
Search Docs

Notes [+]

Language Bindings [+]

Python API [-]

torch

torch.nn

torch.nn.functional

torch.Tensor

Tensor Attributes

Tensor Views

torch.autograd

torch.cuda

torch.cuda.amp

torch.backends

torch.distributed

torch.distributed.algorithms.join

torch.distributed.elastic

torch.distributed.fsdp

torch.distributed.optim

torch.distributions

torch.fft

torch.futures

torch.fx

torch.hub

torch.jit

torch.linalg

torch.monitor

torch.special

torch.overrides

torch.package

torch.profiler

torch.nn.init

torch.onnx

torch.optim

Next

BATCHNORM2D

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described

in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

The mean and standard-deviation are calculated per-dimension over the mini-batches and and are learnable

parameter vectors of size C (where C is the input size). By default, the elements of are set to 1 and the elements of

are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False).

Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then

used for normalization during evaluation. The running estimates are kept with a default momentum of 0.1.

If track_running_stats is set to False , this layer then does not keep running estimates, and batch statistics are

instead used during evaluation time as well.

This momentum argument is different from one used in optimizer classes and the conventional notion of

momentum. Mathematically, the update rule for running statistics here is

, where is the estimated statistic and is the new observed value.

Because the Batch Normalization is done over the C dimension, computing statistics on (N, H, W) slices, it’s common

terminology to call this Spatial Batch Normalization.

num_features – from an expected input of size

eps – a value added to the denominator for numerical stability. Default: 1e-5

momentum – the value used for the running_mean and running_var computation. Can be set to None for

cumulative moving average (i.e. simple average). Default: 0.1

affine – a boolean value that when set to True , this module has learnable affine parameters. Default: True

track_running_stats – a boolean value that when set to True , this module tracks the running mean and

variance, and when set to False , this module does not track such statistics, and initializes statistics buffers

running_mean and running_var as None . When these buffers are None , this module always uses batch

statistics. in both training and eval modes. Default: True

Input:

Output: (same shape as input)

Examples:

 Previous

© Copyright 2019, Torch Contributors.

Built with Sphinx using a theme provided by Read the Docs.

torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True, device=None, dtype=None)
CLASS

[SOURCE]

y = ∗
Var[x] + ϵ

x − E[x]
γ + β

γ β

γ β

NOTE•

=x̂new (1 − momentum) × +x̂

momentum × xt x̂ xt

Parameters

C (N , C, H, W)

Shape:

(N , C, H, W)

(N , C, H, W)

>>> # With Learnable Parameters
>>> m = nn.BatchNorm2d(100)
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm2d(100, affine=False)
>>> input = torch.randn(20, 100, 35, 45)
>>> output = m(input)

Docs > torch.nn > BatchNorm2d

Get Started Ecosystem Mobile Blog Tutorials Docs

•

Resources GitHub

Docs

Access comprehensive developer documentation for

PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced

developers

View Tutorials

Resources

Find development resources and get your questions

answered

View Resources

PyTorch

Get Started

Features

Ecosystem

Blog

Contributing

Resources

Tutorials

Docs

Discuss

Github Issues

Brand Guidelines

Stay Connected

Email Address

https://pytorch.org/docs/stable/torch.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.functional.html
https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/tensor_attributes.html
https://pytorch.org/docs/stable/tensor_view.html
https://pytorch.org/docs/stable/autograd.html
https://pytorch.org/docs/stable/cuda.html
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/backends.html
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.algorithms.join.html
https://pytorch.org/docs/stable/distributed.elastic.html
https://pytorch.org/docs/stable/fsdp.html
https://pytorch.org/docs/stable/distributed.optim.html
https://pytorch.org/docs/stable/distributions.html
https://pytorch.org/docs/stable/fft.html
https://pytorch.org/docs/stable/futures.html
https://pytorch.org/docs/stable/fx.html
https://pytorch.org/docs/stable/hub.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/linalg.html
https://pytorch.org/docs/stable/monitor.html
https://pytorch.org/docs/stable/special.html
https://pytorch.org/docs/stable/torch.overrides.html
https://pytorch.org/docs/stable/package.html
https://pytorch.org/docs/stable/profiler.html
https://pytorch.org/docs/stable/nn.init.html
https://pytorch.org/docs/stable/onnx.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm3d.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
https://pytorch.org/get-started
https://pytorch.org/ecosystem
https://pytorch.org/mobile
https://pytorch.org/blog/
https://pytorch.org/tutorials
https://github.com/pytorch/pytorch
https://pytorch.org/
https://pytorch.org/docs/stable/index.html
https://pytorch.org/tutorials
https://pytorch.org/resources
https://www.facebook.com/pytorch
https://twitter.com/pytorch
https://www.youtube.com/pytorch
https://pytorch.org/

