
EPFL CS-309, PrSoC

1
René Beuchat, Philémon Favrod, Sahand Kashani

Lab 1.0
PWM Control Software

Goal
The goal of this lab is for you to get acquainted with the basics of writing control software for hardware

programmable interfaces (peripherals). The concepts we will see here are building blocks for all future systems

software which manipulate hardware directly. Systems software is quite broad: it can range from a simple

bare-metal application for an embedded system to a complex linux device driver for a PCIe interface

The specific topic we will focus on during this lab is the concept of addressing a programmable interface

through a bus. The peripheral you will be using is a Pulse Width Modulation (PWM) generator. This peripheral

is routinely used to control rotating objects such as robotic arms or airplane flaps. We will use 2 such PWM

peripherals for a much simpler goal: moving a pan-tilt module.

This first lab focusses entirely on software: we provide you with a black-box implementation of a system

containing a PWM generator. We will also give you a software programming library for the PWM generator

with a few empty code segments in the middle. The goal is for you to fill in these code segments after having

understood how a peripheral is addressed. At the end of this lab, your code will be able to rotate a pan-tilt

module in a nice sweeping motion, just as a wall-mounted security camera does.

Theory
Pulse Width Modulation (PWM)
Pulse-width modulation is a modulation technique used to encode a message into a pulsing signal. It is primarily

used to control the power supplied to electrical devices, especially to inertial loads such as motors.

FIGURE 1. PWM AND SERVOMOTORS

EPFL CS-309, PrSoC

2
René Beuchat, Philémon Favrod, Sahand Kashani

A PWM is characterized by a period and a duty cycle (see Figure 1 for an example). The typical values for the

period is around 25 ms with a duty cycle varying from 1 – 2 ms (note though that many circuits do deviate from

these values).

System Schematic
When programming any system, hardware or software, the first thing to get your hands on is the system’s

overall schematic. Without this information, it would be difficult to know what the system is composed of and

how the various subcomponents interact with each other. Figure 2 shows the block-level schematic of our

system. As we can see, the system is composed of 5 distinct components:

 Clock & Reset

 Nios II CPU

 On-chip memory

 JTAG UART

 2 PWM generators

FIGURE 2. SYSTEM SCHEMATIC

Programmable Interfaces
Programmable interfaces are circuits that form the basis for specialized functionality in a system. A

programmable interface is an instance of a slave which is accessible through a bus by a master, and which the

master configures to perform a specific task.

 A master is a device that initiates transactions on a bus.

 A slave is a device that responds to transactions initiated by a master.

In our system, the CPU is the only master, and the other components (on-chip memory, JTAG UART, and 2

PWM generators) are all slaves. The Clock & Reset component is neither a master, nor a slave, as it is not

addressable (no “address” is reserved for accessing this component).

EPFL CS-309, PrSoC

3
René Beuchat, Philémon Favrod, Sahand Kashani

When you add components to a system and interconnect them, a bus is generally constructed through which

all the components can communicate. Many bus designs exist in industry, and Altera FPGAs use the bus called

the Avalon bus. You will learn more about the details of the Avalon bus in the next labs, but what we need to

be concerned with at this point is how masters “see” slaves through this bus.

The Avalon bus uses memory-mapped I/O. This means that the same address bus is used to address memory

and I/O devices. With this information, we can now say that masters “see” slaves at specific addresses in the

master’s address space. For example, suppose that a peripheral is visible at address 0x1000 in a master’s

address space, then the master can read/write to the interface by reading/writing at address 0x1000.

Table 1 shows the address map of the system. An address map concisely describes the how the address space

of all masters is partitioned among the various programmable interfaces in a system.

 Masters

Slaves nios2_gen2_0.data_master nios2_gen2_0.instruction_master

onchip_memory2_0.s1 0x0002_0000 – 0x0003_ffff 0x0002_0000 – 0x0003_ffff

jtag_uart_0.avalon_jtag_slave 0x0004_1020 – 0x0004_1027

pwm_0.avalon_slave_0 0x0004_1010 – 0x0004_101f

pwm_1.avalon_slave_0 0x0004_1000 – 0x0004_100f

TABLE 1. ADDRESS MAP

QUIZ: Can you infer what the size of the on-chip memory is from Table 1?

In addition to the system-wide address map, each programmable interface has a device-specific register map.

An address map says how different address ranges are reserved for addressing specific peripherals, but it does

not say anything about what the different addresses of a specific peripheral mean. For example, the address

map in Table 1 shows that PWM_0 is accessible to the Nios II CPU’s data master port between addresses

0x0004_1010 – 0x0004_101f. However, what do each of the 16 bytes (0x…10 – 0x…1f) in this interval

specifically mean for this peripheral? The register map of the PWM generator specifies this information.

Essentially, the register map is the programming interface exposed to software engineers so they can write

code which can correctly use the peripheral.

Note some terminology: generally-speaking, we call the first address in a peripheral’s reserved address range

its base address. For example, the base address of PWM_0 is 0x0004_1010. This term is used often in various

APIs, so remember this word!

Finally, there remains the question of the addressing granularity. What do the addresses in the address map of

Table 1 represent? Does each address represent a byte, or a word? It is essential to know this information, as

software would not be able to correctly read/write from programmable interfaces without it. The answer to

this question is bus-specific, so it isn’t possible to give a universal answer. In the case of the Avalon bus, the

bus specification makes a distinction between the point of view from which addresses are used:

 A master uses byte-addressing (each address corresponds to a byte).

EPFL CS-309, PrSoC

4
René Beuchat, Philémon Favrod, Sahand Kashani

 A slave uses word-addressing (each address corresponds to a word, where the size of a word is

peripheral-specific). The bus takes care of automatically translating an emitted byte address into a

word address before it arrives at a peripheral, so peripherals don’t need to handle this conversion

internally (this is not relevant to the current lab, but it will be useful for the next ones where you will

be writing the VHDL code of specific portions of various programmable interfaces).

Practice
Enough said! You now know the theory behind the concept of addressing in order to do what is needed in this

lab. You will now program the 2 PWM generators in the system to do something useful. But first, some

preliminaries .

Launching the Nios II Software Build Tools (SBT)
We are using a Nios II CPU in our design, so we need to use the Eclipse-based "Nios II Software Build Tools"

(SBT) to program our CPU.

To launch Nios II SBT, we need to first start a Nios II Command Shell. This shell defines some environment

variables that are needed for SBT to work correctly.

 On Windows systems, you can launch the Nios II Command Shell from the Start menu.

 On Linux systems, you can launch the Nios II Command Shell by typing the following command in your

shell: “<altera_install_dir>/<version>/nios2eds/nios2_command_shell.sh”. Remember to

replace “<altera_install_dir>” and “<version>” according to how the tools were installed on your

machine.

Once the command shell is open, use the “eclipse-nios2” command to launch Nios II SBT.

Programming the FPGA
It is time to download the hardware design on the FPGA. Here are the steps:

1. Plug your FPGA to your computer with a USB Blaster cable.

2. Open the Quartus Programmer from Nios II > Quartus Prime Programmer... in the menu bar.

3. Click on the "Auto Detect" button on the left-hand side of the Quartus Programmer.

4. Choose 5CSEMA4.

5. Once you get back in the Quartus Programmer's main window, you will see 2 devices listed in the

JTAG scan chain. One of them corresponds to the HPS (ARM CPU), and the other to the FPGA.

6. Right-click on the FPGA entry, and go to Edit > Change File.

7. Select the compiled “lab_1_0.sof” file in the "hw/quartus/output_files" directory.

8. Enable the "Program/Configure" checkbox for the FPGA entry, then click on the "Start" button on

the left-side menu.

EPFL CS-309, PrSoC

5
René Beuchat, Philémon Favrod, Sahand Kashani

Creating the software project
The FPGA is now programmed with the black-box hardware system. Let’s create a software project for our

design. The software is intended to run on the Nios II CPU.

1. Go to File > New > Nios II Application and BSP from Template.

2. Select “<project_dir>/hw/quartus/soc_system.sopcinfo” as the SOPC Information File name.

3. Name your software project "lab_1_0".

4. We invite you to uncheck the "Use default location" checkbox and to choose

“<project_dir>/sw/nios/application” instead. We encourage this practice to properly separate

software from hardware design files.

5. Choose "Blank Project" as the Project Template.

6. Click Finish.

7. Right-click on app.c, pantilt.c and pwm.c in the Project Explorer and select Add to Nios II Build.

8. You can now write/compile/run your software.

PWM Control Interface
The provided system includes two PWM generators. Both are 32-bit Avalon Memory-Mapped Slave interfaces

clocked at 50 MHz. They are mapped in memory at addresses PWM_0_BASE and PWM_1_BASE, respectively.

These macros can be found in the system.h header file. The system.h header file contains information about

all peripherals connected to the Nios II CPU and is auto-generated when you create a software project in Nios

II SBT so you do not have to use hard-coded constants in your code, but rather meaningful macros.

The register map of the PWM is shown below in Table 2.

Byte offset
(from base)

Name Access Description

0 PERIOD RW Period in clock cycles (2 ≤ period ≤ 232 – 1).

This value can be read/written while the unit is in the middle of an
ongoing PWM pulse. To allow safe behaviour, one cannot modify
the period of an ongoing pulse, so we adopt the following
semantics for this register:

 Writing a value in this register indicates the new period to
apply to the next pulse.

 Reading a value from this register indicates the current
period of the ongoing pulse.

4 DUTY_CYCLE RW Duty cycle of the PWM (1 ≤ duty cycle ≤ period)

This value can be read/written while the unit is in the middle of an
ongoing PWM pulse. To allow safe behaviour, one cannot modify
the duty cycle of an ongoing pulse, so we adopt the following
semantics for this register:

EPFL CS-309, PrSoC

6
René Beuchat, Philémon Favrod, Sahand Kashani

 Writing a value in this register indicates the new duty
cycle to apply to the next pulse.

 Reading a value from this register indicates the current
duty cycle of the ongoing pulse.

8 CTRL WO Writing 0 to this register stops the PWM once the ongoing
pulse has ended. Writing 1 to this register starts the PWM.

 Reading this register always returns 0.

TABLE 2. PWM REGISTER MAP

To write these registers you need to use the “IOWR_32DIRECT(BASE, OFFSET, DATA)” macro available in the

“io.h” header file (we told you the word “base” would come up again).

Remember that the PWM generation circuits are clocked at 50 MHz, but have to output values in the

millisecond range. You must set the period register correctly to achieve the desired output. Both the horizontal

and vertical servos use the same 25 ms period, however they differ with respect to the expected duty cycles:

 The vertical servo expects a duty cycle between 0.95 – 2.15 ms.

 The horizontal servo expects a duty cycle between 1.00 – 2.00 ms.

Exercise
Fill in the various “/* TODO */” markers in pwm.c. This file describes the implementation of the API we provide

to software developers who want to use the PWM generator. You can then test your implementation by using

the main() function in app.c. If you did everything correctly, then you should see a periodic top-down, left-

right sweeping motion on the pan-tilt peripheral.

Note: an important aspect of this course is one’s ability to be autonomous and persistent when faced with

problems. In the embedded world, it is rare to find well-written component datasheets. Most often than one

would like, datasheets are written with so much missing information that you would wonder why they are

called datasheets. This is where one’s ability to infer a components behavior based on what one observes while

debugging is essential. So you need to understand how the whole pipeline works, i.e. how does an instruction

emitted by the CPU translate to an abstract transaction on a bus which somehow arrives at a peripheral to be

processed. We insist that you read every single line of code which we provide you to see how the system is

stitched together. This is especially relevant about the C source files we provide you (less so for the VHDL).

Finding where to plug in the pan-tilt module
We will use a specially-designed extension board for the DE0-Nano-SoC with custom ports for all peripherals

we will use throughout this course. This greatly helps avoid having to manually use wires to connect various

peripherals to the FPGA (trust us, we did it before, and the extension board is much cleaner).

To keep things interesting, we will not tell you where to exactly plug in the pan-tilt module into the extension

board. What we will tell you though is that you should have a look at the extension board’s schematic to figure

this out (hint: check out the page regarding the servos and look for the corresponding numbered components

on the physical board). Happy hunting .

https://wiki.epfl.ch/prsoc/documents/PCB_PrSOC_All.PDF

EPFL CS-309, PrSoC

7
René Beuchat, Philémon Favrod, Sahand Kashani

FIGURE 3. PRSOC EXTENSION BOARD FOR DE0-NANO-SOC

Verifying the PWM output with a logic analyzer
Before we plug in the actual pan-tilt module, it is a good idea to use a logic analyzer to check if the pulse looks

correct. We wouldn’t want to break something, would we?

1. Launch the logic analyzer software. You can download versions exist for Windows, Linux & Mac.

2. Connect the GND signal of the logic analyzer to the GND pin of the extension board. It is crucial that

you do this before plugging in any other signal to the logic analyzer! Always plug in the GND first to

avoid short-circuits.

3. Connect the PWM output signal to the logic analyzer.

4. Start a capture and check the results are within the expected period and duty cycle ranges.

Connecting the Pan-Tilt
If everything worked out fine until now, you can go ahead and plug in the servomotor to see the final behavior.

Please pay attention to the color coding below for the 3 wires pan-tilt wires:

 RED 5V

 BROWN / BLACK: GND

 ORANGE: PWM signal

DO NOT PLUG IN THE WRONG WAY!

https://www.saleae.com/downloads

	Goal
	Theory
	Pulse Width Modulation (PWM)
	System Schematic
	Programmable Interfaces

	Practice
	Launching the Nios II Software Build Tools (SBT)
	Programming the FPGA
	Creating the software project
	PWM Control Interface
	Exercise
	Finding where to plug in the pan-tilt module
	Verifying the PWM output with a logic analyzer
	Connecting the Pan-Tilt

