Edge Detection

What's an edge Image gradients Edge operators

Line Drawings

- Edges seem fundamental to human perception.
- They form a compressed version of the image.

From Edges To Cats

Deep-Learning based generative model.

https://affinelayer.com/pixsrv/

3

Maps and Overlays

Corridor

Corridor

Edges and Regions

Edges:

- Boundary between bland image regions.
 Regions:
- Homogenous areas between edges.
- \rightarrow Edge/Region Duality.

Discontinuities

- A. Depth discontinuity: Abrupt depth change in the world
- B. Surface normal discontinuity: Change in surface orientation
- C. Illumination discontinuity: Shadows, lighting changes
- D. Reflectance discontinuity: Surface properties, markings

 \rightarrow Sharply different Gray levels on both sides

REALITY

More Reality

Very noisy signals → Prior knowledge is required!!

Optional: Illusory Contours

- No closed contour, but we still perceived an edge.
- This will not be further discussed in this class.

Ideal Step Edge

EPFL

Edge Properties

Edge Descriptors

- Edge Normal:
 - Unit vector in the direction of maximum intensity change
- Edge Direction:
 - Unit vector perpendicular to the edge normal
- Edge position or center
 - Image location at which edge is located
- Edge Strength
 - Speed of intensity variation across the edge.

Images as 3-D Surfaces

BeneWin.rgb ----

Geometric Interpretation

Since I(x,y) is not a continuous function:1.Locally fit a smooth surface.2.Compute its derivatives.

Image Gradient

The gradient of an image

$$\nabla I = \left[\frac{\delta I}{\delta x}, \frac{\delta I}{\delta y}\right]$$

points in the direction of most rapid change in intensity.

Magnitude And Orientation

Measure of contrast :
$$G = \sqrt{\frac{\partial I}{\partial x}^2 + \frac{\partial I}{\partial y}^2}$$

Edge orientation : $\theta = \arctan(\frac{\partial I}{\partial y}, \frac{\partial I}{\partial x})$

Gradient Images

The gradient operator is rotationally invariant

Real Images

... but not directly usable in most real-world images.

EPFL

Edge Operators

- Difference Operators
- Convolution Operators
- Trained Detectors
- Deep Nets

Gradient Methods

1D Finite Differences

In one dimension:

x - dx x x + dx

$$\frac{df}{dx} \approx \frac{f(x+dx) - f(x)}{dx} \approx \frac{f(x+dx) - f(x-dx)}{2dx}$$
$$\frac{d^2f}{dx^2} \approx \frac{f(x+dx) - 2f(x) + f(x-dx)}{dx^2}$$

EPFL

Coding 1D Finite Differences

Line stored as an array:

for i in range(n-1):
 q[i]=(p[i+1]-p[i])

 for i in range(1,n-1): q[i]=(p[i+1]-p[i-1])/2

• q=(p[2:]-p[:-2])/2

EPEI

2D Finite Differences

$$\frac{\partial f}{\partial x} \approx \frac{f(x+dx,y) - f(x,y)}{dx} \approx \frac{f(x+dx,y) - f(x-dx,y)}{2dx}$$
$$\frac{\partial f}{\partial y} \approx \frac{f(x,y+dy) - f(x,y)}{dy} \approx \frac{f(x,y+dy) - f(x,y-dy)}{2dy}$$

Coding 2D Finite Differences

Noise in 1D

Consider a single row or column of the image:

Fourier Interpretation

→ Differentiating emphasizes high frequencies and therefore noise!

EPFL

$f(x) = x^2 sin(1/x)$

29

EPFL

Noise in 2D

Step edge + noise

Increasing noise level

Ideal step edge

As the amount of noise increases, the derivatives stop being meaningful. EPFL

Removing Noise

Problem:

High frequencies and differentiation do not mix well.

Solution:

- Suppress high frequencies by
 - using the Discrete Fourier Transform.

Discrete Fourier Transform

$$F(\mu,\nu) = \frac{1}{\sqrt{M*N}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-2i\pi(\mu x/M + \nu y/N)}$$
$$f(x,y) = \frac{1}{\sqrt{M*N}} \sum_{\mu=0}^{M-1} \sum_{\nu=0}^{N-1} F(\mu,\nu) e^{+2i\pi(\mu x/M + \nu y/N)}$$

The DFT is the discrete equivalent of the 2D Fourier transform:

- The 2D function f is written as a sum of sinusoids.
- The DFT of f convolved with g is the product of their DFTs.

EPFL

Fourier Basis Element

Real part of

 $e^{+2i\pi(ux+vy)}$

where

- $\sqrt{u^2 + v^2}$ represents the frequency,
- atan(*v*, *u*) represents the orientation.

Fourier Basis Element

Real part of

$$e^{+2i\pi(ux+vy)}$$

where

• $\sqrt{u^2 + v^2}$ is larger than before.

Fourier Basis Element

Real part of

$$e^{+2i\pi(ux+vy)}$$

where

• $\sqrt{u^2 + v^2}$ is larger still.

Truncated Inverse DFT

$$F(\mu,\nu) = \frac{1}{\sqrt{M*N}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-2i\pi(\mu x/M + \nu y/N)}$$
$$f(x,y) = \frac{1}{\sqrt{M*N}} \sum_{\mu=0}^{M-1} \sum_{\nu=0}^{N-1} F(\mu,\nu) e^{+2i\pi(\mu x/M + \nu y/N)}$$

$$f(x, y) = \frac{1}{\sqrt{M*N}} \sum_{\mu^2 + \nu^2 < T} F(\mu, \nu) e^{+2i\pi(\mu x/M + \nu y/N)}$$

T is a hand-specified threshold.

- The sinusoids corresponding to $\mu^2 + \nu^2 \ge T$ depict high frequencies.
- Removing them amounts to removing high-frequencies.

Smoothing by Truncating the IDFT

Rotated stripes:

- Dominant diagonal structures
- Discretization produces additional harmonics
- —> Removing higher frequencies and reconstructing yields a smoothed image.

Removing Noise

Problem:

• High frequencies and differentiation do not mix well.

Solution:

- Suppress high frequencies by
 - using the Discrete Fourier Transform,
 - convolving with a low-pass filter.

1D Convolution

Smooth Before Differentiating

EPFL

40

Simultaneously Smooth and Differentiate

--> Faster because dg/dx can be precomputed.

EPFL

41

Input

Mask

F. Fleuret. EE-559 – Deep learning

W - w + 1

F. Fleuret. EE-559 – Deep learning

F. Fleuret. EE-559 – Deep learning

1D Convolution

Input

EPFL

 \leftarrow

EPFL

F. Fleuret. EE-559 – Deep learning 548

W - w + 1

 \leftarrow

Input image: f

Convolution mask m, also known as a *kernel*.

$$\begin{bmatrix} m_{11} & \dots & m_{1w} \\ \dots & \dots & \dots \\ m_{w1} & \dots & m_{ww} \end{bmatrix}$$

$$m * *f(x, y) = \sum_{i=0}^{w} \sum_{j=0}^{w} m(i, j)f(x - i, y - j)$$

00

00

Differentiation As Convolution

$$\begin{bmatrix} -1,1 \end{bmatrix} \rightarrow \frac{\partial f}{\partial x} \approx \frac{f(x+dx,y) - f(x,y)}{dx}$$
$$\begin{bmatrix} -0.5,0,0.5 \end{bmatrix} \rightarrow \frac{\partial f}{\partial x} \approx \frac{f(x+dx,y) - f(x-dx,y)}{2dx}$$
$$\begin{bmatrix} -1 \\ 1 \end{bmatrix} \rightarrow \frac{\partial f}{\partial y} \approx \frac{f(x,y+dy) - f(x,y)}{dy}$$
$$\begin{bmatrix} -0.5 \\ 0 \\ 0.5 \end{bmatrix} \rightarrow \frac{\partial f}{\partial y} \approx \frac{f(x,y+dy) - f(x,y-dy)}{2dy}$$

 \rightarrow Use wider masks to add some smoothing

Smoothing and Differentiating

Compute the difference of averages on either side of the central pixel.

3X3 Masks

Prewitt operator

Sobel operator

Prewitt Example

Santa Fe Mission

Gradient Image

Sobel Example

Gaussian Smoothing

- More principled way to eliminate high frequency noise.
- Is fast because the kernel is
 - small,
 - separable.

Gaussian Functions

- The integral is always 1.0
- The larger σ , the broader the Gaussian is.
- As σ approaches 0, the Gaussian approximates a Dirac function.

58

DFT of a Gaussian

Gaussians as Low-Pass Filters

- The Fourier transform of a convolution is the product of their Fourier transforms: $\mathcal{F}(g * f) = \mathcal{F}(g)\mathcal{F}(f)$.
- If g is a Gaussian, so is $\mathcal{F}(g)$.
- Furthermore if g is broad, the support of $\mathcal{F}(g)$ is small.
- So is the support of $\mathcal{F}(g^*f)$.
- There are no more high-frequencies in g * f.

—> Convolving with a Gaussian suppresses the high frequencies.

Gaussian Smoothed Images

Scale Space

Increasing scale (σ) removes high frequencies (details) but never adds artifacts.

Separability

$$g_1(x) = \frac{1}{\sqrt{\pi\sigma}} \exp(-x^2/\sigma^2)$$
$$g_2(x, y) = g_1(x)g_1(y)$$

63

$$\int_{u} \int_{v} g_{2}(u,v) f(x-u, y-v) du dv = \int_{u} g_{1}(u) (\int_{v} g_{1}(v) f(x-u, y-v) dv) du$$
$$= \int_{v} g_{1}(v) (\int_{u} g_{1}(u) f(x-u, y-v) du) dv$$

—> 2D convolutions are never required. Smoothing can be achieved by successive 1D convolutions, which is faster.
EPFL

Continuous Gaussian Derivatives

Image derivatives computed by convolving with the derivative of a Gaussian:

$$\frac{\partial}{\partial x} \iint_{v} g_{2}(u,v) f(x-u,y-v) du dv = \int_{u} g_{1}'(u) (\iint_{v} g_{1}(v) f(x-u,y-v) dv) du$$
$$\frac{\partial}{\partial y} \iint_{v} g_{2}(u,v) f(x-u,y-v) du dv = \int_{v} g_{1}'(v) (\iint_{u} g_{1}(u) f(x-u,y-v) du) dv$$

Discrete Gaussian Derivatives

g: 0.000070 0.010332 0.207532 0.564131 0.207532 0.010332 0.000070

g': 0.000418 0.041330 0.415065 0.000000 -0.415065 -0.041330 -0.000418

Sigma=2:

g: 0.005167 0.029735 0.103784 0.219712 0.282115 0.219712 0.103784 0.029735 0.005167

g': 0.010334 0.044602 0.103784 0.109856 0.000000 -0.109856 -0.103784 -0.044602 -0.010334

—> Only requires 1D convolutions with relatively small masks.

Increasing Sigma

Input Images

Gradient Images

66

Derivative Images

Derivative Images

Gradient-Based Tracking

Maximize edge-strength along projection of the 3—D wireframe.

Gradient Maximization

Real-Time Tracking

Canny Edge Detector

 $\frac{\partial I^2}{\partial x} + \frac{\partial I^2}{\partial y}$

Ι

Thinned gradient image

Canny Edge Detector

Convolution

- Gradient strength
- Gradient direction

Thresholding

Non Maxima Suppression Hysteresis Thresholding

Non-Maxima Suppression

Check if pixel is local maximum along gradient direction, which requires checking interpolated pixels p and r.

Hysteresis Thresholding

- Algorithm takes two thresholds: high & low
 - A pixel with edge strength above high threshold is an edge.
 - Any pixel with edge strength below low threshold is not.
 - Any pixel above the low threshold and next to an edge is an edge.
- Iteratively label edges
 - Edges grow out from 'strong edges'
 - Iterate until no change in image.

Canny Results

σ=1, T2=255, T1=1

'Y' or 'T' junction problem with Canny operator

Canny Results

σ=1, T2=255, T1=220

σ=1, T2=128, T1=1

σ=2, T2=128, T1=1

Scale Space Revisited

Increasing scale (σ) removes details but never adds new ones:

- Edge position may shift.
- Two edges may merge.
- An edge may **not** split into two.

Multiple Scales

→Choosing the right scale is a difficult semantic problem.

EPFL

Scale vs Threshold

Fine scale High threshold

Coarse scale High threshold

Coarse scale Low threshold

Industrial Application

In industrial environments where the Canny parameters can be properly adjusted:

- It is fast.
- Does not require training data.

-> A useful tool in our toolbox.

EPFL

Pose estimation of stacked objects for mobile manipulation. Lim et al. 2019.

Tracking a Rocket

Given an initial pose estimate:

- Find the occluding contours.
- Find closest edge points in the normal direction.
- Re-estimate pose to minimize sum of square distances.
- Iterate until convergence.

Visual Servoing

Space Cleaning

Capturing and deorbiting a dead satellite.

EPFI

- A more sophisticated version of this old algorithm will blast off in 2025!
- ESA does not yet trust neural nets for such a mission.

Limitations of the Canny Algorithm

There is no ideal value of σ !

Steep Smooth Shading

 \rightarrow Shading can produce spurious edges.

Texture Boundaries

- Not all image contours are characterized by strong contrast.
- Sometimes, textural changes are just as significant.

Different Boundary Types

EPFL

Martin et al., PAMI'04

Training Database

1000 images with 5 to 10 segmentations each.

Machine Learning

Human Segmentations

Learn the probability of being a boundary pixel on the basis of a set of features.

Comparative Results

Classification vs Regression

Yes!

Deep Learning

Deep Learning Vs Canny

Deeper Learning

loss/sigmoid

ЕР≻∟

Convolutional Neural Network

- Succession of convolutional and pooling layers.
- Fully connected layers at the end.
- —> Will be discussed in more detail in the next lecture.

A Partial Explanation?

First and second layer features of a Convolutional Neural Net:

- They can be understood as performing multiscale filtering.
- The weights and thresholds are chosen by the optimization procedure.

EPFL

50 Years Of Edge Detection

- Convolution operators respond to steep smooth shading.
- Parametric matchers tend to reject non ideal edges.
- Arbitrary thresholds and scale sizes are required.
- Learning-based methods need exhaustive databases.
- There still is work to go from contours to objects.

Canny, PAMI'86 —> Sironi et al. PAMI'15

EPFL

Sironi et al. PAMI'15 —> Liu et al., CVPR'17

Let us talk about deep networks.

