6 Seconds of Sound and
Vision: Creativity in

Micro-Videos
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unigue in a

e | ,, |
sighificant way e Weisberg: "for something to be

\ creative, it is not enough for it to be

novel: it must have value, or be
appropriate to the cognitive

demands of the situation \

specifically
aesthetic values

~

e Kant: judgements of aesthetic value
Involve sensory, emotional and
intellectual components.

creativity?




Research Question

‘We study the audio-visual features of creative vs non-creative videos and
present a computational framework to automatically classify these
categories. In particular, we conduct a crowdsourcing experiment to annotate
over 3,800 Vine videos, |...|. We go on to use this dataset to study creative
micro-videos and to evaluate approaches to automatic detection of creative
micro-videos.”



Research Question

Can we create a reliable crowdsourced dataset?
Can we extract features that identify creativity in micro-videos?
Can these be used to automatically classify a micro-video into
creative and non-creative?
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Dataset | % Videos || # Creative (%) | # Non-creative (%)
D-60 100% 1141 (30%) 2708 (70%)
D-80 T7% 789 (27%) 2196 (73%)
D-100 48% 471 (25%) 1382 (75%)

Table 2. Summary of the results of the labeling experiment. D-60:
videos with at least 60% agreement between annotators. D-80: at
least 80% agreement. D-100: 100% agreement.

(a) Hashtags

(b) Blogs

(c) Creators

(d) Random

Creative 34.05% 79.57% 27.41% 1.88%
Non-Creative 65.95% 20.43% 72.59% 08.12%

Table 3. Creative vs non-creative videos per sampling strategy, for
the D-100 dataset (100% agreement).




Dataset | % Videos
D-60 100%
D-80 T7% 189 (27%) 2196 (73%)
D-100 48% 471 (25%) 1382 (75%)

Table 2. Summary of the results of the labeling experiment. D-60:

videos with at least 60% agreement between annotators. D-80: at
least 80% agreement. D-100: 100% agreement.

# Creative (%)
1141 (30%)

# Non-creative (%)
2708 (70%)

less than 2% of
the videos on
Vine are creaqtive

(a) Hashtags

(b) Blogs

(c) Creators

yd’ﬁiax om

Creative 34.05% 79.57% 27.41% 1.88%
Non-Creative 65.95% 20.43% 72.59% 08.12%

Table 3. Creative vs non-creative videos per sampling straiegy, for

the D-100 dataset (100% agreement).



Research Question

Can we create a reliable crowdsourced dataset?
Can we extract features that identify creativity in micro-videos?
Can these be used to automatically classify a micro-video into
creative and non-creative?



new features

Group

Feature

Dim

Description

AESTHETIC VALUE

Sensory Features

Saliency Moments [26] 462 | Frame content is represented by summarizing the shape of the salient region
General Video Properties 2 Number of Shots, Number of Frames

Filmmaking Stop Motion | Number of non-equal adjacent frames

Technique Loop | Distance between last and first frame
Movement 1 Avg. distance between spectral residual [9] saliency maps of adjacent frames
Camera Shake 1 Avg. amount of camera shake [1] per frame
Rule of Thirds [5] 3 HSV average value of the inner quadrant of the frame (H(RoT),S(RoT),V(RoT))

Composition Low Depth of Field |5] 0 LDOF indicators computed using wavelet coefficients

and Photographic Contrast [6] 1 Ratio between the sum of max and min luminance values and their difference

Technique Symmetry |27] I Difference between edge histograms of left and right halves of the image
Uniqueness |27 1 Distance between the frame spectrum and the average image spectrum
Image Order [28] 2 Order values obtained through Kologomorov Complexity and Shannon’s Entropy

Emotional Affect Features

Color Names [ 17] 9 Amount of color clusters such as red, blue, green, ...

Visual Affect Graylevel Contrast Matrix Properties [17] 10 Entropy, Dissimilarity, Energy, Homogeneity and Contrast of the GLCM matrix
HSV statistics [17] 3 Average Hue, Saturation and Brightness in the frame
Pleasure, Arousal, Dominance [30] 3 Affective dimensions computed by mapping HSV values
Loudness [15] 2 Overall Energy of signal and avg Short-Time Energy in a 2-seconds window

Audio Affect Mode [15] I Sums of key strength differences between major keys and their relative minor keys
Roughness [15] I Avg of the dissonance values between all pairs of peak in the sound track spectrum
Rythmical Features [15] 2 Onset Rate and Zero-Crossing Rate

\ NOVELTY
Noveltv ) Audio Novelty 1[;} Distance between the audio features and the audio space
: Visual Novelty 40 Distance between the visual features and each visual feature space

Table 4. Audiovisual features for creativity modeling




emotion
features

Group

Feature

Dim

Description

AESTHETIC VALUE

Sensory Features

Scene Content Saliency Moments [26] 462 | Frame content is represented by summarizing the shape of the salient region
General Video Properties 2 Number of Shots, Number of Frames
Filmmaking Stop Motion | Number of non-equal adjacent frames
Technique Loop | Distance between last and first frame
Movement 1 Avg. distance between spectral residual [9] saliency maps of adjacent frames
Camera Shake 1 Avg. amount of camera shake [1] per frame
Rule of Thirds [5] 3 HSV average value of the inner quadrant of the frame (H(RoT),S(RoT),V(RoT))
Composition Low Depth of Field [5] 9 LDOF indicators computed using wavelet coefficients
and Photographic Contrast [6] 1 Ratio between the sum of max and min luminance values and their difference
Technique Symmetry |27] I Difference between edge histograms of left and right halves of the image
Uniqueness |27 1 Distance between the frame spectrum and the average image spectrum
Image Order [28] 2 Order values obtained through Kologomorov Complexity and Shannon’s Entropy
Emotional Affect Features
Color Names [ 17] 9 Amount of color clusters such as red, blue, green, ...
Visual Affect Graylevel Contrast Matrix Properties [17] 10 Entropy, Dissimilarity, Energy, Homogeneity and Contrast of the GLCM matrix
HSV statistics [17] 3 Average Hue, Saturation and Brightness in the frame
Pleasure, Arousal, Dominance [30] 3 Affective dimensions computed by mapping HSV values
Loudness [15] 2 Overall Energy of signal and avg Short-Time Energy in a 2-seconds window
Audio Affect Mode [15] I Sums of key strength differences between major keys and their relative minor keys
Roughness [15] I Avg of the dissonance values between all pairs of peak in the sound track spectrum
Rythmical Features [15] 2 Onset Rate and Zero-Crossing Rate
NOVELTY
Noveltv Audio Novelty 1[;} Distance between the audio features and the audio space
: Visual Novelty 40 Distance between the visual features and each visual feature space

Table 4. Audiovisual features for creativity modeling
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Research Question

Can we create a reliable crowdsourced dataset?
Can we extract features that identify creativity in micro-videos?
Can these be used to automatically classify a micro-video into
creative and non-creative?
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Accuracy

Feature D-60 | D-80 | D-100
Aesthetic Value

Sensory Features

Scene Content 0.67 | 0.69 0.74
Filmmaking Techniques 0.65 | 0.69 0.73
Composition & Photographic Technique 0.67 | 0.74 0.77
All Sensory Features 0.69 | 0.75 | 0.77
Emotional Affect Features

Audio Affect 0.59 | 0.53 0.67
Visual Affect 0.65 | 0.66 0.66
All Emotional Affect Features 0.62 | 0.56 0.71
All Aesthetic Value Features 0.68 | 0.72 0.79
Novelty

Audio 0.58 | 0.58 0.63
Visual 0.63 | 0.67 0.74
Audio + Visual Novelty 0.59 | 0.63 0.69
Novelty + Aesthetic Value 0.69 | 0.73 0.80

Table 5. Prediction results for value and novelty features
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Best individual features
correspond to PCC results
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iImprovement,
complementarity
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Mild improvement adding
also novelty



Conclusion

Crowdsourcing

Good inter-
annotator
agreement

Three datasets.

Features

New features
encoding:

- gesthetic values
- novelty

Model

Promising results,

80% accuracy

Future Work

- Intellectual
features
- metadata

- application to
other micro-video
platforms



