12.1. We have

$$
\begin{array}{r}
\frac{d^{2}}{d t^{2}}\left\|Z_{t}\right\|^{2}=2 \frac{d}{d t}\left\langle\nabla_{t} Z, Z\right\rangle=2\left\langle\left(\nabla_{t}\right)^{2} Z, Z\right\rangle+2\left\|\nabla_{t} Z\right\|^{2} \\
=-2\langle R(Z, \dot{\gamma}) \dot{\gamma}, Z\rangle+2\left\|\nabla_{t} Z\right\|^{2} .
\end{array}
$$

Since the manifold has nonpositive sectional curvature, the above quantity is nonnegative.
Using the identity $\frac{d^{2}}{d t^{2}} \sqrt{f}=\frac{f f^{\prime \prime}-\frac{1}{2} f^{\prime 2}}{2 f^{3} / 2}$ with $f(t)=\left\|Z_{t}\right\|^{2}$, we obtain

$$
\frac{d^{2}}{d t^{2}}\left\|Z_{t}\right\|=\frac{-\|Z\|^{2}\langle R(Z, \dot{\gamma}) \dot{\gamma}, Z\rangle+\|Z\|^{2}\left\|\nabla_{t} Z\right\|^{2}-\left\langle\nabla_{t} Z, Z\right\rangle^{2}}{\|Z\|^{3}}
$$

Now the Schwarz's inequality $\|Z\|^{2}\left\|\nabla_{t} Z\right\|^{2} \geq\left\langle\nabla_{t} Z, Z\right\rangle^{2}$ implies that $\frac{d^{2}}{d t^{2}}\left\|Z_{t}\right\| \geq 0$ since $\langle R(Z, \dot{\gamma}) \dot{\gamma}, Z\rangle \leq$ 0.
12.2. This is a direct calculation.
12.3. La solution se trouve dans le Do Carmo p. 107
12.4. First we shall prove the following:

Theorem (Weinstein) Let f be an isometry of a compact, oriented Riemannian manifold M with positive sectional curvature. Suppose further that M is even dimensional and f preserves the orientation. Then f has a fixed point.

An important step in the proof of the above is the following:
Lemma Let A be an orthogonal linear transformation of \mathbb{R}^{n-1} such that $\operatorname{det}(A)=(-1)^{n}$. Then A fixes some non zero vector.

Proof:

If n is even, then the associated polynomial $\operatorname{det}(A-\lambda I)$ has odd degree. Therefore A has a real eigenvalue. Since A is orthogonal, this eigenvalue is either -1 or 1 . The product of the complex eigenvalues of A is non negative, and the determinant of A is 1 . Hence at least one of the real eigenvalues of A must equal 1 . The case when n is odd is analogous.

Proof of Weinstein's theorem

Assume by way of contradiction that there is no fixed point. Let $p \in M$ be such that $d(p, f(p))=l$ realises the infimum of the quantity $d(q, f(q))$ for $q \in M$. Since M is complete, we can find a geodesic $\gamma:[0, l] \rightarrow M$ such that $\gamma(0)=p, \gamma(l)=f(p)$.
Let P be the parallel transport along γ from $f(p)$ to p. Let A be the matrix corresponding to $P \circ d f_{p}$. Note that A is an isometry.
Next, consider the geodesic $f(\gamma)$ that joins $f(p)$ to $f^{2}(p)$. Observe that the concatenation of $\gamma, f(\gamma)$ is also a geodesic. (Use the triangle inequality and the assumption that $d(p, f(p))=l$ is the infimum as stated above). Conclude that A leaves $\gamma^{\prime}(0)$ fixed.

Applying the Lemma to the orthogonal complement of $\gamma^{\prime}(0)$ in $T_{p}(M)$, conclude that A fixes a unit vector v in this subspace. Note that here we use the fact that f, P are isometries that preserves the orientation and so $\operatorname{det}(A)=1$.

Let $e_{1}(t)$ be a parallel vector field along γ such that for each $t, e_{1}(t)$ belongs to the orthogonal complement of $\gamma^{\prime}(t)$ and $A\left(e_{1}(0)\right)=e_{1}(0)$. Consider the variation given by $h(s, t)=\exp _{\gamma(t)}\left(s e_{1}(t)\right)$. Use the second variation formula, and the assumption on curvature, to show that there is a curve in the variation that contradicts the assumption that

$$
d(p, f(p))=l=\inf \{d(q, f(q)) \mid q \in M\}
$$

Proof of the main result

Let $\pi: \tilde{M} \rightarrow M$ be the universal cover of M. Introduce the covering metric on \tilde{M}, and an orientation so that π is orientation preserving. Because M is compact and has positive sectional curvature, this is bounded below by some positive δ. Since π is a local isometry this also holds for \tilde{M}. Since \tilde{M} is complete, it follows from the assumption on curvature that it is also compact. Now using Weinstein's theorem, we conclude that every covering transformation of \tilde{M} has a fixed point, and hence is trivial. This means that M is simply connected.
12.5. As in the previous problem, show that there is a vector v in the orthogonal complement of $\gamma^{\prime}(0)$ which is left invariant under parallel transport around the curve. Use this parallel vector field to build a variation. Use the second variation formula and the assumption on curvature to prove that there is a curve in the variation that is of smaller length. Clearly, this curve is homotopic to γ.

