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3D Shape Design

» Design a shape.
» Simulate its performance.
» Redesign.

It works but:
Z It takes hours or days to produce a single simulation.

_ This constitutes a serious bottleneck in the exploration of
"+ the design space.

@ Designs are limited by humans’ cognitive biases.
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Non Linear Regression

Potential optimum

e Drag

e Pressure Coefficients The response surface can be
e Boundary Layer Velocities approximated by a CNN.

“PFL —> The model can have any number of parameters. A



Reminder: Conventional CNN
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ePerform convolutions on rectangular grids.

eImplicitly depends on their Euclidean structure.
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Object Representations

e 3D objects are often represented as triangulations
or quadrangulations.

e The individual facets are not always regular.

—> Need convnets that can operate on those.
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From Grid to Meshes

ePerform convolutions on irregular meshes.

e Estimate geodesic distances.
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Mesh Convolutions

Let f=(f',...,f") be defined at each vertex X*;<;<xn of mesh M.

f*g — Z ngkfa

(Def)' = 'ij exp <(p(Xi’§]:) — ak’))2> exp (_(H(Xi’;{;? — &kg)z) :

where p(-) and 6(-) are relative geodesic coordinates.

—> Slower convolutions because using the GPUs effectively is
more difficult.

—> But can be optimized to make the cost tolerable.
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Geodesic CNN
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Aerodynamics Simulation
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Real Time Prediction
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—> Interactive shape exploration
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Scalar Predictions

Scalar Inputs
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We can now operate on individual vertices.




Differentiable Prediction

Gradient-Based
Optimization
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Minimize Drag Under Constraints

wWind

Minimizing drag while enclosing a sphere
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Naca Profiles
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Lift, Drag, Momentum, ....




UAV Design
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https://www.sensefly.com/ ‘ﬂ



From UAV To Lifting Body
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Sensefly drone (L/D 11.9)

Optimize the wings (L/D 13.7)

Optimize the fuselage as well
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From Pickup-Truck to Sports Car
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Bicycle Shell
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Altair 6, IUT Annecy, 2018 World Human Powered Speed Challenge
Battle Mountain Nevada, 2019

Women world record: 126,48 km/h
Men student world record: 136.74 km/h
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Hydrocontest Boat

Goal:

e Reduce drag.

e Increase stability.




Hydrofoll

Minimize drag while reaching a target lift and stability.

—>A slightly unexpected shape.
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Cantilever Beam




Structural Design

Poor design: Heavy, high stresses Better design
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Structural Design

Preds sigma
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Structural Design

Preds
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Conclusion

Geodesic CNNs can be used to:
e Reliably emulate a simulator.

e Optimize the aerodynamic performance of a shape.

Future work will focus on:

e Exploring the shape-space more thoroughly.
e Allowing the topology to evolve as needed.
e Build training databases from real data.

e Tech Transfer.
L




