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BATCHNORM2D

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described

in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

The mean and standard-deviation are calculated per-dimension over the mini-batches and  and  are learnable

parameter vectors of size C (where C is the input size). By default, the elements of  are set to 1 and the elements of 

are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False).

Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then

used for normalization during evaluation. The running estimates are kept with a default momentum  of 0.1.

If track_running_stats  is set to False , this layer then does not keep running estimates, and batch statistics are

instead used during evaluation time as well.

This momentum  argument is different from one used in optimizer classes and the conventional notion of

momentum. Mathematically, the update rule for running statistics here is 

, where  is the estimated statistic and  is the new observed value.

Because the Batch Normalization is done over the C dimension, computing statistics on (N, H, W ) slices, it’s common

terminology to call this Spatial Batch Normalization.

num_features –  from an expected input of size 

eps – a value added to the denominator for numerical stability. Default: 1e-5

momentum – the value used for the running_mean and running_var computation. Can be set to None  for

cumulative moving average (i.e. simple average). Default: 0.1

affine – a boolean value that when set to True , this module has learnable affine parameters. Default: True

track_running_stats – a boolean value that when set to True , this module tracks the running mean and

variance, and when set to False , this module does not track such statistics, and initializes statistics buffers

running_mean  and running_var  as None . When these buffers are None , this module always uses batch

statistics. in both training and eval modes. Default: True

Input: 

Output:  (same shape as input)

Examples:

 Previous
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torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True, device=None, dtype=None)
CLASS

[SOURCE]

y = ∗
Var[x] + ϵ

x − E[x]
γ + β

γ β

γ β

NOTE•

=x̂new (1 − momentum) × +x̂

momentum × xt x̂ xt

Parameters

C (N , C, H, W )

Shape:

(N , C, H, W )

(N , C, H, W )

>>> # With Learnable Parameters
>>> m = nn.BatchNorm2d(100)
>>> # Without Learnable Parameters
>>> m = nn.BatchNorm2d(100, affine=False)
>>> input = torch.randn(20, 100, 35, 45)
>>> output = m(input)
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