
Search Docs

Notes [+]

Language Bindings [+]

Python API [-]

torch

torch.nn

torch.nn.functional

torch.Tensor

Tensor Attributes

Tensor Views

torch.autograd

torch.cuda

torch.cuda.amp

torch.backends

torch.distributed

torch.distributed.algorithms.join

torch.distributed.elastic

torch.distributed.fsdp

torch.distributed.optim

torch.distributions

torch.fft

torch.futures

torch.fx

torch.hub

torch.jit

torch.linalg

torch.monitor

torch.special

torch.overrides

torch.package

torch.profiler

torch.nn.init

torch.onnx

torch.optim

Next

CROSSENTROPYLOSS

This criterion computes the cross entropy loss between input and target.

It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a

1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

The input is expected to contain raw, unnormalized scores for each class. input has to be a Tensor of size for

unbatched input, or with for the K-dimensional case. The

last being useful for higher dimension inputs, such as computing cross entropy loss per-pixel for 2D images.

The target that this criterion expects should contain either:

Class indices in the range where is the number of classes; if ignore_index is specified, this loss also accepts

this class index (this index may not necessarily be in the class range). The unreduced (i.e. with reduction set to

'none') loss for this case can be described as:

where is the input, is the target, is the weight, is the number of classes, and spans the minibatch

dimension as well as for the K-dimensional case. If reduction is not 'none' (default 'mean'), then

Note that this case is equivalent to the combination of LogSoftmax and NLLLoss .

Probabilities for each class; useful when labels beyond a single class per minibatch item are required, such as for

blended labels, label smoothing, etc. The unreduced (i.e. with reduction set to 'none') loss for this case can be

described as:

where is the input, is the target, is the weight, is the number of classes, and spans the minibatch

dimension as well as for the K-dimensional case. If reduction is not 'none' (default 'mean'), then

The performance of this criterion is generally better when target contains class indices, as this allows for

optimized computation. Consider providing target as class probabilities only when a single class label per

minibatch item is too restrictive.

weight (Tensor, optional) – a manual rescaling weight given to each class. If given, has to be a Tensor of size

C

size_average (bool, optional) – Deprecated (see reduction). By default, the losses are averaged over

each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the

field size_average is set to False , the losses are instead summed for each minibatch. Ignored when

reduce is False . Default: True

ignore_index (int, optional) – Specifies a target value that is ignored and does not contribute to the input

gradient. When size_average is True , the loss is averaged over non-ignored targets. Note that

ignore_index is only applicable when the target contains class indices.

reduce (bool, optional) – Deprecated (see reduction). By default, the losses are averaged or summed

over observations for each minibatch depending on size_average . When reduce is False , returns a loss

per batch element instead and ignores size_average . Default: True

reduction (string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum' .

'none' : no reduction will be applied, 'mean' : the weighted mean of the output is taken, 'sum' : the

output will be summed. Note: size_average and reduce are in the process of being deprecated, and in

the meantime, specifying either of those two args will override reduction . Default: 'mean'

label_smoothing (float, optional) – A float in [0.0, 1.0]. Specifies the amount of smoothing when

computing the loss, where 0.0 means no smoothing. The targets become a mixture of the original ground

truth and a uniform distribution as described in Rethinking the Inception Architecture for Computer Vision.

Default: .

Input: Shape , or with in the case of K-dimensional loss.

Target: If containing class indices, shape , or with in the case of K-

dimensional loss where each value should be between . If containing class probabilities, same shape

as the input and each value should be between .

Output: If reduction is ‘none’, same shape as the target. Otherwise, scalar.

where:

Examples:

 Previous

© Copyright 2019, Torch Contributors.

Built with Sphinx using a theme provided by Read the Docs.

torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100,

reduce=None, reduction='mean', label_smoothing=0.0)
CLASS

[SOURCE]

(C)
(minibatch, C) (minibatch, C, d , d , ..., d)1 2 K K ≥ 1

[0, C) C

ℓ(x, y) = L = {l , … , l } , l =1 N
⊤

n −w log ⋅yn
exp(x)∑c=1

C
n,c

exp(x)n,yn 1{yn = ignore_index}

x y w C N

d , ..., d1 k

ℓ(x, y) = { l ,∑n=1
N

w ⋅1{y =ignore_index}∑n=1
N

yn n
1

n

l ,∑n=1
N

n

if reduction = ‘mean’;

if reduction = ‘sum’.

ℓ(x, y) = L = {l , … , l } , l =1 N
⊤

n − w log y

c=1

∑
C

c
exp(x)∑i=1

C
n,i

exp(x)n,c
n,c

x y w C N

d , ..., d1 k

ℓ(x, y) = { ,N

l∑
n=1
N

n

l ,∑n=1
N

n

if reduction = ‘mean’;

if reduction = ‘sum’.

NOTE•

Parameters

0.0

Shape:

(C) (N , C) (N , C, d , d , ..., d)1 2 K K ≥ 1

() (N) (N , d , d , ..., d)1 2 K K ≥ 1

[0, C)

[0, 1]

C =

N =

number of classes

batch size

>>> # Example of target with class indices
>>> loss = nn.CrossEntropyLoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.empty(3, dtype=torch.long).random_(5)
>>> output = loss(input, target)
>>> output.backward()
>>>
>>> # Example of target with class probabilities
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5).softmax(dim=1)
>>> output = loss(input, target)
>>> output.backward()

Docs > torch.nn > CrossEntropyLoss

Get Started Ecosystem Mobile Blog Tutorials Docs

•

Resources GitHub

Docs

Access comprehensive developer documentation for

PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced

developers

View Tutorials

Resources

Find development resources and get your questions

answered

View Resources

PyTorch

Get Started

Features

Ecosystem

Blog

Contributing

Resources

Tutorials

Docs

Discuss

Github Issues

Brand Guidelines

Stay Connected

Email Address

https://pytorch.org/docs/stable/generated/torch.nn.CTCLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://pytorch.org/get-started
https://pytorch.org/ecosystem
https://pytorch.org/mobile
https://pytorch.org/blog/
https://pytorch.org/tutorials
https://github.com/pytorch/pytorch
https://www.facebook.com/pytorch
https://twitter.com/pytorch
https://www.youtube.com/pytorch
https://pytorch.org/

