
Search Docs

Notes [+]

Language Bindings [+]

Python API [-]

1.11.0 ▼

torch

torch.nn

torch.nn.functional

torch.Tensor

Tensor Attributes

Tensor Views

torch.autograd

torch.cuda

torch.cuda.amp

torch.backends

torch.distributed

torch.distributed.algorithms.join

torch.distributed.elastic

torch.distributed.fsdp

torch.distributed.optim

torch.distributions

torch.fft

torch.futures

torch.fx

torch.hub

torch.jit

torch.linalg

torch.monitor

torch.special

torch.overrides

torch.package

torch.profiler

torch.nn.init

Next

CONV2D

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size and output

can be precisely described as:

where is the valid 2D cross-correlation operator, is a batch size, denotes a number of channels, is a height of

input planes in pixels, and is width in pixels.

This module supports TensorFloat32.

stride controls the stride for the cross-correlation, a single number or a tuple.

padding controls the amount of padding applied to the input. It can be either a string {‘valid’, ‘same’} or a tuple of

ints giving the amount of implicit padding applied on both sides.

dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to

describe, but this link has a nice visualization of what dilation does.

groups controls the connections between inputs and outputs. in_channels and out_channels must both be

divisible by groups . For example,

At groups=1, all inputs are convolved to all outputs.

At groups=2, the operation becomes equivalent to having two conv

layers side by side, each seeing half the input channels and producing

half the output channels, and both subsequently concatenated.

At groups= in_channels , each input channel is convolved with its own

set of filters (of size).

The parameters kernel_size , stride , padding , dilation can either be:

a single int – in which case the same value is used for the height and

width dimension

a tuple of two ints – in which case, the first int is used for the height

dimension, and the second int for the width dimension

When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also

known as a “depthwise convolution”.

In other words, for an input of size , a depthwise convolution with a depthwise multiplier K can be

performed with the arguments .

In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a

nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation

deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = True . See

Reproducibility for more information.

padding='valid' is the same as no padding. padding='same' pads the input so the output has the shape as the

input. However, this mode doesn’t support any stride values other than 1.

in_channels (int) – Number of channels in the input image

out_channels (int) – Number of channels produced by the convolution

kernel_size (int or tuple) – Size of the convolving kernel

stride (int or tuple, optional) – Stride of the convolution. Default: 1

padding (int, tuple or str, optional) – Padding added to all four sides of the input. Default: 0

padding_mode (string, optional) – 'zeros' , 'reflect' , 'replicate' or 'circular' . Default:

'zeros'

dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

bias (bool, optional) – If True , adds a learnable bias to the output. Default: True

Input: or

Output: or , where

~Conv2d.weight (Tensor) – the learnable weights of the module of shape

. The values of these weights are sampled from where

~Conv2d.bias (Tensor) – the learnable bias of the module of shape (out_channels). If bias is True , then

the values of these weights are sampled from where

Examples

 Previous

© Copyright 2019, Torch Contributors.

Built with Sphinx using a theme provided by Read the Docs.

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,

dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
CLASS

[SOURCE]

(N , C , H, W)in (N , C , H , W)out out out

out(N , C) =i outj
bias(C) +outj

weight(C , k) ⋆
k=0

∑
C −1in

outj
input(N , k)i

⋆ N C H

W

in_channels
out_channels

NOTE•

(N , C , L)in in

(C =in C , C =in out C ×in K, ..., groups = C)in

NOTE•

NOTE•

Parameters

Shape:

(N , C , H , W)in in in (C , H , W)in in in

(N , C , H , W)out out out (C , H , W)out out out

H =out + 1⌊
stride[0]

H + 2 × padding[0] − dilation[0] × (kernel_size[0] − 1) − 1in ⌋

W =out + 1⌊
stride[1]

W + 2 × padding[1] − dilation[1] × (kernel_size[1] − 1) − 1in ⌋

Variables

(out_channels, ,groups
in_channels

kernel_size[0], kernel_size[1]) U(− ,)k k

k =
C ∗ kernel_size[i]in ∏i=0

1
groups

U(− ,)k k k =
C ∗ kernel_size[i]in ∏i=0

1
groups

>>> # With square kernels and equal stride
>>> m = nn.Conv2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> # non-square kernels and unequal stride and with padding and dilation
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
>>> input = torch.randn(20, 16, 50, 100)
>>> output = m(input)

Docs > torch.nn > Conv2d

Get Started Ecosystem Mobile Blog Tutorials Docs

•

Resources GitHub

Docs

Access comprehensive developer documentation for

PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced

developers

View Tutorials

Resources

Find development resources and get your questions

answered

View Resources

PyTorch

Get Started

Features

Ecosystem

Blog

Contributing

Resources

Tutorials

Docs

Discuss

Github Issues

Brand Guidelines

Stay Connected

Email Address

https://pytorch.org/docs/versions.html
https://pytorch.org/docs/stable/torch.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.functional.html
https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/tensor_attributes.html
https://pytorch.org/docs/stable/tensor_view.html
https://pytorch.org/docs/stable/autograd.html
https://pytorch.org/docs/stable/cuda.html
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/backends.html
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.algorithms.join.html
https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/fsdp.html
https://pytorch.org/docs/stable/distributed.optim.html
https://pytorch.org/docs/stable/distributions.html
https://pytorch.org/docs/stable/fft.html
https://pytorch.org/docs/stable/futures.html
https://pytorch.org/docs/stable/fx.html
https://pytorch.org/docs/stable/hub.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/linalg.html
https://pytorch.org/docs/stable/monitor.html
https://pytorch.org/docs/stable/special.html
https://pytorch.org/docs/stable/torch.overrides.html
https://pytorch.org/docs/stable/package.html
https://pytorch.org/docs/stable/profiler.html
https://pytorch.org/docs/stable/nn.init.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://pytorch.org/get-started
https://pytorch.org/ecosystem
https://pytorch.org/mobile
https://pytorch.org/blog/
https://pytorch.org/tutorials
https://github.com/pytorch/pytorch
https://pytorch.org/
https://pytorch.org/docs/stable/index.html
https://pytorch.org/tutorials
https://pytorch.org/resources
https://www.facebook.com/pytorch
https://twitter.com/pytorch
https://www.youtube.com/pytorch
https://pytorch.org/

