
EPFL CS-309, PrSoC

1
René Beuchat, Philémon Favrod, Sahand Kashani

Lab 2.0
Thermal Camera Interface
Lab 1.0 + 1.1 + 1.2 - Camera directional-stand (recap)
The goal of the lab 1 series was to use a PS2 joystick to control the movement of a pan-tilt module. To this end,

you implemented the hardware and software interfaces needed to control a PWM generator and an ADC.

 The ADC was used to sample data from the analog PS2 joystick.

 The digital samples were used to control the duty cycle of 2 PWM signal generators and to therefore

move the pan-tilt module.

We now have a system on which a camera can be mounted (an analog PAL camera in our case). Let’s move on

and shift our focus towards camera systems themselves.

Lab 2.0 – Camera acquisition interface
The goal of this lab is to learn about the machinery involved in camera acquisition systems (i.e. how to get a

frame from the camera sensor onto an image file stored on your computer).

Theory

Background - Camera hardware interfaces
There are many different interfaces used among the various cameras available on the market, but they can all

be separated into 2 categories:

 Parallel-data cameras can output a full pixel value on each clock cycle (subject to horizontal and

vertical signaling). Interfacing with such cameras is costly as one needs to use a chip with at least as

many free pins as the pixel depth of the sensor. Therefore, many systems may just not have enough

pins available to interface with a high pixel depth camera.

 Serial-data cameras output a pixel bit-by-bit over multiple clock cycles (subject to horizontal and

vertical signaling). Interfacing with such cameras is much more affordable, as only few pins are

required.

For example, a camera which outputs pixel data through an I2C interface would only need 2 pins and

a camera which outputs pixel data through an SPI interface would only need 5 pins (4 SPI pins + Gnd).

However, such basic serial interfaces only work if the data rate of the camera is slow enough. For

high-speed cameras the serial communication protocols would be any faster protocol (LVDS, USB,

FireWire ...).

EPFL CS-309, PrSoC

2
René Beuchat, Philémon Favrod, Sahand Kashani

In this lab, we will examine serial-data cameras. Such cameras can further be divided into 2 sub-categories:

 Cameras that use a custom serial communication protocol require specific controllers to be built to

interface with them.

 Cameras that use a standard serial communication protocol (I2C, SPI, UART …) are more flexible, as

most microcontrollers provide such communication interfaces.

Chosen camera - FLIR Lepton
We are going to use a standard-protocol serial-data camera. To make this even more interesting, we will use a

thermal camera, namely the FLIR LEPTON, shown in Figure 1. Its characteristics are summarized in Table 1.

FIGURE 1. FLIR LEPTON

Array width 80

Array height 60

Effective frame rate 8.6 Hz

Output format 14-bit

Data interface Video over SPI (VoSPI)

Control interface I2C

TABLE 1. LEPTON SPECIFICATIONS

The lepton is easy to interface with, as it provides an SPI data interface and an I2C control interface. This makes

it simple for most microcontrollers to use the device, as having an SPI and an I2C controller would be enough

to communicate with it. However, since we are going to use an FPGA to interface the device, we will design

the complete frame acquisition system ourselves in order to add some cool extra features (or else what would

you be doing in this course?).

General note about thermal cameras

Thermal cameras are able to capture scenes with a wide temperature range. Therefore, if you take a photo of

a standard scene with such a camera, you will obtain a very dark image with almost nothing visible. This is

normal as there is not much temperature variation in standard scenes.

To make the temperature differences more visible, you need to interpolate the scene’s pixel values to the

minimum and maximum supported by the image format. As an example, Figure 1 contains an interpolated

image in the range (0, 16383).

http://www.flir.com/cores/content/?id=66257

EPFL CS-309, PrSoC

3
René Beuchat, Philémon Favrod, Sahand Kashani

Camera acquisition system design
Figure 2 shows the block diagram of our camera acquisition system. We will now discuss the various

components involved.

FIGURE 2. LEPTON ACQUISITION SYSTEM

SPI controller

The lepton outputs its data over an SPI bus, so we need an SPI interface to capture the data. This component

is a generic SPI controller that reads data serially and forwards 8-bit chunks to the LEPTON CONTROLLER.

Lepton controller

The lepton outputs data in the form of two 160-byte VoSPI packets: video and discard. These packets are

received in 8-bit chunks from the SPI CONTROLLER. The LEPTON CONTROLLER is in charge of 2 tasks: It filters out the

discard packets, and reconstructs 14-bit pixel values from the incoming data stream.

Statistics computation

This component is in charge of computing the minimum, maximum and average pixel values in an image, which

are useful values for numerous image processing algorithms.

These values can be computed in O(W x H) time on a processor (by iterating over all pixel values in a frame),

but can be computed in O(1) time by the hardware capturing the frame (all pixels are already flowing through

it, so the hardware can update the values as it sees new pixels).

EPFL CS-309, PrSoC

4
René Beuchat, Philémon Favrod, Sahand Kashani

The minimum and maximum can easily be computed while data is flowing through the LEPTON CONTROLLER. The

average, however, requires a resource-heavy hardware divider, which we would like to avoid in our design.

Instead, we chose to compute the sum of all pixel values, and leave the division to be done by the host

processor (which most probably has a very efficient hardware divider).

Level adjustments

As previously stated, standard scene images taken with a thermal camera often produce very dark images due

to the low temperature difference among the various entities in the scene. The LEVEL ADJUSTMENTS component

is responsible for interpolating the frame’s pixel intensities to obtain a much more visible image. It uses the

minimum and maximum values computed by the STATISTICS COMPUTATION unit to this end.

8192x16-bit RAM

We chose to store the incoming frame in an internal on-chip memory instead of in system memory. This is

done mainly in order to provide 2 alternative views of the frame at no extra storage and computation cost.

 Original RAW buffer view

 Adjusted (interpolated) buffer view

Note that the image is not stored twice in the RAM. The 2nd view is computed on-the-fly as data is being read

from the RAM, and is then outputted on the Avalon-MM Slave interface (see Figure 1.)

Due to the small frame size of the lepton, the on-chip memory space is not too prohibitive. Pixels are 14 bits

wide, so we store them in 16-bit memory words. Storing a full frame therefore requires 80 x 60 = 4800 words.

Since memory sizes need to be powers of 2, we resort to using an 8192-word memory.

Avalon-MM Slave Interface

Table 2 shows the register map of the lepton interface. Notice each register is 16 bits wide, and that there are

2 views over the data (RAW_BUFFER & ADJUSTED_BUFFER).

Byte offset
(from base)

Register
Number

Name Access

0x0000 – 0x0001 0 COMMAND WO

0x0002 – 0x0003 1 STATUS RO

0x0004 – 0x0005 2 MIN RO

0x0006 – 0x0007 3 MAX RO

0x0008 – 0x0009 4 SUM_LSB RO

0x000A – 0x000B 5 SUM_MSB RO

0x000C – 0x000D 6 ROW_IDX RO

0x000E – 0x000F 7 RESERVED -

0x0010 – 0x258F 8 – 4807 RAW_BUFFER RO

0x2590 – 0x3FFF 4808 – 8191 RESERVED -

0x4000 – 0x657F 8192 – 12991 ADJUSTED_BUFFER RO

0x6580 – 0x7FFF 12992 – 16383 RESERVED -

TABLE 2. AVALON-MM SLAVE REGISTER MAP

EPFL CS-309, PrSoC

5
René Beuchat, Philémon Favrod, Sahand Kashani

COMMAND register

Table 3 shows the details of the COMMAND register.

Bit 15 .. 1 0

Name RESERVED START

TABLE 3. COMMAND REGISTER

Writing 1 to the START bit will instruct the unit to start capturing a new frame and resets the ERROR bit of the

STATUS register.

STATUS register

Table 4 shows the details of the STATUS register.

Bit 15 .. 2 1 0

Name RESERVED ERROR BUSY

TABLE 4. STATUS REGISTER

 The BUSY bit reads as 1 when the unit is busy, and 0 when idle.

 The ERROR bit reads as 1 when an error is detected, and 0 if no error was detected.

MIN, MAX, SUM_LSB, SUM_MSB registers

These registers contain the minimum, maximum, and sum over all pixels in the frame. Note that the sum

requires 27 bits to be fully represented, so it is split into 2 16-bit registers.

ROW_IDX

This register contains the number of the current line being captured (1 ≤ ROW_IDX ≤ 60). It is useful for

debugging purposes only.

RAW_BUFFER, ADJUSTED_BUFFER

These address zones point to the RAW and to the adjusted frame address ranges. Remember that only the

RAW frame is stored in the internal on-chip memory, and that the adjusted view is computed live when

requested for each pixel.

Practice

Task 1 – HW – Statistics computation
Implement the STATISTICS COMPUTATION component in hw/hdl/lepton/hdl/lepton_stats.vhd.

Figure 3 shows the timing diagram that the component must satisfy. The pix_sof and pix_eof signals inform

you about the start and the end of a frame. Remember to generate a pulse on the stat_valid signal when you

have valid data in the stat_min, stat_max, and stat_sum registers.

EPFL CS-309, PrSoC

6
René Beuchat, Philémon Favrod, Sahand Kashani

FIGURE 3. LEPTON_STATS PORT TIMING DIAGRAM

Task 2 – HW – Level adjustments
Implement the LEVEL ADJUSTMENTS component in hw/hdl/lepton/hdl/level_adjuster.vhd.

We said earlier that hardware dividers are expensive and that they should be avoided when possible. We were

able to avoid inserting one in the STATISTICS COMPUTATION component, but it cannot be avoided in LEVEL

ADJUSTMENTS, as there is no way to interpolate the pixel values without one.

We provide you with the component declaration for one such divider in level_adjuster.vhd.

Task 3 – SW – C code completions

Nios II SBT project setup

We want the Nios II processor to be able to write a frame to an image file located on your host computer. To

do this, we need to enable a specific software package in the BSP Editor. After creating your Nios II SBT project,

follow the steps below:

1. Right-click on the BSP project > Nios II > BSP Editor …

2. In the Software Packages tab, enable the altera_hostfs package (Figure 4).

3. Save the configuration

4. Press the Generate button.

5. Close the dialog.

You can then continue with the standard software workflow you have used for the previous labs.

EPFL CS-309, PrSoC

7
René Beuchat, Philémon Favrod, Sahand Kashani

FIGURE 4. ALTERA HOSTFS SOFTWARE PACKAGE

Lepton library

Implement the following 3 functions in lepton.c:

void lepton_start_capture(lepton_dev *dev);

bool lepton_error_check(lepton_dev *dev);

void lepton_wait_until_eof(lepton_dev *dev);

Procedure for capturing a frame

Complete the main(void) function in app.c to capture and write a frame to a PGM image file (use the functions

implemented in lepton.c).

Recall the procedure needed to capture a frame with this hardware design:

1. Write 1 to the START bit of the COMMAND register.

2. Wait until the BUSY bit of the STATUS register is 0.

3. If the ERROR bit of the STATUS register reads 1, then restart from point 1. Otherwise the frame is

available for reading at the RAW_BUFFER and ADJUSTED_BUFFER offsets within the lepton’s register

map.

Viewing the results

Once all code segments have been filled, and that you successfully execute the main function, you can find the

resulting image file at sw/nios/application/output.pgm.

Enjoy the thermal camera

https://en.wikipedia.org/wiki/Netpbm_format#PGM_example

	Lab 1.0 + 1.1 + 1.2 - Camera directional-stand (recap)
	Lab 2.0 – Camera acquisition interface
	Theory
	Background - Camera hardware interfaces
	Chosen camera - FLIR Lepton
	General note about thermal cameras

	Camera acquisition system design
	SPI controller
	Lepton controller
	Statistics computation
	Level adjustments
	8192x16-bit RAM
	Avalon-MM Slave Interface
	COMMAND register
	STATUS register
	MIN, MAX, SUM_LSB, SUM_MSB registers
	ROW_IDX
	RAW_BUFFER, ADJUSTED_BUFFER

	Practice
	Task 1 – HW – Statistics computation
	Task 2 – HW – Level adjustments
	Task 3 – SW – C code completions
	Nios II SBT project setup
	Lepton library
	Procedure for capturing a frame
	Viewing the results

