Thermo-electricity

Thermoelectric power for space vehicles

300 W of power for 40 years

Copyright © 2005 Pearson Prentice Hall, Inc.

RADIOISOTOPE THERMO ELECTRIC GENERATOR

A pellet of 238-PuO₂ to be used in an RTG for either the Cassini or Galileo mission. The initial output is 62 watts. The pellet glows red hot because of the heat generated by the radioactive decay (primarily α).

Thermoelectric waste heat recovery on vehicles

300 W (car) 1 kW (truck)

Thermoelectrics in the process industry to capture waste heat from industrial furnaces

Thermoelectric devices – basics

Thermoelectric module

Thermoelectric module – assembly

substrate – e.g. alumina metal interconnect spacer material heat supply n-type p-type output current output current h+ elead lead + \ heat removal TE leg metal interconnect substrate

Voltage is built up by **series** arrays of TE legs (hence n-p legs in series; α has opposite sign) **Current** is built up by **parallel** arrays of TE legs

Power = voltage x current

High power requires large temperature difference and low materials resistance

Layered assembly structures

From materials to module

Thermoelectricity – Seebeck effect

A metal or semiconductor generates a voltage when placed in a temperature gradient.

V= $\alpha \Delta T$ α = Seebeck coefficient / $\mu V K^{-1}$

 $\boldsymbol{\alpha}$ is small for a metal but larger for a semiconductor

Typical range: 0.1 to 1 mV per K

The charge density increases at the cold side due to a thermal diffusion gradient. At the hot side charge diffuses faster. This creates and maintains a voltage difference.

"Figure of merit"

Thermoelectric efficiency is described by the materials property Z.

Z is normally given as the dimensionless quantity "ZT"

$$ZT = \frac{\alpha^2 \sigma T}{k}$$

 α = Seebeck coefficient

 σ = electrical conductivity

T = temperature in Kelvin

 κ = thermal conductivity

ZT values are generally less than unity $(ZT \le 1)$

 α , σ and κ are not independent of each other, making optimization difficult.

For thermoelectric power generation (heat recovery systems), ZT needs to be as high as possible - preferably greater than unity.

α and σ have opposite trends

Semiconductor = best compromise btw electrical conductivity and Seebeck coefficient

CARRIER CONCENTRATION (cm⁻³)

Phonon thermal conductivity is reduced by increasing their diffusion, i.e. by introducing heavy elements (reduce phonon vibration frequency), lattice misorganisation, cage structures, and small grain sizes (to reduce the mean free path of phonons).

Power Generation

Thermoelectric properties

Material (one leg, n or p)	Module (multiple legs, n+p)
High Seebeck coefficient: $lpha$ (>100 µV/K)	Open circuit voltage: $V_{oc} = N_p \int_{T_c}^{T_H} \alpha_p dT - N_n \int_{T_c}^{T_H} \alpha_n dT$
High electrical conductivity: $\sigma=n\mu e_{\mu; ext{mobility}}$	Inner resistance: $R_{i} = N_{p} \int_{0}^{l} \frac{dx}{\sigma_{p}(T)A_{p}} + N_{n} \int_{0}^{l} \frac{dx}{\sigma_{n}(T)A_{n}} + R_{contacts}$
Low thermal conductivity: $\kappa = \kappa_{el} + \kappa_{ph}$ (el: charge carriers: ph: phonons)	Thermal conductance: $K = \frac{N_p A_p \kappa_p}{l_p} + \frac{N_n A_n \kappa_n}{l_n}$
Figure of merit (material): $\mathbf{z} = \frac{\alpha^2 \sigma}{\kappa}$	Figure of merit (module): $\boldsymbol{Z} = \frac{\alpha_{np}^2}{R_i K}$

(κ_{el} increases like σ ; the only way to limit κ is via κ_{ph})

Efficiency = Carnot * f(ZT)

Thermoelectric conversion efficiency

Carnot limit * thermoelectric properties

zT vs temperature

Thermally activated degradation processes

Atoms vibrate ...

		_

... and move

Diffusion coefficient

$$D = D_0 \exp\left(-\frac{E_a}{RT}\right)$$

Coefficient of Thermal Expansion (linear)

$$CTE = \frac{1}{x} \frac{dx}{dT}$$

TE Materials

Skutterudites CoSb₃

promising high temperature low cost materials example of PGEC *Phonon Glass Electron Crystal*

Binary intermetallic family of minerals of the general structure MX_3 Crystal structure : cubic with Co atoms at the vertices and Sb atoms forming cage clusters or voids

n or p- types obtained by doping – with Ce, In, Fe, Ni

Skutterudite: cage structure, to trap heat carrying phonons

Skutterudites

Unfilled: Co₄Sb₁₂ Filled n-type: Fi_vCo₄Sb₁₂ 0...1 Fe^{2+} replaces $Co^{3+} \rightarrow$ holes Filled p-type: Fi_yCo_{4-x}Fe_xSb₁₂ $\rightarrow \kappa_{\text{decreases}}$ 0...4 Fi = In, Ce, Yb, ...

Silicides

- Silicides compounds formed between (almost) any other element and silicon
- Many of these are (like silicon) semiconductors → potential good TE materials
- Mg₂Si best n-type silicide, zT up to 1
- MnSi_{1.75} best p-type silicide, zT up to 0.8
- By replacing Si with Sn or Ge, point defects (scattering centers for phonons) are introduced, drastically reducing thermal conductivity → zT up to 1.5

Mg₂Si synthesized at EPFL-GEM

Silicide modules, prototype design

Performance

 \rightarrow ~10-15% of total R_i

Comparison among TE materials

Industrial waste heat recovery

Manufacturing Sector	Process Heating Energy Use (TBtu)	Process Heating Energy Loss (TBtu)	Recoverable Heat (Min–Max) (TBtu)	TE Potential (Min–Max) (GWh)
Petroleum Refining	2,250	397	40-99	582-1,454
Chemicals	1,455	328	33-82	481-1,201
Forest Products	980	701	70-175	1,027-2,567
Iron and Steel	729	334	33-84	489-1,223
Food and Beverage	518	293	29–73	429-1,073
Cement	213	84	8-21	123-308
Glass	161	88	9-22	129-322
Fabricated Metals	139	49	5-12	72-179
Transportation Equipment	65	23	2–6	34-84
Foundries	61	28	3-7	41-103
Plastics and Rubber	88	20	2–5	29–73
Textiles	40	23	2-6	34-84
Alumina and Aluminum	81	37	4–9	54-136
Computers, Electronics, & Electrical Equipment	42	15	2-4	22–55
Machinery	37	13	1-3	19-48
All Manufacturing	7,204	2,567	447-1,117	6,547-16,368

Thermoelectric Materials, Devices and Systems: 1 - Technology Assessment (US potential)

Exhaust pipe site

Location 1

Design conditions

Location 1		Location 2		
Parameter	Value	Parameter	Value	
T _{hot}	301.6°C	T _{hot}	223.24°C	
T _{amb,pipe}	29.97°C	T _{amb,pipe}	27.18°C	
T _{amb}	10°C	T _{amb}	10°C	
Q	12.1 kW/m ²	Q	7 kW/m ²	
u	Windless	u	Windless	
Q _{TE}	120 W	Q _{TE}	70 W	
T _{cold,TE}	50°C	T _{cold,TE}	50°C	
ΔT	251.6°C	ΔT	173.24°C	
T _{hot,silicide}	550°C	T _{hot,silicide}	550°C	
L _{leg}	2 mm	L _{leg}	2 mm	

Heat exchanger

Heat transfer area

$$A_{p} = \frac{Q_{TE} + q_{hex} + q_{hex,rad} - h_{pipe}A_{hex}\Delta T - \varepsilon \sigma A_{hex}T_{h}^{4} + \varepsilon \sigma A_{hex}T_{amb}^{4}}{Q - h_{pipe}\Delta T - \varepsilon \sigma T_{h}^{4} + \varepsilon \sigma T_{amb}^{4}}$$

Heat sink

Heat sink

Example - TEG in primary Al industry

Large amounts of waste heat available, but limited opportunities of thermal integration and waste heat recovery

Possible TEG applications:

A DECK DECK

- Waste heat recovery
 - Cell side walls
 - Cast house furnaces
 - Off gas systems

Process sensor function

- Optimized cell operation
- Improved cathode lifetime

TEG: ZT ~ 1 ΔT ~ 200 °C → η ~ 8 % **Al-cell:** 300 kA 13 kWh/kg ~ 50 % heatloss

ALCOA

TEG power production potential: 17 kW/cell

TEGs at aluminum cell sidewalls

Concept

TEG panels

- Passive (no fluids/moving parts)
- Modular (size and location flexible)

TEG panels on cell sidewalls

- Size adapted to cell design
- Location adapted to cell design
- Energy recovery
- Pot status control

Development scenario

- Short term: ad-on TEG-panels on side walls of existing cell design
- Medium term: integrate TEG-panels in side walls of test cell design
- Long term: integrate TEG-panels in side walls of standard cell design

Thermoelectric waste heat recovery on vehicles

Thermoelectric properties – closer look

Material (one leg, n or p)	Module (multiple legs, n+p)
High Seebeck coefficient: $\alpha = \frac{dV}{dT}$	1. Open circuit voltage: $V_{oc} = N_p \int_{T_c}^{T_H} \alpha_p dT - N_n \int_{T_c}^{T_H} \alpha_n dT$
High Electrical conductivity: $\sigma=n\mu e$	2. Inner resistance: $\mathbf{R}_{i} = N_{p} \int_{0}^{l} \frac{dx}{\sigma_{p}(T)A_{p}} + N_{n} \int_{0}^{l} \frac{dx}{\sigma_{n}(T)A_{n}} + R_{contacts}$
Low Thermal conductivty: $\kappa = \kappa_{el} + \kappa_{ph}$	3. Thermal conductance: $\mathbf{K} = \frac{N_p A_p \kappa_p}{l_p} + \frac{N_n A_n \kappa_n}{l_n}$
Figure of merit (material): $\mathbf{z} = \frac{\alpha^2 \sigma}{\kappa}$	4. Figure of merit (module): $oldsymbol{Z}=rac{lpha_{np}^2}{R_iK}$

Module geometry

Heat *concentrated*: substrate area / TE area = concentration factor cf Concentrated Solar Power (CSP) Inverse = fill fraction (FF) = TE area / substrate area

	$A_n A_p A$		
$FF = \frac{N(A_n + A_p)}{A}$	l∫ n p	n p n	C
Thermoelectric downsizing – height over cross sectional area important, not absolute size!	1 x 1 x 1 mm ³	Electrical resistance (as low as possible)	$R = ho rac{l}{A}$
BUT: limited due to contact resistance losses and parasitic heat losses	10 x 3.16 x 3.16 mm ³	Thermal conductance	$K = \kappa \frac{A}{I}$
\rightarrow Typical leg size: 2-5 mm		(as low as possible)	l

Encapsulation

- protect TE material from corrosive atmosphere
- e.g. oxidation of SiGe above ~600°C

Summary TE-module assembly

- Electrically in series:
 - N number of legs, alternating n- and p-type TE material
 - Open circuit voltage, V_{OC}, adds up seebeck voltage over each leg
 - Inner resistance, R_i, adds up resistance of each leg + contact resistance
- Thermally in parallel:
 - Each of N legs experience same ΔT
- I-V curves:
 - Power scales with ΔT^2
 - Max power at load matching conditions, i.e. R_{load} = R_i
- Geometry (length, area, fill fraction) used to optimize module for given heat source (W/m² and temp)
 - Compromise between low R_i and high K
 - − Ex: low \dot{Q} → low K → large I/A → high R_i → low P
 - − Ex: high \dot{Q} → high K → small I/A → low R_i → high P
- Electrical and thermal contact resistance
 - − Too high electrical contact resistance \rightarrow high Ri \rightarrow low P
 - − Too high thermal contact resistance \rightarrow low K \rightarrow lower ΔT \rightarrow low V_{oc} \rightarrow low P

$$V_{OC} \approx N\alpha_{np}(T_H - T_C)$$

$$R_i \approx N \frac{l}{\sigma_{np} A_{np}}$$

$$K \approx \kappa_{np} \frac{NA_{np}}{l}$$

$$P_{max} = \frac{V_{OC}^2}{4R_i}$$

$$\eta = \frac{P}{\dot{Q}}$$

Pro's / Con's of thermoelectricity

- Direct conversion; no intermediate fluid
- Reliable, durable
- Low efficiency
- Complicated assembly (cost, abundance, toxicity, shaping, CET, mec. properties of elements/compounds)