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CONV2D

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size  and output 

can be precisely described as:

where  is the valid 2D cross-correlation operator,  is a batch size,  denotes a number of channels,  is a height of

input planes in pixels, and  is width in pixels.

This module supports TensorFloat32.

stride  controls the stride for the cross-correlation, a single number or a tuple.

padding  controls the amount of padding applied to the input. It can be either a string {‘valid’, ‘same’} or a tuple of

ints giving the amount of implicit padding applied on both sides.

dilation  controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to

describe, but this link has a nice visualization of what dilation  does.

groups  controls the connections between inputs and outputs. in_channels  and out_channels  must both be

divisible by groups . For example,

At groups=1, all inputs are convolved to all outputs.

At groups=2, the operation becomes equivalent to having two conv

layers side by side, each seeing half the input channels and producing

half the output channels, and both subsequently concatenated.

At groups= in_channels , each input channel is convolved with its own

set of filters (of size ).

The parameters kernel_size , stride , padding , dilation  can either be:

a single int  – in which case the same value is used for the height and

width dimension

a tuple  of two ints – in which case, the first int is used for the height

dimension, and the second int for the width dimension

When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also

known as a “depthwise convolution”.

In other words, for an input of size , a depthwise convolution with a depthwise multiplier K can be

performed with the arguments .

In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a

nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation

deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = True . See

Reproducibility for more information.

padding='valid'  is the same as no padding. padding='same'  pads the input so the output has the shape as the

input. However, this mode doesn’t support any stride values other than 1.

in_channels (int) – Number of channels in the input image

out_channels (int) – Number of channels produced by the convolution

kernel_size (int or tuple) – Size of the convolving kernel

stride (int or tuple, optional) – Stride of the convolution. Default: 1

padding (int, tuple or str, optional) – Padding added to all four sides of the input. Default: 0

padding_mode (string, optional) – 'zeros' , 'reflect' , 'replicate'  or 'circular' . Default:

'zeros'

dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

bias (bool, optional) – If True , adds a learnable bias to the output. Default: True

Input:  or 

Output:  or , where

~Conv2d.weight (Tensor) – the learnable weights of the module of shape  

. The values of these weights are sampled from  where 

~Conv2d.bias (Tensor) – the learnable bias of the module of shape (out_channels). If bias  is True , then

the values of these weights are sampled from  where 
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torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,

dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
CLASS
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>>> # With square kernels and equal stride
>>> m = nn.Conv2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> # non-square kernels and unequal stride and with padding and dilation
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
>>> input = torch.randn(20, 16, 50, 100)
>>> output = m(input)
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