

'How do I put together the exam for this class? my design principles'

Wulfram Gerstner

Final week of lectures Exam:

written exam 2nd July 2021 from 16:15-19:00

 exam in parallel in 2 rooms: SG1 and AAC106;
 seating assignment to rooms will be announced
 miniprojects counts 30 percent towards final grade

For written exam: -bring 1 page A5, double-sided of own notes/summary -HANDWRITTEN!

Biological Modeling of Neural Networks

Written Exam (70%) + miniproject (30%)

Textbook: http://neuronaldynamics.epfl.ch/

Video (two possibilities): https://lcnwww.epfl.ch/gerstner/NeuronalDynamics-MOOCall.html https://courseware.epfl.ch/

Miniproject consists of 2 extended computer exercises, of which you have to hand in 1 (teams of two students)

Biological Modeling of Neural N	
Wulfram Gerstner	Week
EPFL, Lausanne, Switzerland	Week
TAs in 2021:	Week
Valentin Schmutz (head) Sophia Becker	Week
Shuqi Wang	Week
Christos Sourmpis Martin Rarry	Week Week
warth Dany	Week
COURSE WEBPAGE: Moodle.epfl.ch	Week

Networks

1: A first simple neuron model/ neurons and mathematics 2: Hodgkin-Huxley models and biophysical modeling 3: Two-dimensional models and phase plane analysis 4: Two-dimensional models (cont.), type I and type II models 5,6: Associative Memory, Hebb rule, Hopfield 7-10: Networks, cognition, learning 11,12: Noise models, noisy neurons and coding 13: Estimating neuron models for coding and decoding: GLM x: Online video: Dendrites/Biophysics

LEARNING OUTCOMES

- Solve linear one-dimensional differential equations
- Analyze two-dimensional models in the phase plane
- •Develop a simplified model by separation of time scales
- Analyze connected networks in the mean-field limit
- •Formulate stochastic models of biological phenomena
- •Formalize biological facts into mathematical models
- Prove stability and convergence
- Apply model concepts in simulations
- Predict outcome of dynamics
- Describe neuronal phenomena

Transversal skills

- •Plan and carry out activities in a way which makes optimal use of available time and other resources.
- •Collect data.
- •Write a scientific or technical report.

What do I have in mind when I prepare the exam?

- Phase plane to analyze two-dimensional models
- Separation of time scales to simplify model
- Mean-field approach to analyze connected networks (competition, Hopfield, random connectivity)
- Stochastic modeling
 - (stochastic diff. eq., time-dep. mean, interval distribution)
- Formalize biological facts into mathematical models (interpretation of equations)
- Prove stability and convergence (fixed points, stability)
- Predict outcome of dynamics (oscillations, fixed points)

- Exams from previous years are on moodle. \rightarrow All exam questions are similar to exercises \rightarrow Solution to exam questions is not given (you can check your solution by comparing with exercises)

- Suggested preparation:

- \rightarrow redo exercises
- \rightarrow look at 3 or 4 exams

(some old exams contain problems on Fokker-Planck eq., but these are not a topic in this year's exam) \rightarrow prepare your handwritten A5 sheet

- NOTE: Exam tests other capabilities than miniproject