MW shipped

Megawatts by fuel cell type 2015 - 2019

Installed power: >3.5 GW_{el}

>600'000 Units

especially mobility power

Sources: Fuel Cell Today, E4Tech

especially μ-CHP in Japan

Part 2: Fuel-to-electricity efficiency

- **Thermodynamics** (equilibrium or Nernst voltage), i = 0
 - Nernst equation
- Losses (real operating voltage), $i \neq 0$
 - ionic conduction loss (ohmic)
 - electrodes kinetics loss (non-ohmic: 'polarisation')
 - charge transfer (Butler-Volmer equation)
 - mass transfer (diffusion, adsorption,...)
- Fuel 'utilisation' (u_F) or fuel conversion loss

From chemical energy (total enthalpy ΔH) to electrical power (P = V*I)

From Gibbs enthalpy to Nernst voltage

- a H_2/O_2 fuel cell at i = 0 creates an **equilibrium voltage of 1.23 V** (at 25° C, 1 bar)
- the Gibbs enthalpy of reaction ΔG_r (=theoretical maximal work) for $H_2 + 0.5 O_2 \rightarrow H_2O$ is given by $\Delta G_r^0(25^\circ C, 1 \text{ atm}) = -237'150 \text{ J/mole}$
- The link between thermodynamics and voltage is given by ΔG⁰_r= nF.E⁰ (with n = exchanged electrons; n = 2 for H₂/O₂) energy (J/mol) = charge (C/mol) * voltage (V) with F = Faraday constant = the charge of 1 mol electrons (96484 C/mol) → therefore E⁰ = (ΔG⁰_r/2F) = 237150 / (2*96484) = 1.23 V at 298 K, 1bar (⁰: standard concentration conditions: 1 atm, 1 mole/L,...)

Electrochemical series of elements

Characteristic i-V (current-voltage) curve

Useful electrical power from the fuel cell

$$P = \Sigma E_{cell} \bullet I$$

$$E_{cell} = E_{Nernst}(p,T) - I.\Sigma R_{ohmic} - |\Sigma \eta_{cathode}| - \Sigma \eta_{anode}$$

 E_{Nemst} (1 atm, 200° C, I = 0 A) = 1.1 V @ typical current density = 0.4 A/cm² : => typical operating voltage E_{cell} = 0.7 V

 R_{ohmic} = 0.25 Ω cm² $\eta_{cathode}$ = 0.2 V, η_{anode} = 0.1 V power density = 0.28 W/cm²

Example of phosphoric acid fuel cell (PAFC) :

160 cells in series → $160^{\circ} \times 0.7 \text{ V} = 112 \text{ V}$ electrodes 0.7 m * 0.7 m = 0.49 m² → 4900 cm² * 0.4 A/cm² = 1960 A ⇒ Power = 112 V * 1960 A = 220 kW_e dc gross

The module (0.5 m³) delivers 200 kW_{el} ac net (+ 200 kW_{thermal}) with an electrical efficiency of 40% and a total cogeneration efficiency of >80%. (natural gas input: 500 kW)

Fuel cell electrical efficiency

$$\eta_{cell} = \frac{P[W]}{f[mol/s] \bullet \Delta H_{293K}[J/mol]} \qquad \eta_{cell} = \frac{I \bullet E_{cell}}{f[mol/s] \bullet \Delta H_{293K}[J/mol]} \frac{\Delta G(p,T)}{\Delta G(p,T)}$$

$$\eta_{cell} = \frac{I[A]}{f[mol/s] \bullet nF[C/mol]} \frac{E_{cell} \quad [V]}{E_{Nernst}[V]} \frac{\Delta G(p,T)[J/mol]}{\Delta H_{293K}[J/mol]}$$

$$\eta_{cell} = \eta_I \quad \bullet \quad \eta_V \quad \bullet \quad \eta_{THDYN}$$

$$\text{current efficiency,}$$
"fuel utilisation" thermodynamic efficiency voltage efficiency

Example: H₂ vs. CH₄, with air

	H ₂ , 80° C (PEFC)	H ₂ , 800° C (SOFC)	CH ₄ , 800° C (SOFC)
Fuel utilisation	1	0.85	8.0
* Voltage efficiency	0.65	0.8	0.8
* Thermodynamic efficiency (LHV)	0.93	0.78	1
= Electrical efficiency (LHV)	0.6	0.53	0.64

- Such values have been achieved in real systems.
- There will usually be co-generation of useful heat, for total efficiencies of ≈ 90%.
- CH₄ has the intrinsic benefit of presenting **no entropy loss**.
- H₂ carries an additional intrinsic loss as it has to be synthesized first.
- → Methane-FC (natural gas, biogas) are (in principle) more efficient than H₂-FC.

Current-voltage characteristic, <u>full</u> load

Current-voltage characteristic, part load

Comparison with direct combustion

$$CH_4$$
 + air =>

$$H_2O + CO_2 + heat$$

verk/learning-center/ gas-turbine-for-power-generation

combustion

emissions

ENGINES

 $0.1-5~MW_{el}$ η_{EL} 33-45%

TURBINES

5-100 MW_{el} η_{EL} 27-40%

COMBINED CYCLES

 $50-500~MW_{el}$ η_{EL} 50-60%

CH₄ + 4 O²⁻ €

 $H_2O + CO_2 + 8e^-$

4 02-

8e- + air (O_2, N_2)

 $CH_4 + air => H_2O + CO_2 + dc$ current

+ cogenerated useful heat

electrochemical "combustion"

> $1 - 100 \text{ kW}_{el}$ η_{EL} 50-60%

Part load comparison

*from 100% to 40% power modulation

Which fuel cell for which application?

Portable	1-100 W	electronics (3C market)	DMFC, PEFC
Small	10 kW - 100 kW	"UPS" (reduced competition	PEFC, SOFC
cogen.		from µT or diesel engine)	
Transport	20 kW - 200 kW	vehicles, buses	PEFC, DMFC, AFC
	> 1 MW	ships	MCFC, SOFC
Medium	0.5 MW - 10 MW	offices, schools, universities,	PAFC
cogen.		supermarkets, hotels, data	MCFC
	L	centers, hospitals, industry	SOFC
		(chem/steel/ food/WW/telecom)	

size

2 kW_e net 60% *ac* efficiency (SOFC)

Performance			
	Min	Optimum	Max
Electrical Output	500 W	1500 W	2000 W
Electrical Efficiency	36 %	60 %	57 %
Thermal Output	Approx. 400 W*	Approx. 540 W*	Approx. 1000 W*
	* Based on exhaust gas cooled to 30 °C		
Power Output Modulation	From 0 % to 10	From 0 % to 100 %	

System Efficiency

= world record, at this small power scale

Multi-100 kWe Bloom Energy Box (SOFC)

gradent d		
	400 kWe	
	Fuels	Natural Gas, Directed Biogas
	Input fuel pressure	15 psig
	Fuel required @ rated power	0.661 MMBtu/hr of natural gas
	Water required (for startup only)	120 gallons municipal water
	Outputs	Tanan Pales
cts	Rated power output (AC)	100 kW
npc	Electrical efficiency (LHV net AC)	> 50%
/prc	Electrical connection	480V @ 60 Hz, 4-wire 3 phase
)mc	Physical	
y.cc	Weight	10 tons
erg	Size	224" x 84" x 81"
lene	Emissions	
ОШО	NOx	< 0.07 lbs/MW-hr
blo	SOx	negligible
www.bloomenergy.com/products	CO	< 0.10 lbs/MW-hr
M M	VOCs	< 0.02 lbs/MW-hr
ŕ	CO ₂ @ specified efficiency	773 lbs/MW-hr on natural gas,
		carbon neutral on Directed Biodas

Siemens: MAN City Bus (PEFC)

number of cells320rated power \approx 120 kWrated current560 Arated voltage \approx 215 Voperating temperature80° C

dimension ≈ 176x53x50 cm³

weight ≈ 900 kg

Rated efficiency (at 20% load) ≈ 68 % (at rated load) ≈ 56 %

(Copied from G.G. Scherer, Tutorial, European Fuel Cell Forium, July 2011, Lucerne)

Measured efficiency (MA City Bus)

(Copied from G.G. Scherer, Tutorial, European Fuel Cell Forium, July 2011, Lucerne)

H₂-Mobility: Swisshydrogen

actually recovered Positive 1.75 kWh energy Hydrogen Fuel cell Output at wheel used 14.3 kWh -(traction) 22.5 kWh 13.5 kWh $(2.5 l_{ge})$ Active suspension, Auxiliaries and Fuel cell losses Converters losses 8.2 kWh 2.55 kWh 0.9 data measured on board Current based Efficiency LHV [-] Stack 0.7 System 0.5 2L/100 km gasoline equiv. 0.3 2.5 0.5 1.5 x 10 Power [W]

Regenerative energy

(source: F. Büchi, PSI)

The fuel issue

- Operating temperature as decisive parameter
- Fuel 'processing' (= fuel preparation)
- H₂ as mobility fuel
- Hydrocarbons for stationary application
- Importance of <u>integrated</u> fuel cell <u>systems</u>

Fuel cell processing basics

- any hydrocarbon fuel (CH_x) is converted to syngas (H₂, CO)
- syngas can directly feed high temperature FC
- to feed low temperature FC, chemical steps are necessary to reduce CO content to only traces, as CO blocks the Ptcatalyst

=> fundamental difference between low and high T - fuel cells :

	Low T	High T
Fuel	H ₂	CH _x
Catalyst	Pt	Ni
СО	= poison	= fuel

Main fuel chemical reactions

✓ methods to transform a primary hydrocarbon
(e.g. natural gas, biogas,..) into syngas (the mixture of H₂, CO)

Steam reforming SR	$CH_4 + H_2O \Leftrightarrow 3H_2 + CO$
Dry reforming	$CH_4 + CO_2 \Leftrightarrow 2H_2 + 2CO$
Partial Oxidation POX	$CH_4 + \frac{1}{2}O_2 \Rightarrow 2H_2 + CO$
(Water gas) shift	$CO + H_2O \Leftrightarrow H_2 + CO_2$
Pyrolysis ("cracking")	$CH_4 \Rightarrow 2H_2 + C$
Boudouard	$2CO \Leftrightarrow CO_2 + C$
Reverse gasification	$CO + H_2O \Leftrightarrow H_2O + C$

reactions that deposit solid carbon (to be avoided!)

✓ method to transform CO into H₂

Waste2Watts EU project

 low cost biogas cleaning for coupling with low cost SOFC to prepare biogas market entry for Solid Oxide Fuel Cells

HYBRID SOFC-GT FUEL CELL SYSTEM WITH CO₂ SEPARATION

- A SOFC is inherently a separator of oxygen and nitrogen of air
- Anodic flow is mainly CO_2 and H_2O that can be used in a sub-atmospheric Brayton cycle improving the overall electrical efficiency (up to 80%) with an efficient CO_2 recovery

Toyota Mirai

650 km range - H₂ 700 bar - 3 min refill - 114 kW max

http://www.toyota-global.com/innovation/environmental_technology/fuelcell_vehicle/

http://www.theverge.com/2014/11/18/7242785/toyotas-new-hydrogen-powered-mirai-sedan-will-be-on-sale-next-year

Electricity Storage

- the electrical grid has virtually no storage capacity
- seasonal electricity demand varies significantly
- the difference (summer-winter) is exacerbated when replacing base-load (nuclear, coal) with renewables like PV and hydro (summer-excess, winter-deficit)
- → long term storage is required
 - as fuel by electrolysis (H₂, CH₄, ...) => "Power-to-Gas"
 - in batteries

Reverse fuel cell = electrolyzer

Operating regime: 700-800C 1 bar (to 5 bar)

FUEL CELL ELECTROLYSER

Electrolysis technology comparison

CO₂-to-CH₄ via methanation coupled with solid oxide (co)electrolysis (SOE)

Motivation:

- 1) (Green) H₂ is needed to methanate CO₂ to CH₄
- 2) The most efficient electrolysis to provide H_2 is from steam (30% less electricity need than water electrolysis)
- 3) The steam is provided from the methanation heat itself => integrated system => highest efficiency

CH_4 -to- CO_2 -to- CH_4 with <u>reversible</u> solid oxide cell technology (rSOC)

Key Issues

- Great progress in Fuel Cells since 2 decades
 - H_2 -cars and buses (10 200 kW_e PEFC)
 - residential micro-CHP (1-2 kW_e SOFC, natural gas)
 - efficient clean cogeneration plants (MW_e-sized MCFC, incl. biogas)
- big effort in reliability and cost reduction still to accomplish
- competition (engines, batteries,...) progresses too!
- issue of the H₂-storage & distribution