
Quartus Prime Standard Edition Handbook Volume 1: Design and
Synthesis

Subscribe

Send Feedback

QPS5V1
2016.02.09

101 Innovation Drive
San Jose, CA 95134
www.altera.com

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20Handbook%20Volume%201:%20Design%20and%20Synthesis%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Managing Quartus Prime Projects 1
2016.02.09

QPS5V1 Subscribe Send Feedback

The Quartus® Prime software organizes and manages the elements of your design within a project. The
project encapsulates information about your design hierarchy, libraries, constraints, and project settings.
Click File > New Project Wizard to create a new project quickly and specify basic project settings.

When you open a project, a unified GUI displays integrated project information. The Project Navigator
allows you to view and edit the elements of your project. The Messages window lists important informa‐
tion about project processing.

You can save multiple revisions of your project to experiment with settings that achieve your design goals.
Quartus Prime projects support team-based, distributed work flows and a scripting interface.

Quick Start
To quickly create a project and specify basic settings, click File > New Project Wizard.

New Project Wizard

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Managing%20Quartus%20Prime%20Projects&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Note: The New Project Wizard offers project templates based on fully functioning design examples.
Select the Project template option to choose a project template that is ready to compile. Altera
provides additional project templates as available.

Understanding Quartus Prime Projects
A single Quartus Prime Project File (.qpf) represents each project. The text-based .qpf references the
Quartus Prime Settings File (.qsf), that lists all project files and stores project and entity settings. When
you make project changes in the GUI, these text files automatically store the changes. The GUI helps to
manage:

• Design, EDA, IP core, and Qsys system files
• Project settings and constraint files
• Project archive and migration files

Table 1-1: Quartus Prime Project Files

File Type Contains To Edit Format

Project file Project and revision name File > New Project
Wizard

Quartus Prime Project File (.qpf)

Project
settings

Lists design files, entity
settings, target device,
synthesis directives,
placement constraints

Assignments > Settings Quartus Prime Settings File (.qsf)

Project
database

Compilation results Project > Export
Database

Exported Partition File (.qxp)

Timing
constraints

Clock properties,
exceptions, setup/hold

Tools > TimeQuest
Timing Analyzer

Synopsys Design Constraints File
(.sdc)

Logic design
files

RTL and other design
source files

File > New All supported HDL files

Program‐
ming files

Device programming
image and information

Tools > Programmer SRAM Object File (.sof)
Programmer Object File (.pof)

Project
library

Project and global library
information

Tools > Options >
Libraries

.qsf (project)

quartus2.ini (global)

IP core files IP core logic, synthesis,
and simulation
information

Tools > IP Catalog All supported HDL files

Quartus Prime IP File (.qip)

Qsys system
files

Qsys system and IP core
files

Tools > Qsys Qsys System File (.qsys)

1-2 Understanding Quartus Prime Projects
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Type Contains To Edit Format

EDA tool
files

Generated for third-party
EDA tools

Tools > Options > EDA
Tool Options

Verilog Output File (.vo)

VHDL Output File (.vho)

Verilog Quartus Mapping File
(.vqm)

Archive files Complete project as single
compressed file

Project > Archive Project Quartus Prime Archive File (.qar)

Project Management Best Practices
The Quartus Prime software provides various options for setting up a project. The following best practices
help ensure efficient management and portability of your project files.

Setting and Project File Best Practices

• Avoid manually editing Quartus Prime data files, such as the Quartus Prime Project File (.qpf),
Quartus Prime Settings File (.qsf), Quartus IP File (.qip), or Qsys System File (.qsys). Typos in these
files can cause software errors. For example, the software may ignore settings and assignments.

Every Quartus Prime project revision automatically includes a supporting .qpf that preserves various
project settings and constraints that you enter in the GUI or add with Tcl commands. This file
contains basic information about the current software version, date, and project-wide and entity level
settings. Due to dependencies between the .qpf and .qsf, avoid manually editing .qsf files.

• Do not compile multiple projects into the same directory. Instead, use a separate directory for each
project.

• By default, the Quartus Prime software saves all project output files, such as Text-Format Report Files
(.rpt), in the project directory. Instead of manually moving project output files, change your project
compilation settings to save them in a separate directory.

To save these files into a different directory choose Assignments > Settings. Turn on the Save project
output files in specified directory option and specify a directory for the output files.

Project Archive and Source Control Best Practices

• Click Project > Archive Project to archive your project for revision control.

As you develop your design, your Quartus Prime project directory contains a variety of source and
settings files, compilation database files, output, and report files. You can archive these files using the
Archive feature and save the archive for later use or place it under revision control.

1. Choose Project > Archive Project > Advanced to open the Advanced Archive Settings dialog box.
2. Choose a file set to archive. For example, choose File set > Source control with incremental

compilation and Rapid Recompile database to save the source and database file required to re-
create your project with your Rapid Recompile revisions.

3. Add additional files by clicking Add (optional).

To restore your archived project, choose Project > Restore Archived Project. Restore your project
into a new, empty directory.

QPS5V1
2016.02.09 Project Management Best Practices 1-3

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

IP Core Best Practices

• Do not manually edit or write your own .qsys or .qip file. Use the Quartus Prime software tools to
create and edit these files.

Note: When generating IP cores, do not generate files into a directory that has a space in the directory
name or path.

• When you generate an IP core using the IP Catalog, the Quartus Prime software generates a .qsys (for
Qsys-generated IP cores) or .qip file. Always add the generated .qsys or .qip to your project. Do not
add the parameter editor generated file (.v or .vhd) to your design without the .qsys or .qip file.
Otherwise, you cannot use the IP upgrade or IP parameter editor feature.

Note: For Qsys-generated IP cores, adding the .qsys file to the project instead of the .qip file simplifies
modifying the IP with the parameter editor.

• Plan your directory structure ahead of time. Do not change the relative path between a .qsys file and
it's generation output directory. If you must move the .qsys file, ensure that the generation output
directory remains with the .qsys file.

• Do not add IP core files directly from the /quartus/libraries/megafunctions directory in your project.
Otherwise, you must update the files for each subsequent software release. Instead, use the IP Catalog
and then add the .qip to your project.

• Do not use IP files that the Quartus Prime software generates for RAM or FIFO blocks targeting older
device families (even though the Quartus Prime software does not issue an error).

• When generating a ROM function, save the resulting .mif or .hex file in the same folder as the
corresponding IP core's .qsys or .qip file. For example, moving all of your project's .mif or .hex files to
the same directory causes relative path problems after archiving the design.

• Always use the Quartus Prime ip-setup-simulation and ip-make-simscript utilities to generate
simulation scripts for each IP core or Qsys system in your design. These utilities produce a single
simulation script that does not require manual update for upgrades to Quartus Prime software or IP
versions. Refer to Generating Version-Independent IP and Qsys Simulation Scripts for details.

Related Information
Generating a Combined Simulator Setup Script on page 1-36

Viewing Basic Project Information
View basic information about your project in the Project Navigator, Report panel, and Messages window.
View project elements in the Project Navigator (View > Utility Windows > Project Navigator). The
Project Navigator displays key project information, including design files, IP components, and revisions
of your project. Use the Project Navigator to:

• View and modify the design hierarchy (right-click > Set as Top-Level Entity)
• Set the project revision (right-click > Set Current Revision)
• View and update logic design files and constraint files (right-click > Open)
• Update IP component version information (right-click > Upgrade IP Component)

1-4 Viewing Basic Project Information
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-1: Project Navigator Hierarchy, Files, Revisions, and IP

Viewing Project Reports
The Report panel (Processing > Compilation Report) displays detailed reports after project processing,
including the following:

• Analysis & Synthesis reports
• Fitter reports
• Timing analysis reports
• Power analysis reports
• Signal integrity reports

Analyze the detailed project information in these reports to determine correct implementation. Right-
click report data to locate and edit the source in project files.

Figure 1-2: Report Panel

Related Information
List of Compilation Reports

QPS5V1
2016.02.09 Viewing Project Reports 1-5

Managing Quartus Prime Projects Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_list_format.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Viewing Project Messages
The Messages window (View > Utility Windows > Messages) displays information, warning, and error
messages about Quartus Prime processes. Right-click messages to locate the source or get message help.

• Processing tab—displays messages from the most recent process
• System tab—displays messages unrelated to design processing
• Search—locates specific messages

Messages are written to stdout when you use command-line executables.

Figure 1-3: Messages Window

You can suppress display of unimportant messages so they do not obscure valid messages.

Figure 1-4: Message Suppression by Message ID Number

Suppressing Messages
To supress messages, right-click a message and choose any of the following:

1-6 Viewing Project Messages
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Suppress Message—suppresses all messages matching exact text
• Suppress Messages with Matching ID—suppresses all messages matching the message ID number,

ignoring variables
• Suppress Messages with Matching Keyword—suppresses all messages matching keyword or

hierarchy

Message Suppression Guidelines

• You cannot suppress error or Altera legal agreement messages.
• Suppressing a message also suppresses any submessages.
• Message suppression is revision-specific. Derivative revisions inherit any suppression.
• You cannot edit messages or suppression rules during compilation.

Managing Project Settings
The New Project Wizard helps you initially assign basic project settings. Optimizing project settings
enables the Compiler to generate programming files that meet or exceed your specifications.

The .qsf stores each revision’s project settings.

Click Assignments > Settings to access global project settings, including:

• Project files list
• Synthesis directives and constraints
• Logic options and compiler effort levels
• Placement constraints
• Timing constraint files
• Operating temperature limits and conditions
• File generation for other EDA tools
• Target device (click Assignments > Device)

The Quartus Prime Default Settings File (<revision name>_assignment_defaults.qdf) stores initial
settings and constraints for each new project revision.

QPS5V1
2016.02.09 Message Suppression Guidelines 1-7

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-5: Settings Dialog Box for Global Project Settings

The Assignment Editor (Tools > Assignment Editor) provides a spreadsheet-like interface for assigning
all instance-specific settings and constraints.

Figure 1-6: Assignment Editor Spreadsheet

Optimizing Project Settings
Optimize project settings to meet your design goals. The Quartus Prime Design Space Explorer II
iteratively compiles your project with various setting combinations to find the optimal setting for your
goals. Alternatively, you can create a project revision or project copy to manually compare various project
settings and design combinations.

1-8 Optimizing Project Settings
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimizing with Design Space Explorer II
Use Design Space Explorer II (Tools > Launch Design Space Explorer II) to find optimal project settings
for resource, performance, or power optimization goals. Design Space Explorer II (DSE II) processes your
design using various setting and constraint combinations, and reports the best settings for your design.

DSE II attempts multiple seeds to identify one meeting your requirements. DSE II can run different
compilations on multiple computers in parallel to streamline timing closure.

Figure 1-7: Design Space Explorer II

Optimizing with Project Revisions
You can save multiple, named project revisions within your Quartus Prime project (Project > Revisions).

Each revision captures a unique set of project settings and constraints, but does not capture any logic
design file changes. Use revisions to experiment with different settings while preserving the original.You

QPS5V1
2016.02.09 Optimizing with Design Space Explorer II 1-9

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

can compare revisions to determine the best combination, or optimize different revisions for various
applications. Use revisions for the following:

• Create a unique revision to optimize a design for different criteria, such as by area in one revision and
by fMAX in another revision.

• When you create a new revision the default Quartus Prime settings initially apply.
• Create a revision of a revision to experiment with settings and constraints. The child revision includes

all the assignments and settings of the parent revision.

You create, delete, specify current, and compare revisions in the Revisions dialog box. Each time you
create a new project revision, the Quartus Prime software creates a new .qsf using the revision name.

To compare each revision’s synthesis, fitting, and timing analysis results side-by-side, click Project >
Revisions and then click Compare.

In addition to viewing the compilation results of each revision, you can also compare the assignments for
each revision. This comparison reveals how different optimization options affect your design.

Figure 1-8: Comparing Project Revisions

Copying Your Project
Click Project > Copy Project to create a separate copy of your project, rather than just a revision within
the same project.

The project copy includes all design files, .qsf(s), and project revisions. Use this technique to optimize
project copies for different applications. For example, optimize one project to interface with a 32-bit data
bus, and optimize a project copy to interface with a 64-bit data bus.

Managing Logic Design Files
The Quartus Prime software helps you create and manage the logic design files in your project. Logic
design files contain the logic that implements your design. When you add a logic design file to the project,
the Compiler automatically compiles that file as part of the project. The Compiler synthesizes your logic
design files to generate programming files for your target device.

The Quartus Prime software includes full-featured schematic and text editors, as well as HDL templates to
accelerate your design work. The Quartus Prime software supports VHDL Design Files (.vhd), Verilog
HDL Design Files (.v), SystemVerilog (. sv) and schematic Block Design Files (. bdf). The Quartus Prime

1-10 Copying Your Project
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

software also supports Verilog Quartus Mapping (.vqm) design files generated by other design entry and
synthesis tools. In addition, you can combine your logic design files with Altera and third-party IP core
design files, including combining components into a Qsys system (. qsys).

The New Project Wizard prompts you to identify logic design files. Add or remove project files by clicking
Project > Add/Remove Files in Project. View the project’s logic design files in the Project Navigator.

Figure 1-9: Design and IP Files in Project Navigator

Right-click files in the Project Navigator to:

• Open and edit the file
• Remove File from Project
• Set as Top-Level Entity for the project revision
• Create a Symbol File for Current File for display in schematic editors
• Edit file Properties

Including Design Libraries
You can include design files libraries in your project. Specify libraries for a single project, or for all
Quartus Prime projects. The.qsf stores project library information.

The quartus2.ini file stores global library information.

Related Information
Design Library Migration Guidelines on page 1-52

Specifying Design Libraries
To specify project libraries from the GUI:

1. Click Assignment > Settings.
2. Click Libraries and specify the Project Library name or Global Library name. Alternatively, you can

specify project libraries with SEARCH_PATH in the .qsf, and global libraries in the quartus2.ini file.

Related Information

• Recommended Design Practices on page 11-1
• Recommended HDL Coding Styles on page 12-1

QPS5V1
2016.02.09 Including Design Libraries 1-11

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Managing Timing Constraints
View basic information about your project in the Project Navigator, Report panel, and Messages window.

Apply appropriate timing constraints to correctly optimize fitting and analyze timing for your design. The
Fitter optimizes the placement of logic in the device to meet your specified timing and routing
constraints.

Specify timing constraints in the TimeQuest Timing Analyzer (Tools > TimeQuest Timing Analyzer), or
in an .sdc file. Specify constraints for clock characteristics, timing exceptions, and external signal setup
and hold times before running analysis. TimeQuest reports the detailed information about the perform‐
ance of your design compared with constraints in the Compilation Report panel.

Save the constraints you specify in the GUI in an industry-standard Synopsys Design Constraints File
(.sdc). You can subsequently edit the text-based .sdc file directly.

Figure 1-10: TimeQuest Timing Analyzer and SDC Syntax Example

Related Information
Quartus Prime TimeQuest Timing Analyzer

Introduction to Altera IP Cores
Altera® and strategic IP partners offer a broad portfolio of configurable IP cores optimized for Altera
devices. The Quartus Prime software installation includes the Altera IP library. You can integrate
optimized and verified Altera IP cores into your design to shorten design cycles and maximize
performance. The Quartus Prime software also supports integration of IP cores from other sources. Use

1-12 Managing Timing Constraints
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the IP Catalog to efficiently parameterize and generate synthesis and simulation files for a custom IP
variation. The Altera IP library includes the following types of IP cores:

• Basic functions
• DSP functions
• Interface protocols
• Low power functions
• Memory interfaces and controllers
• Processors and peripherals

IP Catalog and Parameter Editor
The IP Catalog (Tools > IP Catalog) and parameter editor help you easily customize and integrate IP
cores into your project. Use the IP Catalog and parameter editor to select, customize, and generate files
representing the custom IP variation in your project.

Search for installed IP

Double-click to customize
right-click for details

Filter IP by device

The IP Catalog displays the installed IP cores available for your design. Double-click any IP core to launch
the parameter editor and generate files representing your IP variation. Use the following features to help
you quickly locate and select an IP core:

• Filter IP Catalog to Show IP for active device family or Show IP for all device families. If you have no
project open, select the Device Family in IP Catalog.

• Type in the Search field to locate any full or partial IP core name in IP Catalog.
• Right-click an IP core name in IP Catalog to display details about supported devices, open the IP core's

installation folder, and click links to IP documentation.
• Click Search for Partner IP, to access partner IP information on the Altera website.

The parameter editor prompts you to specify an IP variation name, optional ports, and output file
generation options. The parameter editor generates a top-level Qsys system file (.qsys) or Quartus Prime
IP file (.qip) representing the IP core in your project. You can also parameterize an IP variation without
an open project.

QPS5V1
2016.02.09 IP Catalog and Parameter Editor 1-13

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The IP Catalog is also available in Qsys (View > IP Catalog). The Qsys IP Catalog includes exclusive
system interconnect, video and image processing, and other system-level IP that are not available in the
Quartus Prime IP Catalog. For more information about using the Qsys IP Catalog, refer to Creating a
System with Qsys in the Quartus Prime Handbook.

Note: The IP Catalog (Tools > IP Catalog) and parameter editor replace the MegaWizard™ Plug-In
Manager for IP selection and parameterization, beginning in Quartus II software version 14.0. Use
the IP Catalog and parameter editor to locate and paramaterize Altera IP cores.

Related Information
Creating a System With Qsys on page 5-1

Using the Parameter Editor
The parameter editor helps you to configure IP core ports, parameters, and output file generation options.

Figure 1-11: IP Parameter Editors

View IP port
and parameter
details

Apply preset parameters for
specific applications

Specify your IP variation
name and target device

Legacy parameter
editors

• Use preset settings in the parameter editor (where provided) to instantly apply preset parameter values
for specific applications.

• View port and parameter descriptions, and click links to documentation.
• Generate testbench systems or example designs (where provided).

Adding IP Cores to IP Catalog
The IP Catalog automatically displays Altera IP cores found in the project directory, in the Altera
installation directory, and in the defined IP search path. The IP Catalog can include Altera-provided IP
components, third-party IP components, custom IP components that you provide, and previously
generated Qsys systems.

You can use the IP Search Path option (Tools > Options) to include custom and third-party IP
components in the IP Catalog. The IP Catalog displays all IP cores in the IP search path.

1-14 Using the Parameter Editor
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-12: Specifying IP Search Locations

Adds new global IP search paths

Changes search path order

Adds new project-specific IP search paths

Lists current project and global search paths

The Quartus Prime software searches the directories listed in the IP search path for the following IP core
files:

• Component Description File (_hw.tcl)—Defines a single IP core.
• IP Index File (.ipx)—Each .ipx file indexes a collection of available IP cores, or a reference to other

directories to search. In general, .ipx files facilitate faster searches.

The Quartus Prime software searches some directories recursively and other directories only to a specific
depth. When the search is recursive, the search stops at any directory that contains an _hw.tcl or .ipx file.

In the following list of search locations, a recursive descent is annotated by **. A single * signifies any file.

Table 1-2: IP Search Locations

Location Description

PROJECT_DIR/* Finds IP components and index files in the Quartus Prime project directory.

PROJECT_DIR/ip/**/* Finds IP components and index files in any subdirectory of the /ip subdirectory
of the Quartus Prime project directory.

QPS5V1
2016.02.09 Adding IP Cores to IP Catalog 1-15

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the Quartus Prime software recognizes two IP cores with the same name, the following search path
precedence rules determine the resolution of files:

1. Project directory.
2. Project database directory.
3. Project IP search path specified in IP Search Locations, or with the SEARCH_PATH assignment for the

current project revision.
4. Global IP search path specified in IP Search Locations, or with the SEARCH_PATH assignment in the

quartus2.ini file.
5. Quartus software libraries directory, such as <Quartus Installation>\libraries.

Note: If you add a component to the search path, you must update the IP Catalog by clicking Refresh IP
Catalog in the drop-down list. In Qsys, click File > Refresh System to update the IP Catalog.

General Settings for IP
You can use the following settings to control how the Quartus Prime software manages IP cores in your
project.

Table 1-3: IP Core General Setting Locations

Setting Location Description

Tools > Options > IP
Settings

Or

Assignments > Settings >
IP Settings (only enabled
with open project)

• Specify your IP generation HDL preference. The parameter editor
generates IP files in your preferred HDL by default.

• Increase Maximum Qsys memory usage size if you experience slow
processing for large systems, or if Qsys reports an Out of Memory error.

• Specify whether to Automatically add Quartus Prime IP files to all
projects. Disable this option to control addition of IP files manually. You
may want to experiment with IP before adding to a project.

• Use the IP Regeneration Policy setting to control when synthesis files
regenerate for each IP variation. Typically you Always regenerate
synthesis files for IP cores after making changes to an IP variation.

Tools > Options > IP
Catalog Search Locations

Or

Assignments > Settings >
IP Catalog Search
Locations

• Specify project and global IP search locations. The Quartus Prime
software searches for IP cores in the project directory, in the Altera
installation directory, and in the IP search path.

Assignments > Settings >
Simulation

• NativeLink Settings allow you to automatically compile testbenches for
supported simulators. You can also specify a script to compile the
testbench, and a script to set up the simulation.

Licensing IP Cores
The Altera IP Library provides many useful IP core functions for your production use without purchasing
an additional license. Some Altera MegaCore® IP functions require that you purchase a separate license
for production use. However, the OpenCore® feature allows evaluation of any Altera IP core in simulation

1-16 General Settings for IP
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and compilation in the Quartus Prime software. After you are satisfied with functionality and
performance, visit the Self Service Licensing Center to obtain a license number for any Altera product.

Figure 1-13: IP Core Installation Path

acds

quartus - Contains the Quartus Prime software
ip - Contains the Altera IP Library and third-party IP cores

altera - Contains the Altera IP Library source code
<IP core name> - Contains the IP core source files

Note: The default IP installation directory on Windows is <drive>:\altera\<version number>; on Linux it
is <home directory>/altera/ <version number>.

OpenCore Plus IP Evaluation
Altera's free OpenCore Plus feature allows you to evaluate licensed MegaCore IP cores in simulation and
hardware before purchase. You need only purchase a license for MegaCore IP cores if you decide to take
your design to production. OpenCore Plus supports the following evaluations:

• Simulate the behavior of a licensed IP core in your system.
• Verify the functionality, size, and speed of the IP core quickly and easily.
• Generate time-limited device programming files for designs that include IP cores.
• Program a device with your IP core and verify your design in hardware.

OpenCore Plus evaluation supports the following two operation modes:

• Untethered—run the design containing the licensed IP for a limited time.
• Tethered—run the design containing the licensed IP for a longer time or indefinitely. This requires a

connection between your board and the host computer.

Note: All IP cores that use OpenCore Plus time out simultaneously when any IP core in the design times
out.

Related Information

• Altera Licensing Site
• Altera Software Installation and Licensing Manual

QPS5V1
2016.02.09 OpenCore Plus IP Evaluation 1-17

Managing Quartus Prime Projects Altera Corporation

Send Feedback

http://www.altera.com/licensing
https://documentation.altera.com/#/link/mwh1410890939422/mwh1410890903900/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating IP Cores
You can quickly configure a custom IP variation in the parameter editor. Use the following steps to
specify IP core options and parameters in the parameter editor.

Figure 1-14: IP Parameter Editor

View IP port
and parameter
details

Apply preset parameters for
specific applications

Specify your IP variation name
and target device

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP core to customize.
The parameter editor appears.

2. Specify a top-level name for your custom IP variation. The parameter editor saves the IP variation
settings in a file named <your_ip>.qsys. Click OK. Do not include spaces in IP variation names or
paths.

3. Specify the parameters and options for your IP variation in the parameter editor, including one or
more of the following. Refer to your IP core user guide for information about specific IP core
parameters.

1-18 Generating IP Cores
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Optionally select preset parameter values if provided for your IP core. Presets specify initial
parameter values for specific applications.

• Specify parameters defining the IP core functionality, port configurations, and device-specific
features.

• Specify options for processing the IP core files in other EDA tools.
4. Click Generate HDL. The Generation dialog box appears.
5. Specify output file generation options, and then click Generate. The IP variation files generate

according to your specifications.
6. To generate a simulation testbench, click Generate > Generate Testbench System.
7. To generate an HDL instantiation template that you can copy and paste into your text editor, click

Generate > HDL Example.
8. Click Finish. Click Yes if prompted to add files representing the IP variation to your project.

Optionally turn on the option to Automatically add Quartus Prime IP Files to All Projects. Click
Project > Add/Remove Files in Project to add IP files at any time.

Figure 1-15: Adding IP Files to Project

Adds IP

Auto adds
IP without
prompt

For Arria 10 devices and newer, the generated .qsys file must be added to your project to represent IP
and Qsys systems. For devices released prior to Arria 10 devices, the generated .qip and .sip files must
be added to your project for IP and Qsys systems.

9. After generating and instantiating your IP variation, make appropriate pin assignments to connect
ports.

Related Information

• IP User Guide Documentation
• Altera IP Release Notes

Files Generated for Altera IP Cores and Qsys Systems
The Quartus Prime software generates the following output file structure for IP cores and Qsys systems.
For Arria 10 devices and newer, the generated .qsys file must be added to your project to represent IP and
Qsys systems. For devices released prior to Arria 10 devices, the generated .qip and .sip files must be
added to your project to represent IP and Qsys systems.

QPS5V1
2016.02.09 Files Generated for Altera IP Cores and Qsys Systems 1-19

Managing Quartus Prime Projects Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/rn/rn_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-16: Files generated for IP cores and Qsys Systems

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

<your_ip>.debuginfo - Post-generation debug data

synth - IP synthesis files

<IP Submodule> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.qip or .qsys - System or IP integration file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation startup scripts 1

 1

<your_ip>.html - Memory map data

<your_ip>.sopcinfo - Software tool-chain integration file

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>.sip - NativeLink simulation integration file

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system

<your_testbench>_tb.qsys - testbench system file

<your_ip>_tb - IP testbench files

<your_testbench>_tb.csv or .spd - testbench file

sim - IP testbench simulation files

 1. If supported and enabled for your IP core variation.

Table 1-4: IP Core and Qsys Simulation Generated Files

File Name Description

<my_ip>.qsys The Qsys system or top-level IP variation file. <my_ip> is the name
that you give your IP variation. You must add the .qsys file to your
Quartus project to enable NativeLink for Arria 10 and Stratix 10
device families.

1-20 Files Generated for Altera IP Cores and Qsys Systems
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

<system>.sopcinfo Describes the connections and IP component parameterizations in
your Qsys system. You can parse its contents to get requirements
when you develop software drivers for IP components.

Downstream tools such as the Nios II tool chain use this file.
The .sopcinfo file and the system.h file generated for the Nios II tool
chain include address map information for each slave relative to each
master that accesses the slave. Different masters may have a different
address map to access a particular slave component.

<my_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that
contains local generic and port definitions that you can use in VHDL
design files.

<my_ip>.html A report that contains connection information, a memory map
showing the address of each slave with respect to each master to
which it is connected, and parameter assignments.

<my_ip>_generation.rpt IP or Qsys generation log file. A summary of the messages during IP
generation.

<my_ip>.debuginfo Contains post-generation information. Used to pass System Console
and Bus Analyzer Toolkit information about the Qsys interconnect.
The Bus Analysis Toolkit uses this file to identify debug components
in the Qsys interconnect.

<my_ip>.qip Contains all the required information about the IP component to
integrate and compile the IP component in the Quartus Prime
software.

<my_ip>.csv Contains information about the upgrade status of the IP component.

<my_ip>.bsf A Block Symbol File (.bsf) representation of the IP variation for use
in Quartus Prime Block Diagram Files (.bdf).

<my_ip>.spd Required input file for ip-make-simscript to generate simulation
scripts for supported simulators. The .spd file contains a list of files
generated for simulation, along with information about memories
that you can initialize.

<my_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for
IP components created for use with the Pin Planner.

<my_ip>_bb.v You can use the Verilog black-box (_bb.v) file as an empty module
declaration for use as a black box.

<my_ip>.sip Contains information required for NativeLink simulation of IP
components. You must add the .sip file to your Quartus project to
enable NativeLink for Arria II, Arria V, Cyclone IV, Cyclone V, MAX
10, MAX II, MAX V, Stratix IV, and Stratix V devices.

<my_ip>_inst.v or _inst.vhd HDL example instantiation template. You can copy and paste the
contents of this file into your HDL file to instantiate the IP variation.

QPS5V1
2016.02.09 Files Generated for Altera IP Cores and Qsys Systems 1-21

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

<my_ip>.regmap If the IP contains register information, the .regmap file generates.
The .regmap file describes the register map information of master
and slave interfaces. This file complements the .sopcinfo file by
providing more detailed register information about the system. This
enables register display views and user customizable statistics in
System Console.

<my_ip>.svd Allows HPS System Debug tools to view the register maps of
peripherals connected to HPS within a Qsys system.

During synthesis, the .svd files for slave interfaces visible to System
Console masters are stored in the .sof file in the debug section.
System Console reads this section, which Qsys can query for register
map information. For system slaves, Qsys can access the registers by
name.

<my_ip>.v

or

<my_ip>.vhd

HDL files that instantiate each submodule or child IP core for
synthesis or simulation.

mentor/ Contains a ModelSim® script msim_setup.tcl to set up and run a
simulation.

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS®

simulation.

Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file
to set up and run a VCS MX® simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up
and run an NCSIM simulation.

/submodules Contains HDL files for the IP core submodule.
<IP submodule>/ For each generated IP submodule directory, Qsys generates /synth

and /sim sub-directories.

1-22 Files Generated for Altera IP Cores and Qsys Systems
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating IP Cores (Legacy Editors)
Some IP cores use a legacy version of the parameter editor for configuration and generation. Use the
following steps to configure and generate an IP variation using a legacy parameter editor.

Figure 1-17: Legacy Parameter Editors

Note: The legacy parameter editor generates a different output file structure than the latest parameter
editor. Refer to Specifying IP Core Parameters and Options for configuration of IP cores that use the
latest parameter editor.

1. In the IP Catalog (Tools > IP Catalog), locate and double-click the name of the IP core to customize.
The parameter editor appears.

2. Specify a top-level name and output HDL file type for your IP variation. This name identifies the IP
core variation files in your project. Click OK. Do not include spaces in IP variation names or paths.

3. Specify the parameters and options for your IP variation in the parameter editor. Refer to your IP core
user guide for information about specific IP core parameters.

4. Click Finish or Generate (depending on the parameter editor version). The parameter editor generates
the files for your IP variation according to your specifications. Click Exit if prompted when generation
is complete. The parameter editor adds the top-level .qip file to the current project automatically.

Note: For devices released prior to Arria 10 devices, the generated .qip and .sip files must be added to
your project to represent IP and Qsys systems. To manually add an IP variation generated with
legacy parameter editor to a project, click Project > Add/Remove Files in Project and add the
IP variation .qip file.

Related Information

• IP User Guide Documentation
• Altera IP Release Notes

QPS5V1
2016.02.09 Generating IP Cores (Legacy Editors) 1-23

Managing Quartus Prime Projects Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/rn/rn_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Files Generated for Altera IP Cores (Legacy Parameter Editors)
The Quartus Prime software generates one of the following output file structures for Altera IP cores that
use a legacy parameter editor.

Figure 1-18: IP Core Generated Files (Legacy Parameter Editors)

Generated IP File Output B
<Project Directory>

<your_ip>.html - IP core generation report

<your_ip>_testbench.v or .vhd - Testbench file1

<your_ip>.bsf - Block symbol schematic file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist 1

<your_ip>_bb - Verilog HDL black box EDA synthesis file

<your_ip>.vo or .vho - IP functional simulation model 2

<your_ip>.qip - Quartus Prime IP integration file

<your_ip>.v or .vhd - Top-level HDL IP variation definition

<your_ip>_block_period_stim.txt - Testbench simulation data 1

<your_ip>-library - Contains IP subcomponent synthesis libraries

Generated IP File Output A
<Project Directory>

<your_ip>.v or .vhd - Top-level IP synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

<your_ip>.bsf - Block symbol schematic file

<your_ip>.vo or .vho - IP functional simulation model 2
<your_ip>_syn.v or .vhd - Timing & resource estimation netlist 1

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>.qip - Quartus Prime IP integration file

greybox_tmp 3

<your_ip>.cmp - VHDL component declaration file

Generated IP File Output C
<Project Directory>

<your_ip>_sim 1

<Altera IP>_instance.vo - IPFS model 2

<simulator_vendor>
<simulator setup scripts>

<your_ip>.qip - Quartus Prime IP integration file

<your_ip>.sip - Lists files for simulation

<your_ip>_testbench or _example - Testbench or example1

<your_ip>.v, .sv. or .vhd - Top-level IP synthesis file

<AlteraIP_name>_instance

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist 1
<your_ip>.cmp - VHDL component declaration file

<your_ip>.bsf - Block symbol schematic file

<your_ip> - IP core synthesis files

<your_ip>.sv, .v, or .vhd - HDL synthesis files

<your_ip>.sdc - Timing constraints file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation scripts 1

<your_ip>_sim.f - Refers to simulation models and scripts 1

Notes:
1. If supported and enabled for your IP variation
2. If functional simulation models are generated
3. Ignore this directory

Generated IP File Output D
<Project Directory>

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<your_ip>_inst.v or .vhd - Sample instantiation template

synthesis - IP synthesis files

<your_ip>.qip - Lists files for synthesis

testbench - Simulation testbench files 1

<testbench_hdl_files>

<simulator_vendor> - Testbench for supported simulators

<simulation_testbench_files>

<your_ip>.v or .vhd - Top-level IP variation synthesis file

simulation - IP simulation files
<your_ip>.sip - NativeLink simulation integration file

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.qip or .qsys - System or IP integration file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation startup scripts 1

<your_ip>.html - Contains memory map

<your_ip>.sopcinfo - Software tool-chain integration file

<your_ip>_syn.v or .vhd - Timing & resource estimation netlist 1

<your_ip>.debuginfo - Lists files for synthesis

<your_ip>.v, .vhd, .vo, .vho - HDL or IPFS models2

<your_ip>_tb - Testbench for supported simulators
<your_ip>_tb.v or .vhd - Top-level HDL testbench file

Note: For devices released prior to Arria 10 devices, the generated .qip and .sip files must be added to
your project to represent IP and Qsys systems. To manually add an IP variation to a Quartus Prime
project, click Project > Add/Remove Files in Project and add only the IP variation .qip or .qsys
file, but not both, to the project. Do not manually add the top-level HDL file to the project.

1-24 Files Generated for Altera IP Cores (Legacy Parameter Editors)
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Scripting IP Core Generation
You can use the qsys-script and qsys-generate utilities to define and generate an IP core variation
outside of the Quartus Prime GUI.

To parameterize and generate an IP core at the command-line, follow these steps:

1. Run qsys-script to execute a Tcl script that instantiates the IP and sets desired parameters:

qsys-script --script=<script_file>.tcl

2. Run qsys-generate to generate the IP core variation:

qsys-generate <IP variation file>.qsys

Note: Creating an IP generation script is an advanced feature that requires access to special IP core
parameters. For more information about creating an IP generation script, contact your Altera sales
representative.

Table 1-5: qsys-generate Command-Line Options

Option Usage Description

<1st arg file> Required The name of the .qsys system file to
generate.

--synthesis=<VERILOG|VHDL> Optional Creates synthesis HDL files that Qsys uses
to compile the system in a Quartus Prime
project. You must specify the preferred
generation language for the top-level RTL
file for the generated Qsys system.

--block-symbol-file Optional Creates a Block Symbol File (.bsf) for the
Qsys system.

--simulation=<VERILOG|VHDL> Optional Creates a simulation model for the Qsys
system. The simulation model contains
generated HDL files for the simulator, and
may include simulation-only features. You
must specify the preferred simulation
language.

--testbench=<SIMPLE|STANDARD> Optional Creates a testbench system that instantiates
the original system, adding bus functional
models (BFMs) to drive the top-level
interfaces. When you generate the system,
the BFMs interact with the system in the
simulator.

--testbench-simulation=<VERILOG|VHDL> Optional After you create the testbench system, you
can create a simulation model for the
testbench system.

QPS5V1
2016.02.09 Scripting IP Core Generation 1-25

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--search-path=<value> Optional If you omit this command, Qsys uses a
standard default path. If you provide this
command, Qsys searches a comma-
separated list of paths. To include the
standard path in your replacement, use "$",
for example, "/extra/dir,$".

--jvm-max-heap-size=<value> Optional The maximum memory size that Qsys uses
for allocations when running qsys-
generate. You specify the value as <size>
<unit>, where unit is m (or M) for
multiples of megabytes or g (or G) for
multiples of gigabytes. The default value is
512m.

--family=<value> Optional Specifies the device family.

--part=<value> Optional Specifies the device part number. If set, this
option overrides the --family option.

--allow-mixed-language-simulation Optional Enables a mixed language simulation
model generation. If true, if a preferred
simulation language is set, Qsys uses a
fileset of the component for the
simulation model generation. When false,
which is the default, Qsys uses the
language specified with --file-
set=<value> for all components for
simulation model generation. The current
version of the ModelSim-Altera simulator
supports mixed language simulation.

For command-line help listing all options for these executables, type <executable name> --help

Modifying an IP Variation
After generating an IP core variation, you can modify its parameters in the parameter editor. Use any of
the following methods to modify an IP variation in the parameter editor.

Table 1-6: Modifying an IP Variation

Menu Command Action

File > Open Select the top-level HDL (.v, or .vhd) IP variation file to
launch the parameter editor and modify the IP variation.
Regenerate the IP variation to implement your changes.

View > Utility Windows > Project
Navigator > IP Components

Double-click the IP variation to launch the parameter
editor and modify the IP variation. Regenerate the IP
variation to implement your changes.

1-26 Modifying an IP Variation
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Menu Command Action

Project > Upgrade IP Components Select the IP variation and click Upgrade in Editor to
launch the parameter editor and modify the IP variation.
Regenerate the IP variation to implement your changes.

Upgrading IP Cores
IP core variants generated with a previous version or different edition of the Quartus Prime software may
require upgrading before use in the current version or edition of the Quartus Prime software. When you
open a project containing outdated IP, the Project Navigator displays a banner indicating the IP upgrade
status. Click Launch IP Upgrade Tool, or Project > Upgrade IP Components to upgrade outdated IP
cores.

Figure 1-19: IP Upgrade Alert in Project Navigator

IP Upgrade
notification

Icons in the Upgrade IP Components dialog box indicate when IP upgrade is required, optional, or
unsupported for IP cores in your design. You must upgrade IP cores that require upgrade before you can
compile the IP variation in the current version of the Quartus Prime software.

The upgrade process preserves the original IP variation file in the project directory as <my_variant>_
BAK.qsys for IP targeting Arria 10 and later devices, and as <my_variant>_BAK.v, .sv, or .vhd for legacy
IP targeting 28nm devices and greater.

Note: Upgrading IP cores for Arria 10 and later devices may append a unique identifier to the original IP
core entity name(s), without similarly modifying the IP instance name. There is no requirement to
update these entity references in any supporting Quartus Prime file; such as the Quartus Prime
Settings File (.qsf), Synopsys Design Constraints File (.sdc), or SignalTap File (.stp), if these files
contain instance names. The Quartus Prime software reads only the instance name and ignores the
entity name in paths that specify both names. Use only instance names in assignments.

QPS5V1
2016.02.09 Upgrading IP Cores 1-27

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 1-7: IP Core Upgrade Status

IP Core Status Description

IP Upgraded

Your IP variation uses the latest version of the IP core.

IP Upgrade Optional

Upgrade is optional for this IP variation in the current version of the Quartus
Prime software. You can upgrade this IP variation to take advantage of the
latest development of this IP core. Alternatively you can retain previous IP
core characteristics by declining to upgrade. Refer to the Description for
details about IP core version differences. If you do not upgrade the IP, the IP
variation synthesis and simulation files are unchanged and you cannot modify
parameters until upgrading.

IP Upgrade Required

You must upgrade the IP variation before compiling in the current version of
the Quartus Prime software. Refer to the Description for details about IP core
version differences.

IP Upgrade Unsupported

Upgrade of the IP variation is not supported in the current version of the
Quartus Prime software due to incompatibility with the current version of the
Quartus Prime software. You are prompted to replace the unsupported IP core
with a supported equivalent IP core from the IP Catalog. Refer to the Descrip‐
tion for details about IP core version differences and links to Release Notes.

IP End of Life

Altera designates the IP core as end-of-life status. You may or may not be able
to edit the IP core in the parameter editor. Support for this IP core
discontinues in future releases of the Quartus Prime software.

IP Upgrade Mismatch
Warning

Warning of non-critical IP core differences in migrating IP to another device
family.

Follow these steps to upgrade IP cores:

1. In the latest version of the Quartus Prime software, open the Quartus Prime project containing an
outdated IP core variation. The Upgrade IP Components dialog automatically displays the status of IP
cores in your project, along with instructions for upgrading each core. Click Project > Upgrade IP
Components to access this dialog box manually.

2. To upgrade one or more IP cores that support automatic upgrade, ensure that the Auto Upgrade
option is turned on for the IP core(s), and then click Perform Automatic Upgrade. The Status and

1-28 Upgrading IP Cores
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Version columns update when upgrade is complete. Example designs provided with any Altera IP core
regenerate automatically whenever you upgrade an IP core.

3. To manually upgrade an individual IP core, select the IP core and then click Upgrade in Editor (or
simply double-click the IP core name. The parameter editor opens, allowing you to adjust parameters
and regenerate the latest version of the IP core.

Figure 1-20: Upgrading IP Cores

Runs “Auto Upgrade” on all supported outdated cores
Opens editor for manual IP upgrade

 “Auto Upgrade”
supported

Upgrade required

Upgrade details

 “Auto Upgrade”
successful

Note: IP cores older than Quartus Prime software version 12.0 do not support upgrade. Altera verifies
that the current version of the Quartus Prime software compiles the previous version of each IP
core. The Altera IP Release Notes reports any verification exceptions for Altera IP cores. Altera
does not verify compilation for IP cores older than the previous two releases.

Related Information
Altera IP Release Notes

Upgrading IP at Command-Line
You can upgrade an IP core at the command-line if the IP core supports auto upgrade. IP cores that do
not support automatic upgrade do not support command-line upgrade.

• To upgrade a single IP core at the command-line, type the following command:

quartus_sh –ip_upgrade –variation_files <my_ip>.<qsys,.v, .vhd> <quartus_project>

Example:
quartus_sh -ip_upgrade -variation_files mega/pll25.qsys hps_testx

QPS5V1
2016.02.09 Upgrading IP at Command-Line 1-29

Managing Quartus Prime Projects Altera Corporation

Send Feedback

http://www.altera.com/literature/rn/rn_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To simultaneously upgrade multiple IP cores at the command-line, type the following command:

quartus_sh –ip_upgrade –variation_files “<my_ip1>.<qsys,.v, .vhd>>;
<my_ip_filepath/my_ip2>.<hdl>” <quartus_project>

Example:
quartus_sh -ip_upgrade -variation_files "mega/pll_tx2.qsys;mega/pll3.qsys"
hps_testx

Migrating IP Cores to a Different Device
IP migration allows you to target the latest device families with IP originally generated for a different
device. Most Altera IP cores support automatic migration. Some IP cores require manual IP regeneration
for migration. Some IP cores do not support device migration and must be replaced in your design.
The text and icons in the Upgrade IP Components dialog box identifies the migration support for each
IP core in the design.

Note: Migration of some IP cores requires installed support for the original and migration device
families. For example, migration from a Stratix V device to an Arria 10 device requires installation
of Stratix V and Arria 10 device families with the Quartus Prime software.

Figure 1-21: IP Core Device Migration

1-30 Migrating IP Cores to a Different Device
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Click File > Open Project and open the Quartus Prime project containing IP for migration to another
device in the original version of the Quartus Prime software. If prompted, click Yes to change to a
supported device family.

2. To specify a different target device for migration, click Assignments > Device and select the target
device family.

3. To display IP cores requiring migration, click Project > Upgrade IP Components. The Description
field prompts you to run auto update or double-click IP cores for migration.

4. To migrate one or more IP cores that support automatic upgrade, ensure that the Auto Upgrade
option is turned on for the IP core(s), and then click Perform Automatic Upgrade. The Status and
Version columns update when upgrade is complete.

5. To migrate an IP core that does not support automatic upgrade, double-click the IP core name, and
then click OK. The parameter editor appears. If the parameter editor specifies a Currently selected
device family, turn off Match project/default, and then select the new target device family.

6. Click Generate HDL, and then confirm the Synthesis and Simulation file options. Verilog HDL is the
default output file format specified. If your original IP core was generated for VHDL, select VHDL to
retain the original output format.

7. Click Finish to complete migration of the IP core. Click OK if you are prompted to overwrite IP core
files. The Device Family column displays the new target device name when migration is complete. The
migration process replaces <my_ip>.qip with the <my_ip>.qsys top-level IP file in your project.

Note: If migration does not replace <my_ip>.qip with <my_ip>.qsys, click Project > Add/Remove
Files in Project to replace the file in your project.

8. Review the latest parameters in the parameter editor or generated HDL for correctness. IP migration
may change ports, parameters, or functionality of the IP core. During migration, the IP core's HDL
generates into a library that is different from the original output location of the IP core. Update any
assignments that reference outdated locations. If your upgraded IP core is represented by a symbol in a
supporting Block Design File schematic, replace the symbol with the newly generated <my_ip>.bsf
after migration.

Note: The migration process may change the IP variation interface, parameters, and functionality.
This may require you to change your design or to re-parameterize your variant after the
Upgrade IP Components dialog box indicates that migration is complete. The Description
field identifies IP cores that require design or parameter changes.

Related Information
Altera IP Release Notes

Troubleshooting IP or Qsys System Upgrade
The Upgrade IP Components dialog box reports the version and status of each IP core and Qsys system
following upgrade or migration. If any upgrade or migration fails, the Upgrade IP Components dialog
box provides information to help you resolve any errors.

Note: Make sure that your IP variation names or paths do not include spaces. Spaces can be problematic
for IP generation.

During automatic or manual upgrade, the Messages window dynamically displays upgrade information
for each IP core or Qsys system. You can use the following information to help you resolve any upgrade
errors following upgrade or migration.

QPS5V1
2016.02.09 Troubleshooting IP or Qsys System Upgrade 1-31

Managing Quartus Prime Projects Altera Corporation

Send Feedback

http://www.altera.com/literature/rn/rn_ip.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 1-8: IP Upgrade Error Information

Upgrade IP Components
Field

Description

Regeneration Status Displays the "Success" or "Failed" status of each upgrade or migration. Click the
status of any failed upgrade to open a detailed IP Upgrade Report.

Version Dynamically updates to the new version number when upgrade is successful.
The text is red when upgrade is required.

Device Family Dynamically updates to the new device family when migration is successful. The
text is red when upgrade is required.

Description Summarizes IP release information and displays actionable, corrective action for
resolving upgrade or migration failures. Follow these instructions to resolve
upgrade failures. Click the Release Notes link for the latest known issues about
the Altera IP core.

Perform Automatic
Upgrade

Runs automatic upgrade on all IP cores that support auto upgrade. Also,
automatically generates a <Project Directory>/ip_upgrade_port_diff_report
report for IP cores or Qsys systems that fail upgrade. Review these reports to
determine any port differences between the current and previous IP core
version.

Figure 1-22: Resolving Upgrade Errors

Upgrade failed
(click to open report)

Upgrade details

Generates Port
Diffs report

 Upgrade
manually

Upgrade
success

1-32 Troubleshooting IP or Qsys System Upgrade
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the following techniques to resolve errors if your Altera IP core or Qsys system "Failed" to upgrade
versions or migrate to another device. Review and implement the instructions in the Description field,
including one or more of the following:

1. If the IP variant is not supported in the current version of the software, right-click the component and
click Remove IP Component from Project. Replace this IP core or Qsys system with one supported in
the current version of the software.

2. If the IP variant is not supported by the current target device, select a supported device family for the
project, or replace the IP variant with a suitable replacement that supports your target device.

3. If an upgrade or migration fails, click Failed in the Regeneration Status field to display and review
details of the IP Upgrade Report. Click the Release Notes link for the latest known issues about the
Altera IP core. Use this information to determine the nature of the upgrade or migration failure and
make corrections before upgrade.

Figure 1-23: IP Upgrade Report

4. Run Perform Automatic Upgrade to automatically generate an IP Ports Diff report for each IP core
or Qsys system that fails upgrade. Review the reports to determine any port differences between the

QPS5V1
2016.02.09 Troubleshooting IP or Qsys System Upgrade 1-33

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

current and previous IP core version. Then, click Upgrade in Editor to make specific port changes and
regenerate your IP core or Qsys system.

5. If your IP core or Qsys system does not support Perform Automatic Upgrade, click Upgrade in
Editor to resolve errors and regenerate the component in the parameter editor.

Simulating Altera IP Cores
The Quartus Prime software supports RTL and gate-level simulation of Altera IP cores in supported EDA
simulators. The Quartus Prime software generates simulation files for each IP core during IP generation,
including the functional simulation model, any testbench (or example design), and vendor-specific
simulator setup scripts for each IP core. You can use the functional simulation model and the testbench or
example design generated with your IP core for simulation. The IP generation output also includes scripts
to compile and run any testbench. The generated scripts list all models or libraries required to simulate
your IP core.

The Quartus Prime software provides integration with your simulator and supports multiple simulation
flows, including your own scripted and custom simulation flows. Whichever flow you chose, IP core
simulation involves the following steps:

1. Generate simulation model, testbench (or example design), and simulator setup script files
2. Set up your simulator environment and any simulation script(s)
3. Compile simulation model libraries
4. Run your simulator

The Quartus Prime software integrates with your preferred simulation environment. This section
describes how to setup and run typical scripted and NativeLink simulation flows.

Related Information
Simulating Altera Designs

Generating IP Simulation Files

The Quartus Prime software optionally generates the functional simulation model, any testbench (or
example design), and vendor-specific simulator setup scripts when you generate the IP core from the
parameter editor or command-line including for each IP core. Use the following to control the generation
of IP simulation files:

• Click Assignment > Settings to specify your supported simulator and options for IP simulation file
generation.

• Click Tools > IP Catalog to parameterize a new IP variation, enable generation of simulation files, and
generate the IP core synthesis and simulation files.

• Click View > Utility Windows > Project Navigator > IP Components to edit parameters and
regenerate synthesis or simulation for an existing IP core variation.

1-34 Simulating Altera IP Cores
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383407761/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 1-9: Altera IP Simulation Files

File Type Description File Name

Simulator
setup scripts

Vendor-specific scripts to compile, elaborate, and
simulate Altera IP models and simulation model
library files. Source these files from your top-level
simulation script, or edit these files to compile,
elaborate, and simulate your design and testbench.

<my_dir>/aldec/rivierapro_
setup.tcl

<my_dir>/cadence/ncsim_
setup.sh

<my_dir>/mentor/msim_
setup.tcl

<my_dir>/synopsys/vcs/vcs_
setup.sh

Simulation IP
File

Contains IP core simulation library mapping
information. To use NativeLink, you must add the .qip
and .sip files generated for IP or Qsys systems to your
project.

<design name>.sip

Qsys System
File

Contains IP core simulation library mapping
information. To use NativeLink for Arria 10 devices
and later, you must add the .qsys file generated for IP
or Qsys system to your project.

<design name>.sip

IP functional
simulation
models

IP functional simulation models are cycle-accurate
VHDL or Verilog HDL models generated by the
Quartus Prime software for some Altera IP cores. IP
functional simulation models support fast functional
simulation of IP using industry-standard VHDL and
Verilog HDL simulators.

<my_ip>.vho

<my_ip>.vo

IEEE
encrypted
models

Arria V, Cyclone V, Stratix V, and newer simulation
model libraries and IP simulation models are provided
in Verilog HDL and IEEE encrypted Verilog HDL.
VHDL simulation of these models is supported using
your simulator's co-simulation capabilities. IEEE
encrypted Verilog HDL models are significantly faster
than IP functional simulation models.

<my_ip>.v

Note: Altera IP supports a variety of simulation models, including simulation-specific IP functional
simulation models and encrypted RTL models, and plain text RTL models. These are all cycle-
accurate models. The models support fast functional simulation of your IP core instance using
industry-standard VHDL or Verilog HDL simulators. For some cores, only the plain text RTL
model is generated, and you can simulate that model. Use the simulation models only for
simulation and not for synthesis or any other purposes. Using these models for synthesis creates a
nonfunctional design.

Scripting IP Simulation
The Quartus Prime software supports the use of scripts to automate simulation processing in your
preferred simulation environment. You can use your preferred scripting methodology to control
simulation.

Altera recommends the use of a version-independent top-level simulation script to control design,
testbench, and IP core simulation. Because Quartus Prime-generated simulation file names may change

QPS5V1
2016.02.09 Scripting IP Simulation 1-35

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

after IP upgrade or regeneration, Altera recommends that your top-level simulation script "sources" any
generated setup scripts, rather than using the generated setup scripts directly. You can use the ip-setup-
simulation utility to generate or regenerate underlying setup scripts after any software or IP version
upgrade or regeneration. Use of a top-level script and ip-setup-simulation eliminates the requirement
to manually update simulation scripts.

Figure 1-24: Incorporating Generated Simulator Setup Scripts into a Top-Level Simulation Script

Top-Level Simulation Script

Specify project-specific settings:
 TOP_LEVEL_NAME

Source the generated IP Setup Simulation Script
(e.g., source msim_setup.tcl)

Elaborate
Simulate

Individual IP
Simulation Scripts

Simulation Script
with Combined IP

Includes Guidelines for
Use and Templates

Run ip_setup_simulation
For Quartus Prime Project

Additional compile and elaboration options

Compile design files:
Use generated scripts to compile device libraries
and IP files
Compile your design and testbench files

Add optional QSYS_SIMDIR variable

Generating a Combined Simulator Setup Script
The Quartus Prime software provides utilities to help you generate and update IP simulation scripts. You
can use the ip-setup-simulation utility to generate a combined simulator setup script, for all Altera IP
in your design, for each supported simulator. You can subsequently rerun ip-setup-simulation to
automatically update the combined script. Each simulator's combined script file contains a rudimentary
template that you can adapt for integration of the setup script into a top-level simulation script.

Table 1-10: Simulation Script Utilities

Utility Syntax

ip-setup-simulation—Generates a combined,
version-independent simulation script for all Altera
IP cores in your project, and automates regenera‐
tion of the script after upgrading software or IP
versions. Use the compile-to-work option to
compile all simulation files into a single work
library if your simulation environment requires that
structure. Use the --use-relative-paths option
to use relative paths whenever possible.

ip-setup-simulation
 --quartus-project=<my proj>
 --output-directory=<my_dir>
 --use-relative-paths
 --compile-to-work

--use-relative-paths and --compile-to-work are
optional. For command-line help listing all options
for these executables, type: <utility name> --help.

ip-make-simscript—Generates a combined
simulation script for all IP cores specified on the
command line. Specify one or more .spd files and
an output directory in the command. Running the
script compiles IP simulation models into various
simulation libraries.

ip-make-simscript
 --spd=<ipA.spd,ipB.spd>
 --output-directory=<directory>

1-36 Generating a Combined Simulator Setup Script
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running ip-setup-simulation

To generate or update combined simulator setup scripts for all IP cores in your design, follow these steps:

1. Generate, regenerate, or upgrade one or more Altera IP core.
2. Run ip-setup-simulation on the project containing the IP core:

ip-setup-simulation --quartus-project=<my proj>.qpf
 --output-directory=<my dir>
 --use-relative-paths

3. To incorporate the simulator setup script into your top-level simulation script, refer to the template
section in the generated simulator setup script as a guide to sourcing the generated script:

a. Copy the specified template sections from the simulator-specific generated scripts and paste them
into a new top-level file.

b. Remove the comments at the beginning of each line from the copied template sections.
c. Include the customizations required to match your design simulation requirements, for example:

• Specify the TOP_LEVEL_NAME variable to the design’s simulation top-level file. The top-level
entity of your simulation is often a testbench that instantiates your design, and then your design
instantiates IP cores and/or Qsys systems. Set the value of TOP_LEVEL_NAME to the top-level
entity.

• If necessary, set the QSYS_SIMDIR variable to point to the location of the generated IP simulation
files.

• Compile the top-level HDL file (e.g. a test program) and all other files in the design.
• Specify any other changes, such as using the grep command-line utility to search a transcript file

for error signatures, or e-mail a report.
4. To automatically update the combined IP simulation scripts, run ip-setup-simulation after any of

the following events:

• IP core initial generation or regeneration with new parameters
• Upgrade of Quartus Prime software version
• Upgrade of IP core version

Refer to the following topics for detailed steps for using the templates for each vendor.

Sourcing Aldec Simulator Setup Scripts
To incorporate generated Aldec simulation scripts into a top-level project simulation script, follow these
steps:

1. The generated simulation script contains the following template lines. Cut and paste these lines into a
new file. For example, sim_top.tcl.

Start of template
If the copied and modified template file is "aldec.do", run it as:
vsim -c -do aldec.do

Source the generated sim script
source rivierapro_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the user top-level
vlog -sv2k5 ../../top.sv

QPS5V1
2016.02.09 Sourcing Aldec Simulator Setup Scripts 1-37

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Elaborate the design.
elab
Run the simulation
run
Report success to the shell
exit -code 0
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "aldec.do", run it as:
vsim -c -do aldec.do

Source the generated sim script source rivierapro_setup.tcl
Compile eda/sim_lib contents first dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the user top-level vlog -sv2k5 ../../top.sv
Elaborate the design.
elab
Run the simulation
run
Report success to the shell
exit -code 0
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

set TOP_LEVEL_NAME sim_top
 vlog –sv2k5 ../../sim_top.sv

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the generated IP simulation files.
Specify any other changes required to match your design simulation requirements. The scripts offer
variables to set compilation or simulation options. Refer to the generated script for details.

5. Run the new top-level script from the generated simulation directory:

vsim –c –do <path to sim_top>.tcl

Sourcing Cadence Simulator Setup Scripts
To incorporate generated Cadence IP simulation scripts into a top-level project simulation script, follow
these steps:

1. The generated simulation script contains the following template lines. Cut and paste these lines into a
new file. For example, ncsim.sh.

Start of template
If the copied and modified template file is "ncsim.sh", run it as:
./ncsim.sh

Do the file copy, dev_com and com steps
source ncsim_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1

Compile the top level module
ncvlog -sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps

1-38 Sourcing Cadence Simulator Setup Scripts
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Override the top-level name
Override the user-defined sim options, so the simulation
runs forever (until $finish()).
source ncsim_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME=top \
USER_DEFINED_SIM_OPTIONS=""
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "ncsim.sh", run it as:
./ncsim.sh

Do the file copy, dev_com and com steps
source ncsim_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1
Compile the top level module
ncvlog -sv "$QSYS_SIMDIR/../top.sv"
Do the elaboration and sim steps
Override the top-level name
Override the user-defined sim options, so the simulation
runs forever (until $finish()).
source ncsim_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME=top \
USER_DEFINED_SIM_OPTIONS=""
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

TOP_LEVEL_NAME=sim_top \
 ncvlog -sv "$QSYS_SIMDIR/../top.sv"

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the generated IP simulation files.
Specify any other changes required to match your design simulation requirements. The scripts offer
variables to set compilation or simulation options. Refer to the generated script for details.

5. Run the resulting top-level script from the generated simulation directory by specifying the path to
ncsim.sh.

Sourcing ModelSim Simulator Setup Scripts
To incorporate generated ModelSim IP simulation scripts into a top-level project simulation script, follow
these steps:

1. The generated simulation script contains the following template lines. Cut and paste these lines into a
new file. For example, sim_top.tcl.

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script
source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com

QPS5V1
2016.02.09 Sourcing ModelSim Simulator Setup Scripts 1-39

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the user top-level
vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the user top-level vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

set TOP_LEVEL_NAME sim_top vlog -sv ../../sim_top.sv

4. If necessary, add the QSYS_SIMDIR variable to point to the location of the generated IP simulation files.
Specify any other changes required to match your design simulation requirements. The scripts offer
variables to set compilation or simulation options. Refer to the generated script for details.

5. Run the resulting top-level script from the generated simulation directory:

vsim –c –do <path to sim_top>.tcl

Sourcing VCS Simulator Setup Scripts
To incorporate generated Synopsys VCS simulation scripts into a top-level project simulation script,
follow these steps:

1. The generated simulation script contains these template lines. Cut and paste the lines preceding the
“helper file” into a new executable file. For example, synopsys_vcs.f.

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).

1-40 Sourcing VCS Simulator Setup Scripts
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Override the user-defined sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh \
TOP_LEVEL_NAME=top \
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'" \
USER_DEFINED_SIM_OPTIONS=""

helper file: synopsys_vcs.f
+systemverilogext+.sv
../../../top.sv
End of template

2. Delete the first two characters of each line (comment and space) for the vcs.sh file, as shown below:

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the user-defined sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh \
TOP_LEVEL_NAME=top \
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'" \
USER_DEFINED_SIM_OPTIONS=""

3. Delete the first two characters of each line (comment and space) for the synopsys_vcs.f file, as shown
below:

helper file: synopsys_vcs.f
 +systemverilogext+.sv
 ../../../top.sv
End of template

4. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

TOP_LEVEL_NAME=sim_top \

5. If necessary, add the QSYS_SIMDIR variable to point to the location of the generated IP simulation files.
Specify any other changes required to match your design simulation requirements. The scripts offer
variables to set compilation or simulation options. Refer to the generated script for details.

6. Run the resulting top-level script from the generated simulation directory by specifying the path to
vcs_sim.sh.

Sourcing VCS MX Simulator Setup Scripts
To incorporate generated Synopsys VCS MX simulation scripts for use in top-level project simulation
scripts, follow these steps:

1. The generated simulation script contains these template lines. Cut and paste the lines preceding the
“helper file” into a new executable file. For example, vcsmx.sh.

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh \
SKIP_ELAB=1 \

QPS5V1
2016.02.09 Sourcing VCS MX Simulator Setup Scripts 1-41

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SKIP_SIM=1

Compile the top level module vlogan +v2k
 +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the user-defined sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME="'-top top'" \
USER_DEFINED_SIM_OPTIONS=""
End of template

2. Delete the first two characters of each line (comment and space), as shown below:

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1

Compile the top level module
vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the user-defined sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME="'-top top'" \
USER_DEFINED_SIM_OPTIONS=""
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

TOP_LEVEL_NAME=”-top sim_top’” \

4. Make the appropriate changes to the compilation of the your top-level file, for example:

vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../sim_top.sv"

5. If necessary, add the QSYS_SIMDIR variable to point to the location of the generated IP simulation files.
Specify any other changes required to match your design simulation requirements. The scripts offer
variables to set compilation or simulation options. Refer to the generated script for details.

6. Run the resulting top-level script from the generated simulation directory by specifying the path to
vcsmx_sim.sh.

Using NativeLink Simulation
The NativeLink feature integrates your EDA simulator with the Quartus Prime software and automates
the following simulation steps:

1-42 Using NativeLink Simulation
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Set and reuse simulation settings
• Generate simulator-specific files and simulation scripts
• Compile Altera simulation libraries
• Launch your simulator automatically following Quartus Prime Analysis & Elaboration, Analysis &

Synthesis, or after a full compilation.

Note: The Quartus Prime Pro Edition software does not support NativeLink RTL simulation. To use
NativeLink for Arria 10 devices, you must add the .qsys file generated for the IP or Qsys system. To
use NativeLink for all other device families, you must add to your project the .qip and .sip files
generated for IP or Qsys systems.

Setting Up NativeLink Simulation
Before running simulation using the NativeLink flow, you must specify settings for your simulator in the
Quartus Prime software. To specify simulation settings in the Quartus Prime software, follow these steps:

1. Open a Quartus Prime project.
2. Click Tools > Options and specify the location of your simulator executable file .

Table 1-11: Execution Paths for EDA Simulators

Simulator Path

Mentor Graphics
ModelSim-Altera

<drive letter>:\<simulator install path>\
win32aloem (Windows)

/<simulator install path>/bin (Linux)

Mentor Graphics
ModelSim
Mentor Graphics
QuestaSim

<drive letter>:\<simulator install path>\win32
(Windows)

<simulator install path>/bin (Linux)

Synopsys VCS/VCS MX <simulator install path>/bin (Linux)

Cadence Incisive
Enterprise

<simulator install path>/tools/bin (Linux)

Aldec Active-HDL
Aldec Riviera-PRO

<drive letter>:\<simulator install path>\bin
(Windows)
<simulator install path>/bin (Linux)

3. Click Assignments > Settings and specify options on the Simulation page and More NativeLink
Settings dialog box. Specify default options for simulation library compilation, netlist and tool
command script generation, and for launching RTL or gate-level simulation automatically following
Quartus Prime processing.

4. If your design includes a testbench, turn on Compile test bench and then click Test Benches to specify
options for each testbench. Alternatively, turn on Use script to compile testbench and specify the
script file.

5. If you want to use a script to setup simulation, turn on Use script to setup simulation.

QPS5V1
2016.02.09 Setting Up NativeLink Simulation 1-43

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating IP Functional Simulation Models for 40nm Devices
Altera provides IP functional simulation models for some Altera IP cores supporting 40nm Altera devices.
To generate IP functional simulation models, follow these steps:

• Turn on the Generate Simulation Model option when parameterizing the IP core.
• When you simulate your design, compile only the .vo or .vho for these IP cores in your simulator. In

this case you should not compile the corresponding HDL file. The encrypted HDL file supports
synthesis by only the Quartus Prime software.

Note: Altera IP cores that do not require IP functional simulation models for simulation, do not provide
the Generate Simulation Model option in the IP core parameter editor.

Note: Many recently released Altera IP cores support RTL simulation using IEEE Verilog HDL
encryption. IEEE encrypted models are significantly faster than IP functional simulation models.
You can simulate the models in both Verilog HDL and VHDL designs.

Related Information
AN 343: OpenCore Evaluation of AMPP Megafunctions

Synthesizing Altera IP Cores in Other EDA Tools
You can use supported EDA tools to synthesize a design that includes Altera IP cores. When you generate
the IP core synthesis files for use with third-party EDA synthesis tools, you can optionally create an area
and timing estimation netlist. To enable generation, turn on Create timing and resource estimates for
third-party EDA synthesis tools when customizing your IP variation.

The area and timing estimation netlist describes the IP core connectivity and architecture, but does not
include details about the true functionality. This information enables certain third-party synthesis tools to
better report area and timing estimates. In addition, synthesis tools can use the timing information to
achieve timing-driven optimizations and improve the quality of results.

The Quartus Prime software generates the <variant name>_syn.v netlist file in Verilog HDL format
regardless of the output file format you specify. If you use this netlist for synthesis, you must include the
IP core wrapper file <variant name>.v or <variant name>.vhd in your Quartus Prime project.

Related Information
Quartus Prime Integrated Synthesis

Instantiating IP Cores in HDL
You can instantiate an IP core directly in your HDL code by calling the IP core name and declaring its
parameters, in the same manner as any other module, component, or subdesign. When instantiating an IP
core in VHDL, you must include the associated libraries.

Example Top-Level Verilog HDL Module
Verilog HDL ALTFP_MULT in Top-Level Module with One Input Connected to Multiplexer.

module MF_top (a, b, sel, datab, clock, result);
 input [31:0] a, b, datab;
 input clock, sel;
 output [31:0] result;
 wire [31:0] wire_dataa;

 assign wire_dataa = (sel)? a : b;
 altfp_mult inst1
(.dataa(wire_dataa), .datab(datab), .clock(clock), .result(result));

1-44 Generating IP Functional Simulation Models for 40nm Devices
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

http://www.altera.com/literature/an/an343.pdf
https://documentation.altera.com/#/link/mwh1409959947750/mwh1409959843979/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 defparam
 inst1.pipeline = 11,
 inst1.width_exp = 8,
 inst1.width_man = 23,
 inst1.exception_handling = "no";
endmodule

Example Top-Level VHDL Module
VHDL ALTFP_MULT in Top-Level Module with One Input Connected to Multiplexer.

library ieee;
use ieee.std_logic_1164.all;
library altera_mf;
use altera_mf.altera_mf_components.all;

entity MF_top is
 port (clock, sel : in std_logic;
 a, b, datab : in std_logic_vector(31 downto 0);
 result : out std_logic_vector(31 downto 0));
end entity;

architecture arch_MF_top of MF_top is
signal wire_dataa : std_logic_vector(31 downto 0);
begin

wire_dataa <= a when (sel = '1') else b;

inst1 : altfp_mult
 generic map (
 pipeline => 11,
 width_exp => 8,
 width_man => 23,
 exception_handling => "no")
 port map (
 dataa => wire_dataa,
 datab => datab,
 clock => clock,
 result => result);
end arch_MF_top;

Integrating Other EDA Tools
You can integrate supported EDA design entry, synthesis, simulation, physical synthesis, and formal
verification tools into the Quartus Prime design flow. The Quartus Prime software supports netlist files
from other EDA design entry and synthesis tools. The Quartus Prime software optionally generates
various files for use in other EDA tools.

The Quartus Prime software manages EDA tool files and provides the following integration capabilities:

• Automatically generate files for synthesis and simulation and automatically launch other EDA tools
(Assignments > Settings > EDA Tool Settings > NativeLink Settings).

• Compile all RTL and gate-level simulation model libraries for your device, simulator, and design
language automatically (Tools > Launch Simulation Library Compiler).

• Include files (.edf, .vqm) generated by other EDA design entry or synthesis tools in your project as
synthesized design files (Project > Add/Remove File from Project) .

• Automatically generate optional filesfor board-level verification (Assignments > Settings > EDA Tool
Settings).

QPS5V1
2016.02.09 Example Top-Level VHDL Module 1-45

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-25: EDA Tool Settings

Related Information

• Mentor Graphics Precision Synthesis SupportGraphics on page 19-1
• Simulating Altera Designs

Managing Team-based Projects
The Quartus Prime software supports multiple designers, design iterations, and platforms. You can use
the following techniques to preserve and track project changes in a team-based environment. These
techniques may also be helpful for individual designers.

Related Information

• Preserving Compilation Results on page 1-46
• Archiving Projects on page 1-48
• Using External Revision Control on page 1-50
• Migrating Projects Across Operating Systems on page 1-50

Preserving Compilation Results
The Quartus Prime software maintains a database of compilation results for each project revision. The
database file stores the compilation results. Do not edit these files directly. However, you can use the
database files in the following ways:

1-46 Managing Team-based Projects
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383407761/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Preserve compilation results for migration to a new version of the Quartus Prime software. Export a
post-synthesis or post-fit, version-compatible database (Project > Export Database), and then import
it into a newer version of the Quartus Prime software (Project > Import Database), or into another
project.

• Optimize and lock down the compilation results for individual blocks. Export the post-synthesis or
post-fit netlist as a Quartus Prime Exported Partition File (.qxp) (Project > Export Design Partition).
You can then import the partition as a new project design file.

• Purge the content of the project database (Project > Clean Project) to remove unwanted previous
compilation results at any time.

Factors Affecting Compilation Results
Changes to any of the following factors can impact compilation results:

• Project Files—project settings (. qsf), design files, and timing constraints (.sdc).
• Hardware—CPU architecture, not including hard disk or memory size differences. Windows XP x32

results are not identical to Windows XP x64 results. Linux x86 results is not identical to Linux x86_64.
• Quartus Prime Software Version—including build number and installed patches. Click Help > About

to obtain this information.
• Operating System—Windows or Linux operating system, excluding version updates. For example,

Windows XP, Windows Vista, and Windows 7 results are identical. Similarly, Linux RHEL, CentOS 4,
and CentOS 5 results are identical.

Related Information

• Design Planning for Partial Reconfiguration on page 4-1
The Partial Reconfiguration (PR) feature in the Quartus Prime software allows you to reconfigure a
portion of the FPGA dynamically, while the remainder of the device continues to operate.
• Power-Up Level on page 16-34

Migrating Results Across Quartus Prime Software Versions
View basic information about your project in the Project Navigator, Report panel, and Messages window.

To preserve compilation results for migration to a later version of the Quartus Prime software, export a
version-compatible database file, and then import it into the later version of the Quartus Prime software.
A few device families do not support version-compatible database generation, as indicated by project
messages.

Exporting and Importing the Results Database
To save the compilation results in a version-compatible format for migration to a later version of the
Quartus Prime software, follow these steps:

1. Open the project for migration in the original version of the Quartus Prime software.
2. Generate the project database and netlist with one of the following:

• Click Processing > Start > Start Analysis & Synthesis to generate a post-synthesis netlist.
• Click Processing > Start Compilation to generate a post-fit netlist.

3. Click Project > Export Database and specify the Export directory.
4. In a later version of the Quartus Prime software, click New Project Wizard and create a new project

with the same top-level design entity name as the migrated project.
5. Click Project > Import Database and select the <project directory> /export_db/exported database

directory. The Quartus Prime software opens the compiled project and displays compilation results.

QPS5V1
2016.02.09 Factors Affecting Compilation Results 1-47

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can turn on Assignments > Settings > Compilation Process Settings > Export version-
compatible database if you want to always export the database following compilation.

Figure 1-26: Quartus Prime Version-Compatible Database Structure

Cleaning the Project Database
To clean the project database and remove all prior compilation results, follow these steps:

1. Click Project > Clean Project.
2. Select All revisions to remove the databases for all revisions of the current project, or specify a

Revision name to remove only that revision’s database.
3. Click OK. A message indicates when the database is clean.

Archiving Projects
You can save the elements of a project in a single, compressed Quartus Prime Archive File (. qar) by
clicking Project > Archive Project.

The .qar captures logic design, project, and settings files required to restore the project.

Use this technique to share projects between designers, or to transfer your project to a new version of the
Quartus Prime software, or to Altera support. You can optionally add compilation results, Qsys system
files, and third-party EDA tool files to the archive. If you restore the archive in a different version of the
Quartus Prime software, you must include the original .qdf in the archive to preserve original compilation
results.

Manually Adding Files To Archives
To manually add files to an archive:

1-48 Cleaning the Project Database
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Click Project > Archive Project and specify the archive file name.
2. Click Advanced.
3. Select the File set for archive or select Custom. Turn on File subsets for archive.
4. Click Add and select Qsys system or EDA tool files. Click OK.
5. Click Archive.

Archiving Compilation Results
You can include compilation results in a project archive to avoid recompilation and preserve original
results in the restored project. To archive compilation results, export the post-synthesis or post-fit version
compatible database and include this file in the archive.

1. Export the project database.
2. Click Project > Archive Project and specify the archive file name.
3. Click Advanced.
4. Under File subsets, turn on Version-compatible database files and click OK.
5. Click Archive.

To restore an archive containing a version-compatible database, follow these steps:

1. Click Project > Restore Archived Project.
2. Select the archive name and destination folder and click OK.
3. After restoring the archived project, click Project > Import Database and import the version-

compatible database.

Related Information
Exporting and Importing the Results Database on page 1-47

Archiving Projects for Altera Service Requests
When archiving projects for an Altera service request, include all of the following file types for proper
debugging by Altera Support:

To quickly identify and include appropriate archive files for an Altera service request:

1. Click Project > Archive Project and specify the archive file name.
2. Click Advanced.
3. In File set, select Service Request to include files for Altera Support.

• Project source and setting files (.v, .vhd, .vqm, .qsf, .sdc, .qip, .qpf, .cmp, .sip)
• Automatically detected source files (various)
• Programming output files (. jdi, .sof, .pof)
• Report files (.rpt, .pin, .summary, .smsg)
• Qsys system and IP files (.qsys, . qip)

4. Click OK, and then click Archive.

QPS5V1
2016.02.09 Archiving Compilation Results 1-49

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-27: Archiving Project for Service Request

Using External Revision Control
Your project may involve different team members with distributed responsibilities, such as sub-module
design, device and system integration, simulation, and timing closure. In such cases, it may be useful to
track and protect file revisions in an external revision control system.

While Quartus Prime project revisions preserve various project setting and constraint combinations,
external revision control systems can also track and merge RTL source code, simulation testbenches, and
build scripts. External revision control supports design file version experimentation through branching
and merging different versions of source code from multiple designers. Refer to your external revision
control documentation for setup information.

Files to Include In External Revision Control
Include the following Quartus project file types in external revision control systems:

• Logic design files (.v, .vdh, .bdf, edf, .vqm)
• Timing constraint files (.sdc)
• Quartus project settings and constraints (.qdf, .qpf, .qsf)
• IP files (.v, .sv, .vhd, .qip, .sip, .qsys)
• Qsys-generated files (.qsys, .qip, .sip)
• EDA tool files (.vo, .vho)

You can generate or modify these files manually if you use a scripted design flow. If you use an external
source code control system, you can check-in project files anytime you modify assignments and settings
in the Quartus software.

Migrating Projects Across Operating Systems
Consider the following cross-platform issues when moving your project from one operating system to
another (for example, from Windows to Linux).

Migrating Design Files and Libraries
Consider the following file naming differences when migrating projects across operating systems:

1-50 Using External Revision Control
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Use appropriate case for your platform in file path references.
• Use a character set common to both platforms.
• Do not change the forward-slash (/) and back-slash (\) path separators in the .qsf. The Quartus Prime

software automatically changes all back-slash (\) path separators to forward-slashes (/)in the .qsf.
• Observe the target platform’s file name length limit.
• Use underscore instead of spaces in file and directory names.
• Change library absolute path references to relative paths in the .qsf.
• Ensure that any external project library exists in the new platform’s file system.
• Specify file and directory paths as relative to the project directory. For example, for a project titled

foo_design , specify the source files as: top.v, foo_folder /foo1.v, foo_folder /foo2.v, and foo_folder/
bar_folder/bar1.vhdl.

• Ensure that all the subdirectories are in the same hierarchical structure and relative path as in the
original platform.

Figure 1-28: All Inclusive Project Directory Structure

Use Relative Paths
Express file paths using relative path notation (.. /).

For example, in the directory structure shown you can specify top.v as ../source/top.v and foo1.v as ../
source/foo_folder/foo1.v.

QPS5V1
2016.02.09 Use Relative Paths 1-51

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-29: Quartus Prime Project Directory Separate from Design Files

Design Library Migration Guidelines
The following guidelines apply to library migration across computing platforms:

1. The project directory takes precedence over the project libraries.
2. For Linux, the Quartus Prime software creates the file in the altera.quartus directory under the

<home> directory.
3. All library files are relative to the libraries. For example, if you specify the user_lib1 directory as a

project library and you want to add the /user_lib1/foo1.v file to the library, you can specify the foo1.v
file in the .qsf as foo1.v. The Quartus Prime software includes files in specified libraries.

4. If the directory is outside of the project directory, an absolute path is created by default. Change the
absolute path to a relative path before migration.

5. When copying projects that include libraries, you must either copy your project library files along with
the project directory or ensure that your project library files exist in the target platform.

• On Windows, the Quartus Prime software searches for the quartus2.ini file in the following
directories and order:

• USERPROFILE, for example, C:\Documents and Settings\ <user name>
• Directory specified by the TMP environmental variable
• Directory specified by the TEMP environmental variable
• Root directory, for example, C:\

Scripting API
You can use command-line executables or scripts to execute project commands, rather than using the
GUI. The following commands are available for scripting project management.

Scripting Project Settings
You can use a Tcl script to specify settings and constraints, rather than using the GUI. This can be helpful
if you have many settings and wish to track them in a single file or spreadsheet for iterative comparison.

1-52 Design Library Migration Guidelines
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The .qsf supports only a limited subset of Tcl commands. Therefore, pass settings and constraints using a
Tcl script:

1. Create a text file with the extension.tcl that contains your assignments in Tcl format.
2. Source the Tcl script file by adding the following line to the .qsf: set_global_assignment -name

SOURCE_TCL_SCR IPT_FILE <file name>.

Project Revision Commands
Use the following commands for scripting project revisions.

Create Revision Command on page 1-53

Set Current Revision Command on page 1-53

Get Project Revisions Command on page 1-53

Delete Revision Command on page 1-53

Create Revision Command

create_revision <name> -based_on <revision_name> -copy_results -set_current

Option Description

based_on (optional) Specifies the revision name on which the new revision bases
its settings.

copy_results Copies the results from the "based_on" revision.
set_current (optional) Sets the new revision as the current revision.

Set Current Revision Command

The -force option enables you to open the revision that you specify under revision name and overwrite
the compilation database if the database version is incompatible.

set_current_revision -force <revision name>

Get Project Revisions Command

get_project_revisions <project_name>

Delete Revision Command

 delete_revision <revision name>

Project Archive Commands
You can use Tcl commands and the quartus_sh executable to create and manage archives of a Quartus
project.

QPS5V1
2016.02.09 Project Revision Commands 1-53

Managing Quartus Prime Projects Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating a Project Archive

in a Tcl script or from a Tcl prompt, you can use the following command to create a Quartus archive:

project_archive <name>.qar

You can specify the following other options:

• -all_revisions - Includes all revisions of the current project in the archive.
• -auto_common_directory - Preserves original project directory structure in archive
• -common_directory /<name> - Preserves original project directory structure in specified subdirectory
• -include_libraries - Includes libraries in archive
• -include_outputs - Includes output files in archive
• -use_file_set <file_set> Includes specified fileset in archive
• -version_compatible_database - Includes version-compatible database files in archive

Note: Version-compatible databases are not available for some device families. If you require the
database files to reproduce the compilation results in the same Quartus software version, use the -
use_file_set full_db option to archive the complete database.

Restoring an Archived Project

Use the following Tcl command to restore a Quartus project:

project_restore <name>.qar -destination restored -overwrite

This example restores to a destination directory named "restored".

Project Database Commands
Use the following commands for managing Quartus project databases:

Import and Export Version-Compatible Databases on page 1-54

Import and Export Version-Compatible Databases from a Flow Package on page 1-54

Generate Version-Compatible Database After Compilation on page 1-55

quartus_cdb and quartus_sh Executables to Manage Version-Compatible Databases on page 1-55

Import and Export Version‑Compatible Databases

Use the following commands to import or export a version-compatible database:

• import_database <directory>

• export_database <directory>

Import and Export Version-Compatible Databases from a Flow Package

The following are Tcl commands from the flow package to import or export version-compatible
databases. If you use the flow package, you must specify the database directory variable name. flow and
database_manager packages contain commands to manage version-compatible databases.

1-54 Creating a Project Archive
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• set_global_assignment -name VER_COMPATIBLE_DB_DIR <directory>

• execute_flow –flow export_database

• execute_flow –flow import_database

Generate Version-Compatible Database After Compilation

Use the following commands to generate a version-compatible database after compilation:

• set_global_assignment -name AUTO_EXPORT_VER_COMPATIBLE_DB ON

• set_global_assignment-name VER_COMPATIBLE_DB_DIR <directory>

quartus_cdb and quartus_sh Executables to Manage Version-Compatible Databases

Use the following commands to manage version-compatible databases:

• quartus_cdb <project> -c <revision>--export_database=<directory>

• quartus_cdb <project> -c <revision> --import_database=<directory>

• quartus_sh –flow export_database <project> -c \ <revision>

• quartus_sh –flow import_database <project> -c \ <revision>

Project Library Commands
Use the following commands to script project library changes.

Specify Project Libraries With SEARCH_PATH Assignment on page 1-55

Report Specified Project Libraries Commands on page 1-55

Related Information

• Tcl Scripting
• CommandLine Scripting
• Quartus Settings File Manual

Specify Project Libraries With SEARCH_PATH Assignment

In Tcl, use commands in the :: quartus ::project package to specify project libraries, and the
set_global_assignment command.

Use the following commands to script project library changes:

• set_global_assignment -name SEARCH_PATH "../other_dir/library1"

• set_global_assignment -name SEARCH_PATH "../other_dir/library2"

• set_global_assignment -name SEARCH_PATH "../other_dir/library3"

Report Specified Project Libraries Commands

To report any project libraries specified for a project and any global libraries specified for the current
installation of the Quartus software, use the get_global_assignment and get_user_option Tcl
commands.

Use the following commands to report specified project libraries:

• get_global_assignment -name SEARCH_PATH

• get_user_option -name SEARCH_PATH

QPS5V1
2016.02.09 Generate Version-Compatible Database After Compilation 1-55

Managing Quartus Prime Projects Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 1-12: Document Revision History

Date Version Changes

2016.02.09 15.1.1 • Clarified instructions for Generating a Combined
Simulator Setup Script.

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.
2015.05.04 15.0.0 • Added description of design templates feature.

• Updated screenshot for DSE II GUI.
• Added qsys_script IP core instantiation information.
• Described changes to generating and processing of

instance and entity names.
• Added description of upgrading IP cores at the command

line.
• Updated procedures for upgrading and migrating IP cores.
• Gate level timing simulation supported only for Cyclone

IV and Stratix IV devices.

2014.12.15 14.1.0 • Updated content for DSE II GUI and optimizations.
• Added information about new Assignments > Settings >

IP Settings that control frequency of synthesis file regener‐
ation and automatic addtion of IP files to the project.

2014.08.18 14.0a10.0 • Added information about specifying parameters for IP
cores targeting Arria 10 devices.

• Added information about the latest IP output for version
14.0a10 targeting Arria 10 devices.

• Added information about individual migration of IP cores
to the latest devices.

• Added information about editing existing IP variations.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager information with
IP Catalog.

• Added standard information about upgrading IP cores.
• Added standard installation and licensing information.
• Removed outdated device support level information. IP

core device support is now available in IP Catalog and
parameter editor.

November 2013 13.1.0 • Conversion to DITA format

May 2013 13.0.0 • Overhaul for improved usability and updated information.

1-56 Document Revision History
QPS5V1

2016.02.09

Altera Corporation Managing Quartus Prime Projects

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

June 2012 12.0.0 • Removed survey link.
• Updated information about VERILOG_INCLUDE_FILE.

November 2011 10.1.1 Template update.

December 2010 10.1.0 • Changed to new document template.
• Removed Figure 4–1, Figure 4–6, Table 4–2.
• Moved “Hiding Messages” to Help.
• Removed references about the set_user_option

command.
• Removed Classic Timing Analyzer references.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2016.02.09 Document Revision History 1-57

Managing Quartus Prime Projects Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Quartus%20Prime%20Projects%20(QPS5V1%202016.02.09)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Planning with the Quartus
Prime Software 2

2015.11.02

QPS5V1 Subscribe Send Feedback

Design Planning with the Quartus Prime Software
Platform planning—the early feasibility analysis of physical constraints—is a fundamental early step in
advanced FPGA design. FPGA device densities and complex are increasing and designs oftem involve
multiple designers.System architects must also resolve design issues when integrating design blocks.
However, you can solve potential problems early in the design cycle by following the design planning
considerations in this chapter.

Before reading the design planning guidelines discussed in this chapter, consider your design priorities.
More device features, density, or performance requirements can increase system cost. Signal integrity and
board issues can impact I/O pin locations. Power, timing performance, and area utilization all affect each
other, and compilation time is affected when optimizing these priorities.

The Quartus Prime software optimizes designs for the best overall results; however, you can change the
settings to better optimize one aspect of your design, such as power utilization. Certain tools or debugging
options can lead to restrictions in your design flow. Your design priorities help you choose the tools,
features, and methodologies to use for your design.

After you select a device family, to check if additional guidelines are available, refer to the design
guidelines section of the appropriate device handbook.

Creating Design Specifications
Before you create your design logic or complete your system design, create detailed design specifications
that define the system, specify the I/O interfaces for the FPGA, identify the different clock domains, and
include a block diagram of basic design functions.

In addition, creating a test plan helps you to design for verification and ease of manufacture. For example,
you might need to validate interfaces incorporated in your design. To perform any built-in self-test
functions to drive interfaces, you can use a UART interface with a Nios® II processor inside the FPGA
device.

If more than one designer works on your design, you must consider a common design directory structure
or source control system to make design integration easier. Consider whether you want to standardize on
an interface protocol for each design block.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Related Information

• Planning for On-Chip Debugging Tools on page 2-8
For guidelines related to analyzing and debugging the device after it is in the system.

• Planning for Hierarchical and Team-Based Design on page 2-11
For more suggestions on team-based designs.

• Using Qsys and Standard Interfaces in System Design on page 2-2
For improved reusability and ease of integration.

Selecting Intellectual Property
Altera and its third-party intellectual property (IP) partners offer a large selection of standardized IP cores
optimized for Altera devices. The IP you select often affects system design, especially if the FPGA
interfaces with other devices in the system. Consider which I/O interfaces or other blocks in your system
design are implemented using IP cores, and plan to incorporate these cores in your FPGA design.

The OpenCore Plus feature, which is available for many IP cores, allows you to program the FPGA to
verify your design in the hardware before you purchase the IP license. The evaluation supports the
following modes:

• Untethered—the design runs for a limited time.
• Tethered—the design requires an Altera serial JTAG cable connected between the JTAG port on your

board and a host computer running the Quartus Prime Programmer for the duration of the hardware
evaluation period.

Related Information
Intellectual Property
For descriptions of available IP cores.

Using Qsys and Standard Interfaces in System Design
You can use the Quartus Prime Qsys system integration tool to create your design with fast and easy
system-level integration. With Qsys, you can specify system components in a GUI and generate the
required interconnect logic automatically, along with adapters for clock crossing and width differences.

Because system design tools change the design entry methodology, you must plan to start developing your
design within the tool. Ensure all design blocks use appropriate standard interfaces from the beginning of
the design cycle so that you do not need to make changes later.

Qsys components use Avalon® standard interfaces for the physical connection of components, and you
can connect any logical device (either on-chip or off-chip) that has an Avalon interface. The Avalon
Memory-Mapped interface allows a component to use an address mapped read or write protocol that
enables flexible topologies for connecting master components to any slave components. The Avalon
Streaming interface enables point-to-point connections between streaming components that send and
receive data using a high-speed, unidirectional system interconnect between source and sink ports.

In addition to enabling the use of a system integration tool such as Qsys, using standard interfaces ensures
compatibility between design blocks from different design teams or vendors. Standard interfaces simplify
the interface logic to each design block and enable individual team members to test their individual design
blocks against the specification for the interface protocol to ease system integration.

2-2 Selecting Intellectual Property
QPS5V1

2015.11.02

Altera Corporation Design Planning with the Quartus Prime Software

Send Feedback

http://www.altera.com/products/ip/ipm-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• System Design with Qsys
For more information about using Qsys to improve your productivity.

• SOPC Builder User Guide
For more information about SOPC Builder.

Device Selection
The device you choose affects board specification and layout. This section provides guidelines in the
device selection process.

Choose the device family that best suits your design requirements. Families differ in cost, performance,
logic and memory density, I/O density, power utilization, and packaging. You must also consider feature
requirements, such as I/O standards support, high-speed transceivers, global or regional clock networks,
and the number of phase-locked loops (PLLs) available in the device.

Each device family also has a device handbook, including a data sheet, which documents device features in
detail. You can also see a summary of the resources for each device in the Device dialog box in the
Quartus Prime software.

Carefully study the device density requirements for your design. Devices with more logic resources and
higher I/O counts can implement larger and more complex designs, but at a higher cost. Smaller devices
use lower static power. Select a device larger than what your design requires if you want to add more logic
later in the design cycle to upgrade or expand your design, and reserve logic and memory for on-chip
debugging. Consider requirements for types of dedicated logic blocks, such as memory blocks of different
sizes, or digital signal processing (DSP) blocks to implement certain arithmetic functions.

If you have older designs that target an Altera device, you can use their resources as an estimate for your
design. Compile existing designs in the Quartus Prime software with the Auto device selected by the
Fitter option in the Settings dialog box. Review the resource utilization to learn which device density fits
your design. Consider coding style, device architecture, and the optimization options used in the Quartus
Prime software, which can significantly affect the resource utilization and timing performance of your
design.

Related Information

• Planning for On-Chip Debugging Tools on page 2-8
For information about on-chip debugging.

• Altera Product Selector
For You can refer to the Altera website to help you choose your device.

• Selector Guides
You can review important features of each device family in the refer to the Altera website.

• Devices and Adapters
For a list of device selection guides.

• IP and Megafunctions
For information on how to obtain resource utilization estimates for certain configurations of Altera’s
IP, refer to the user guides for Altera megafunctions and IP MegaCores on the literature page of the
Altera website.

QPS5V1
2015.11.02 Device Selection 2-3

Design Planning with the Quartus Prime Software Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/products/selector/psg-index.html
http://www.altera.com/literature/lit-sg.jsp
http://quartushelp.altera.com/current/index.htm#device/dev/dev_list_dev_adapt.htm
http://www.altera.com/literature/lit-ip.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device Migration Planning
Determine whether you want to migrate your design to another device density to allow flexibility when
your design nears completion. You may want to target a smaller (and less expensive) device and then
move to a larger device if necessary to meet your design requirements. Other designers may prototype
their design in a larger device to reduce optimization time and achieve timing closure more quickly, and
then migrate to a smaller device after prototyping. If you want the flexibility to migrate your design, you
must specify these migration options in the Quartus Prime software at the beginning of your design cycle.

Selecting a migration device impacts pin placement because some pins may serve different functions in
different device densities or package sizes. If you make pin assignments in the Quartus Prime software,
the Pin Migration View in the Pin Planner highlights pins that change function between your migration
devices.

Related Information
Early Pin Planning and I/O Analysis on page 2-5

Planning for Device Programming or Configuration
Planning how to program or configure the device in your system allows system and board designers to
determine what companion devices, if any, your system requires. Your board layout also depends on the
type of programming or configuration method you plan to use for programmable devices. Many
programming options require a JTAG interface to connect to the devices, so you might have to set up a
JTAG chain on the board. Additionally, the Quartus Prime software uses the settings for the configuration
scheme, configuration device, and configuration device voltage to enable the appropriate dual purpose
pins as regular I/O pins after you complete configuration. The Quartus Prime software performs voltage
compatibility checks of those pins during compilation of your design. You can use the Configuration tab
of the Device and Pin Options dialog box to select your configuration scheme.

The device family handbooks describe the configuration options available for a device family. For
information about programming CPLD devices, refer to your device data sheet or handbook.

Related Information
Configuration Handbook
For more details about configuration options.

Estimating Power
You can use the Quartus Prime power estimation and analysis tools to provide information to PCB board
and system designers. Power consumption in FPGA devices depends on the design logic, which can make
planning difficult. You can estimate power before you create any source code, or when you have a
preliminary version of the design source code, and then perform the most accurate analysis with the
PowerPlay Power Analyzer when you complete your design.

You must accurately estimate device power consumption to develop an appropriate power budget and to
design the power supplies, voltage regulators, heat sink, and cooling system. Power estimation and
analysis helps you satisfy two important planning requirements:

• Thermal—ensure that the cooling solution is sufficient to dissipate the heat generated by the device.
The computed junction temperature must fall within normal device specifications.

• Power supply—ensure that the power supplies provide adequate current to support device operation.

2-4 Device Migration Planning
QPS5V1

2015.11.02

Altera Corporation Design Planning with the Quartus Prime Software

Send Feedback

http://www.altera.com/literature/hb/cfg/config_handbook.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The PowerPlay Early Power Estimator (EPE) spreadsheet allows you to estimate power utilization for
your design.

You can manually enter data into the EPE spreadsheet, or use the Quartus Prime software to generate
device resource information for your design.

To manually enter data into the EPE spreadsheet, enter the device resources, operating frequency, toggle
rates, and other parameters for your design. If you do not have an existing design, estimate the number of
device resources used in your design, and then enter the data into the EPE spreadsheet manually.

If you have an existing design or a partially completed design, you can use the Quartus Prime software to
generate the PowerPlay Early Power Estimator File (.txt, .csv) to assist you in completing the PowerPlay
EPE spreadsheet.

The PowerPlay EPE spreadsheet includes the Import Data macro that parses the information in the
PowerPlay EPE File and transfers the information into the spreadsheet. If you do not want to use the
macro, you can manually transfer the data into the EPE spreadsheet. For example, after importing the
PowerPlay EPE File information into the PowerPlay EPE spreadsheet, you can add device resource
information. If the existing Quartus Prime project represents only a portion of your full design, manually
enter the additional device resources you use in the final design.

Estimating power consumption early in the design cycle allows planning of power budgets and avoids
unexpected results when designing the PCB.

When you complete your design, perform a complete power analysis to check the power consumption
more accurately. The PowerPlay Power Analyzer tool in the Quartus Prime software provides an accurate
estimation of power, ensuring that thermal and supply limitations are met.

Related Information

• PowerPlay Power Analysis
For more information about power estimation and analysis.

• Performing an Early Power Estimate Using the PowerPlay Early Power Estimator
For more information about generating the PowerPlay EPE File, refer to Quartus Prime Help.

• PowerPlay Early Power Estimator and Power Analyzer
The PowerPlay EPE spreadsheets for each supported device family are available on the Altera website.

Early Pin Planning and I/O Analysis
In many design environments, FPGA designers want to plan the top-level FPGA I/O pins early to help
board designers begin the PCB design and layout. The I/O capabilities and board layout guidelines of the
FPGA device influence pin locations and other types of assignments. If the board design team specifies an
FPGA pin-out, the pin locations must be verified in the FPGA placement and routing software to avoid
board design changes.

You can create a preliminary pin-out for an Altera FPGA with the Quartus Prime Pin Planner before you
develop the source code, based on standard I/O interfaces (such as memory and bus interfaces) and any
other I/O requirements for your system. The Quartus Prime I/O Assignment Analysis checks that the pin
locations and assignments are supported in the target FPGA architecture. You can then use I/O
Assignment Analysis to validate I/O-related assignments that you create or modify throughout the design
process. When you compile your design in the Quartus Prime software, I/O Assignment Analysis runs
automatically in the Fitter to validate that the assignments meet all the device requirements and generates
error messages.

QPS5V1
2015.11.02 Early Pin Planning and I/O Analysis 2-5

Design Planning with the Quartus Prime Software Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384023666/en-us
http://quartushelp.altera.com/current/index.htm#optimize/pwr/pwr_pro_early_pwr_estimate.htm
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Early in the design process, before creating the source code, the system architect has information about
the standard I/O interfaces (such as memory and bus interfaces), the IP cores in your design, and any
other I/O-related assignments defined by system requirements. You can use this information with the
Early Pin Planning feature in the Pin Planner to specify details about the design I/O interfaces. You can
then create a top-level design file that includes all I/O information.

The Pin Planner interfaces with the IP core parameter editor, which allows you to create or import
custom IP cores that use I/O interfaces. You can configure how to connect the functions and cores to each
other by specifying matching node names for selected ports. You can create other I/O-related assignments
for these interfaces or other design I/O pins in the Pin Planner, as described in this section. The Pin
Planner creates virtual pin assignments for internal nodes, so internal nodes are not assigned to device
pins during compilation. After analysis and synthesis of the newly generated top-level wrapper file, use
the generated netlist to perform I/O Analysis with the Start I/O Assignment Analysis command.

You can use the I/O analysis results to change pin assignments or IP parameters even before you create
your design, and repeat the checking process until the I/O interface meets your design requirements and
passes the pin checks in the Quartus Prime software. When you complete initial pin planning, you can
create a revision based on the Quartus Prime-generated netlist. You can then use the generated netlist to
develop the top-level design file for your design, or disregard the generated netlist and use the generated
Quartus Prime Settings File (.qsf) with your design.

During this early pin planning, after you have generated a top-level design file, or when you have
developed your design source code, you can assign pin locations and assignments with the Pin Planner.

With the Pin Planner, you can identify I/O banks, voltage reference (VREF) groups, and differential pin
pairings to help you through the I/O planning process. If you selected a migration device, the Pin
Migration View highlights the pins that have changed functions in the migration device when compared
to the currently selected device. Selecting the pins in the Device Migration view cross-probes to the rest of
the Pin Planner, so that you can use device migration information when planning your pin assignments.
You can also configure board trace models of selected pins for use in “board-aware” signal integrity
reports generated with the Enable Advanced I/O Timing option . This option ensures that you get
accurate I/O timing analysis. You can use a Microsoft Excel spreadsheet to start the I/O planning process
if you normally use a spreadsheet in your design flow, and you can export a Comma-Separated Value File
(.csv) containing your I/O assignments for spreadsheet use when you assign all pins.

When you complete your pin planning, you can pass pin location information to PCB designers. The Pin
Planner is tightly integrated with certain PCB design EDA tools, and can read pin location changes from
these tools to check suggested changes. Your pin assignments must match between the Quartus Prime
software and your schematic and board layout tools to ensure the FPGA works correctly on the board,
especially if you must make changes to the pin-out. The system architect uses the Quartus Prime software
to pass pin information to team members designing individual logic blocks, allowing them to achieve
better timing closure when they compile their design.

Start FPGA planning before you complete the HDL for your design to improve the confidence in early
board layouts, reduce the chance of error, and improve the overall time to market of the design. When
you complete your design, use the Fitter reports for the final sign-off of pin assignments. After compila‐
tion, the Quartus Prime software generates the Pin-Out File (.pin), and you can use this file to verify that
each pin is correctly connected in board schematics.

Related Information

• Device Migration Planning on page 2-4

2-6 Early Pin Planning and I/O Analysis
QPS5V1

2015.11.02

Altera Corporation Design Planning with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Set Up Top-Level Design File Window (Edit Menu)
For more information about setting up the nodes in your design, refer to Quartus Prime Help.

• I/O Management
For more information about I/O assignment and analysis.

• Mentor Graphics PCB Design Tools Support
• Cadence PCB Design Tools Support

For more information about passing I/O information between the Quartus Prime software and third-
party EDA tools.

Simultaneous Switching Noise Analysis
Simultaneous switching noise (SSN) is a noise voltage inducted onto a victim I/O pin of a device due to
the switching behavior of other aggressor I/O pins in the device.

Altera provides tools for SSN analysis and estimation, including SSN characterization reports, an Early
SSN Estimator (ESE) spreadsheet tool, and the SSN Analyzer in the Quartus Prime software. SSN often
leads to the degradation of signal integrity by causing signal distortion, thereby reducing the noise margin
of a system. You must address SSN with estimation early in your system design, to minimize later board
design changes. When your design is complete, verify your board design by performing a complete SSN
analysis of your FPGA in the Quartus Prime software.

Related Information

• Altera’s Signal Integrity Center
For more information and device support for the ESE spreadsheet tool on the Altera website.

• Simultaneous Switching Noise (SSN
For more information about the SSN Analyzer.

Selecting Third-Party EDA Tools
Your complete FPGA design flow may include third-party EDA tools in addition to the Quartus Prime
software. Determine which tools you want to use with the Quartus Prime software to ensure that they are
supported and set up properly, and that you are aware of their capabilities.

Synthesis Tool
The Quartus Prime software includes integrated synthesis that supports Verilog HDL, VHDL, Altera
Hardware Description Language (AHDL), and schematic design entry.

You can also use supported standard third-party EDA synthesis tools to synthesize your Verilog HDL or
VHDL design, and then compile the resulting output netlist file in the Quartus Prime software. Different
synthesis tools may give different results for each design. To determine the best tool for your application,
you can experiment by synthesizing typical designs for your application and coding style. Perform
placement and routing in the Quartus Prime software to get accurate timing analysis and logic utilization
results.

The synthesis tool you choose may allow you to create a Quartus Prime project and pass constraints, such
as the EDA tool setting, device selection, and timing requirements that you specified in your synthesis
project. You can save time when setting up your Quartus Prime project for placement and routing.

Tool vendors frequently add new features, fix tool issues, and enhance performance for Altera devices,
you must use the most recent version of third-party synthesis tools.

QPS5V1
2015.11.02 Simultaneous Switching Noise Analysis 2-7

Design Planning with the Quartus Prime Software Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#assign/asd/asd_com_setup_toplevel.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471036713/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471142112/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471156065/en-us
http://www.altera.com/technology/signal/sgl-index.html
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471071435/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulation Tool
Altera provides the Mentor Graphics ModelSim®-Altera Starter Edition with the Quartus Prime software.
You can also purchase the ModelSim-Altera Edition or a full license of the ModelSim software to support
large designs and achieve faster simulation performance. The Quartus Prime software can generate both
functional and timing netlist files for ModelSim and other third-party simulators.

Use the simulator version that your Quartus Prime software version supports for best results. You must
also use the model libraries provided with your Quartus Prime software version. Libraries can change
between versions, which might cause a mismatch with your simulation netlist.

Formal Verification Tools
Consider whether the Quartus Prime software supports the formal verification tool that you want to use,
and whether the flow impacts your design and compilation stages of your design.

Using a formal verification tool can impact performance results because performing formal verification
requires turning off certain logic optimizations, such as register retiming, and forces you to preserve
hierarchy blocks, which can restrict optimization. Formal verification treats memory blocks as black
boxes. Therefore, you must keep memory in a separate hierarchy block so other logic does not get
incorporated into the black box for verification. If formal verification is important to your design, plan for
limitations and restrictions at the beginning of the design cycle rather than make changes later.

Planning for On-Chip Debugging Tools
In-system debugging tools offer different advantages and trade-offs. A particular debugging tool may
work better for different systems and designers.

You must evaluate on-chip debugging tools early in your design process, to ensure that your system
board, Quartus Prime project, and design can support the appropriate tools. You can reduce debugging
time and avoid making changes to accommodate your preferred debugging tools later.

2-8 Simulation Tool
QPS5V1

2015.11.02

Altera Corporation Design Planning with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you intend to use any of these tools, you may have to plan for the tools when developing your system
board, Quartus Prime project, and design. Consider the following debugging requirements when you plan
your design:

• JTAG connections—required to perform in-system debugging with JTAG tools. Plan your system and
board with JTAG ports that are available for debugging.

• Additional logic resources—required to implement JTAG hub logic. If you set up the appropriate tool
early in your design cycle, you can include these device resources in your early resource estimations to
ensure that you do not overload the device with logic.

• Reserve device memory—required if your tool uses device memory to capture data during system
operation. To ensure that you have enough memory resources to take advantage of this debugging
technique, consider reserving device memory to use during debugging.

• Reserve I/O pins—required if you use the Logic Analyzer Interface (LAI) or SignalProbe tools, which
require I/O pins for debugging. If you reserve I/O pins for debugging, you do not have to later change
your design or board. The LAI can multiplex signals with design I/O pins if required. Ensure that your
board supports a debugging mode, in which debugging signals do not affect system operation.

• Instantiate an IP core in your HDL code—required if your debugging tool uses an Altera IP core.
• Instantiate the SignalTap II Logic Analyzer IP core—required if you want to manually connect the

SignalTap II Logic Analyzer to nodes in your design and ensure that the tapped node names do not
change during synthesis.

Note: You can add the SignalTap II Logic Analyzer as a separate design partition for incremental
compilation to minimize recompilation times.

Table 2-1: Factors to Consider When Using Debugging Tools During Design Planning Stages

Design Planning Factor SignapT
ap II

Logic
Analyze

r

System
Console

In-
System

Memory

Content
Editor

Logic
Analyze

r
Interfac

e
(LAI)

SignalP‐
robe

In-
System
Sources

and
Probes

Virtual
JTAG IP

Core

JTAG connections Yes Yes Yes Yes — Yes Yes
Additional logic resources — Yes — — — — Yes
Reserve device memory Yes Yes — — — — —
Reserve I/O pins — — — Yes Yes — —
Instantiate IP core in your
HDL code

— — — — — Yes Yes

Related Information

• System Debugging Tools Overview
For an overview of debugging tools that can help you decide which tools to use.

• Design Debugging Using the SignalTap II Logic Analyzer
For more information on using the SignalTap II Logic Analyzer.

Design Practices and HDL Coding Styles
When you develop complex FPGA designs, design practices and coding styles have an enormous impact
on the timing performance, logic utilization, and system reliability of your device.

QPS5V1
2015.11.02 Design Practices and HDL Coding Styles 2-9

Design Planning with the Quartus Prime Software Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384115727/en-us
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384469524/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Recommendations
Use synchronous design practices to consistently meet your design goals. Problems with asynchronous
design techniques include reliance on propagation delays in a device, incomplete timing analysis, and
possible glitches.

In a synchronous design, a clock signal triggers all events. When you meet all register timing require‐
ments, a synchronous design behaves in a predictable and reliable manner for all process, voltage, and
temperature (PVT) conditions. You can easily target synchronous designs to different device families or
speed grades.

Clock signals have a large effect on the timing accuracy, performance, and reliability of your design.
Problems with clock signals can cause functional and timing problems in your design. Use dedicated clock
pins and clock routing for best results, and if you have PLLs in your target device, use the PLLs for clock
inversion, multiplication, and division. For clock multiplexing and gating, use the dedicated clock control
block or PLL clock switchover feature instead of combinational logic, if these features are available in your
device. If you must use internally-generated clock signals, register the output of any combinational logic
used as a clock signal to reduce glitches.

The Design Assistant in the Quartus Prime software is a design-rule checking tool that enables you to
verify design issues. The Design Assistant checks your design for adherence to Altera-recommended
design guidelines. You can also use third-party lint tools to check your coding style. The Design Assistant
does not support Max 10 and Arria 10 devices.

Consider the architecture of the device you choose so that you can use specific features in your design. For
example, the control signals should use the dedicated control signals in the device architecture.
Sometimes, you might need to limit the number of different control signals used in your design to achieve
the best results.

Related Information

• Design Assistant Rules
For more information about running the Design Assistant, refer to Quartus Prime Help.

• Recommended Design Practices on page 11-1
For more information about design recommendations and using the Design Assistant.

• www.sunburst-design.com
You can also refer to industry papers for more information about multiple clock design. For a good
analysis, refer to Synthesis and Scripting Techniques for Designing Multi-Asynchronous Clock Designs
under Papers.

Recommended HDL Coding Styles
HDL coding styles can have a significant effect on the quality of results for programmable logic designs.

If you design memory and DSP functions, you must understand the target architecture of your device so
you can use the dedicated logic block sizes and configurations. Follow the coding guidelines for inferring
megafunctions and targeting dedicated device hardware, such as memory and DSP blocks.

Related Information
Recommended HDL Coding Styles on page 12-1
For HDL coding examples and recommendations, refer to the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus Prime Handbook. For additional tool-specific guidelines

2-10 Design Recommendations
QPS5V1

2015.11.02

Altera Corporation Design Planning with the Quartus Prime Software

Send Feedback

http://quartushelp.altera.com/current/index.htm#verify/da/da_file_rules_list.htm
http://www.sunburst-design.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Managing Metastability
Metastability problems can occur in digital design when a signal is transferred between circuitry in
unrelated or asynchronous clock domains, because the designer cannot guarantee that the signal meets
the setup and hold time requirements during the signal transfer.

Designers commonly use a synchronization chain to minimize the occurrence of metastable events.
Ensure that your design accounts for synchronization between any asynchronous clock domains.
Consider using a synchronizer chain of more than two registers for high-frequency clocks and frequently-
toggling data signals to reduce the chance of a metastability failure.

You can use the Quartus Prime software to analyze the average mean time between failures (MTBF) due
to metastability when a design synchronizes asynchronous signals, and optimize your design to improve
the metastability MTBF. The MTBF due to metastability is an estimate of the average time between
instances when metastability could cause a design failure. A high MTBF (such as hundreds or thousands
of years between metastability failures) indicates a more robust design. Determine an acceptable target
MTBF given the context of your entire system and the fact that MTBF calculations are statistical
estimates.

The Quartus Prime software can help you determine whether you have enough synchronization registers
in your design to produce a high enough MTBF at your clock and data frequencies.

Related Information
Managing Metastability with the Quartus Prime Software on page 13-1
For information about metastability analysis, reporting, and optimization features in the Quartus Prime
software

Planning for Hierarchical and Team-Based Design
To create a hierarchical design so that you can use compilation-time savings and performance
preservation with the Quartus Prime software incremental compilation feature, plan for an incremental
compilation flow from the beginning of your design cycle. The following subsections describe the flat
compilation flow, in which the design hierarchy is flattened without design partitions, and then the
incremental compilation flow that uses design partitions. Incremental compilation flows offer several
advantages, but require more design planning to ensure effective results. The last subsections discuss
planning an incremental compilation flow, planning design partitions, and optionally creating a design
floorplan.

Related Information
Power-Up Level on page 16-34

Flat Compilation Flow with No Design Partitions
In the flat compilation flow with no design partitions in the Quartus Prime software, the Quartus Prime
software compiles the entire design in a “flat” netlist.

Your source code can have hierarchy, but the Quartus Prime software flattens your design during
compilation and synthesizes all the design source code and fits in the target device whenever the software
recompile your design after any change in your design. By processing the entire design, the software
performs all available logic and placement optimizations on the entire design to improve area and
performance. You can use debugging tools in an incremental design flow, such as the SignalTap II Logic
Analyzer, but you do not specify any design partitions to preserve design hierarchy during compilation.

QPS5V1
2015.11.02 Managing Metastability 2-11

Design Planning with the Quartus Prime Software Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The flat compilation flow is easy to use; you do not have to plan any design partitions. However, because
the Quartus Prime software recompiles the entire design whenever you change your design, compilation
times can be slow for large devices. Additionally, you may find that the results for one part of the design
change when you change a different part of your design. You run Rapid Recompile to preserve portions
of previous placement and routing in subsequent compilations. This option can reduce your compilation
time in a flat or partitioned design when you make small changes to your design.

Incremental Compilation with Design Partitions
In an incremental compilation flow, the system architect splits a large design into partitions. When
hierarchical design partitions are well chosen and placed in the device floorplan, you can speed up your
design compilation time while maintaining the quality of results.

Incremental compilation preserves the compilation results and performance of unchanged partitions in
the design, greatly reducing design iteration time by focusing new compilations on changed design
partitions only. Incremental compilation then merges new compilation results with the previous compila‐
tion results from unchanged design partitions. Additionally, you can target optimization techniques, such
as physical synthesis, to specific design partitions while leaving other partitions unchanged. You can also
use empty partitions to indicate that parts of your design are incomplete or missing, while you compile
the rest of your design.

Third-party IP designers can also export logic blocks to be integrated into the top-level design. Team
members can work on partitions independently, which can simplify the design process and reduce
compilation time. With exported partitions, the system architect must provide guidance to designers or IP
providers to ensure that each partition uses the appropriate device resources. Because the designs may be
developed independently, each designer has no information about the overall design or how their
partition connects with other partitions. This lack of information can lead to problems during system
integration. The top-level project information, including pin locations, physical constraints, and timing
requirements, must be communicated to the designers of lower-level partitions before they start their
design.

The system architect plans design partitions at the top level and allows third-party designs to access the
top-level project framework. By designing in a copy of the top-level project (or by checking out the project
files in a source control environment), the designers of the lower-level block have full information about
the entire project, which helps to ensure optimal results.

When you plan your design code and hierarchy, ensure that each design entity is created in a separate file
so that the entities remain independent when you make source code changes in the file. If you use a third-
party synthesis tool, create separate Verilog Quartus Mapping or EDIF netlists for each design partition in
your synthesis tool. You may have to create separate projects in your synthesis tool, so that the tool
synthesizes each partition separately and generates separate output netlist files. The netlists are then
considered the source files for incremental compilation.

Related Information
Power-Up Level on page 16-34

Planning Design Partitions and Floorplan Location Assignments
Partitioning a design for an FPGA requires planning to ensure optimal results when you integrate the
partitions. Following Altera’s recommendations for creating design partitions should improve the overall
quality of results. For example, registering partition I/O boundaries keeps critical timing paths inside one
partition that can be optimized independently. When you specify the design partitions, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s recommendations.

If you have timing-critical partitions that are changing through the design flow, or partitions exported
from another Quartus Prime project, you can create design floorplan assignments to constrain the

2-12 Incremental Compilation with Design Partitions
QPS5V1

2015.11.02

Altera Corporation Design Planning with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

placement of the affected partitions. Good partition and floorplan design helps partitions meet top-level
design requirements when integrated with the rest of your design, reducing time you spend integrating
and verifying the timing of the top-level design.

Related Information

• Best Practices for Incremental Compilation Partitions and Floorplan Assignments on page 14-1
• Analyzing and Optimizing the Design Floorplan

For more information about creating floorplan assignments in the Chip Planner .

Running Fast Synthesis
You save time when you find design issues early in the design cycle rather than in the final timing closure
stages. When the first version of the design source code is complete, you might want to perform a quick
compilation to create a kind of silicon virtual prototype (SVP) that you can use to perform timing
analysis.

If you synthesize with the Quartus Prime software, you can choose to perform a Fast synthesis, which
reduces the compilation time, but may give reduced quality of results.

If you design individual design blocks or partitions separately, you can use the Fast synthesis and early
timing estimate features as you develop your design. Any issues highlighted in the lower-level design
blocks are communicated to the system architect. Resolving these issues might require allocating
additional device resources to the individual partition, or changing the timing budget of the partition.

Expert designers can also use fast synthesis to prototype the entire design. Incomplete partitions are
marked as empty in an incremental compilation flow, while the rest of the design is compiled to detect
any problems with design integration.

Related Information
Synthesis Effort logic option
For more information about Fast synthesis, refer to Quartus Prime Help.

Document Revision History

Table 2-2: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Remove support for Early Timing Estimate feature.

2014.06.30 14.0.0 Updated document format.

November
2013

13.1.0 Removed HardCopy device information.

November,
2012

12.1.0 Update for changes to early pin planning feature

June 2012 12.0.0 Editorial update.

QPS5V1
2015.11.02 Running Fast Synthesis 2-13

Design Planning with the Quartus Prime Software Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471303170/en-us
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synthesis_effort.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November
2011

11.0.1 Template update.

May 2011 11.0.0 • Added link to System Design with Qsys in “Creating Design Specifica‐
tions” on page 1–2

• Updated “Simultaneous Switching Noise Analysis” on page 1–8
• Updated “Planning for On-Chip Debugging Tools” on page 1–10
• Removed information from “Planning Design Partitions and

Floorplan Location Assignments” on page 1–15

December
2010

10.1.0 • Changed to new document template
• Updated “System Design and Standard Interfaces” on page 1–3 to

include information about the Qsys system integration tool
• Added link to the Altera Product Selector in “Device Selection” on

page 1–3
• Converted information into new table (Table 1–1) in “Planning for

On-Chip Debugging Options” on page 1–10
• Simplified description of incremental compilation usages in

“Incremental Compilation with Design Partitions” on page 1–14
• Added information about the Rapid Recompile option in “Flat

Compilation Flow with No Design Partitions” on page 1–14
• Removed details and linked to Quartus Prime Help in “Fast Synthesis

and Early Timing Estimation” on page 1–16

July 2010 10.0.0 • Added new section “System Design” on page 1–3
• Removed details about debugging tools from “Planning for On-Chip

Debugging Options” on page 1–10 and referred to other handbook
chapters for more information

• Updated information on recommended design flows in “Incremental
Compilation with Design Partitions” on page 1–14 and removed
“Single-Project Versus Multiple-Project Incremental Flows” heading

• Merged the “Planning Design Partitions” section with the “Creating a
Design Floorplan” section. Changed heading title to “Planning Design
Partitions and Floorplan Location Assignments” on page 1–15

• Removed “Creating a Design Floorplan” section
• Removed “Referenced Documents” section
• Minor updates throughout chapter

2-14 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Design Planning with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November
2009

9.1.0 • Added details to “Creating Design Specifications” on page 1–2
• Added details to “Intellectual Property Selection” on page 1–2
• Updated information on “Device Selection” on page 1–3
• Added reference to “Device Migration Planning” on page 1–4
• Removed information from “Planning for Device Programming or

Configuration” on page 1–4
• Added details to “Early Power Estimation” on page 1–5
• Updated information on “Early Pin Planning and I/O Analysis” on

page 1–6
• Updated information on “Creating a Top-Level Design File for I/O

Analysis” on page 1–8
• Added new “Simultaneous Switching Noise Analysis” section
• Updated information on “Synthesis Tools” on page 1–9
• Updated information on “Simulation Tools” on page 1–9
• Updated information on “Planning for On-Chip Debugging Options”

on page 1–10
• Added new “Managing Metastability” section
• Changed heading title “Top-Down Versus Bottom-Up Incremental

Flows” to “Single-Project Versus Multiple-Project Incremental Flows”
• Updated information on “Creating a Design Floorplan” on page 1–18
• Removed information from “Fast Synthesis and Early Timing

Estimation” on page 1–18

March
2009

9.0.0 • No change to content

November
2008

8.1.0 • Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Organization changes
• Added “Creating Design Specifications” section
• Added reference to new details in the In-System Design Debugging

section of volume 3
• Added more details to the “Design Practices and HDL Coding Styles”

section
• Added references to the new Best Practices for Incremental Compila‐

tion and Floorplan Assignments chapter
• Added reference to the Quartus Prime Language Templates

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 2-15

Design Planning with the Quartus Prime Software Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20with%20the%20Quartus%20Prime%C2%A0Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Incremental Compilation for
Hierarchical and Team-Based Design 3

2015.11.02

QPS5V1 Subscribe Send Feedback

About Quartus Prime Incremental Compilation
This manual provides information and design scenarios to help you partition your design to take
advantage of the Quartus® II incremental compilation feature.

The ability to iterate rapidly through FPGA design and debugging stages is critical. The Quartus Prime
software introduced the FPGA industry’s first true incremental design and compilation flow, with the
following benefits:

• Preserves the results and performance for unchanged logic in your design as you make changes
elsewhere.

• Reduces design iteration time by an average of 75% for small changes in large designs, so that you can
perform more design iterations per day and achieve timing closure efficiently.

• Facilitates modular hierarchical and team-based design flows, as well as design reuse and intellectual
property (IP) delivery.

Quartus Prime incremental compilation supports the Arria®, Stratix®, and Cyclone® series of devices.

Deciding Whether to Use an Incremental Compilation Flow
The Quartus Prime incremental compilation feature enhances the standard Quartus Prime design flow by
allowing you to preserve satisfactory compilation results and performance of unchanged blocks of your
design.

Flat Compilation Flow with No Design Partitions
In the flat compilation flow with no design partitions, all the source code is processed and mapped during
the Analysis and Synthesis stage, and placed and routed during the Fitter stage whenever the design is
recompiled after a change in any part of the design. One reason for this behavior is to ensure optimal
push-button quality of results. By processing the entire design, the Compiler can perform global
optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in CPLD devices or low-density
FPGA devices, when the timing requirements are met easily with a single compilation. A flat design is
satisfactory when compilation time and preserving results for timing closure are not concerns.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Related Information
Reducing Compilation Time documentation

Incremental Capabilities Available When A Design Has No Partitions
The Quartus Prime software has incremental compilation features available even when you do not
partition your design, including Smart Compilation, Rapid Recompile, and incremental debugging. These
features work in either an incremental or flat compilation flow.

With Smart Compilation
In any Quartus Prime compilation flow, you can use Smart Compilation to allow the Compiler to
determine which compilation stages are required, based on the changes made to the design since the last
smart compilation, and then skip any stages that are not required.
For example, when Smart Compilation is turned on, the Compiler skips the Analysis and Synthesis stage
if all the design source files are unchanged. When Smart Compilation is turned on, if you make any
changes to the logic of a design, the Compiler does not skip any compilation stage. You can turn on Smart
Compilation on the Compilation Process Settings page of the Setting dialog box.

Note: Arria 10 devices do not support the smart compilation feature.

Related Information
Smart Compilation online help

With Rapid Recompile
The Quartus Prime software also includes a Rapid Recompile feature that instructs the Compiler to reuse
the compatible compilation results if most of the design has not changed since the last compilation. This
feature reduces compilation times for small and isolated design changes. You do not have control over
which parts of the design are recompiled using this option; the Compiler determines which parts of the
design must be recompiled. The Rapid Recompile feature preserves performance and can save
compilation time by reducing the amount of changed logic that must be recompiled.

With SignalTap II Logic Analyzer
During the debugging stage of the design cycle, you can add the SignalTap® II Logic Analyzer to your
design, even if the design does not have partitions. To preserve the compilation netlist for the entire
design, instruct the software to reuse the compilation results for the automatically-created "Top" partition
that contains the entire design.

Incremental Compilation Flow With Design Partitions
In the standard incremental compilation design flow, the top-level design is divided into design partitions,
which can be compiled and optimized together in the top-level Quartus Prime project. You can preserve
fitting results and performance for completed partitions while other parts of the design are changing,
which reduces the compilation times for each design iteration.

If you use the incremental compilation feature at any point in your design flow, it is easier to accommo‐
date the guidelines for partitioning a design and creating a floorplan if you start planning for incremental
compilation at the beginning of your design cycle.

Incremental compilation is recommended for large designs and high resource densities when preserving
results is important to achieve timing closure. The incremental compilation feature also facilitates team-
based design flows that allow designers to create and optimize design blocks independently, when
necessary.

3-2 Incremental Capabilities Available When A Design Has No Partitions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471192514/en-us
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_mode.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To take advantage of incremental compilation, start by splitting your design along any of its hierarchical
boundaries into design blocks to be compiled incrementally, and set each block as a design partition. The
Quartus Prime software synthesizes each individual hierarchical design partition separately, and then
merges the partitions into a complete netlist for subsequent stages of the compilation flow. When
recompiling your design, you can use source code, post-synthesis results, or post-fitting results to preserve
satisfactory results for each partition.

In a team-based environment, part of your design may be incomplete, or it may have been developed by
another designer or IP provider. In this scenario, you can add the completed partitions to the design
incrementally. Alternatively, other designers or IP providers can develop and optimize partitions
independently and the project lead can later integrate the partitions into the top-level design.

Related Information

• Team-Based Design Flows and IP Delivery on page 3-5
• Incremental Compilation Summary on page 3-7
• Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation

on page 14-1

Impact of Using Incremental Compilation with Design Partitions

Table 3-1: Impact Summary of Using Incremental Compilation

Characteristic Impact of Incremental Compilation with Design Partitions

Compilation Time Savings Typically saves an average of 75% of compilation time for small design
changes in large designs when post-fit netlists are preserved; there are
savings in both Quartus Prime Integrated Synthesis and the Fitter. (1)

Performance Preservation Excellent performance preservation when timing critical paths are
contained within a partition, because you can preserve post-fitting
information for unchanged partitions.

Node Name Preservation Preserves post-fitting node names for unchanged partitions.

Area Changes The area (logic resource utilization) might increase because cross-
boundary optimizations are limited, and placement and register packing
are restricted.

fMAX Changes The design’s maximum frequency might be reduced because
cross-boundary optimizations are limited. If the design is partitioned
and the floorplan location assignments are created appropriately, there
might be no negative impact on fMAX.

(1) Quartus Prime incremental compilation does not reduce processing time for the early "pre-fitter"
operations, such as determining pin locations and clock routing, so the feature cannot reduce compila‐
tion time if runtime is dominated by those operations.

QPS5V1
2015.11.02 Impact of Using Incremental Compilation with Design Partitions 3-3

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Design Stages for Incremental Compilation

Figure 3-1: Design Stages for Incremental Compilation

System
VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Synthesize Changed Partitions,

Preserve Others

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each

Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

One Post-Fit
Netlist per
Partition

One Post-Synthesis
Netlist per Partition

Single Post-Fit
Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,

Preserve Others

Create Individual Netlists and
Complete Netlists

Assembler

Settings &
Assignments

Make Design &
Assignment Modifications

Settings &
Assignments

Design Partition
Assignments

Floorplan
Location

Assignments

Requirements
Satisfied?

Yes

No

Program/Configure Device

Partition Top

Partition 1
Partition 2

(1)

Verilog
HDL
(.sv)

Timing
Analyzer in parallel

Note: When you use EDIF or VQM netlists created by third-party EDA synthesis tools, Analysis and
Synthesis creates the design database, but logic synthesis and technology mapping are performed
only for black boxes.

Analysis and Synthesis Stage
The figure above shows a top-level partition and two lower-level partitions. If any part of the design
changes, Analysis and Synthesis processes the changed partitions and keeps the existing netlists for the

3-4 Quartus Prime Design Stages for Incremental Compilation
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

unchanged partitions. After completion of Analysis and Synthesis, there is one post-synthesis netlist for
each partition.

Partition Merge Stage
The Partition Merge step creates a single, complete netlist that consists of post-synthesis netlists, post-fit
netlists, and netlists exported from other Quartus Prime projects, depending on the netlist type that you
specify for each partition.

Fitter Stage
The Fitter then processes the merged netlist, preserves the placement and routing of unchanged
partitions, and refits only those partitions that have changed. The Fitter generates the complete netlist for
use in future stages of the compilation flow, including timing analysis and programming file generation,
which can take place in parallel if more than one processor is enabled for use in the Quartus Prime
software. The Fitter also generates individual netlists for each partition so that the Partition Merge stage
can use the post-fit netlist to preserve the placement and routing of a partition, if specified, for future
compilations.

How to Compare Incremental Compilation Results with Flat Design Results
If you define partitions, but want to check your compilation results without partitions in a “what if”
scenario, you can direct the Compiler to ignore all partitions assignments in your project and compile the
design as a "flat" netlist. When you turn on the Ignore partitions assignments during compilation
option on the Incremental Compilation page, the Quartus Prime software disables all design partition
assignments in your project and runs a full compilation ignoring all partition boundaries and netlists.
Turning off the Ignore partitions assignments during compilation option restores all partition
assignments and netlists for subsequent compilations.

Related Information

• Incremental Compilation Page online help
• Design Partition Properties Dialog Box online help

Team-Based Design Flows and IP Delivery
The Quartus Prime software supports various design flows to enable team-based design and third-party
IP delivery. A top-level design can include one or more partitions that are designed or optimized by
different designers or IP providers, as well as partitions that will be developed as part of a standard
incremental methodology.

With a Single Quartus Prime Project
In a team-based environment, part of your design may be incomplete because it is being developed
elsewhere. The project lead or system architect can create empty placeholders in the top-level design for
partitions that are not yet complete. Designers or IP providers can create and verify HDL code separately,
and then the project lead later integrates the code into the single top-level Quartus Prime project. In this
scenario, you can add the completed partitions to the design incrementally, however, the design flow
allows all design optimization to occur in the top-level design for easiest design integration. Altera
recommends using a single Quartus Prime project whenever possible because using multiple projects can
add significant up-front and debugging time to the development cycle.

QPS5V1
2015.11.02 Partition Merge Stage 3-5

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_tab_qid_incremental_mode.htm
http://quartushelp.altera.com/current/index.htm#comp/increment/comp_tab_qid_part_window_properties.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With Multiple Quartus Prime Projects
Alternatively, partition designers can design their partition in a copy of the top-level design or in a
separate Quartus Prime project. Designers export their completed partition as either a post-synthesis
netlist or optimized placed and routed netlist, or both, along with assignments such as LogicLock™

regions, as appropriate. The project lead then integrates each design block as a design partition into the
top-level design. Altera recommends that designers export and reuse post-synthesis netlists, unless
optimized post-fit results are required in the top-level design, to simplify design optimization.

Additional Planning Needed
Teams with a bottom-up design approach often want to optimize placement and routing of design
partitions independently and may want to create separate Quartus Prime projects for each partition.
However, optimizing design partitions in separate Quartus Prime projects, and then later integrating the
results into a top-level design, can have the following potential drawbacks that require careful planning:

• Achieving timing closure for the full design may be more difficult if you compile partitions independ‐
ently without information about other partitions in the design. This problem may be avoided by
careful timing budgeting and special design rules, such as always registering the ports at the module
boundaries.

• Resource budgeting and allocation may be required to avoid resource conflicts and overuse. Creating a
floorplan with LogicLock regions is recommended when design partitions are developed independ‐
ently in separate Quartus Prime projects.

• Maintaining consistency of assignments and timing constraints can be more difficult if there are
separate Quartus Prime projects. The project lead must ensure that the top-level design and the
separate projects are consistent in their assignments.

Collaboration on a Team-Based Design
A unique challenge of team-based design and IP delivery for FPGAs is the fact that the partitions being
developed independently must share a common set of resources. To minimize issues that might arise from
sharing a common set of resources, you can design partitions within a single Quartus Prime project or a
copy of the top-level design. A common project ensures that designers have a consistent view of the top-
level project framework.

For timing-critical partitions being developed and optimized by another designer, it is important that
each designer has complete information about the top-level design in order to maintain timing closure
during integration, and to obtain the best results. When you want to integrate partitions from separate
Quartus Prime projects, the project lead can perform most of the design planning, and then pass the top-
level design constraints to the partition designers. Preferably, partition designers can obtain a copy of the
top-level design by checking out the required files from a source control system. Alternatively, the project
lead can provide a copy of the top-level project framework, or pass design information using Quartus
Prime-generated design partition scripts. In the case that a third-party designer has no information about
the top-level design, developers can export their partition from an independent project if required.

Related Information

• Exporting Design Partitions from Separate Quartus Prime Projects on page 3-30
• Project Management— Making the Top-Level Design Available to Other Designers on page 3-32

3-6 With Multiple Quartus Prime Projects
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Incremental Compilation Summary

Incremental Compilation Single Quartus Prime Project Flow
The figure illustrates the incremental compilation design flow when all partitions are contained in one
top-level design.

Figure 3-2: Top-Down Design Flow

Perform Elaboration

Repeat as Needed
During Design, Verification,
& Debugging Stages

(Optional) Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

Set Netlist Type for Each Partition

Make Changes to Design

Perform Incremental Compilation
(Partitions are Compiled if Required)

Prepare Design for Incremental Compilation

Steps for Incremental Compilation
For an interactive introduction to implementing an incremental compilation design flow, refer to the
Getting Started Tutorial on the Help menu in the Quartus Prime software.

Related Information
Using the Incremental Compilation Design Flow online help

Preparing a Design for Incremental Compilation

1. Elaborate your design, or run any compilation flow (such as a full compilation) that includes the
elaboration step. Elaboration is the part of the synthesis process that identifies your design’s hierarchy.

2. Designate specific instances in the design hierarchy as design partitions.
3. If required for your design flow, create a floorplan with LogicLock regions location assignments for

timing-critical partitions that change with future compilations. Assigning a partition to a physical
region on the device can help maintain quality of results and avoid conflicts in certain situations.

Related Information

• Creating Design Partitions on page 3-8
• Creating a Design Floorplan With LogicLock Regions on page 3-46

QPS5V1
2015.11.02 Incremental Compilation Summary 3-7

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_pro_running_incremental_compilation.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compiling a Design Using Incremental Compilation
The first compilation after making partition assignments is a full compilation, and prepares the design for
subsequent incremental compilations. In subsequent compilations of your design, you can preserve
satisfactory compilation results and performance of unchanged partitions with the Netlist Type setting in
the Design Partitions window. The Netlist Type setting determines which type of netlist or source file the
Partition Merge stage uses in the next incremental compilation. You can choose the Source File, Post-
Synthesis netlist, or Post-Fit netlist.

Related Information
Specifying the Level of Results Preservation for Subsequent Compilations on page 3-24

Creating Design Partitions
There are several ways to designate a design instance as a design partition.

Related Information
Deciding Which Design Blocks Should Be Design Partitions on page 3-19

Creating Design Partitions in the Project Navigator
You can right-click an instance in the list under the Hierarchy tab in the Project Navigator and use the
sub-menu to create and delete design partitions.

Creating Design Partitions in the Design Partitions Window
The Design Partitions window, available from the Assignments menu, allows you to create, delete, and
merge partitions, and is the main window for setting the netlist type to specify the level of results
preservation for each partition on subsequent compilations.

The Design Partitions window also lists recommendations at the bottom of the window with links to the
Incremental Compilation Advisor, where you can view additional recommendations about partitions. The
Color column indicates the color of each partition as it appears in the Design Partition Planner and Chip
Planner.

You can right-click a partition in the window to perform various common tasks, such as viewing property
information about a partition, including the time and date of the compilation netlists and the partition
statistics.

When you create a partition, the Quartus Prime software automatically generates a name based on the
instance name and hierarchy path. You can edit the partition name in the Design Partitions Window so
that you avoid referring to them by their hierarchy path, which can sometimes be long. This is especially
useful when using command-line commands or assignments, or when you merge partitions to give the
partition a meaningful name. Partition names can be from 1 to 1024 characters in length and must be
unique. The name can consist of alphanumeric characters and the pipe (|), colon (:), and underscore
(_) characters.

Related Information

• Netlist Type for Design Partitions on page 3-24
• Creating Design Partitions online help

Creating Design Partitions With the Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy, and can assist you in
creating effective design partitions that follow Altera’s guidelines.

3-8 Compiling a Design Using Incremental Compilation
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_pro_qid_create_design_partitions.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Design Partition Planner displays a visual representation of design connectivity and hierarchy, as well
as partitions and entity relationships. You can explore the connectivity between entities in the design,
evaluate existing partitions with respect to connectivity between entities, and try new partitioning
schemes in "what if" scenarios.

When you extract design blocks from the top-level design and drag them into the Design Partition
Planner, connection bundles are drawn between entities, showing the number of connections existing
between pairs of entities. In the Design Partition Planner, you can then set extracted design blocks as
design partitions.

The Design Partition Planner also has an Auto-Partition feature that creates partitions based on the size
and connectivity of the hierarchical design blocks.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation on
page 14-1

Creating Design Partitions With Tcl Scripting
You can also create partitions with Tcl scripting commands.

Related Information
Scripting Support on page 3-53

Automatically-Generated Partitions
The Compiler creates some partitions automatically as part of the compilation process, which appear in
some post-compilation reports. For example, the sld_hub partition is created for tools that use JTAG hub
connections, such as the SignalTap II Logic Analyzer. The hard_block partition is created to contain
certain "hard" or dedicated logic blocks in the device that are implemented in a separate partition so that
they can be shared throughout the design.

Common Design Scenarios Using Incremental Compilation
Related Information
Steps for Incremental Compilation on page 3-7

Reducing Compilation Time When Changing Source Files for One Partition
Scenario background: You set up your design to include partitions for several of the major design blocks,
and now you have just performed a lengthy compilation of the entire design. An error is found in the
HDL source file for one partition and it is being fixed. Because the design is currently meeting timing
requirements, and the fix is not expected to affect timing performance, it makes sense to compile only the
affected partition and preserve the rest of the design.

Use the flow in this example to update the source file in one partition without having to recompile the
other parts of the design. To reduce the compilation time, instruct the software to reuse the post-fit
netlists for the unchanged partitions. This flow also preserves the performance of these blocks, which
reduces additional timing closure efforts.

QPS5V1
2015.11.02 Creating Design Partitions With Tcl Scripting 3-9

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Perform the following steps to update a single source file:

1. Apply and save the fix to the HDL source file.
2. On the Assignments menu, open the Design Partitions window.
3. Change the netlist type of each partition, including the top-level entity, to Post-Fit to preserve as much

as possible for the next compilation.

• The Quartus Prime software recompiles partitions by default when changes are detected in a source
file. You can refer to the Partition Dependent Files table in the Analysis and Synthesis report to
determine which partitions were recompiled. If you change an assignment but do not change the
logic in a source file, you can set the netlist type to Source File for that partition to instruct the
software to recompile the partition's source design files and its assignments.

4. Click Start Compilation to incrementally compile the fixed HDL code. This compilation should take
much less time than the initial full compilation.

5. Simulate the design to ensure that the error is fixed, and use the TimeQuest Timing Analyzer report to
ensure that timing results have not degraded.

Related Information
List of Compilation and Simulation Reports online help

Optimizing a Timing-Critical Partition
Scenario background: You have just performed a lengthy full compilation of a design that consists of
multiple partitions. The TimeQuest Timing Analyzer reports that the clock timing requirement is not
met, and you have to optimize one particular partition. You want to try optimization techniques such as
raising the Placement Effort Multiplier, enabling Physical Synthesis, and running Design Space Explorer
II. Because these techniques all involve significant compilation time, you should apply them to only the
partition in question.

Use the flow in this example to optimize the results of one partition when the other partitions in the
design have already met their requirements. You can use this flow iteratively to lock down the perform‐
ance of one partition, and then move on to optimization of another partition.

Perform the following steps to preserve the results for partitions that meet their timing requirements, and
to recompile a timing-critical partition with new optimization settings:

1. Open the Design Partitions window.
2. For the partition in question, set the netlist type to Source File.

• If you change a setting that affects only the Fitter, you can save additional compilation time by
setting the netlist type to Post-Synthesis to reuse the synthesis results and refit the partition.

3. For the remaining partitions (including the top-level entity), set the netlist type to Post-Fit.

• You can optionally set the Fitter Preservation Level on the Advanced tab in the Design Partitions
Properties dialog box to Placement to allow for the most flexibility during routing.

4. Apply the desired optimization settings.
5. Click Start Compilation to perform incremental compilation on the design with the new settings.

During this compilation, the Partition Merge stage automatically merges the critical partition’s new
synthesis netlist with the post-fit netlists of the remaining partitions. The Fitter then refits only the
required partition. Because the effort is reduced as compared to the initial full compilation, the
compilation time is also reduced.

To use Design Space Explorer II, perform the following steps:

3-10 Optimizing a Timing-Critical Partition
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_list_format.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Repeat steps 1–3 of the previous procedure.
2. Save the project and run Design Space Explorer II.

Adding Design Logic Incrementally or Working With an Incomplete Design
Scenario background: You have one or more partitions that are known to be timing-critical in your full
design. You want to focus on developing and optimizing this subset of the design first, before adding the
rest of the design logic.

Use this flow to compile a timing-critical partition or partitions in isolation, optionally with extra
optimizations turned on. After timing closure is achieved for the critical logic, you can preserve its
content and placement and compile the remaining partitions with normal or reduced optimization levels.
For example, you may want to compile an IP block that comes with instructions to perform optimization
before you incorporate the rest of your custom logic.

To implement this design flow, perform the following steps:

1. Partition the design and create floorplan location assignments. For best results, ensure that the top-
level design includes the entire project framework, even if some parts of the design are incomplete and
are represented by an empty wrapper file.

2. For the partitions to be compiled first, in the Design Partitions window, set the netlist type to Source
File.

3. For the remaining partitions, set the netlist type to Empty.
4. To compile with the desired optimizations turned on, click Start Compilation.
5. Check the Timing Analyzer reports to ensure that timing requirements are met. If so, proceed to step

6. Otherwise, repeat steps 4 and 5 until the requirements are met.
6. In the Design Partitions window, set the netlist type to Post-Fit for the first partitions. You can set the

Fitter Preservation Level on the Advanced tab in the Design Partitions Properties dialog box to
Placement to allow more flexibility during routing if exact placement and routing preservation is not
required.

7. Change the netlist type from Empty to Source File for the remaining partitions, and ensure that the
completed source files are added to the project.

8. Set the appropriate level of optimizations and compile the design. Changing the optimizations at this
point does not affect any fitted partitions, because each partition has its netlist type set to Post-Fit.

9. Check the Timing Analyzer reports to ensure that timing requirements are met. If not, make design or
option changes and repeat step 8 and step 9 until the requirements are met.

The flow in this example is similar to design flows in which a module is implemented separately and is
later merged into the top-level. Generally, optimization in this flow works only if each critical path is
contained within a single partition. Ensure that if there are any partitions representing a design file that is
missing from the project, you create a placeholder wrapper file to define the port interface.

Related Information

• Designing in a Team-Based Environment on page 3-40
• Deciding Which Design Blocks Should Be Design Partitions on page 3-19
• Empty Partitions on page 3-32

Debugging Incrementally With the SignalTap II Logic Analyzer
Scenario background: Your design is not functioning as expected, and you want to debug the design using
the SignalTap II Logic Analyzer. To maintain reduced compilation times and to ensure that you do not
negatively affect the current version of your design, you want to preserve the synthesis and fitting results
and add the SignalTap II Logic Analyzer to your design without recompiling the source code.

QPS5V1
2015.11.02 Adding Design Logic Incrementally or Working With an Incomplete Design 3-11

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use this flow to reduce compilation times when you add the logic analyzer to debug your design, or when
you want to modify the configuration of the SignalTap II File without modifying your design logic or its
placement.

It is not necessary to create design partitions in order to use the SignalTap II incremental compilation
feature. The SignalTap II Logic Analyzer acts as its own separate design partition.

Perform the following steps to use the SignalTap II Logic Analyzer in an incremental compilation flow:

1. Open the Design Partitions window.
2. Set the netlist type to Post-fit for all partitions to preserve their placement.

• The netlist type for the top-level partition defaults to Source File, so be sure to change this “Top”
partition in addition to any design partitions that you have created.

3. If you have not already compiled the design with the current set of partitions, perform a full compila‐
tion. If the design has already been compiled with the current set of partitions, the design is ready to
add the SignalTap II Logic Analyzer.

4. Set up your SignalTap II File using the post-fitting filter in the Node Finder to add signals for logic
analysis. This allows the Fitter to add the SignalTap II logic to the post-fit netlist without modifying the
design results.

To add signals from the pre-synthesis netlist, set the partition’s netlist type to Source File and use the
presynthesis filter in the Node Finder. This allows the software to resynthesize the partition and to tap
directly to the pre-synthesis node names that you choose. In this case, the partition is resynthesized and
refit, so the placement is typically different from previous fitting results.

Related Information
Design Debugging Using the SignalTap II Embedded Logic Analyzer documentation

Functional Safety IP Implementation
In functional safety designs, recertification is required when logic is modified in safety or standard areas
of the design. Recertification is required because the FPGA programming file has changed. You can
reduce the amount of required recertification if you use the functional safety separation flow in the
software. By partitioning your safety IP (SIP) from standard logic, you ensure that the safety critical areas
of the design remain the same when the standard areas in your design are modified. The safety-critical
areas remain the same at the bit level.

The functional safety separation flow supports only Cyclone IV and Cyclone V device families.

Related Information
AN 704: FPGA-based Safety Separation Design Flow for Rapid Functional Safety Certification
This design flow significantly reduces the certification efforts for the lifetime of an FPGA-based industrial
system containing both safety critical and nonsafety critical components.

Software Tool Impact on Safety
The Quartus Prime software can partition your design into safety partitions and standard partitions, but
the Quartus Prime software does not perform any online safety-related functionality. The Quartus Prime
software generates a bitstream that performs the safety functions. For the purpose of compliance with a
functional safety standard, the Quartus Prime software should be considered as an offline support tool.

3-12 Functional Safety IP Implementation
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384469524/en-us
https://documentation.altera.com/#/link/hco1410185644878/hco1410185563482/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Functional Safety Separation Flow
The functional safety separation flow consists of two separate work flows. The design creation flow and
the design modification flow both use incremental compilation, but the two flows have different use-case
scenarios.

Figure 3-3: Functional Safety Separation Flow

Design
Modification
Flow

Design
Creation
Flow

Design
Creation
Flow

 Safety IP Change?

 New Design?
no yes

no yes

Design activity
 entry point

Design Creation Flow
The design creation flow describes the necessary steps for initial design creation in a way that allows you
to modify your design. Some of the steps are architectural constraints and the remaining steps are steps
that you need to perform in the Quartus Prime software. Use the design creation flow for the first pass
certification of your product.

When you make modifications to the safety IP in your design, you must use the design creation flow.

QPS5V1
2015.11.02 Functional Safety Separation Flow 3-13

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-4: Design Creation Flow

Create Design Hierarchy

Design Creation Flow
Tool Flow Stage

Altera FPGA Development
V-model Stage

Define Safety IP Partitions

Create Safety IP
LogicLock Region

Compile the Design

Export Safety IP Partition

Generate Safety IP POF Partion

Create Safety IP POF Partion Hash

Verification

Synthesis/Place and Route

Logical Module Integration

FPGA Architecture/Logical module design

The design creation flow becomes active when you have a valid safety IP partition in your Quartus Prime
project and that safety IP partition does not have place and route data from a previous compile. In the
design creation flow, the Assembler generates a Partial Settings Mask (.psm) file for each safety IP
partition. Each .psm file contains a list of programming bits for its respective safety IP partition.

The Quartus Prime software determines whether to use the design creation flow or design modification
flow on a per partition basis. It is possible to have multiple safety IP partitions in a design where some are
running the design creation flow and others are running the design modification flow.

To reset the complete design to the design creation flow, remove the previous place and route data by
cleaning the project (removing the dbs). Alternatively, use the partition import flow, to selectively reset
the design. You can remove the netlists for the imported safety IP partitions individually using the Design
Partitions window.

Related Information

• Exporting and Importing Your Safety IP on page 3-18
• Design Partitions Window online help

Design Modification Flow
The design modification flow describes the necessary steps to make modifications to the standard IP in
your design. This flow ensures that the previously compiled safety IP that the project uses remains
unchanged when you change or compile standard IP.

3-14 Design Modification Flow
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_com_qid_design_partition.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the design modification flow only after you qualify your design in the design creation flow.

Figure 3-5: Design Modification Flow

Modify Standard IP

Import Safety IP Partition

Compile the Design

Create Safety POF Partition Hash

Compare POF Partition Hash

Hardware Verification
 (readback of POF)

Generate Safety IP POF Partition

When the design modification flow is active for a safety IP partition, the Fitter runs in Strict Preservation
mode for that partition. The Assembler performs run-time checks that compare the Partial Settings Mask
information matches the .psm file generated in the design creation flow. If the Assembler detects a
mismatch, a "Bad Mask!" or "ASM_STRICT_PRESERVA‐
TION_BITS_UTILITY::compare_masked_byte_array failed" internal error message is shown. If you see
either error message while compiling your design, contact Altera support for assistance.

When a change is made to any HDL source file that belongs to a safety IP, the default behavior of the
Quartus Prime software is to resynthesize and perform a clean place and route for that partition, which
then activates the design creation flow for that partition. To change this default behavior and keep the
design modification flow active, do the following:

• Use the partition export/import flow.

QPS5V1
2015.11.02 Design Modification Flow 3-15

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

https://www.altera.com/myaltera/mal-index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

or

• Use the Design Partitions window to modify the design partition properties and turn on Ignore
changes in source files and strictly use the specified netlist, if available.

The Fitter applies the same design flow to all partitions that belong to the same safety IP. If more than one
safety IP is used in the design, the Fitter may evoke different flows for different safety IPs.

Note: If your safety IP is a sub-block in a Qsys system, every time you regenerate HDL for the Qsys
system, the timestamp for the safety IP HDL changes. This results in resynthesis of the safety IP,
unless the default behavior (described above) is changed.

Related Information

• Exporting and Importing Your Safety IP on page 3-18
• Design Partitions Window online help

How to Turn On the Functional Safety Separation Flow
Every safety-related IP component in your design should be implemented in a partition(s) so the safety
IPs are protected from recompilation. Use the global assignment
PARTITION_ENABLE_STRICT_PRESERVATION to identify safety IP in your design.

set_global_assignment -name PARTITION_ENABLE_STRICT_PRESERVATION <ON/OFF> -
section_id <partition_name>

When this global assignment is designated as ON for a partition, the partition is protected from recompi‐
lation, exported as a safety IP, and included in the safety IP POF mask. Specifying the value as ON for any
partition turns on the functional safety separation flow.

When this global assignment is designated as OFF, the partition is considered as standard IP or as not
having a PARTITION_ENABLE_STRICT_PRESERVATION assignment at all. Logic that is not assigned to a
partition is considered as part of the top partition and treated as standard logic.

Note: Only partitions and I/O pins can be assigned to SIP.

A partition assigned to safety IP can contain safety logic only. If the parent partition is assigned to a safety
IP, then all the child partitions for this parent partition are considered as part of the safety IP. If you do
not explicitly specify a child partition as a safety IP, a critical warning notifies you that the child partition
is treated as part of a safety IP.

A design can contain several safety IPs. All the partitions containing logic that implements a single safety
IP function should belong with the same top-level parent partition.

You can also turn on the functional safety separation flow from the Design Partition Properties dialog
box. Click the Advanced tab and turn on Allow partition to be strictly preserved for safety.

When the functional safety separation flow is active, you can view which partitions in your design have
the Strict Preservation property turned on. The Design Partitions window displays a on or off value for
safety IP in your design (in the Strict Preservation column).

Related Information

• Design Partition Properties Dialog box online help
• Design Partitions Window online help

3-16 How to Turn On the Functional Safety Separation Flow
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_com_qid_design_partition.htm
http://quartushelp.altera.com/current/index.htm#comp/increment/comp_tab_qid_part_window_properties.htm
http://quartushelp.altera.com/current/index.htm#comp/increment/comp_com_qid_design_partition.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Preservation of Device Resources
The preservation of the partition’s netlist atoms and the atoms placement and routing, in the design
modification flow, is done by setting the netlist type to Post-fit with the Fitter preservation level set to
Placement and Routing Preserved.

Preservation of Placement in the Device with LogicLock
In order to fix the safety IP logic into specific areas of the device, you should define LogicLock regions. By
using preserved LogicLock regions, device placement is reserved for the safety IP to prevent standard logic
from being placed into the unused resources of the safety IP region. You establish a fixed size and origin
to ensure location preservation. You need to use LogicLock to ensure a valid safety IP POF mask is
generated when you turn on the functional safety separation flow. The POF comparison tool for
functional safety can check that the safety region is unchanged between compiles. A LogicLock region
assigned to a safety IP can only contain safety IP logic.

Assigning I/O Pins
You use a global assignment or the Design Partition Properties dialog box to specify that a pin is
assigned to a safety IP partition.

Use the following global assignment to assign a pin to a safety IP partition:

set_instance_assignment -name ENABLE_STRICT_PRESERVATION ON/OFF -to <hpath> -
section_id <region_name>

• <hpath> refers to an I/O pin (pad).
• <region_name> refers to the top-level safety IP partition name.

A value of ON indicates that the pin is a safety pin that should be preserved with the safety IP block. A
value of OFF indicates that the pin that connects to the safety IP, should be treated as a standard pin, and
is not preserved with the safety IP.

You also turn on strict preservation for I/O pins in the Design Partition Properties dialog box. Click the
Advanced tab and choose On for I/O pins that you want to preserve.

Note: All pins that connect to a safety IP partition must have an explicit assignment. The software reports
an error if a pin that connects to the safety IP partition does not have an assignment or if a pin does
not connect to the specified <region_name>.

If an IO_REG group contains a pin that is assigned to a safety IP partition, all of the pins in the IO_REG
group are reserved for the safety IP partition. All pins in the IO_REG group must be assigned to the same
safety IP partition, and none of the pins in the group can be assigned to standard signals.

General Guidelines for Implementation

• An internal clock source, such as a PLL, should be implemented in a safe partition.
• An I/O pin driving the external clock should be indicated as a safety pin.
• To export a safety IP containing several partitions, the top-level partition for the safety IP should be

exported. A safety IP containing several partitions is flattened and converted into a single partition
during export. This hierarchical safety IP is flattened to enure bit-level settings are preserved.

• Hard blocks implemented in a safe partition needs to stay with the safe partition.

QPS5V1
2015.11.02 Preservation of Device Resources 3-17

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reports for Safety IP
When you have the functional safety separation flow turned on, the Quartus Prime software displays
safety IP and standard IP information in the Fitter report.

Fitter Report
The Fitter report includes information for each safety IP and the respective partition and I/O usage. The
report contains the following information:

• Safety IP name defined as the name of the top-level safety IP partition
• Effective design flow for the safety IP
• Names of all partitions that belong to the safety IP
• Number of safety/standard inputs to the safety IP
• Number of safety/standard outputs to the safety IP
• LogicLock region names along with size and locations for the regions
• I/O pins used for the respective safety IP in your design
• Safety-related error messages

SIP Partial Bitstream Generation
The Programmer generates a bitstream file containing only the bits for a safety IP. This partial preserved
bitstream (.ppb) file is for the safety IP region mask. The command lines to generate the partial bitstream
file are the following:

• quartus_cpf --genppb safe1.psm design.sof safe1.rbf.ppb

• quartus_cpf -c safe1.psm safe1.rbf.ppb

The .ppb file is generated in two steps.

1. Generation of partial SOF.
2. Generation of .ppb file using the partial SOF.

The .psm file, .ppb file, and MD5 hash signature (.md5.sign) file created during partial bitstream
generation should be archived for use in future design modification flow compiles.

Exporting and Importing Your Safety IP

Safety IP Partition Export

After you have successfully compiled the safety IP(s) in the Quartus Prime software, save the safety IP
partition place and route information for use in any subsequent design modification flow. Saving the
partition information allows the safety IP to be imported to a clean Quartus Prime project where no
previous compilation results have been removed (even if the version of the Quartus Prime software being
used is newer than the Quartus Prime software version with which the safety IP was originally compiled).
Use the Design Partitions window to export the design partition. Verify that only the post-fit netlist and
export routing options are turned on when you generate the .qxp file for each safety IP. The .qxp files
should be archived along with the partial bitstream files for use in later design modification flow compiles.

Safety IP Partition Import

You can import a previously exported safety IP partition into your Quartus Prime project. There are two
use-cases for this.

3-18 Reports for Safety IP
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• (Optional) Import into the original project to ensure that any potential source code changes do not
trigger the design creation flow unintentionally.

• Import into a new or clean project where you want to use the design modification flow for the safety
IP. As the exported partition is independent of your Quartus Prime software version, you can import
the .qxp into a future Quartus Prime software release.

To import a previously exported design partition, use the Design Partitions window and import the .qxp.

Related Information

• Export Design Partition online help
• Import Design Partition online help

POF Comparison Tool for Verification
There is a separate safe/standard partitioning verification tool that is licensed to safety users. Along with
the .ppb file, a .md5.sign file is generated. The MD5 hash signature can be used for verification. For more
detailed verification, the POF comparison tool should be used. This POF comparison tool is available in
the Altera Functional Safety Data Package.

Deciding Which Design Blocks Should Be Design Partitions
The incremental compilation design flow requires more planning than flat compilations. For example,
you might have to structure your source code or design hierarchy to ensure that logic is grouped correctly
for optimization.

It is a common design practice to create modular or hierarchical designs in which you develop each
design entity separately, and then instantiate them in a higher-level entity, forming a complete design. The
Quartus Prime software does not automatically consider each design entity or instance to be a design
partition for incremental compilation; instead, you must designate one or more design hierarchies below
the top-level project as a design partition. Creating partitions might prevent the Compiler from
performing optimizations across partition boundaries. However, this allows for separate synthesis and
placement for each partition, making incremental compilation possible.

Partitions must have the same boundaries as hierarchical blocks in the design because a partition cannot
be a portion of the logic within a hierarchical entity. You can merge partitions that have the same
immediate parent partition to create a single partition that includes more than one hierarchical entity in
the design. When you declare a partition, every hierarchical instance within that partition becomes part of
the same partition. You can create new partitions for hierarchical instances within an existing partition, in
which case the instances within the new partition are no longer included in the higher-level partition, as
described in the following example.

In the figure below, a complete design is made up of instances A, B, C, D, E, F, and G. The shaded boxes
in Representation i indicate design partitions in a “tree” representation of the hierarchy. In Representa‐
tion ii, the lower-level instances are represented inside the higher-level instances, and the partitions are
illustrated with different colored shading. The top-level partition, called “Top”, automatically contains the
top-level entity in the design, and contains any logic not defined as part of another partition. The design
file for the top level may be just a wrapper for the hierarchical instances below it, or it may contain its own
logic. In this example, partition B contains the logic in instances B, D, and E. Entities F and G were first
identified as separate partitions, and then merged together to create a partition F-G. The partition for the
top-level entity A, called “Top”, includes the logic in one of its lower-level instances, C, because C was not
defined as part of any other partition.

QPS5V1
2015.11.02 POF Comparison Tool for Verification 3-19

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_db_qid_export_design_partition_settings.htm
http://quartushelp.altera.com/current/index.htm#comp/increment/comp_db_qid_import_design_partition.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-6: Partitions in a Hierarchical Design

Partition Top

Representation i

Representation ii

Partition B Merged Partition F-G

D

D

E

B

B C

A

A

F

C

E F

G

G

You can create partition assignments to any design instance. The instance can be defined in HDL or
schematic design, or come from a third-party synthesis tool as a VQM or EDIF netlist instance.

To take advantage of incremental compilation when source files change, create separate design files for
each partition. If you define two different entities as separate partitions but they are in the same design
file, you cannot maintain incremental compilation because the software would have to recompile both
partitions if you changed either entity in the design file. Similarly, if two partitions rely on the same lower-
level entity definition, changes in that lower-level affect both partitions.

The remainder of this section provides information to help you choose which design blocks you should
assign as partitions.

3-20 Deciding Which Design Blocks Should Be Design Partitions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Impact of Design Partitions on Design Optimization
The boundaries of your design partitions can impact the design’s quality of results. Creating partitions
might prevent the Compiler from performing logic optimizations across partition boundaries, which
allows the software to synthesize and place each partition separately in an incremental flow. Therefore,
consider partitioning guidelines to help reduce the effect of partition boundaries.

Whenever possible, register all inputs and outputs of each partition. This helps avoid any delay penalty on
signals that cross partition boundaries and keeps each register-to-register timing path within one partition
for optimization. In addition, minimize the number of paths that cross partition boundaries. If there are
timing-critical paths that cross partition boundaries, rework the partitions to avoid these inter-partition
paths. Including as many of the timing-critical connections as possible inside a partition allows you to
effectively apply optimizations to that partition to improve timing, while leaving the rest of the design
unchanged.

Avoid constant partition inputs and outputs. You can also merge two or more partitions to allow cross-
boundary optimizations for paths that cross between the partitions, as long as the partitions have the same
parent partition. Merging related logic from different hierarchy blocks into one partition can be useful if
you cannot change the design hierarchy to accommodate partition assignments.

If critical timing paths cross partition boundaries, you can perform timing budgeting and make timing
assignments to constrain the logic in each partition so that the entire timing path meets its requirements.
In addition, because each partition is optimized independently during synthesis, you may have to perform
resource allocation to ensure that each partition uses an appropriate number of device resources. If design
partitions are compiled in separate Quartus Prime projects, there may be conflicts related to global
routing resources for clock signals when the design is integrated into the top-level design. You can use the
Global Signal logic option to specify which clocks should use global or regional routing, use the
ALTCLK_CTRL IP core to instantiate a clock control block and connect it appropriately in both the
partitions being developed in separate Quartus Prime projects, or find the compiler-generated clock
control node in your design and make clock control location assignments in the Assignment Editor.

Turning On Supported Cross-boundary Optimizations
You can improve the optimizations performed between design partitions by turning on supported cross-
boundary optimizations. These optimizations are turned on a per partition basis and you can select the
optimizations as individual assignments. This allows the cross-boundary optimization feature to give you
more control over the optimizations that work best for your design. You can turn on the cross-boundary
optimizations for your design partitions on the Advanced tab of the Design Partition Properties dialog
box. Once you change the optimization settings, the Quartus Prime software recompiles your partition
from source automatically. Cross-boundary optimizations include the following: propagate constants,
propagate inversions on partition inputs, merge inputs fed by a common source, merge electrically
equivalent bidirectional pins, absorb internal paths, and remove logic connected to dangling outputs.

Cross-boundary optimizations are implemented top-down from the parent partition into the child
partition, but not vice-versa. Also, cross-boundary optimizations cannot be enabled for partitions that
allow multiple personas (partial reconfiguration partitions).

Related Information

• Design Partition Properties Dialog Box online help
• Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation

on page 14-1

QPS5V1
2015.11.02 Impact of Design Partitions on Design Optimization 3-21

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_tab_qid_part_window_properties.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Partition Assignments Compared to Physical Placement Assignments
Design partitions for incremental compilation are logical partitions, which is different from physical
placement assignments in the device floorplan. A logical design partition does not refer to a physical area
of the device and does not directly control the placement of instances. A logical design partition sets up a
virtual boundary between design hierarchies so that each is compiled separately, preventing logical
optimizations from occurring between them. When the software compiles the design source code, the
logic in each partition can be placed anywhere in the device unless you make additional placement
assignments.

If you preserve the compilation results using a Post-Fit netlist, it is not necessary for you to back-annotate
or make any location assignments for specific logic nodes. You should not use the incremental compila‐
tion and logic placement back-annotation features in the same Quartus Prime project. The incremental
compilation feature does not use placement “assignments” to preserve placement results; it simply reuses
the netlist database that includes the placement information.

You can assign design partitions to physical regions in the device floorplan using LogicLock region
assignments. In the Quartus Prime software, LogicLock regions are used to constrain blocks of a design to
a particular region of the device. Altera recommends using LogicLock regions for timing-critical design
blocks that will change in subsequent compilations, or to improve the quality of results and avoid
placement conflicts in some cases.

Related Information

• Creating a Design Floorplan With LogicLock Regions on page 3-46
• Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation

on page 14-1

Using Partitions With Third-Party Synthesis Tools
If you are using a third-party synthesis tool, set up your tool to create a separate VQM or EDIF netlist for
each hierarchical partition. In the Quartus Prime software, assign the top-level entity from each netlist to
be a design partition. The VQM or EDIF netlist file is treated as the source file for the partition in the
Quartus Prime software.

Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
The Synplify Pro and Synplify Premier software include the MultiPoint synthesis feature to perform
incremental synthesis for each design block assigned as a Compile Point in the user interface or a script.
The Precision RTL Plus software includes an incremental synthesis feature that performs block-based
synthesis based on Partition assignments in the source HDL code. These features provide automated
block-based incremental synthesis flows and create different output netlist files for each block when set up
for an Altera device.

Using incremental synthesis within your synthesis tool ensures that only those sections of a design that
have been updated are resynthesized when the design is compiled, reducing synthesis run time and
preserving the results for the unchanged blocks. You can change and resynthesize one section of a design
without affecting other sections of the design.

Related Information

• Synopsys Synplify Support documentation on page 18-1
• Mentor Graphics Precision Synthesis Support documentation on page 19-1

3-22 Design Partition Assignments Compared to Physical Placement Assignments
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Other Synthesis Tools
You can also partition your design and create different netlist files manually with the basic Synplify
software (non-Pro/Premier), the basic Precision RTL software (non-Plus), or any other supported
synthesis tool by creating a separate project or implementation for each partition, including the top level.
Set up each higher-level project to instantiate the lower-level VQM/EDIF netlists as black boxes. Synplify,
Precision, and most synthesis tools automatically treat a design block as a black box if the logic definition
is missing from the project. Each tool also includes options or attributes to specify that the design block
should be treated as a black box, which you can use to avoid warnings about the missing logic.

Assessing Partition Quality
The Quartus Prime software provides various tools to assess the quality of your assigned design partitions.
You can take advantage of these tools to assess your partition quality, and use the information to improve
your design or assignments as required to achieve the best results.

Partition Statistics Reports
After compilation, you can view statistics about design partitions in the Partition Merge Partition
Statistics report, and on the Statistics tab in the Design Partitions Properties dialog box.

The Partition Merge Partition Statistics report lists statistics about each partition. The statistics for each
partition (each row in the table) include the number of logic cells it contains, as well as the number of
input and output pins it contains, and how many are registered or unconnected.

You can also view post-compilation statistics about the resource usage and port connections for a
particular partition on the Statistics tab in the Design Partition Properties dialog box.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation on
page 14-1

Partition Timing Reports
You can generate a Partition Timing Overview report and a Partition Timing Details report by clicking
Report Partitions in the Tasks pane in the TimeQuest Timing Analyzer, or using the
report_partitions Tcl command.

The Partition Timing Overview report shows the total number of failing paths for each partition and the
worst-case slack for any path involving the partition.

The Partition Timing Details report shows the number of failing partition-to-partition paths and worst-
case slack for partition-to-partition paths, to provide a more detailed breakdown of where the critical
paths in the design are located with respect to design partitions.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows Altera’s
recommendations for creating design partitions and floorplan location assignments.

Recommendations are split into General Recommendations, Timing Recommendations, and Team-
Based Design Recommendations that apply to design flows in which partitions are compiled independ‐
ently in separate Quartus Prime projects before being integrated into the top-level design. Each
recommendation provides an explanation, describes the effect of the recommendation, and provides the
action required to make a suggested change. In some cases, there is a link to the appropriate Quartus
Prime settings page where you can make a suggested change to assignments or settings. For some items, if

QPS5V1
2015.11.02 Other Synthesis Tools 3-23

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

your design does not follow the recommendation, the Check Recommendations operation creates a table
that lists any nodes or paths in your design that could be improved. The relevant timing-independent
recommendations for the design are also listed in the Design Partitions window and the LogicLock
Regions window.

To verify that your design follows the recommendations, go to the Timing Independent Recommenda‐
tions page or the Timing Dependent Recommendations page, and then click Check Recommendations.
For large designs, these operations can take a few minutes.

After you perform a check operation, symbols appear next to each recommendation to indicate whether
the design or project setting follows the recommendations, or if some or all of the design or project
settings do not follow the recommendations. Following these recommendations is not mandatory to use
the incremental compilation feature. The recommendations are most important to ensure good results for
timing-critical partitions.

For some items in the Advisor, if your design does not follow the recommendation, the Check
Recommendations operation lists any parts of the design that could be improved. For example, if not all
of the partition I/O ports follow the Register All Non-Global Ports recommendation, the advisor displays
a list of unregistered ports with the partition name and the node name associated with the port.

When the advisor provides a list of nodes, you can right-click a node, and then click Locate to cross-probe
to other Quartus Prime features, such as the RTL Viewer, Chip Planner, or the design source code in the
text editor.

Note: Opening a new TimeQuest report resets the Incremental Compilation Advisor results, so you must
rerun the Check Recommendations process.

Specifying the Level of Results Preservation for Subsequent
Compilations

The netlist type of each design partition allows you to specify the level of results preservation. The netlist
type determines which type of netlist or source file the Partition Merge stage uses in the next incremental
compilation.

When you choose to preserve a post-fit compilation netlist, the default level of Fitter preservation is the
highest degree of placement and routing preservation supported by the device family. The advanced Fitter
Preservation Level setting allows you to specify the amount of information that you want to preserve from
the post-fit netlist file.

Netlist Type for Design Partitions
Before starting a new compilation, ensure that the appropriate netlist type is set for each partition to
preserve the desired level of compilation results. The table below describes the settings for the netlist type,
explains the behavior of the Quartus Prime software for each setting, and provides guidance on when to
use each setting.

3-24 Specifying the Level of Results Preservation for Subsequent Compilations
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3-2: Partition Netlist Type Settings

Netlist Type Quartus Prime Software Behavior for Partition During Compilation

Source File Always compiles the partition using the associated design source file(s). (2)

Use this netlist type to recompile a partition from the source code using new
synthesis or Fitter settings.

Post-Synthesis Preserves post-synthesis results for the partition and reuses the post-synthesis
netlist when the following conditions are true:

• A post-synthesis netlist is available from a previous synthesis.
• No change that initiates an automatic resynthesis has been made to the

partition since the previous synthesis. (3)

Compiles the partition from the source files if resynthesis is initiated or if a
post-synthesis netlist is not available. (2)

Use this netlist type to preserve the synthesis results unless you make design
changes, but allow the Fitter to refit the partition using any new Fitter
settings.

Post-Fit Preserves post-fit results for the partition and reuses the post-fit netlist when
the following conditions are true:

• A post-fit netlist is available from a previous fitting.
• No change that initiates an automatic resynthesis has been made to the

partition since the previous fitting. (3)

When a post-fit netlist is not available, the software reuses the post-synthesis
netlist if it is available, or otherwise compiles from the source files. Compiles
the partition from the source files if resynthesis is initiated. (2)

The Fitter Preservation Level specifies what level of information is preserved
from the post-fit netlist.

Assignment changes, such as Fitter optimization settings, do not cause a
partition set to Post-Fit to recompile.

(2) If you use Rapid Recompile, the Quartus Prime software might not recompile the entire partition from
the source code as described in this table; it will reuse compatible results if there have been only small
changes to the logic in the partition.

(3) You can turn on the Ignore changes in source files and strictly use the specified netlist, if available
option on the Advanced tab in the Design Partitions Properties dialog box to specify whether the
Compiler should ignore source file changes when deciding whether to recompile the partition.

QPS5V1
2015.11.02 Netlist Type for Design Partitions 3-25

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Netlist Type Quartus Prime Software Behavior for Partition During Compilation

Empty Uses an empty placeholder netlist for the partition. The partition's port
interface information is required during Analysis and Synthesis to connect the
partition correctly to other logic and partitions in the design, and peripheral
nodes in the source file including pins and PLLs are preserved to help connect
the empty partition to the rest of the design and preserve timing of any lower-
level non-empty partitions within empty partitions. If the source file is not
available, you can create a wrapper file that defines the design block and
specifies the input, output, and bidirectional ports. In Verilog HDL: a module
declaration, and in VHDL: an entity and architecture declaration.

You can use this netlist type to skip the compilation of a partition that is
incomplete or missing from the top-level design. You can also set an empty
partition if you want to compile only some partitions in the design, such as to
optimize the placement of a timing-critical block such as an IP core before
incorporating other design logic, or if the compilation time is large for one
partition and you want to exclude it.

If the project database includes a previously generated post-synthesis or post-
fit netlist for an unchanged Empty partition, you can set the netlist type from
Empty directly to Post-Synthesis or Post-Fit and the software reuses the
previous netlist information without recompiling from the source files.

Related Information

• What Changes Initiate the Automatic Resynthesis of a Partition? on page 3-28
• Fitter Preservation Level for Design Partitions on page 3-26
• Incremental Capabilities Available When A Design Has No Partitions on page 3-2

Fitter Preservation Level for Design Partitions
The default Fitter Preservation Level for partitions with a Post-Fit netlist type is the highest level of
preservation available for the target device family and provides the most compilation time reduction.

You can change the advanced Fitter Preservation Level setting to provide more flexibility in the Fitter
during placement and routing. You can set the Fitter Preservation Level on the Advanced tab in the
Design Partitions Properties dialog box.

3-26 Fitter Preservation Level for Design Partitions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 3-3: Fitter Preservation Level Settings

Fitter Preservation Level Quartus Prime Behavior for Partition During Compilation

Placement and Routing Preserves the design partition’s netlist atoms and
their placement and routing.

This setting reduces compilation times compared to
Placement only, but provides less flexibility to the
router to make changes if there are changes in other
parts of the design.

By default, the Fitter preserves the usage of high-
speed programmable power tiles contained within
the selected partition, for devices that support high-
speed and low-power tiles. You can turn off the
Preserve high-speed tiles when preserving
placement and routing option on the Advanced
tab in the Design Partitions Properties dialog box.

Placement Preserves the netlist atoms and their placement in
the design partition. Reroutes the design partition
and does not preserve high-speed power tile usage.

Netlist Only Preserves the netlist atoms of the design partition,
but replaces and reroutes the design partition. A
post-fit netlist with the atoms preserved can be
different than the Post-Synthesis netlist because it
contains Fitter optimizations; for example, Physical
Synthesis changes made during a previous Fitting.

You can use this setting to:

• Preserve Fitter optimizations but allow the
software to perform placement and routing
again.

• Reapply certain Fitter optimizations that would
otherwise be impossible when the placement is
locked down.

• Resolve resource conflicts between two imported
partitions.

Where Are the Netlist Databases Saved?
The incremental compilation database folder (\incremental_db) includes all the netlist information from
previous compilations. To avoid unnecessary recompilations, these database files must not be altered or
deleted.

If you archive or reproduce the project in another location, you can use a Quartus Prime Archive File
(.qar). Include the incremental compilation database files to preserve post-synthesis or post-fit compila‐
tion results.

QPS5V1
2015.11.02 Where Are the Netlist Databases Saved? 3-27

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To manually create a project archive that preserves compilation results without keeping the incremental
compilation database, you can keep all source and settings files, and create and save a Quartus Prime
Settings File (.qxp) for each partition in the design that will be integrated into the top-level design.

Related Information

• Using Incremental Compilation With Quartus Prime Archive Files on page 3-48
• Exporting Design Partitions from Separate Quartus Prime Projects on page 3-30

Deleting Netlists
You can choose to abandon all levels of results preservation and remove all netlists that exist for a
particular partition with the Delete Netlists command in the Design Partitions window. When you delete
netlists for a partition, the partition is compiled using the associated design source file(s) in the next
compilation. Resetting the netlist type for a partition to Source would have the same effect, though the
netlists would not be permanently deleted and would be available for use in subsequent compilations. For
an imported partition, the Delete Netlists command also optionally allows you to remove the
imported .qxp.

What Changes Initiate the Automatic Resynthesis of a Partition?
A partition is synthesized from its source files if there is no post-synthesis netlist available from a previous
synthesis, or if the netlist type is set to Source File. Additionally, certain changes to a partition initiate an
automatic resynthesis of the partition when the netlist type is Post Synthesis or Post-Fit. The software
resynthesizes the partition in these cases to ensure that the design description matches the
post-place-and-route programming files.

The following list explains the changes that initiate a partition’s automatic resynthesis when the netlist
type is set to Post-Synthesis or Post-Fit:

• The device family setting has changed.
• Any dependent source design file has changed.
• The partition boundary was changed by an addition, removal, or change to the port boundaries of a

partition (for example, a new partition has been defined for a lower-level instance within this
partition).

• A dependent source file was compiled into a different library (so it has a different -library
argument).

• A dependent source file was added or removed; that is, the partition depends on a different set of
source files.

• The partition’s root instance has a different entity binding. In VHDL, an instance may be bound to a
specific entity and architecture. If the target entity or architecture changes, it triggers resynthesis.

• The partition has different parameters on its root hierarchy or on an internal AHDL hierarchy (AHDL
automatically inherits parameters from its parent hierarchies). This occurs if you modified the
parameters on the hierarchy directly, or if you modified them indirectly by changing the parameters in
a parent design hierarchy.

• You have moved the project and compiled database between a Windows and Linux system. Due to the
differences in the way new line feeds are handled between the operating systems, the internal
checksum algorithm may detect a design file change in this case.

3-28 Deleting Netlists
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The software reuses the post-synthesis results but re-fits the design if you change the device setting within
the same device family. The software reuses the post-fitting netlist if you change only the device speed
grade.

Synthesis and Fitter assignments, such as optimization settings, timing assignments, or Fitter location
assignments including pin assignments, do not trigger automatic recompilation in the incremental
compilation flow. To recompile a partition with new assignments, change the netlist type for that partition
to one of the following:

• Source File to recompile with all new settings
• Post-Synthesis to recompile using existing synthesis results but new Fitter settings
• Post-Fit with the Fitter Preservation Level set to Placement to rerun routing using existing

placement results, but new routing settings (such as delay chain settings)

You can use the LogicLock Origin location assignment to change or fine-tune the previous Fitter results
from a Post-Fit netlist.

Related Information
Changing Partition Placement with LogicLock Changes on page 3-47

Resynthesis Due to Source Code Changes
The Quartus Prime software uses an internal checksum algorithm to determine whether the contents of a
source file have changed. Source files are the design description files used to create the design, and include
Memory Initialization Files (.mif) as well as .qxp from exported partitions. When design files in a
partition have dependencies on other files, changing one file may initiate an automatic recompilation of
another file. The Partition Dependent Files table in the Analysis and Synthesis report lists the design files
that contribute to each design partition. You can use this table to determine which partitions are
recompiled when a specific file is changed.

For example, if a design has file A.v that contains entity A, B.v that contains entity B, and C.v that
contains entity C, then the Partition Dependent Files table for the partition containing entity A lists file
A.v, the table for the partition containing entity B lists file B.v, and the table for the partition containing
entity C lists file C.v. Any dependencies are transitive, so if file A.v depends on B.v, and B.v depends on
C.v, the entities in file A.v depend on files B.v and C.v. In this case, files B.v and C.v are listed in the
report table as dependent files for the partition containing entity A.

Note: If you use Rapid Recompile, the Quartus Prime software might not recompile the entire partition
from the source code as described in this section; it will reuse compatible results if there have been
only small changes to the logic in the partition.

If you define module parameters in a higher-level module, the Quartus Prime software checks the
parameter values when determining which partitions require resynthesis. If you change a parameter in a
higher-level module that affects a lower-level module, the lower-level module is resynthesized. Parameter
dependencies are tracked separately from source file dependencies; therefore, parameter definitions are
not listed in the Partition Dependent Files list.

If a design contains common files, such as an includes.v file that is referenced in each entity by the
command include includes.v, all partitions are dependent on this file. A change to includes.v causes
the entire design to be recompiled. The VHDL statement use work.all also typically results in unneces‐
sary recompilations, because it makes all entities in the work library visible in the current entity, which
results in the current entity being dependent on all other entities in the design.

QPS5V1
2015.11.02 Resynthesis Due to Source Code Changes 3-29

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To avoid this type of problem, ensure that files common to all entities, such as a common include file,
contain only the set of information that is truly common to all entities. Remove use work.all statements
in your VHDL file or replace them by including only the specific design units needed for each entity.

Related Information
Incremental Capabilities Available When A Design Has No Partitions on page 3-2

Forcing Use of the Compilation Netlist When a Partition has Changed
Forcing the use of a post-compilation netlist when the contents of a source file has changed is
recommended only for advanced users who understand when a partition must be recompiled. You might
use this assignment, for example, if you are making source code changes but do not want to recompile the
partition until you finish debugging a different partition, or if you are adding simple comments to the
source file but you know the design logic itself is not being changed and you want to keep the previous
compilation results.

To force the Fitter to use a previously generated netlist even when there are changes to the source files,
right-click the partition in the Design Partitions window and then click Design Partition Properties. On
the Advanced tab, turn on the Ignore changes in source files and strictly use the specified netlist, if
available option.

Turning on this option can result in the generation of a functionally incorrect netlist when source design
files change, because source file updates will not be recompiled. Use caution when setting this option.

Exporting Design Partitions from Separate Quartus Prime Projects
Partitions that are developed by other designers or team members in the same company or third-party IP
providers can be exported as design partitions to a Quartus Prime Exported Partition File (.qxp), and then
integrated into a top-level design. A .qxp is a binary file that contains compilation results describing the
exported design partition and includes a post-synthesis netlist, a post-fit netlist, or both, and a set of
assignments, sometimes including LogicLock placement constraints. The .qxp does not contain the source
design files from the original Quartus Prime project.

To enable team-based development and third-party IP delivery, you can design and optimize partitions in
separate copies of the top-level Quartus Prime project framework, or even in isolation. If the designers
have access to the top-level project framework through a source control system, they can access project
files as read-only and develop their partition within the source control system. If designers do not have
access to a source control system, the project lead can provide the designer with a copy of the top-level
project framework to use as they develop their partitions. The project lead also has the option to generate
design partition scripts to manage resource and timing budgets in the top-level design when partitions are
developed outside the top-level project framework.

The exported compilation results of completed partitions are given to the project lead, preferably using a
source control system, who is then responsible for integrating them into the top-level design to obtain a
fully functional design. This type of design flow is required only if partition designers want to optimize
their placement and routing independently, and pass their design to the project lead to reuse placement
and routing results. Otherwise, a project lead can integrate source HDL from several designers in a single
Quartus Prime project, and use the standard incremental compilation flow described previously.

The figure below illustrates the team-based incremental compilation design flow using a methodology in
which partitions are compiled in separate Quartus Prime projects before being integrated into the top-
level design. This flow can be used when partitions are developed by other designers or IP providers.

3-30 Forcing Use of the Compilation Netlist When a Partition has Changed
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-7: Team-Based Incremental Compilation Design Flow

Repeat as Needed
During Design, Verification,
& Debugging Stages

Design, Compile, and
Optimize Partition(s)

Export Lower-Level Partition(s)

Integrate Partition(s)
into Top-Level Design

Perform Incremental Compilation
in Top-Level Design

Provide Project Framework or
Constraints to Designers

Prepare Top-Level Design for
 Incremental Compilation

Note: You cannot export or import partitions that have been merged.

Related Information

• Deciding Which Design Blocks Should Be Design Partitions on page 3-19
• Incremental Compilation Restrictions on page 3-48

Preparing the Top-Level Design
To prepare your design to incorporate exported partitions, first create the top-level project framework of
the design to define the hierarchy for the subdesigns that will be implemented by other team members,
designers, or IP providers.

In the top-level design, create project-wide settings, for example, device selection, global assignments for
clocks and device I/O ports, and any global signal constraints to specify which signals can use global
routing resources.

QPS5V1
2015.11.02 Preparing the Top-Level Design 3-31

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Next, create the appropriate design partition assignments and set the netlist type for each design partition
that will be developed in a separate Quartus Prime project to Empty. It may be necessary to constrain the
location of partitions with LogicLock region assignments if they are timing-critical and are expected to
change in future compilations, or if the designer or IP provider wants to place and route their design
partition independently, to avoid location conflicts.

Finally, provide the top-level project framework to the partition designers, preferably through a source
control system.

Related Information
Creating a Design Floorplan With LogicLock Regions on page 3-46

Empty Partitions
You can use a design flow in which some partitions are set to an Empty netlist type to develop pieces of
the design separately, and then integrate them into the top-level design at a later time. In a team-based
design environment, you can set the netlist type to Empty for partitions in your design that will be
developed by other designers or IP providers. The Empty setting directs the Compiler to skip the
compilation of a partition and use an empty placeholder netlist for the partition.

When a netlist type is set to Empty, peripheral nodes including pins and PLLs are preserved and all other
logic is removed. The peripheral nodes including pins help connect the empty partition to the design, and
the PLLs help preserve timing of non-empty partitions within empty partitions.

When you set a design partition to Empty, a design file is required during Analysis and Synthesis to
specify the port interface information so that it can connect the partition correctly to other logic and
partitions in the design. If a partition is exported from another project, the .qxp contains this information.
If there is no .qxp or design file to represent the design entity, you must create a wrapper file that defines
the design block and specifies the input, output, and bidirectional ports. For example, in Verilog HDL,
you should include a module declaration, and in VHDL, you should include an entity and architecture
declaration.

Project Management— Making the Top-Level Design Available to Other Designers
In team-based incremental compilation flows, whenever possible, all designers or IP providers should
work within the same top-level project framework. Using the same project framework among team
members ensures that designers have the settings and constraints needed for their partition, and makes
timing closure easier when integrating the partitions into the top-level design. If other designers do not
have access to the top-level project framework, the Quartus Prime software provides tools for passing
project information to partition designers.

Distributing the Top-Level Quartus Prime Project
There are several methods that the project lead can use to distribute the “skeleton” or top-level project
framework to other partition designers or IP providers.

3-32 Empty Partitions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If partition designers have access to the top-level project framework, the project will already include all
the settings and constraints needed for the design. This framework should include PLLs and other
interface logic if this information is important to optimize partitions.

• If designers are part of the same design environment, they can check out the required project files
from the same source control system. This is the recommended way to share a set of project files.

• Otherwise, the project lead can provide a copy of the top-level project framework so that each
design develops their partition within the same project framework.

• If a partition designer does not have access to the top-level project framework, the project lead can give
the partition designer a Tcl script or other documentation to create the separate Quartus Prime project
and all the assignments from the top-level design.

If the partition designers provide the project lead with a post-synthesis .qxp and fitting is performed in
the top-level design, integrating the design partitions should be quite easy. If you plan to develop a
partition in a separate Quartus Prime project and integrate the optimized post-fitting results into the top-
level design, use the following guidelines to improve the integration process:

• Ensure that a LogicLock region constrains the partition placement and uses only the resources
allocated by the project lead.

• Ensure that you know which clocks should be allocated to global routing resources so that there are no
resource conflicts in the top-level design.

• Set the Global Signal assignment to On for the high fan-out signals that should be routed on global
routing lines.

• To avoid other signals being placed on global routing lines, turn off Auto Global Clock and Auto
Global Register Controls under More Settings on the Fitter page in the Settings dialog box.
Alternatively, you can set the Global Signal assignment to Off for signals that should not be placed
on global routing lines.

Placement for LABs depends on whether the inputs to the logic cells within the LAB use a global
clock. You may encounter problems if signals do not use global lines in the partition, but use global
routing in the top-level design.

• Use the Virtual Pin assignment to indicate pins of a partition that do not drive pins in the top-level
design. This is critical when a partition has more output ports than the number of pins available in the
target device. Using virtual pins also helps optimize cross-partition paths for a complete design by
enabling you to provide more information about the partition ports, such as location and timing
assignments.

• When partitions are compiled independently without any information about each other, you might
need to provide more information about the timing paths that may be affected by other partitions in
the top-level design. You can apply location assignments for each pin to indicate the port location after
incorporation in the top-level design. You can also apply timing assignments to the I/O ports of the
partition to perform timing budgeting.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation on
page 14-1

Generating Design Partition Scripts
If IP providers or designers on a team want to optimize their design blocks independently and do not have
access to a shared project framework, the project lead must perform some or all of the following tasks to
ensure successful integration of the design blocks:

QPS5V1
2015.11.02 Generating Design Partition Scripts 3-33

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Determine which assignments should be propagated from the top-level design to the partitions. This
requires detailed knowledge of which assignments are required to set up low-level designs.

• Communicate the top-level assignments to the partitions. This requires detailed knowledge of Tcl or
other scripting languages to efficiently communicate project constraints.

• Determine appropriate timing and location assignments that help overcome the limitations of team-
based design. This requires examination of the logic in the partitions to determine appropriate timing
constraints.

• Perform final timing closure and resource conflict avoidance in the top-level design. Because the
partitions have no information about each other, meeting constraints at the lower levels does not
guarantee they are met when integrated at the top-level. It then becomes the project lead’s responsi‐
bility to resolve the issues, even though information about the partition implementation may not be
available.

Design partition scripts automate the process of transferring the top-level project framework to partition
designers in a flow where each design block is developed in separate Quartus Prime projects before being
integrated into the top-level design. If the project lead cannot provide each designer with a copy of the
top-level project framework, the Quartus Prime software provides an interface for managing resources
and timing budgets in the top-level design. Design partition scripts make it easier for partition designers
to implement the instructions from the project lead, and avoid conflicts between projects when
integrating the partitions into the top-level design. This flow also helps to reduce the need to further
optimize the designs after integration.

You can use options in the Generate Design Partition Scripts dialog box to choose which types of
assignments you want to pass down and create in the partitions being developed in separate Quartus
Prime projects.

Related Information

• Enabling Designers on a Team to Optimize Independently on page 3-41
• Generate Design Partition Scripts Dialog Box online help

Exporting Partitions
When partition designers achieve the design requirements in their separate Quartus Prime projects, each
designer can export their design as a partition so it can be integrated into the top-level design by the
project lead. The Export Design Partition dialog box, available from the Project menu, allows designers
to export a design partition to a Quartus Prime Exported Partition File (.qxp) with a post-synthesis netlist,
a post-fit netlist, or both. The project lead then adds the .qxp to the top-level design to integrate the
partition.

A designer developing a timing-critical partition or who wants to optimize their partition on their own
would opt to export their completed partition with a post-fit netlist, allowing for the partition to more
reliably meet timing requirements after integration. In this case, you must ensure that resources are
allocated appropriately to avoid conflicts. If the placement and routing optimization can be performed in
the top-level design, exporting a post-synthesis netlist allows the most flexibility in the top-level design
and avoids potential placement or routing conflicts with other partitions.

When designing the partition logic to be exported into another project, you can add logic around the
design block to be exported as a design partition. You can instantiate additional design components for
the Quartus Prime project so that it matches the top-level design environment, especially in cases where
you do not have access to the full top-level design project. For example, you can include a top-level PLL in
the project, outside of the partition to be exported, so that you can optimize the design with information

3-34 Exporting Partitions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_db_generate_bottom-up_scripts.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

about the frequency multipliers, phase shifts, compensation delays, and any other PLL parameters. The
software then captures timing and resource requirements more accurately while ensuring that the timing
analysis in the partition is complete and accurate. You can export the partition for the top-level design
without any auxiliary components that are instantiated outside the partition being exported.

If your design team uses makefiles and design partition scripts, the project lead can use the make
command with the master_makefile command created by the scripts to export the partitions and
create .qxp files. When a partition has been compiled and is ready to be integrated into the top-level
design, you can export the partition with option on the Export Design Partition dialog box, available
from the Project menu.

Viewing the Contents of a Quartus Prime Exported Partition File (.qxp)
The QXP report allows you to view a summary of the contents in a .qxp when you open the file in the
Quartus Prime software. The .qxp is a binary file that contains compilation results so the file cannot be
read in a text editor. The QXP report opens in the main Quartus Prime window and contains summary
information including a list of the I/O ports, resource usage summary, and a list of the assignments used
for the exported partition.

Integrating Partitions into the Top-Level Design
To integrate a partition developed in a separate Quartus Prime project into the top-level design, you can
simply add the .qxp as a source file in your top-level design (just like a Verilog or VHDL source file). You
can also use the Import Design Partition dialog box to import the partition.

The .qxp contains the design block exported from the partition and has the same name as the partition.
When you instantiate the design block into a top-level design and include the .qxp as a source file, the
software adds the exported netlist to the database for the top-level design. The .qxp port names are case
sensitive if the original HDL of the partition was case sensitive.

When you use a .qxp as a source file in this way, you can choose whether you want the .qxp to be a
partition in the top-level design. If you do not designate the .qxp instance as a partition, the software
reuses just the post-synthesis compilation results from the .qxp, removes unconnected ports and unused
logic just like a regular source file, and then performs placement and routing.

If you assigned the .qxp instance as a partition, you can set the netlist type in the Design Partitions
Window to choose the level of results to preserve from the .qxp. To preserve the placement and routing
results from the exported partition, set the netlist type to Post-Fit for the .qxp partition in the top-level
design. If you assign the instance as a design partition, the partition boundary is preserved.

Related Information
Impact of Design Partitions on Design Optimization on page 3-21

Integrating Assignments from the .qxp
The Quartus Prime software filters assignments from .qxp files to include appropriate assignments in the
top-level design. The assignments in the .qxp are treated like assignments made in an HDL source file,
and are not listed in the Quartus Prime Settings File (.qsf) for the top-level design. Most assignments from
the .qxp can be overridden by assignments in the top-level design.

QPS5V1
2015.11.02 Viewing the Contents of a Quartus Prime Exported Partition File (.qxp) 3-35

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Partition Assignments Within the Exported Partition
Design partition assignments defined within a separate Quartus Prime project are not added to the top-
level design. All logic under the exported partition in the project hierarchy is treated as single instance in
the .qxp.

Synopsys Design Constraint Files for the Quartus Prime TimeQuest Timing Analyzer
Timing assignments made for the Quartus Prime TimeQuest analyzer in a Synopsys Design Constraint
File (.sdc) in the lower-level partition project are not added to the top-level design. Ensure that the top-
level design includes all of the timing requirements for the entire project.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation on
page 14-1

Global Assignments
The project lead should make all global project-wide assignments in the top-level design. Global
assignments from the exported partition's project are not added to the top-level design. When it is
possible for a particular constraint, the global assignment is converted to an instance-specific assignment
for the exported design partition.

LogicLock Region Assignments
The project lead typically creates LogicLock region assignments in the top-level design for any lower-level
partition designs where designer or IP providers plan to export post-fit information to be used in the top-
level design, to help avoid placement conflicts between partitions. When you use the .qxp as a source file,
LogicLock constraints from the exported partition are applied in the top-level design, but will not appear
in your .qsf file or LogicLock Regions window for you to view or edit. The LogicLock region itself is not
required to constrain the partition placement in the top-level design if the netlist type is set to Post-Fit,
because the netlist contains all the placement information.

Integrating Encrypted IP Cores from .qxp Files
Proper license information is required to compile encrypted IP cores. If an IP core is exported as a .qxp
from another Quartus Prime project, the top-level designer instantiating the .qxp must have the correct
license. The software requires a full license to generate an unrestricted programming file. If you do not
have a license, but the IP in the .qxp was compiled with OpenCore Plus hardware evaluation support, you
can generate an evaluation programming file without a license. If the IP supports OpenCore simulation
only, you can fully compile the design and generate a simulation netlist, but you cannot create
programming files unless you have a full license.

Advanced Importing Options
You can use advanced options in the Import Design Partition dialog box to integrate a partition
developed in a separate Quartus Prime project into the top-level design. The import process adds more
control than using the .qxp as a source file, and is useful only in the following circumstances:

• If you want LogicLock regions in your top-level design (.qsf)—If you have regions in your partitions
that are not also in the top-level design, the regions will be added to your .qsf during the import
process.

• If you want different settings or placement for different instantiations of the same entity—You can
control the setting import process with the advanced import options, and specify different settings for
different instances of the same .qxp design block.

3-36 Design Partition Assignments Within the Exported Partition
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you use the Import Design Partition dialog box to integrate a partition into the top-level design,
the import process sets the partition’s netlist type to Imported in the Design Partitions window.

After you compile the entire design, if you make changes to the place-and-route results (such as
movement of an imported LogicLock region), use the Post-Fit netlist type on subsequent compilations.
To discard an imported netlist and recompile from source code, you can compile the partition with the
netlist type set to Source File and be sure to include the relevant source code in the top-level design. The
import process sets the partition’s Fitter Preservation Level to the setting with the highest degree of
preservation supported by the imported netlist. For example, if a post-fit netlist is imported with
placement information, the Fitter Preservation Level is set to Placement, but you can change it to the
Netlist Only value.

When you import a partition from a .qxp, the .qxp itself is not part of the top-level design because the
netlists from the file have been imported into the project database. Therefore if a new version of a .qxp is
exported, the top-level designer must perform another import of the .qxp.

When you import a partition into a top-level design with the Import Design Partition dialog box, the
software imports relevant assignments from the partition into the top-level design. If required, you can
change the way some assignments are imported, as described in the following subsections.

Related Information

• Netlist Type for Design Partitions on page 3-24
• Fitter Preservation Level for Design Partitions on page 3-26

Importing LogicLock Assignments
LogicLock regions are set to a fixed size when imported. If you instantiate multiple instances of a
subdesign in the top-level design, the imported LogicLock regions are set to a Floating location.
Otherwise, they are set to a Fixed location. You can change the location of LogicLock regions after they
are imported, or change them to a Floating location to allow the software to place each region but keep the
relative locations of nodes within the region wherever possible. To preserve changes made to a partition
after compilation, use the Post-Fit netlist type.

The LogicLock Member State assignment is set to Locked to signify that it is a preserved region.

LogicLock back-annotation and node location data is not imported because the .qxp contains all of the
relevant placement information. Altera strongly recommends that you do not add to or delete members
from an imported LogicLock region.

Related Information
Changing Partition Placement with LogicLock Changes on page 3-47

Advanced Import Settings
The Advanced Import Settings dialog box allows you to disable assignment import and specify
additional options that control how assignments and regions are integrated when importing a partition
into a top-level design, including how to resolve assignment conflicts.

Related Information
Advanced Import Settings Dialog Box online help

QPS5V1
2015.11.02 Importing LogicLock Assignments 3-37

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_db_qid_advanced_import_settings.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Team-Based Design Optimization and Third-Party IP Delivery Scenarios

Using an Exported Partition to Send to a Design Without Including Source Files
Scenario background: A designer wants to produce a design block and needs to send out their design, but
to preserve their IP, they prefer to send a synthesized netlist instead of providing the HDL source code to
the recipient. You can use this flow to implement a black box.

Use this flow to package a full design as a single source file to send to an end customer or another design
location.

As the sender in this scenario perform the following steps to export a design block:

1. Provide the device family name to the recipient. If you send placement information with the
synthesized netlist, also provide the exact device selection so they can set up their project to match.

2. Create a black box wrapper file that defines the port interface for the design block and provide it to the
recipient for instantiating the block as an empty partition in the top-level design.

3. Create a Quartus Prime project for the design block, and complete the design.
4. Export the level of hierarchy into a single .qxp. Following a successful compilation of the project, you

can generate a .qxp from the GUI, the command-line, or with Tcl commands, as described in the
following:

• If you are using the Quartus Prime GUI, use the Export Design Partition dialog box.
• If you are using command-line executables, run quartus_cdb with the --incremental_compila-

tion_export option.
• If you are using Tcl commands, use the following command: execute_flow -

incremental_compilation_export.
5. Select the option to include just the Post-synthesis netlist if you do not have to send placement

information. If the recipient wants to reproduce your exact Fitter results, you can select the Post-
fitting netlist option, and optionally enable Export routing.

6. If a partition contains sub-partitions, then the sub-partitions are automatically flattened and merged
into the partition netlist before exporting. You can change this behavior and preserve the sub-partition
hierarchy by turning off the Flatten sub-partitions option on the Export Design Partition dialog box.
Optionally, you can use the -dont_flatten sub-option for the export_partition Tcl command.

7. Provide the .qxp to the recipient. Note that you do not have to send any of your design source code.

As the recipient in this example, first create a Quartus Prime project for your top-level design and ensure
that your project targets the same device (or at least the same device family if the .qxp does not include
placement information), as specified by the IP designer sending the design block. Instantiate the design
block using the port information provided, and then incorporate the design block into a top-level design.

Add the .qxp from the IP designer as a source file in your Quartus Prime project to replace any empty
wrapper file. If you want to use just the post-synthesis information, you can choose whether you want the
file to be a partition in the top-level design. To use the post-fit information from the .qxp, assign the
instance as a design partition and set the netlist type to Post-Fit.

Related Information

• Creating Design Partitions on page 3-8
• Netlist Type for Design Partitions on page 3-24

3-38 Team-Based Design Optimization and Third-Party IP Delivery Scenarios
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
Scenario background: An IP provider wants to produce and sell an IP core for a component to be used in
higher-level systems. The IP provider wants to optimize the placement of their block for maximum
performance in a specific Altera device and then deliver the placement information to their end customer.
To preserve their IP, they also prefer to send a compiled netlist instead of providing the HDL source code
to their customer.

Use this design flow to create a precompiled IP block (sometimes known as a hard-wired macro) that can
be instantiated in a top-level design. This flow provides the ability to export a design block with
post-synthesis or placement (and, optionally, routing) information and to import any number of copies of
this pre-compiled block into another design.

The customer first specifies which Altera device is being used for this project and provides the design
specifications.

As the IP provider in this example, perform the following steps to export a preplaced IP core (or hard
macro):

1. Create a black box wrapper file that defines the port interface for the IP core and provide the file to the
customer to instantiate as an empty partition in the top-level design.

2. Create a Quartus Prime project for the IP core.
3. Create a LogicLock region for the design hierarchy to be exported.

Using a LogicLock region for the IP core allows the customer to create an empty placeholder region to
reserve space for the IP in the design floorplan and ensures that there are no conflicts with the top-
level design logic. Reserved space also helps ensure the IP core does not affect the timing performance
of other logic in the top-level design. Additionally, with a LogicLock region, you can preserve
placement either absolutely or relative to the origin of the associated region. This is important when
a .qxp is imported for multiple partition hierarchies in the same project, because in this case, the
location of at least one instance in the top-level design does not match the location used by the IP
provider.

4. If required, add any logic (such as PLLs or other logic defined in the customer’s top-level design)
around the design hierarchy to be exported. If you do so, create a design partition for the design
hierarchy that will exported as an IP core.

5. Optimize the design and close timing to meet the design specifications.
6. Export the level of hierarchy for the IP core into a single .qxp.
7. Provide the .qxp to the customer. Note that you do not have to send any of your design source code to

the customer; the design netlist and placement and routing information is contained within the .qxp.

Related Information

• Creating Design Partitions on page 3-53
• Netlist Type for Design Partitions on page 3-24
• Changing Partition Placement with LogicLock Changes on page 3-47

QPS5V1
2015.11.02 Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse 3-39

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Incorporate IP Core
As the customer in this example, incorporate the IP core in your design by performing the following steps:

1. Create a Quartus Prime project for the top-level design that targets the same device and instantiate a
copy or multiple copies of the IP core. Use a black box wrapper file to define the port interface of the
IP core.

2. Perform Analysis and Elaboration to identify the design hierarchy.
3. Create a design partition for each instance of the IP core with the netlist type set to Empty.
4. You can now continue work on your part of the design and accept the IP core from the IP provider

when it is ready.
5. Include the .qxp from the IP provider in your project to replace the empty wrapper-file for the IP

instance. Or, if you are importing multiple copies of the design block and want to import relative
placement, follow these additional steps:
a. Use the Import command to select each appropriate partition hierarchy. You can import a .qxp

from the GUI, the command-line, or with Tcl commands:

• If you are using the Quartus Prime GUI, use the Import Design Partition command.
• If you are using command-line executables, run quartus_cdb with the incremental_compila-

tion_import option.
• If you are using Tcl commands, use the following command:execute_flow -

incremental_compilation_import.
b. When you have multiple instances of the IP block, you can set the imported LogicLock regions to

floating, or move them to a new location, and the software preserves the relative placement for each
of the imported modules (relative to the origin of the LogicLock region). Routing information is
preserved whenever possible.

Note: The Fitter ignores relative placement assignments if the LogicLock region’s location in the
top-level design is not compatible with the locations exported in the .qxp.

6. You can control the level of results preservation with the Netlist Type setting.
If the IP provider did not define a LogicLock region in the exported partition, the software preserves
absolute placement locations and this leads to placement conflicts if the partition is imported for more
than one instance

Designing in a Team-Based Environment
Scenario background: A project includes several lower-level design blocks that are developed separately by
different designers and instantiated exactly once in the top-level design.

This scenario describes how to use incremental compilation in a team-based design environment where
each designer has access to the top-level project framework, but wants to optimize their design in a
separate Quartus Prime project before integrating their design block into the top-level design.

As the project lead in this scenario, perform the following steps to prepare the top-level design:

1. Create a new Quartus Prime project to ultimately contain the full implementation of the entire design
and include a "skeleton" or framework of the design that defines the hierarchy for the subdesigns
implemented by separate designers. The top-level design implements the top-level entity in the design

3-40 Incorporate IP Core
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and instantiates wrapper files that represent each subdesign by defining only the port interfaces, but
not the implementation.

2. Make project-wide settings. Select the device, make global assignments such as device I/O ports, define
the top-level timing constraints, and make any global signal allocation constraints to specify which
signals can use global routing resources.

3. Make design partition assignments for each subdesign and set the netlist type for each design partition
to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions to create a design floorplan for each of the partitions that will be developed
separately. This floorplan should consider the connectivity between partitions and estimates of the size
of each partition based on any initial implementation numbers and knowledge of the design specifica‐
tions.

5. Provide the top-level project framework to partition designers using one of the following procedures:

• Allow access to the full project for all designers through a source control system. Each designer can
check out the projects files as read-only and work on their blocks independently. This design flow
provides each designer with the most information about the full design, which helps avoid resource
conflicts and makes design integration easy.

• Provide a copy of the top-level Quartus Prime project framework for each designer. You can use the
Copy Project command on the Project menu or create a project archive.

Exporting Your Partition
As the designer of a lower-level design block in this scenario, design and optimize your partition in your
copy of the top-level design, and then follow these steps when you have achieved the desired compilation
results:

1. On the Project menu, click Export Design Partition.
2. In the Export Design Partition dialog box, choose the netlist(s) to export. You can export a Post-

synthesis netlist if placement or performance preservation is not required, to provide the most
flexibility for the Fitter in the top-level design. Select Post-fit netlist to preserve the placement and
performance of the lower-level design block, and turn on Export routing to include the routing
information, if required. One .qxp can include both post-synthesis and post-fitting netlists.

3. Provide the .qxp to the project lead.

Integrating Your Partitions
Finally, as the project lead in this scenario, perform these steps to integrate the .qxp files received from
designers of each partition:

1. Add the .qxp as a source file in the Quartus Prime project, to replace any empty wrapper file for the
previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results preservation.

Enabling Designers on a Team to Optimize Independently
Scenario background: A project consists of several lower-level design blocks that are developed separately
by different designers who do not have access to a shared top-level project framework. This scenario is
similar to creating precompiled design blocks for resuse, but assumes that there are several design blocks
being developed independently (instead of just one IP block), and the project lead can provide some
information about the design to the individual designers. If the designers have shared access to the top-
level design, use the instructions for designing in a team-based environment.

QPS5V1
2015.11.02 Exporting Your Partition 3-41

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This scenario assumes that there are several design blocks being developed independently (instead of just
one IP block), and the project lead can provide some information about the design to the individual
designers.

This scenario describes how to use incremental compilation in a team-based design environment where
designers or IP developers want to fully optimize the placement and routing of their design independently
in a separate Quartus Prime project before sending the design to the project lead. This design flow
requires more planning and careful resource allocation because design blocks are developed independ‐
ently.

Related Information

• Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse on page 3-39
• Designing in a Team-Based Environment on page 3-40

Preparing Your Top-level Design
As the project lead in this scenario, perform the following steps to prepare the top-level design:

1. Create a new Quartus Prime project to ultimately contain the full implementation of the entire design
and include a “skeleton” or framework of the design that defines the hierarchy for the subdesigns
implemented by separate designers. The top-level design implements the top-level entity in the design
and instantiates wrapper files that represent each subdesign by defining only the port interfaces but not
the implementation.

2. Make project-wide settings. Select the device, make global assignments such as device I/O ports, define
the top-level timing constraints, and make any global signal constraints to specify which signals can
use global routing resources.

3. Make design partition assignments for each subdesign and set the netlist type for each design partition
to be imported to Empty in the Design Partitions window.

4. Create LogicLock regions. This floorplan should consider the connectivity between partitions and
estimates of the size of each partition based on any initial implementation numbers and knowledge of
the design specifications.

5. Provide the constraints from the top-level design to partition designers using one of the following
procedures.

• Use design partition scripts to pass constraints and generate separate Quartus Prime projects. On
the Project menu, use the Generate Design Partition Scripts command, or run the script generator
from a Tcl or command prompt. Make changes to the default script options as required for your
project. Altera recommends that you pass all the default constraints, including LogicLock regions,
for all partitions and virtual pin location assignments. If partitions have not already been created by
the other designers, use the partition script to set up the projects so that you can easily take
advantage of makefiles. Provide each partition designer with the Tcl file to create their project with
the appropriate constraints. If you are using makefiles, provide the makefile for each partition.

• Use documentation or manually-created scripts to pass all constraints and assignments to each
partition designer.

Exporting Your Design
As the designer of a lower-level design block in this scenario, perform the appropriate set of steps to
successfully export your design, whether the design team is using makefiles or exporting and importing
the design manually.

3-42 Preparing Your Top-level Design
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are using makefiles with the design partition scripts, perform the following steps:

1. Use the make command and the makefile provided by the project lead to create a Quartus Prime
project with all design constraints, and compile the project.

2. The information about which source file should be associated with which partition is not available to
the software automatically, so you must specify this information in the makefile. You must specify the
dependencies before the software rebuilds the project after the initial call to the makefile.

3. When you have achieved the desired compilation results and the design is ready to be imported into
the top-level design, the project lead can use the master_makefile command to export this partition
and create a .qxp, and then import it into the top-level design.

Exporting Without Makefiles

If you are not using makefiles, perform the following steps:

1. If you are using design partition scripts, source the Tcl script provided by the Project Lead to create a
project with the required settings:

• To source the Tcl script in the Quartus Prime software, on the Tools menu, click Utility Windows
to open the Tcl console. Navigate to the script’s directory, and type the following command: source
<filename>.

• To source the Tcl script at the system command prompt, type the following command:
quartus_cdb -t <filename>.tcl

2. If you are not using design partition scripts, create a new Quartus Prime project for the subdesign, and
then apply the following settings and constraints to ensure successful integration:

• Make LogicLock region assignments and global assignments (including clock settings) as specified
by the project lead.

• Make Virtual Pin assignments for ports which represent connections to core logic instead of
external device pins in the top-level design.

• Make floorplan location assignments to the Virtual Pins so they are placed in their corresponding
regions as determined by the top-level design. This provides the Fitter with more information about
the timing constraints between modules. Alternatively, you can apply timing I/O constraints to the
paths that connect to virtual pins.

3. Proceed to compile and optimize the design as needed.
4. When you have achieved the desired compilation results, on the Project menu, click Export Design

Partition.
5. In the Export Design Partition dialog box, choose the netlist(s) to export. You can export a Post-

synthesis netlist instead if placement or performance preservation is not required, to provide the most
flexibility for the Fitter in the top-level design. Select Post-fit to preserve the placement and perform‐
ance of the lower-level design block, and turn on Export routing to include the routing information, if
required. One .qxp can include both post-synthesis and post-fitting netlists.

6. Provide the .qxp to the project lead.

Importing Your Design
Finally, as the project lead in this scenario, perform the appropriate set of steps to import the .qxp files
received from designers of each partition.

QPS5V1
2015.11.02 Exporting Without Makefiles 3-43

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are using makefiles with the design partition scripts, perform the following steps:

1. Use the master_makefile command to export each partition and create .qxp files, and then import
them into the top-level design.

2. The software does not have all the information about which source files should be associated with
which partition, so you must specify this information in the makefile. The software cannot rebuild the
project if source files change unless you specify the dependencies.

Importing Without Makefiles

If you are not using makefiles, perform the following steps:

1. Add the .qxp as a source file in the Quartus Prime project, to replace any empty wrapper file for the
previously Empty partition.

2. Change the netlist type for the partition from Empty to the required level of results preservation.

Resolving Assignment Conflicts During Integration
When integrating lower-level design blocks, the project lead may notice some assignment conflicts. This
can occur, for example, if the lower-level design block designers changed their LogicLock regions to
account for additional logic or placement constraints, or if the designers applied I/O port timing
constraints that differ from constraints added to the top-level design by the project lead. The project lead
can address these conflicts by explicitly importing the partitions into the top-level design, and using
options in the Advanced Import Settings dialog box. After the project lead obtains the .qxp for each
lower-level design block from the other designers, use the Import Design Partition command on the
Project menu and specify the partition in the top-level design that is represented by the lower-level design
block .qxp. Repeat this import process for each partition in the design. After you have imported each
partition once, you can select all the design partitions and use the Reimport using latest import files at
previous locations option to import all the files from their previous locations at one time. To address
assignment conflicts, the project lead can take one or both of the following actions:

• Allow new assignments to be imported
• Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may take one of the following
actions:

• Allow the imported region to replace the existing region
• Allow the imported region to update the existing region
• Skip assignment import for regions with conflicts

If the placement of different lower-level design blocks conflict, the project lead can also set the set the
partition’s Fitter Preservation Level to Netlist Only, which allows the software to re-perform placement
and routing with the imported netlist.

Importing a Partition to be Instantiated Multiple Times
In this variation of the design scenario, one of the lower-level design blocks is instantiated more than once
in the top-level design. The designer of the lower-level design block may want to compile and optimize
the entity once under a partition, and then import the results as multiple partitions in the top-level design.

If you import multiple instances of a lower-level design block into the top-level design, the imported
LogicLock regions are automatically set to Floating status.

3-44 Importing Without Makefiles
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you resolve conflicts manually, you can use the import options and manual LogicLock assignments to
specify the placement of each instance in the top-level design.

Performing Design Iterations With Lower-Level Partitions
Scenario background: A project consists of several lower-level subdesigns that have been exported from
separate Quartus Prime projects and imported into the top-level design. In this example, integration at the
top level has failed because the timing requirements are not met. The timing requirements might have
been met in each individual lower-level project, but critical inter-partition paths in the top-level design
are causing timing requirements to fail.

After trying various optimizations in the top-level design, the project lead determines that the design
cannot meet the timing requirements given the current partition placements that were imported. The
project lead decides to pass additional information to the lower-level partitions to improve the placement.

Use this flow if you re-optimize partitions exported from separate Quartus Prime projects by incorpo‐
rating additional constraints from the integrated top-level design.

Providing the Complete Top-Level Project Framework
The best way to provide top-level design information to designers of lower-level partitions is to provide
the complete top-level project framework using the following steps:

1. For all partitions other than the one(s) being optimized by a designer(s) in a separate Quartus Prime
project(s), set the netlist type to Post-Fit.

2. Make the top-level design directory available in a shared source control system, if possible. Otherwise,
copy the entire top-level design project directory (including database files), or create a project archive
including the post-compilation database.

3. Provide each partition designer with a checked-out version or copy of the top-level design.
4. The partition designers recompile their designs within the new project framework that includes the

rest of the design's placement and routing information as well top-level resource allocations and
assignments, and optimize as needed.

5. When the results are satisfactory and the timing requirements are met, export the updated partition as
a .qxp.

Providing Information About the Top-Level Framework
If this design flow is not possible, you can generate partition-specific scripts for individual designs to
provide information about the top-level project framework with these steps:

1. In the top-level design, on the Project menu, click Generate Design Partition Scripts, or launch the
script generator from Tcl or the command line.

2. If lower-level projects have already been created for each partition, you can turn off the Create lower-
level project if one does not exist option.

3. Make additional changes to the default script options, as necessary. Altera recommends that you pass
all the default constraints, including LogicLock regions, for all partitions and virtual pin location
assignments. Altera also recommends that you add a maximum delay timing constraint for the virtual
I/O connections in each partition.

4. The Quartus Prime software generates Tcl scripts for all partitions, but in this scenario, you would
focus on the partitions that make up the cross-partition critical paths. The following assignments are
important in the script:

• Virtual pin assignments for module pins not connected to device I/O ports in the top-level design.

QPS5V1
2015.11.02 Performing Design Iterations With Lower-Level Partitions 3-45

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Location constraints for the virtual pins that reflect the initial top-level placement of the pin’s
source or destination. These help make the lower-level placement “aware” of its surroundings in the
top-level design, leading to a greater chance of timing closure during integration at the top level.

• INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing constraints on the paths to and from the I/O
pins of the partition. These constrain the pins to optimize the timing paths to and from the pins.

5. The partition designers source the file provided by the project lead.

• To source the Tcl script from the Quartus Prime GUI, on the Tools menu, click Utility Windows
and open the Tcl console. Navigate to the script’s directory, and type the following command:

source <filename>

• To source the Tcl script at the system command prompt, type the following command:

quartus_cdb -t <filename>.tcl

6. The partition designers recompile their designs with the new project information or assignments and
optimize as needed. When the results are satisfactory and the timing requirements are met, export the
updated partition as a .qxp.
The project lead obtains the updated .qxp files from the partition designers and adds them to the top-
level design. When a new .qxp is added to the files list, the software will detect the change in the
“source file” and use the new .qxp results during the next compilation. If the project uses the advanced
import flow, the project lead must perform another import of the new .qxp.
You can now analyze the design to determine whether the timing requirements have been achieved.
Because the partitions were compiled with more information about connectivity at the top level, it is
more likely that the inter-partition paths have improved placement which helps to meet the timing
requirements.

Creating a Design Floorplan With LogicLock Regions
A floorplan represents the layout of the physical resources on the device. Creating a design floorplan, or
floorplanning, describe the process of mapping the logical design hierarchy onto physical regions in the
device floorplan. After you have partitioned the design, you can create floorplan location assignments for
the design to improve the quality of results when using the incremental compilation design flow. Creating
a design floorplan is not a requirement to use an incremental compilation flow, but it is recommended in
certain cases. Floorplan location planning can be important for a design that uses incremental
compilation for the following reasons:

• To avoid resource conflicts between partitions, predominantly when partitions are imported from
another Quartus Prime project

• To ensure a good quality of results when recompiling individual timing-critical partitions

Design floorplan assignments prevent the situation in which the Fitter must place a partition in an area of
the device where most resources are already used by other partitions. A physical region assignment
provides a reasonable region to re-place logic after a change, so the Fitter does not have to scatter logic
throughout the available space in the device.

Floorplan assignments are not required for non-critical partitions compiled as part of the top-level design.
The logic for partitions that are not timing-critical (such as simple top-level glue logic) can be placed
anywhere in the device on each recompilation, if that is best for your design.

3-46 Creating a Design Floorplan With LogicLock Regions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The simplest way to create a floorplan for a partitioned design is to create one LogicLock region per
partition (including the top-level partition). If you have a compilation result for a partitioned design with
no LogicLock regions, you can use the Chip Planner with the Design Partition Planner to view the
partition placement in the device floorplan. You can draw regions in the floorplan that match the general
location and size of the logic in each partition. Or, initially, you can set each region with the default
settings of Auto size and Floating location to allow the Quartus Prime software to determine the prelimi‐
nary size and location for the regions. Then, after compilation, use the Fitter-determined size and origin
location as a starting point for your design floorplan. Check the quality of results obtained for your
floorplan location assignments and make changes to the regions as needed. Alternatively, you can
perform synthesis, and then set the regions to the required size based on resource estimates. In this case,
use your knowledge of the connections between partitions to place the regions in the floorplan.

Once you have created an initial floorplan, you can refine the region using tools in the Quartus Prime
software. You can also use advanced techniques such as creating non-rectangular regions by merging
LogicLock regions.

You can use the Incremental Compilation Advisor to check that your LogicLock regions meet Altera’s
guidelines.

Related Information

• Incremental Compilation Advisor on page 3-23
• Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation

on page 14-1

Creating and Manipulating LogicLock Regions
Options in the LogicLock Regions Properties dialog box, available from the Assignments menu, allow
you to enter specific sizing and location requirements for a region. You can also view and refine the size
and location of LogicLock regions in the Quartus Prime Chip Planner. You can select a region in the
graphical interface in the Chip Planner and use handles to move or resize the region.

Options in the Layer Settings panel in the Chip Planner allow you to create, delete, and modify tasks to
determine which objects, including LogicLock regions and design partitions, to display in the Chip
Planner.

Related Information
Creating and Manipulating LogicLock Regions online help

Changing Partition Placement with LogicLock Changes
When a partition is assigned to a LogicLock region as part of a design floorplan, you can modify the
placement of a post-fit partition by moving the LogicLock region. Most assignment changes do not
initiate a recompilation of a partition if the netlist type specifies that Fitter results should be preserved. For
example, changing a pin assignment does not initiate a recompilation; therefore, the design does not use
the new pin assignment unless you change the netlist type to Post Synthesis or Source File.

Similarly, if a partition’s placement is preserved, and the partition is assigned to a LogicLock region, the
Fitter always reuses the corresponding LogicLock region size specified in the post-fit netlist. That is,
changes to the LogicLock Size setting do not initiate refitting if a partition’s placement is preserved with
the Post-Fit netlist type, or with .qxp that includes post-fit information.

QPS5V1
2015.11.02 Creating and Manipulating LogicLock Regions 3-47

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/lock/flp_pro_def_logiclock_reg.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

However, you can use the LogicLock Origin location assignment to change or fine-tune the previous
Fitter results. When you change the Origin setting for a region, the Fitter can move the region in the
following manner, depending upon how the placement is preserved for that region's members:

• When you set a new region Origin, the Fitter uses the new origin and replaces the logic, preserving the
relative placement of the member logic.

• When you set the region Origin to Floating, the following conditions apply:

• If the region’s member placement is preserved with an imported partition, the Fitter chooses a new
Origin and re-places the logic, preserving the relative placement of the member logic within the
region.

• If the region’s member placement is preserved with a Post-Fit netlist type, the Fitter does not
change the Origin location, and reuses the previous placement results.

Related Information
What Changes Initiate the Automatic Resynthesis of a Partition? on page 3-28

Incremental Compilation Restrictions

When Timing Performance May Not Be Preserved Exactly
Timing performance might change slightly in a partition with placement and routing preserved when
other partitions are incorporated or re-placed and routed. Timing changes are due to changes in parasitic
loading or crosstalk introduced by the other (changed) partitions. These timing changes are very small,
typically less than 30 ps on a timing path. Additional fan-out on routing lines when partitions are added
can also degrade timing performance.

To ensure that a partition continues to meet its timing requirements when other partitions change, a very
small timing margin might be required. The Fitter automatically works to achieve such margin when
compiling any design, so you do not need to take any action.

When Placement and Routing May Not Be Preserved Exactly
The Fitter may have to refit affected nodes if the two nodes are assigned to the same location, due to
imported netlists or empty partitions set to re-use a previous post-fit netlist. There are two cases in which
routing information cannot be preserved exactly. First, when multiple partitions are imported, there
might be routing conflicts because two lower-level blocks could be using the same routing wire, even if the
floorplan assignments of the lower-level blocks do not overlap. These routing conflicts are automatically
resolved by the Quartus Prime Fitter re-routing on the affected nets. Second, if an imported LogicLock
region is moved in the top-level design, the relative placement of the nodes is preserved but the routing
cannot be preserved, because the routing connectivity is not perfectly uniform throughout a device.

Using Incremental Compilation With Quartus Prime Archive Files
The post-synthesis and post-fitting netlist information for each design partition is stored in the project
database, the incremental_db directory. When you archive a project, the database information is not
included in the archive unless you include the compilation database in the .qar file.

If you want to re-use post-synthesis or post-fitting results, include the database files in the Archive
Project dialog box so compilation results are preserved. Click Advanced, and choose a file set that

3-48 Incremental Compilation Restrictions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

includes the compilation database, or turn on Incremental compilation database files to create a Custom
file set.

When you include the database, the file size of the .qar archive file may be significantly larger than an
archive without the database.

The netlist information for imported partitions is already saved in the corresponding .qxp. Imported .qxp
files are automatically saved in a subdirectory called imported_partitions, so you do not need to archive
the project database to keep the results for imported partitions. When you restore a project archive, the
partition is automatically reimported from the .qxp in this directory if it is available.

For new device families with advanced support, a version-compatible database might not be available. In
this case, the archive will not include the compilation database. If you require the database files to
reproduce the compilation results in the same Quartus Prime version, you can use the following
command-line option to archive a full database:

quartus_sh --archive -use_file_set full_db [-revision <revision name>]<project name>

Formal Verification Support
You cannot use design partitions for incremental compilation if you are creating a netlist for a formal
verification tool.

SignalProbe Pins and Engineering Change Orders
ECO and SignalProbe changes are performed only during ECO and SignalProbe compilations. Other
compilation flows do not preserve these netlist changes.

When incremental compilation is turned on and your design contains one or more design partitions,
partition boundaries are ignored while making ECO changes and SignalProbe signal settings. However,
the presence of ECO and/or SignalProbe changes does not affect partition boundaries for incremental
compilation. During subsequent compilations, ECO and SignalProbe changes are not preserved regardless
of the Netlist Type or Fitter Preservation Level settings. To recover ECO changes and SignalProbe
signals, you must use the Change Manager to re-apply the ECOs after compilation.

For partitions developed independently in separate Quartus Prime projects, the exported netlist includes
all currently saved ECO changes and SignalProbe signals. If you make any ECO or SignalProbe changes
that affect the interface to the lower-level partition, the software issues a warning message during the
export process that this netlist does not work in the top-level design without modifying the top-level HDL
code to reflect the lower-level change. After integrating the .qxp partition into the top-level design, the
ECO changes will not appear in the Change Manager.

Related Information

• Quick Design Debugging Using SignalProbe documentation
• Engineering Change Management with the Chip Planner documentation

SignalTap II Logic Analyzer in Exported Partitions
You can use the SignalTap II Embedded Logic Analyzer in any project that you can compile and program
into an Altera device.

When incremental compilation is turned on, debugging logic is added to your design incrementally and
you can tap post-fitting nodes and modify triggers and configuration without recompiling the full design.
Use the appropriate filter in the Node Finder to find your node names. Use SignalTap II: post-fitting if

QPS5V1
2015.11.02 Formal Verification Support 3-49

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384400729/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471341583/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the netlist type is Post-Fit to incrementally tap node names in the post-fit netlist database. Use SignalTap
II: pre-synthesis if the netlist type is Source File to make connections to the source file (pre-synthesis)
node names when you synthesize the partition from the source code.

If incremental compilation is turned off, the debugging logic is added to the design during Analysis and
Elaboration, and you cannot tap post-fitting nodes or modify debug settings without fully compiling the
design.

For design partitions that are being developed independently in separate Quartus Prime projects and
contain the logic analyzer, when you export the partition, the Quartus Prime software automatically
removes the SignalTap II logic analyzer and related SLD_HUB logic. You can tap any nodes in a Quartus
Prime project, including nodes within .qxp partitions. Therefore, you can use the logic analyzer within the
full top-level design to tap signals from the .qxp partition.

You can also instantiate the SignalTap II IP core directly in your lower-level design (instead of using
an .stp file) and export the entire design to the top level to include the logic analyzer in the top-level
design.

Related Information
Design Debugging Using the SignalTap II Embedded Logic Analyzer documentation

External Logic Analyzer Interface in Exported Partitions
You can use the Logic Analyzer Interface in any project that you can compile and program into an Altera
device. You cannot export a partition that uses the Logic Analyzer Interface. You must disable the Logic
Analyzer Interface feature and recompile the design before you export the design as a partition.

Related Information
In-System Debugging Using External Logic Analyzers documentation

Assignments Made in HDL Source Code in Exported Partitions
Assignments made with I/O primitives or the altera_attribute HDL synthesis attribute in lower-level
partitions are passed to the top-level design, but do not appear in the top-level .qsf file or Assignment
Editor. These assignments are considered part of the source netlist files. You can override assignments
made in these source files by changing the value with an assignment in the top-level design.

Design Partition Script Limitations

Related Information
Generating Design Partition Scripts on page 3-33

Warnings About Extra Clocks Due to Design Partition Scripts
The generated scripts include applicable clock information for all clock signals in the top-level design.
Some of those clocks may not exist in the lower-level projects, so you may see warning messages related to
clocks that do not exist in the project. You can ignore these warnings or edit your constraints so the
messages are not generated.

Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Design Partition Scripts
After you have compiled a design using TimeQuest constraints, and the timing assignments option is
turned on in the scripts, a separate Tcl script is generated to create an .sdc file for each lower-level project.

3-50 External Logic Analyzer Interface in Exported Partitions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384469524/en-us
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384889197/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This script includes only clock constraints and minimum and maximum delay settings for the TimeQuest
Timing Analyzer.

Note: PLL settings and timing exceptions are not passed to lower-level designs in the scripts.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation on
page 14-1

Wildcard Support in Design Partition Scripts
When applying constraints with wildcards, note that wildcards are not analyzed across hierarchical
boundaries. For example, an assignment could be made to these nodes: Top|A:inst|B:inst|*, where A
and B are lower-level partitions, and hierarchy B is a child of A, that is B is instantiated in hierarchy A. This
assignment is applied to modules A, B, and all children instances of B. However, the assignment Top|
A:inst|B:inst* is applied to hierarchy A, but is not applied to the B instances because the single level of
hierarchy represented by B:inst* is not expanded into multiple levels of hierarchy. To avoid this issue,
ensure that you apply the wildcard to the hierarchical boundary if it should represent multiple levels of
hierarchy.

When using the wildcard to represent a level of hierarchy, only single wildcards are supported. This
means assignments such as Top|A:inst|*|B:inst|* are not supported. The Quartus Prime software
issues a warning in these cases.

Derived Clocks and PLLs in Design Partition Scripts
If a clock in the top level is not directly connected to a pin of a lower-level partition, the lower-level
partition does not receive assignments and constraints from the top-level pin in the design partition
scripts.

This issue is of particular importance for clock pins that require timing constraints and clock group
settings. Problems can occur if your design uses logic or inversion to derive a new clock from a clock
input pin. Make appropriate timing assignments in your lower-level Quartus Prime project to ensure that
clocks are not unconstrained.

If the lower-level design uses the top-level project framework from the project lead, the design will have
all the required information about the clock and PLL settings. Otherwise, if you use a PLL in your top-
level design and connect it to lower-level partitions, the lower-level partitions do not have information
about the multiplication or phase shift factors in the PLL. Make appropriate timing assignments in your
lower-level Quartus Prime project to ensure that clocks are not unconstrained or constrained with the
incorrect frequency. Alternatively, you can manually duplicate the top-level derived clock logic or PLL in
the lower-level design file to ensure that you have the correct multiplication or phase-shift factors,
compensation delays and other PLL parameters for complete and accurate timing analysis. Create a
design partition for the rest of the lower-level design logic for export to the top level. When the lower-level
design is complete, export only the partition that contains the relevant logic.

Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
Pin assignments for high-speed GXB transceivers and hard LVDS blocks are not written in the scripts.
You must add the pin assignments for these hard IP blocks in the lower-level projects manually.

Virtual Pin Timing Assignments in Design Partition Scripts
Design partition scripts use INPUT_MAX_DELAY and OUTPUT_MAX_DELAY assignments to specify inter-
partition delays associated with input and output pins, which would not otherwise be visible to the

QPS5V1
2015.11.02 Wildcard Support in Design Partition Scripts 3-51

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

project. These assignments require that the software specify the clock domain for the assignment and set
this clock domain to ” * ”.

This clock domain assignment means that there may be some paths constrained and reported by the
timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit the generated scripts or change
the assignments in your lower-level Quartus Prime project. In addition, because there is no known clock
associated with the delay assignments, the software assumes the worst-case skew, which makes the paths
seem more timing critical than they are in the top-level design. To make the paths appear less
timing-critical, lower the delay values from the scripts. If required, enter negative numbers for input and
output delay values.

Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts
When a single top-level I/O port drives multiple pins on a lower-level module, it unnecessarily restricts
the quality of the synthesis and placement at the lower-level. This occurs because in the lower-level
design, the software must maintain the hierarchical boundary and cannot use any information about pins
being logically equivalent at the top level. In addition, because I/O constraints are passed from the top-
level pin to each of the children, it is possible to have more pins in the lower level than at the top level.
These pins use top-level I/O constraints and placement options that might make them impossible to place
at the lower level. The software avoids this situation whenever possible, but it is best to avoid this design
practice to avoid these potential problems. Restructure your design so that the single I/O port feeds the
design partition boundary and the single connection is split into multiple signals within the lower-level
partition.

Restrictions on IP Core Partitions
The Quartus Prime software does not support partitions for IP core instantiations. If you use the
parameter editor to customize an IP core variation, the IP core generated wrapper file instantiates the IP
core. You can create a partition for the IP core generated wrapper file.

The Quartus Prime software does not support creating a partition for inferred IP cores (that is, where the
software infers an IP core to implement logic in your design). If you have a module or entity for the logic
that is inferred, you can create a partition for that hierarchy level in the design.

The Quartus Prime software does not support creating a partition for any Quartus Prime internal
hierarchy that is dynamically generated during compilation to implement the contents of an IP core.

Register Packing and Partition Boundaries
The Quartus Prime software performs register packing during compilation automatically. However, when
incremental compilation is enabled, logic in different partitions cannot be packed together because
partition boundaries might prevent cross-boundary optimization. This restriction applies to all types of
register packing, including I/O cells, DSP blocks, sequential logic, and unrelated logic. Similarly, logic
from two partitions cannot be packed into the same ALM.

I/O Register Packing
Cross-partition register packing of I/O registers is allowed in certain cases where your input and output
pins exist in the top-level hierarchy (and the Top partition), but the corresponding I/O registers exist in
other partitions.

3-52 Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition...
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following specific circumstances are required for input pin cross-partition register packing:

• The input pin feeds exactly one register.
• The path between the input pin and register includes only input ports of partitions that have one fan-

out each.

The following specific circumstances are required for output register cross-partition register packing:

• The register feeds exactly one output pin.
• The output pin is fed by only one signal.
• The path between the register and output pin includes only output ports of partitions that have one

fan-out each.

Output pins with an output enable signal cannot be packed into the device I/O cell if the output enable
logic is part of a different partition from the output register. To allow register packing for output pins with
an output enable signal, structure your HDL code or design partition assignments so that the register and
tri-state logic are defined in the same partition.

Bidirectional pins are handled in the same way as output pins with an output enable signal. If the registers
that need to be packed are in the same partition as the tri-state logic, you can perform register packing.

The restrictions on tri-state logic exist because the I/O atom (device primitive) is created as part of the
partition that contains tri-state logic. If an I/O register and its tri-state logic are contained in the same
partition, the register can always be packed with tri-state logic into the I/O atom. The same cross-partition
register packing restrictions also apply to I/O atoms for input and output pins. The I/O atom must feed
the I/O pin directly with exactly one signal. The path between the I/O atom and the I/O pin must include
only ports of partitions that have one fan-out each.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments documentation on
page 14-1

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script or at a command-line
prompt.

Tcl Scripting and Command-Line Examples
The ::quartus::incremental_compilation Tcl package contains a set of functions for manipulating
design partitions and settings related to the incremental compilation feature.

Related Information

• ::quartus::incremental_compilation online help
• Quartus Prime Software Scripting Support website

Scripting support information, design examples, and training
• Tcl Scripting documentation
• Command-Line Scripting documentation

Creating Design Partitions
To create a design partition to a specified hierarchy name, use the following command:

QPS5V1
2015.11.02 Scripting Support 3-53

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_incremental_compilation_ver_1.1.htm
http://www.altera.com/support/software/scripting/sof-qts-scripting.html
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3-1: Create Design Partition

create_partition [-h | -help] [-long_help] -contents
<hierarchy name> -partition <partition name>

Table 3-4: Tcl Script Command: create_partition

Argument Description

-h | -help Short help

-long_help Long help with examples and possible return
values

-contents <hierarchy name> Partition contents (hierarchy assigned to
Partition)

-partition <partition name> Partition name

Enabling or Disabling Design Partition Assignments During Compilation
To direct the Quartus Prime Compiler to enable or disable design partition assignments during
compilation, use the following command:

Example 3-2: Enable or Disable Partition Assignments During Compilation

set_global_assignment -name IGNORE_PARTITIONS <value>

Table 3-5: Tcl Script Command: set_global_assignment

Value Description

OFF The Quartus Prime software recognizes the
design partitions assignments set in the current
Quartus Prime project and recompiles the
partition in subsequent compilations depending
on their netlist status.

ON The Quartus Prime software does not recognize
design partitions assignments set in the current
Quartus Prime project and performs a compila‐
tion without regard to partition boundaries or
netlists.

Setting the Netlist Type
To set the partition netlist type, use the following command:

3-54 Enabling or Disabling Design Partition Assignments During Compilation
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3-3: Set Partition Netlist Type

set_global_assignment -name PARTITION_NETLIST_TYPE <value>
-section_id <partition name>

Note: The PARTITION_NETLIST_TYPE command accepts the following values: SOURCE,
POST_SYNTH, POST_FIT, and EMPTY.

Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
To set the Fitter Preservation Level for a post-fit or imported netlist, use the following command:

Example 3-4: Set Fitter Preservation Level

set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL
<value> -section_id <partition name>

Note: The PARTITION_FITTER_PRESERVATION command accepts the following values:
NETLIST_ONLY, PLACEMENT, and PLACEMENT_AND_ROUTING.

Preserving High-Speed Optimization
To preserve high-speed optimization for tiles contained within the selected partition, use the following
command:

Example 3-5: Preserve High-Speed Optimization

set_global_assignment -name PARTITION_PRESERVE_HIGH_SPEED_TILES_ON

Specifying the Software Should Use the Specified Netlist and Ignore Source File Changes
To specify that the software should use the specified netlist and ignore source file changes, even if the
source file has changed since the netlist was created, use the following command:

Example 3-6: Specify Netlist and Ignore Source File Changes

set_global_assignment -name PARTITION_IGNORE_SOURCE_FILE_CHANGES ON
-section_id "<partition name>"

Reducing Opening a Project, Creating Design Partitions, andPerforming an Initial Compilation
Scenario background: You open a project called AB_project, set up two design partitions, entities A and
B, and then perform an initial full compilation.

Example 3-7: Set Up and Compile AB_project

set project AB_project

load_package incremental_compilation

QPS5V1
2015.11.02 Setting the Fitter Preservation Level for a Post-fit or Imported Netlist 3-55

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

load_package flow
project_open $project

Ensure that design partition assignments are not ignored
set_global_assignment -name IGNORE_PARTITIONS \ OFF

Set up the partitions
create_partition -contents A -name "Partition_A"
create_partition -contents B -name "Partition_B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit netlists)
set_partition -partition "Partition_A" -netlist_type POST_FIT
set_partition -partition "Partition_B" -netlist_type POST_FIT

Run initial compilation
export_assignments
execute_flow -full_compile

project_close

Optimizing the Placement for a Timing-Critical Partition
Scenario background: You have run the initial compilation shown in the example script below. You would
like to apply Fitter optimizations, such as physical synthesis, only to partition A. No changes have been
made to the HDL files. To ensure the previous compilation result for partition B is preserved, and to
ensure that Fitter optimizations are applied to the post-synthesis netlist of partition A, set the netlist type
of B to Post-Fit (which was already done in the initial compilation, but is repeated here for safety), and
the netlist type of A to Post-Synthesis, as shown in the following example:

Example 3-8: Fitter Optimization for AB_project

set project AB_project

load_package flow
load_package incremental_compilation
load_package project
project_open $project

Turn on Physical Synthesis Optimization
set_high_effort_fmax_optimization_assignments

For A, set the netlist type to post-synthesis
set_partition -partition "Partition_A" -netlist_type POST_SYNTH

For B, set the netlist type to post-fit
set_partition -partition "Partition_B" -netlist_type POST_FIT

Also set Top to post-fit
set_partition -partition "Top" -netlist_type POST_FIT

Run incremental compilation
export_assignments
execute_flow -full_compile

project_close

3-56 Optimizing the Placement for a Timing-Critical Partition
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating Design Partition Scripts
To generate design partition scripts, use the following script:

Example 3-9: Generate Partition Script

load required package
load_package database_manager

name and open the project
set project <project_path/project_name>
project_open $project

generate the design partition scripts
generate_bottom_up_scripts <options>

#close project
project_close

Related Information
Generate Design Partition Scripts Dialog Box online help

Exporting a Partition
To open a project and load the::quartus::incremental_compilation package before you use the Tcl
commands to export a partition to a .qxp that contains both a post-synthesis and post-fit netlist, with
routing, use the following script:

Example 3-10: Export .qxp

load required package
load_package incremental_compilation

open project
project_open <project name>

export partition to the .qxp and set preservation level
export_partition -partition <partition name>
-qxp <.qxp file name> -<options>

#close project
project_close

Importing a Partition into the Top-Level Design
To import a .qxp into a top-level design, use the following script:

Example 3-11: Import .qxp into Top-Level Design

load required packages
load_package incremental_compilation
load_package project
load_package flow

open project
project_open <project name>

QPS5V1
2015.11.02 Generating Design Partition Scripts 3-57

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_db_generate_bottom-up_scripts.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

#import partition
import_partition -partition <partition name> -qxp <.qxp file>
<-options>

#close project
project_close

Makefiles
For an example of how to use incremental compilation with a makefile as part of the team-based
incremental compilation design flow, refer to the read_me.txt file that accompanies the incr_comp
example located in the /qdesigns/incr_comp_makefile subdirectory.

When using a team-based incremental compilation design flow, the Generate Design Partition Scripts
dialog box can write makefiles that automatically export lower-level design partitions and import them
into the top-level design whenever design files change.

Related Information
Generate Design Partition Scripts Dialog Box online help

Document Revision History

Table 3-6: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Removed Early Timing Estimate feature support.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings,
and Physical Optimization Settings to Compiler Settings.

• Updated DSE II content.

2014.08.18 14.0a10.0 Added restriction about smart compilation in Arria 10 devices.

June 2014 14.0.0 • Dita conversion.
• Replaced MegaWizard Plug-In Manager content with IP Catalog

and Parameter Editor content.
• Revised functional safety section. Added export and import

sections.

November 2013 13.1.0 Removed HardCopy device information. Revised information about
Rapid Recompile. Added information about functional safety. Added
information about flattening sub-partition hierarchies.

November 2012 12.1.0 Added Turning On Supported Cross-boundary Optimizations.

June 2012 12.0.0 Removed survey link.

3-58 Makefiles
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_db_generate_bottom-up_scripts.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Updated “Tcl Scripting and Command-Line Examples”.

December 2010 10.1.0 • Changed to new document template.
• Reorganized Tcl scripting section. Added description for new

feature: Ignore partitions assignments during compilation
option.

• Reorganized “Incremental Compilation Summary” section.

July 2010 10.0.0 • Removed the explanation of the “bottom-up design flow” where
designers work completely independently, and replaced with
Altera’s recommendations for team-based environments where
partitions are developed in the same top-level project framework,
plus an explanation of the bottom-up process for including
independent partitions from third-party IP designers.

• Expanded the Merge command explanation to explain how it now
accommodates cross-partition boundary optimizations.

• Restructured Altera recommendations for when to use a
floorplan.

• Added “Viewing the Contents of a Quartus Prime Exported
Partition File (.qxp)” section.

• Reorganized chapter to make design flow scenarios more visible;
integrated into various sections rather than at the end of the
chapter.

October 2009 9.1.0 • Redefined the bottom-up design flow as team-based and reorgan‐
ized previous design flow examples to include steps on how to
pass top-level design information to lower-level designers.

• Moved SDC Constraints from Lower-Level Partitions section to
the Best Practices for Incremental Compilation Partitions and
Floorplan Assignments chapter in volume 1 of the Quartus Prime
Handbook.

• Reorganized the “Conclusion” section.
• Removed HardCopy APEX and HardCopy Stratix Devices

section.

QPS5V1
2015.11.02 Document Revision History 3-59

Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

March 2009 9.0.0 • Split up netlist types table
• Moved “Team-Based Incremental Compilation Design Flow” into

the “Including or Integrating partitions into the Top-Level
Design” section.

• Added new section “Including or Integrating Partitions into the
Top-Level Design”.

• Removed “Exporting a Lower-Level Partition that Uses a JTAG
Feature” restriction

• Other edits throughout chapter

November 2008 8.1.0 • Added new section “Importing SDC Constraints from Lower-
Level Partitions” on page 2–44

• Removed the Incremental Synthesis Only option
• Removed section “OpenCore Plus Feature for MegaCore

Functions in Bottom-Up Flows”
• Removed section “Compilation Time with Physical Synthesis

Optimizations”
• Added information about using a .qxp as a source design file

without importing
• Reorganized several sections
• Updated Figure 2–10

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

3-60 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Incremental%20Compilation%20for%20Hierarchical%20and%20Team-Based%20Design%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Planning for Partial Reconfiguration 4
2015.11.02

QPS5V1 Subscribe Send Feedback

The Partial Reconfiguration (PR) feature in the Quartus® Prime software allows you to reconfigure a
portion of the FPGA dynamically, while the remainder of the device continues to operate.

This chapter assumes a basic knowledge of Altera’s FPGA design flow, incremental compilation, and
LogicLock™ region features available in the Quartus Prime software. It also assumes knowledge of the
internal FPGA resources such as logic array blocks (LABs), memory logic array blocks (MLABs), memory
types (RAM and ROM), DSP blocks, clock networks.

The Quartus Prime software supports the PR feature for the Altera Stratix® V device family and Cyclone®

V devices whose part number ends in "SC", for example, 5CGXFC9E6F35I8NSC.

Related Information

• Terminology on page 4-1
• An Example of a Partial Reconfiguration Design on page 4-4
• Partial Reconfiguration Design Flow on page 4-8
• Implementation Details for Partial Reconfiguration on page 4-20
• Example of a Partial Reconfiguration Design with an External Host on page 4-27
• Example Partial Reconfiguration with an Internal Host on page 4-29
• Partial Reconfiguration Project Management on page 4-30
• Programming Files for a Partial Reconfiguration Project on page 4-32
• Partial Reconfiguration Known Limitations on page 4-39
• mySupport

Terminology
The following terms are commonly used in this chapter.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Design%20Planning%20for%20Partial%20Reconfiguration&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/mysupport
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• project: A Quartus Prime project contains the design files, settings, and constraints files required for
the compilation of your design.

• revision: In the Quartus Prime software, a revision is a set of assignments and settings for one version
of your design. A Quartus Prime project can have several revisions, and each revision has its own set of
assignments and settings. A revision helps you to organize several versions of your design into a single
project.

• incremental compilation: This is a feature of the Quartus Prime software that allows you to preserve
results of previous compilations of unchanged parts of the design, while changing the implementation
of the parts of your design that you have modified since your previous compilation of the project. The
key benefits include timing preservation and compile time reduction by only compiling the logic that
has changed.

• partition: You can partition your design along logical hierarchical boundaries. Each design partition is
independently synthesized and then merged into a complete netlist for further stages of compilation.
With the Quartus Prime incremental compilation flow, you can preserve results of unchanged
partitions at specific preservation levels. For example, you can set the preservation levels at post-
synthesis or post-fit, for iterative compilations in which some part of the design is changed. A partition
is only a logical partition of the design, and does not necessarily refer to a physical location on the
device. However, you may associate a partition with a specific area of the FPGA by using a floorplan
assignment.

For more information on design partitions, refer to the Best Practices for Incremental Compilation
Partitions andFloorplan Assignments chapter in the Quartus Prime Handbook.

• LogicLock region: A LogicLock region constrains the placement of logic in your design. You can
associate a design partition with a LogicLock region to constrain the placement of the logic in the
partition to a specific physical area of the FPGA.

For more information about LogicLock regions, refer to the Analyzing and Optimizing the Design
Floorplan with the Chip Planner chapter in the Quartus Prime Handbook.

• PR project: Any Quartus Prime design project that uses the PR feature.
• PR region: A design partition with an associated contiguous LogicLock region in a PR project. A PR

project can have one or more PR regions that can be partially reconfigured independently. A PR region
may also be referred to as a PR partition.

• static region: The region outside of all the PR regions in a PR project that cannot be reprogrammed
with partial reconfiguration (unless you reprogram the entire FPGA). This region is called the static
region, or fixed region.

• persona: A PR region has multiple implementations. Each implementation is called a persona. PR
regions can have multiple personas. In contrast, static regions have a single implementation or
persona.

• PR control block: Dedicated block in the FPGA that processes the PR requests, handshake protocols,
and verifies the CRC.

• PR IP Core: Altera soft IP that can be used to configure the PR control block in the FPGA to mange
the PR bitstream source.

Related Information

• Best Practices for Incremental Compilation Partitions and Floorplan Assignments on page 14-1
• Analyzing and Optimizing the Design Floorplan with the Chip Planner

4-2 Terminology
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471303170/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Determining Resources for Partial Reconfiguration
You can use partial reconfiguration to configure only the resources such as LABs, embedded memory
blocks, and DSP blocks in the FPGA core fabric that are controlled by configuration RAM (CRAM).

The functions in the periphery, such as GPIOs or I/O Registers, are controlled by I/O configuration bits
and therefore cannot be partially reconfigured. Clock multiplexers for GCLK and QCLK are also not partially
reconfigurable because they are controlled by I/O periphery bits.

Figure 4-1: Partially Reconfigurable Resources

These are the types of resource blocks in a Stratix V device.

I/O, I/O Registers & Part-Hard Memory PHY

Transceivers,
PCIe HIP

I/O, I/O Registers & Part-Hard Memory PHY

Transceivers,
PCIe HIP

Core
Fabric

PLL
CLK

PLL
CLK

Periphery Core Fabric

Table 4-1: Reconfiguration Modes of the FPGA Resource Block

The following table describes the reconfiguration type supported by each FPGA resource block, which are shown
in the figure.

Hardware Resource Block Reconfiguration Mode

Logic Block Partial Reconfiguration

Digital Signal Processing Partial Reconfiguration

Memory Block Partial Reconfiguration

Transceivers Dynamic Reconfiguration ALTGX_Reconfig

QPS5V1
2015.11.02 Determining Resources for Partial Reconfiguration 4-3

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hardware Resource Block Reconfiguration Mode

PLL Dynamic Reconfiguration ALTGX_Reconfig

Core Routing Partial Reconfiguration

Clock Networks Clock network sources cannot be changed, but a
PLL driving a clock network can be dynamically
reconfigured

I/O Blocks and Other Periphery Not supported

The transceivers and PLLs in Altera FPGAs can be reconfigured using dynamic reconfiguration. For more
information on dynamic reconfiguration, refer to the Dynamic Reconfiguration in Stratix V Devices
chapter in the Stratix V Handbook.

Related Information
Dynamic Reconfiguration in Stratix V Devices

An Example of a Partial Reconfiguration Design
A PR design is divided into two parts. The static region where the design logic does not change, and one
or more PR regions.

Each PR region can have different design personas, that change with partial reconfiguration.

PR Region A has three personas associated with it; A1, A2, and A3. PR Region B has two personas; B1 and
B2. Each persona for the two PR regions can implement different application specific logic, and using
partial reconfiguration, the persona for each PR region can be modified without interrupting the
operation of the device in the static or other PR region.

Figure 4-2: Partial Reconfiguration Project Structure

The following figure shows the top-level of a PR design, which includes a static region and two PR
regions.

Chip_top

PR Region A

PR Region B

PR Persona A1

PR Persona A2

PR Persona A3

PR Persona B1

PR Persona B2

Static
Region

4-4 An Example of a Partial Reconfiguration Design
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

https://documentation.altera.com/#/link/nik1409774008946/nik1409774003423/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Partial Reconfiguration Modes
When you implement a design on an Altera FPGA device, your design implementation is controlled by
bits stored in CRAM inside the FPGA.

You can use partial reconfiguration in the SCRUB mode or the AND/OR mode. The mode you select
affects your PR flow in ways detailed later in this chapter.

The CRAM bits control individual LABs, MLABs, M20K memory blocks, DSP blocks, and routing
multiplexers in a design. The CRAM bits are organized into a frame structure representing vertical areas
that correspond to specific locations on the FPGA. If you change a design and reconfigure the FPGA in a
non-PR flow, the process reloads all the CRAM bits to a new functionality.

Configuration bitstreams used in a non-PR flow are different than those used in a PR flow. In addition to
standard data and CRC check bits, configuration bitstreams for partial reconfiguration also include
instructions that direct the PR control block to process the data for partial reconfiguration.

The configuration bitstream written into the CRAM is organized into configuration frames. If a LAB
column passes through multiple PR regions, those regions share some programming frames.

SCRUB Mode
When using SCRUB mode in partial reconfiguration, the unchanging CRAM bits from the static region
are "scrubbed" back to their original values.

The static regions controlled by the CRAM bits from the same programming frame as the PR region
continue to operate. All the CRAM bits corresponding to a PR region are overwritten with new data,
regardless of what was previously contained in the region.

The SCRUB mode of partial reconfiguration involves re-writing all the bits in an entire LAB column of
the CRAM, including bits controlling any part of the static region above and below the PR region
boundary being reconfigured. You can choose to scrub the values of the CRAM bits to 0, and then rewrite
them by turning on the Use clear/set method along with Enable SCRUB mode. The Use clear/set
method is the more reliable option, but can increase the size of your bitstream. You can also choose to
simply Enable SCRUB mode.

Note: You must turn on Enable SCRUB mode to use Use clear/set method.

Figure 4-3: Enable SCRUB mode and Use clear/set method

If there are more than one PR regions along a LAB column, and you are trying to reconfigure one of the
PR regions, it is not not possible to correctly determine the bits associated with the PR region that is not
changing. For this reason, you can not use the SCRUB mode when you have two PR regions that have a
vertically overlapping column in the device. This restriction does not apply to the static bits because they
never change and you can rewrite them with the same value of the configuration bit.

QPS5V1
2015.11.02 Partial Reconfiguration Modes 4-5

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you turn on Enable SCRUB mode and do not turn on Use clear/set method, then the scrub is done in a
single pass, writing new values of the CRAM without clearing all the bits first. The advantage of using the
SCRUB mode is that the programming file size is much smaller than the AND/OR mode.

Figure 4-4: SCRUB Mode

This is the floorplan of a FPGA using SCRUB mode, with two PR regions, whose columns do not overlap.

PR1
Region

Programming Frame(s)
(No Vertical Overlap)

PR2
Region

AND/OR Mode
The AND/OR mode refers to how the bits are rewritten. Partial reconfiguration with AND/OR uses a
two-pass method.

Simplistically, this can be compared to bits being ANDed with a MASK, and ORed with new values,
allowing multiple PR regions to vertically overlap a single column. In the first pass, all the bits in the
CRAM frame for a column passing through a PR region are ANDed with '0's while those outside the PR
region are ANDed with '1's. After the first pass, all the CRAM bits corresponding to the PR region are
reset without modifying the static region. In the second pass for each CRAM frame, new data is ORed
with the current value of 0 inside the PR region, and in the static region, the bits are ORed with '0's so they
remain unchanged. The programming file size of a PR region using the AND/OR mode could be twice the
programming file size of the same PR region using SCRUB mode.

4-6 AND/OR Mode
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-5: AND/OR Mode

This is the floorplan of a FPGA using AND/OR mode, with two PR regions, with columns that overlap.

PR1
Region

Programming Frame(s)
(Vertical Overlap)

PR2
Region

Note: If you have overlapping PR regions in your design, you must use AND/OR mode to program all PR
regions, including PR regions with no overlap. The Quartus Prime software will not permit the use
of SCRUB mode when there are overlapping regions. If none of your regions overlap, you can use
AND/OR, SCRUB, or a mixture of both.

Programming File Sizes for a Partial Reconfiguration Project
The programming file size for a partial reconfiguration bitstream is proportional to the area of the PR
region.

A partial reconfiguration programming bitstream for AND/OR mode makes two passes on the PR region;
the first pass clears all relevant bits, and the second pass sets the necessary bits. Due to this two-pass
sequence, the size of a partial bitstream can be larger than a full FPGA programming bitstream depending
on the size of the PR region.

When using the AND/OR mode for partial reconfiguration, the formula which describes the approximate
file size within ten percent is:

PR bitstream size = ((Size of region in the horizontal direction) /(full horizontal

dimension of the part)) * 2 * (size of full bitstream)

The way the Fitter reserves routing for partial reconfiguration increases the effective size for small PR
regions from a bitstream perspective. PR bitstream sizes in designs with a single small PR region will not
match the file size computed by this equation.

Note: The PR bitstream size is approximately half of the size computed above when using single-pass
SCRUB mode. When you use the SCRUB mode with Use clear/set method turned on, the
bitstream size is comparable to the size calculated for the AND/OR mode.

You can limit expansion of the routing regions in the LogicLock Regions Properties dialog box. Alt+L
opens the LogicLock Regions Window, then right-click on a LogicLock region and click LogicLock
Region Properties.

QPS5V1
2015.11.02 Programming File Sizes for a Partial Reconfiguration Project 4-7

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-6: LogicLock Regions Properties dialog box

Turn on Partial reconfiguration, Reserved, Enabled, and Constrain routing to stay within region
boundaries.

You can also control expansion of the routing regions by adding the following two assignments to your
Quartus Prime Settings file (.qsf):

set_global_assignment -name LL_ROUTING_REGION Expanded -section_id <region name>

set_global_assignment -name LL_ROUTING_REGION_EXPANSION_SIZE 0 -section_id <region

name>

Adding these to your .qsf disables expansion and minimizes the bitstream size.

Partial Reconfiguration Design Flow
Partial reconfiguration is based on the revision feature in the Quartus Prime software. Your initial design
is the base revision, where you define the boundaries of the static region and reconfigurable regions on the

4-8 Partial Reconfiguration Design Flow
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FPGA. From the base revision, you create multiple revisions, which contain the static region and describe
the differences in the reconfigurable regions.

Two types of revisions are specific to partial reconfiguration: reconfigurable and aggregate. Both import
the persona for the static region from the base revision. A reconfigurable revision generates personas for
PR regions. An aggregate revision is used to combine personas from multiple reconfigurable revisions to
create a complete design suitable for timing analysis.

The design flow for partial reconfiguration also utilizes the Quartus Prime incremental compilation flow.
To take advantage of incremental compilation for partial reconfiguration, you must organize your design
into logical and physical partitions for synthesis and fitting. The partitions for which partial reconfigura‐
tion is enabled (PR partitions) must also have associated LogicLock assignments.

Revisions make use of personas, which are subsidiary archives describing the characteristics of both static
and reconfigurable regions, that contain unique logic which implements a specific set of functions to
reconfigure a PR region of the FPGA. Partial reconfiguration uses personas to pass this logic from one
revision to another.

Figure 4-7: Partial Reconfiguration Design Flow

Plan Your System for Partial
Reconfiguration

Identify the Design Blocks Designated
to be Partially Reconfigured

Code the Design Using HDL

Develop the Personas for the
Partial Blocks

Simulate the Design Functionality

Functionality is
Verified?

yesno

Designate All Partial Block(s) as Design
Partition(s) for the Use with Incremental Compilation

Assign All PR Partition(s) to
LogicLock Regions

Create Revisions and
Compile the Design

for Each Revision

yes

no

Generate
Configuration Files

Debug the Timing Failure
& Revise the Appropriate Step

Program the Device

Is Timing Met
for Each Revision?

The PR design flow requires more initial planning than a standard design flow. Planning requires setting
up the design logic for partitioning, and determining placement assignments to create a floorplan. Well-

QPS5V1
2015.11.02 Partial Reconfiguration Design Flow 4-9

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

planned partitions can help improve design area utilization and performance, and make timing closure
easier. You should also decide whether your system requires partial reconfiguration to originate from the
FPGA pins or internally, and which mode you are using; the AND/OR mode or the SCRUB mode,
because this influences some of the planning steps described in this section.

You must structure your source code or design hierarchy to ensure that logic is grouped correctly for
optimization. Implementing the correct logic grouping early in the design cycle is more efficient than
restructuring the code later. The PR flow requires you to be more rigorous about following good design
practices. The guidelines for creating partitions for incremental compilation also include creating
partitions for partial reconfiguration.

Use the following best practice guidelines for designing in the PR flow, which are described in detail in
this section:

• Determining resources for partial reconfiguration
• Partitioning the design for partial reconfiguration
• Creating incremental compilation partitions for partial reconfiguration
• Instantiating the PR IP core in the design
• Creating wrapper logic for PR regions
• Creating freeze logic for PR regions
• Planning clocks and other global signals for the PR design
• Creating floorplan assignments for the PR design

Design Partitions for Partial Reconfiguration
You must create design partitions for each PR region that you want to partially reconfigure. Optionally,
you can also create partitions for the static parts of the design for timing preservation and/or for reducing
compilation time.

There is no limit on the number of independent partitions or PR regions you can create in your design.
You can designate any partition as a PR partition by enabling that feature in the LogicLock Regions
window in the Quartus Prime software.

Partial reconfiguration regions do not support the following IP blocks that require a connection to the
JTAG controller:

• In-System Memory Content EditorI
• In-System Signals & Probes
• Virtual JTAG
• Nios II with debug module
• SignalTap II tap or trigger sources

Note: PR partitions can contain only FPGA core resources, they cannot contain I/O or periphery
elements.

Incremental Compilation Partitions for Partial Reconfiguration
Use the following best practices guidelines when creating partitions for PR regions in your design:

4-10 Design Partitions for Partial Reconfiguration
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Register all partition boundaries; register all inputs and outputs of each partition when possible. This
practice prevents any delay penalties on signals that cross partition boundaries and keeps each register-
to-register timing path within one partition for optimization.

• Minimize the number of paths that cross partition boundaries.
• Minimize the timing-critical paths passing in or out of PR regions. If there are timing-critical paths

that cross PR region boundaries, rework the PR regions to avoid these paths.
• The Quartus Prime software can optimize some types of paths between design partitions for non-PR

designs. However, for PR designs, such inter-partition paths are strictly not optimized.

For more information about incremental compilation, refer to the following chapter in the Quartus Prime
Handbook.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design on page 3-1

Partial Reconfiguration Controller Instantiation in the Design
Normally you would use the Altera PR IP core to configure the PR process. When you instantiate the PR
IP within your PR design, the Stratix V PR control block and the Stratix V CRC block are automatically
instantiated in your design. However, you can also write your own custom logic to do the function of the
PR IP. In case you are creating your own control logic, or if you are using the PR IP in the external host
mode (where in the logic that controls PR process is outside the FPGA undergoing PR operation) , you
must instantiate the Stratix V PR control block and the Stratix V CRC block in your design in order to use
the PR feature in external host mode. Please refer to the Partial Reconfiguration with an External Host
topic for more details.

If you perform PR in internal host mode, you do not have to instantiate the PR control block and the CRC
block, since they are are instantiated for you by the PR IP core. Instantiation of the partial reconfiguration
controller is required only if your design includes partial reconfiguration in external host mode. Please
refer to the Partial Reconfiguration with an External Host topic for more details.

When you are manually instantiating the Stratix V Control Block and CRC block, you may want to add
the PR control and CRC blocks at the top level of the design.

For example, in a design named Core_Top, all the logic is contained under the Core_Top module
hierarchy. Create a wrapper (Chip_Top) at the top-level of the hierarchy that instantiates this Core_Top
module, the Stratix V PR control block, and the Stratix V CRC check modules.

If you are performing partial reconfiguration from pins, then the required pins should be on the I/O list
for the top-level (Chip_Top) of the project, as shown in the code in the following examples. If you are
performing partial reconfiguration from within the core, you may choose another configuration scheme,
such as Active Serial, to transmit the reconfiguration data into the core, and then assemble it to 16-bit
wide data inside the FPGA within your logic. In such cases, the PR pins are not part of the FPGA I/O.

Note: Verilog HDL does not require a component declaration. You can instantiate the PR control block
as shown in the following example.

Related Information
Example of a Partial Reconfiguration Design with an External Host on page 4-27
For more information about using partial reconfiguration with and external host.

QPS5V1
2015.11.02 Partial Reconfiguration Controller Instantiation in the Design 4-11

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Component Declaration of the PR Control Block and CRC Block in VHDL
If you need to instantiate the PR control block and the CRC block in your design manually, this code
sample contains the component declaration in VHDL., showing the ports of the Stratix V PR control
block and the Stratix V CRC block. The PR function is performed from within the core (code located in
Core_Top) and you must add additional ports to Core_Top to connect to both components. This example
is in VHDL but you can create a similar instantiation in Verilog as well.

-- The Stratix V control block interface

component stratixv_prblock is
 port(
 corectl: in STD_LOGIC ;
 prrequest: in STD_LOGIC ;
 data: in STD_LOGIC_VECTOR(15 downto 0);
 error: out STD_LOGIC ;
 ready: out STD_LOGIC ;
 done: out STD_LOGIC
);
end component;

-- The Stratix V CRC block for diagnosing CRC errors

component stratixv_crcblock is
 port(
 shiftnld: in STD_LOGIC ;
 clk: in STD_LOGIC ;
 crcerror: out STD_LOGIC
);
end component;

The following rules apply when connecting the PR control block to the rest of your design:

• The corectl signal must be set to ‘1’ (when using partial reconfiguration from core) or to ‘0’ (when
using partial reconfiguration from pins).

• The corectl signal has to match the Enable PR pins option setting in the Device and Pin Options
dialog box on the Setting page; if you have turned on Enable PR pins, then the corectl signal on the
PR control block instantiation must be toggled to ‘0’.

• When performing partial reconfiguration from pins the Quartus Prime software automatically assigns
the PR unassigned pins. If you so choose, you can make pin assignments to all the dedicated PR pins in
Pin Planner or Assignment Editor.

• When performing partial reconfiguration from core, you can connect the prblock signals to either
core logic or I/O pins, excluding the dedicated programming pin such as DCLK.

Instantiating the PR Control Block and CRC Block in VHDL
This code example instantiates a PR control block in VHDL, inside your top-level project, Chip_Top:

module Chip_Top is port (
 --User I/O signals (excluding PR related signals)
 ..
 ..
)
-- Following shows the connectivity within the Chip_Top module
Core_Top : Core_Top
 port_map (
 ..
 ..
);

m_pr : stratixv_prblock
 port map(

4-12 Component Declaration of the PR Control Block and CRC Block in VHDL
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 clk => dclk,
 corectl =>'0', --1 - when using PR from inside
 --0 - for PR from pins; You must also enable
 -- the appropriate option in Quartus Prime settings
 prrequest => pr_request,
 data => pr_data,
 error => pr_error,
 ready => pr_ready,
 done => pr_done
);
m_crc : stratixv_crcblock
 port map(
 shiftnld => '1', --If you want to read the EMR register when
 clk => dummy_clk, --error occurrs, refer to AN539 for the
 --connectivity forthis signal. If you only want
 --to detect CRC errors, but plan to take no
 --further action, you can tie the shiftnld
 --signal to logical high.
 crcerror => crc_error
);

For more information on port connectivity for reading the Error Message Register (EMR), refer to the
following application note.

Related Information
AN539: Test Methodology of Error Detection and Recovery using CRC in Altera FPGA Devices

Instantiating the PR Control Block and CRC Block in Verilog HDL
The following example instantiates a PR control block in Verilog HDL, inside your top-level project,
Chip_Top:

module Chip_Top (
 //User I/O signals (excluding PR related signals)
 ..
 ..
 //PR interface & configuration signals
 pr_request,
 pr_ready,
 pr_done,
 crc_error,
 dclk,
 pr_data,
 init_done
);

//user I/O signal declaration
..
..
//PR interface and configuration signals declaration
 input pr_request;
 output pr_ready;
 output pr_done;
 output crc_error;
 input dclk;
 input [15:0] pr_data;
 output init_done

stratixv_prblock stratixv_prblock_inst
 (
 .clk (dclk),
 .corectl (1'b0),
 .prrequest(pr_request),
 .data (pr_data),
 .error (pr_error),

QPS5V1
2015.11.02 Instantiating the PR Control Block and CRC Block in Verilog HDL 4-13

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an539.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 .ready (pr_ready),
 .done (pr_done)
);

stratixv_crcblock stratixv_crcblock_inst
 (
 .clk (clk),
 .shiftnld (1'b1),
 .crcerror (crc_error)
);
endmodule

For more information on port connectivity for reading the Error Message Register (EMR), refer to the
following application note.

Related Information
AN539: Test Methodology of Error Detection and Recovery using CRC in Altera FPGA Devices

Wrapper Logic for PR Regions
Each persona of a PR region must implement the same input and output boundary ports. These ports act
as the boundary between static and reconfigurable logic.

Implementing the same boundary ports ensures that all ports of a PR region remain stationary regardless
of the underlying persona, so that the routing from the static logic does not change with different PR
persona implementations.

Figure 4-8: Wire-LUTs at PR Region Boundary

The Quartus Prime software automatically instantiates a wire-LUT for each port of the PR region to lock
down the same location for all instances of the PR persona.

Partial 1 Static Region

If one persona of your PR region has a different number of ports than others, then you must create a
wrapper so that the static region always communicates with this wrapper. In this wrapper, you can create
dummy ports to ensure that all of the PR personas of a PR region have the same connection to the static
region.

The sample code below each create two personas; persona_1 and persona_2 are different functions of
one PR region. Note that one persona has a few dummy ports. The first example creates partial reconfigu‐
ration wrapper logic in Verilog HDL:

// Partial Reconfiguration Wrapper in Verilog HDL
module persona //this module is persona_1
 (
 input reset,
 input [2:0] a,
 input [2:0] b,
 input [2:0] c,
 output [3:0] p,
 output [7:0] q

4-14 Wrapper Logic for PR Regions
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

http://www.altera.com/literature/an/an539.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

);
reg [3:0] p, q;
always@(a or b)
 begin
 p = a + b ;
 end

always@(a or b or c or p)
 begin
 q = (p*a - b*c)
 end
endmodule

module persona //this module is persona_2
(
 input reset,
 input [2:0] a,
 input [2:0] b,
 input [2:0] c, //never used in this persona
 output [3:0] p,
 output [7:0] q //never assigned in this persona
);
reg [3:0] p, q;
always@(a or b)
 begin
 p = a * b; // note q is not assigned value in this persona
 end
endmodule

The following example creates partial reconfiguration wrapper logic in VHDL.

-- Partial Reconfiguration Wrapper in VHDL
-- this module is persona_1
entity persona is
 port(
 a:in STD_LOGIC_VECTOR (2 downto 0);
 b:in STD_LOGIC_VECTOR (2 downto 0);
 c:in STD_LOGIC_VECTOR (2 downto 0);
 p: out STD_LOGIC_VECTOR (3 downto 0);
 q: out STD_LOGIC_VECTOR (7 downto 0)
);
end persona;

architecture synth of persona is
 begin
 process(a,b)
 begin
 p <= a + b;
 end process;

 process (a, b, c, p)
 begin
 q <= (p*a - b*c);
 end process;
end synth;

-- this module is persona_2
entity persona is
 port(
 a:in STD_LOGIC_VECTOR (2 downto 0);
 b:in STD_LOGIC_VECTOR (2 downto 0);
 c:in STD_LOGIC_VECTOR (2 downto 0); --never used in this persona
 p:out STD_LOGIC_VECTOR (3 downto 0);
 q:out STD_LOGIC_VECTOR (7 downto 0) --never used in this persona
);
end persona_2;

QPS5V1
2015.11.02 Wrapper Logic for PR Regions 4-15

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

architecture synth of persona_2 is
 begin
 process(a, b)
 begin
 p <= a *b; --note q is not assigned a value in this persona
 end process;
end synth;

Freeze Logic for PR Regions
When you use partial reconfiguration, you must freeze all non-global inputs of a PR region except global
clocks. Locally routed signals are not considered global signals, and must also be frozen during partial
reconfiguration. Freezing refers to driving a '1' on those PR region inputs. When you start a partial
reconfiguration process, the chip is in user mode, with the device still running.

When you instantiate the Altera PR IP core in your design, the IP incudes a freeze port which you can use
to freeze the non-global inputs of the PR region. In case your design has multiple PR regions, you must
create decoding logic to freeze only the inputs of the PR region being partially reconfigured.

If you are not using the Altera PR IP, you must include logic to freeze the inputs of the PR regions in the
design as required for proper operation.

Freezing all non-global inputs for the PR region ensures there is no contention between current values
that may result in unexpected behavior of the design after partial reconfiguration is complete. Global
signals going into the PR region should not be frozen to high. The Quartus Prime software freezes the
outputs from the PR region; therefore the logic outside of the PR region is not affected.

Figure 4-9: Freezing at PR Region Boundary

PR Region

Data1

Data2
User PR_in_freeze

“1”

Hardware-Generated
Freeze

Global
Clocks

During partial reconfiguration, the static region logic should not depend on the outputs from PR regions
to be at a specific logic level for the continued operation of the static region.

The easiest way to control the inputs to PR regions is by creating a wrapper around the PR region in RTL.
In addition to freezing all inputs high, you can also drive the outputs from the PR block to a specific value,
if required by your design. For example, if the output drives a signal that is active high, then your wrapper
could freeze the output to GND. The idea is to make sure the static region will not stall or go to indetermi‐
nate state, when the PR region is getting a new persona through PR.

4-16 Freeze Logic for PR Regions
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example implements a freeze wrapper in Verilog HDL, on a module named pr_module.

module freeze_wrapper
(
 input reset, // global reset signal
 input freeze, // PR process active, generated by user logic
 input clk1, // global clock signal
 input clk2, // non-global clock signal
 input [3:0] control_mode,
 input [3:0] framer_ctl,
 output [15:0] data_out
);
wire [3:0]control_mode_wr, framer_ctl_wr;
wire clk2_to_wr;
//instantiate pr_module
pr_module pr_module
(
 .reset (reset), //input
 .clk1 (clk1), //input, global clock
 .clk2 (clk2_to_wr), // input, non-global clock
 .control_mode (control_mode_wr), //input
 .framer_ctl (framer_ctl_wr), //input
 .pr_module_out (data_out) // collection of outputs from pr_module
);

// Freeze all inputs

assign control_mode_wr = freeze ? 4'hF: control_mode;
assign framer_ctl_wr = freeze ? 4'hF: framer_ctl;
assign clk2_to_wr = freeze ? 1'b1 : clk2;

endmodule

The following example implements a freeze wrapper in VHDL, on a module named pr_module.

entity freeze_wrapper is
port(
 reset:in STD_LOGIC; -- global reset signal
 freeze:in STD_LOGIC;
 clk1: in STD_LOGIC; -- global signal
 clk2: in STD_LOGIC; -- non-global signal
 control_mode: in STD_LOGIC_VECTOR (3 downto 0);
 framer_ctl: in STD_LOGIC_VECTOR (3 downto 0);
 data_out: out STD_LOGIC_VECTOR (15 downto 0)
);
end freeze_wrapper;

architecture behv of freeze_wrapper is

 component pr_module
 port(
 reset:in STD_LOGIC;
 clk1:in STD_LOGIC;
 clk2:in STD_LOGIC;
 control_mode:in STD_LOGIC_VECTOR (3 downto 0);
 framer_ctl:in STD_LOGIC_VECTOR (3 downto 0);
 pr_module_out:out STD_LOGIC_VECTOR (15 downto 0)
);
 end component

 signal control_mode_wr: in STD_LOGIC_VECTOR (3 downto 0);
 signal framer_ctl_wr : in STD_LOGIC_VECTOR (3 downto 0);
 signal clk2_to_wr : STD_LOGIC;
 signal data_out_temp : STD_LOGIC_VECTOR (15 downto 0);
 signal logic_high : STD_LOGIC_VECTOR (3 downto 0):="1111";

QPS5V1
2015.11.02 Freeze Logic for PR Regions 4-17

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 begin
 data_out(15 downto 0) <= data_out_temp(15 downto 0);

 m_pr_module: pr_module
 port map (
 reset => reset,
 clk1 => clk1,
 clk2 => clk2_to_wr,
 control_mode =>control_mode_wr,
 framer_ctl => framer_ctl_wr,
 pr_module_out => data_out_temp);
 -- freeze all inputs

 control_mode_wr <= logic_high when (freeze ='1') else control_mode;
 framer_ctl_wr <= logic_high when (freeze ='1') else framer_ctl;
 clk2_to_wr <= logic_high(0) when (freeze ='1') else clk2;

end architecture;

Clocks and Other Global Signals for a PR Design
For non-PR designs, the Quartus Prime software automatically promotes high fan-out signals onto
dedicated clocks or other forms of global signals during the pre-fitter stage of design compilation using a
process called global promotion. For PR designs, however, automatic global promotion is disabled by
default for PR regions, and you must assign the global clock resources necessary for PR partitions. Clock
resources can be assigned by making Global Signal assignments in the Quartus Prime Assignment Editor,
or by adding Clock Control Block (altclkctrl) Megafunction blocks in the design that drive the desired
global signals.

There are 16 global clock networks in a Stratix V device. However, only six unique clocks can drive a row
clock region limiting you to a maximum of six global signals in each PR region. The Quartus Prime
software must ensure that any global clock can feed every location in the PR region.

The limit of six global signals to a PR region includes the GCLK, QCLK and PCLKs used inside of the PR
region. Make QSF assignments for global signals in your project's Quartus Prime Settings File (.qsf), based
on the clocking requirements for your design. In designs with multiple clocks that are external to the PR
region, it may be beneficial to align the PR region boundaries to be within the global clock boundary
(such as QCLK or PCLK).

If your PR region requires more than six global signals, modify the region architecture to reduce the
number of global signals within this to six or fewer. For example, you can split a PR region into multiple
regions, each of which uses only a subset of the clock domains, so that each region does not use more than
six.

Every instance of a PR region that uses the global signals (for example, PCLK, QCLK, GCLK, ACLR) must use a
global signal for that input.

Global signals can only be used to route certain secondary signals into a PR region and the restrictions for
each block are listed in the following table. Data signals and other secondary signals not listed in the table,
such as synchronous clears and clock enables are not supported.

Table 4-2: Supported Signal Types for Driving Clock Networks in a PR Region

Block Types Supported Signals for Global/Periphery/Quadrant Clock
Networks

LAB Clock, ACLR

4-18 Clocks and Other Global Signals for a PR Design
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Block Types Supported Signals for Global/Periphery/Quadrant Clock
Networks

RAM Clock, ACLR, Write Enable(WE), Read

Enable(RE)

DSP Clock, ACLR

Note: PR regions are allowed to contain output ports that are used outside of the PR region as global
signals.

• If a global signal feeds both static and reconfigurable logic, the restrictions in the table also
apply to destinations in the static region. For example, the same global signal cannot be used as
an SCLR in the static region and an ACLR in the PR region.

• A global signal used for a PR region should only feed core blocks inside and outside the PR
region. In particular you should not use a clock source for a PR region and additionally connect
the signal to an I/O register on the top or bottom of the device. Doing so may cause the
Assembler to give an error because it is unable to create valid programming mask files.

Floorplan Assignments for PR Designs
You must create a LogicLock region so the interface of the PR region with the static region is the same for
any persona you implement. If different personas of a PR region have different area requirements, you
must make a LogicLock region assignment that contains enough resources to fit the largest persona for
the region. The static regions in your project do not necessarily require a floorplan, but depending on any
other design requirement, you may choose to create a floorplan for a specific static region. If you create
multiple PR regions, and are using SCRUB mode, make sure you have one column or row of static region
between each PR region.

There is no minimum or maximum size for the LogicLock region assigned for a PR region. Because wire-
LUTs are added on the periphery of a PR region by the Quartus Prime software, the LogicLock region for
a PR region must be slightly larger than an equivalent non-PR region. Make sure the PR regions include
only the resources that can be partially reconfigured; LogicLock regions for PR can only contain only
LABs, DSPs, and RAM blocks. When creating multiple PR regions, make sure there is at least one static
region column between each PR region. When multiple PR regions are present in a design, the shape and
alignment of the region determines whether you use the SCRUB or AND/OR PR mode.

You can use the default Auto size and Floating location LogicLock region properties to estimate the
preliminary size and location for the PR region.

You can also define regions in the floorplan that match the general location and size of the logic in each
partition. You may choose to create a LogicLock region assignment that is non-rectangular, depending on
the design requirements, but disjoint LogicLock regions are not allowed for PR regions in your first
compilation of the project.

After compilation, use the Fitter-determined size and origin location as a starting point for your design
floorplan. Check the quality of results obtained for your floorplan location assignments and make changes
to the regions as needed.

Alternatively, you can perform Analysis and Synthesis, and then set the regions to the required size based
on resource estimates. In this case, use your knowledge of the connections between partitions to place the
regions in the floorplan.

For more information on making design partitions and using an incremental design flow, refer to the
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Floorplan Design chapter in the
Quartus Prime Handbook. For more design guidelines to ensure good quality of results, and suggestions

QPS5V1
2015.11.02 Floorplan Assignments for PR Designs 4-19

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

on making design floorplan assignments with LogicLock regions, refer to the Best Practices for
Incremental Compilation Partitions and Floorplan Floorplan Assignments chapter in the Quartus Prime
Handbook.

Related Information

• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Floorplan on page 3-1
• Best Practices for Incremental Compilation Partitions and Floorplan on page 14-1

Implementation Details for Partial Reconfiguration
This section describes implementation details that help you create your PR design.

Interface with the PR Control Block through a PR Host
During partial reconfiguration, a PR bitstream stored outside the FPGA being partially reconfigured must
be sent to the PR Control Block in the FPGA. This enables the control block to update the CRAM bits
necessary to configure the PR region in the FPGA.

Two scenarios are possible, depending on whether the control logic to transfer the bitstream is located
within the FPGA or outside the FPGA being reconfigured.

• If the PR IP core is instantiated inside the FPGA being reconfigured, it is termed PR with an internal
host; the Altera PR IP core helps you perform the transfer of the PR bitstream.

• When the PR IP is instantiated outside the FPGA being reconfigured, it is termed as PR with an
external host.

There is a well-defined interface and a specific protocol to transfer the PR bitstream from the external
bitstream source to the PR control block. When you use the Altera PR IP core, the protocol requirements
are automatically met by the IP.

It is also possible to write your own control logic, or use a Nios® processor to do this PR bitstream
transfer. Note that when create your own control logic for the PR Host, you must make sure to meet the
interface requirements described later in this chapter.

Figure 4-10: Managing Partial Reconfiguration with an Internal or External Host

The figure shows how these blocks should be connected to the PR control block (CB). In your system, you
will have either the External Host or the Internal Host, but not both. The external host can be
implemented by instantiating the PR IP core outside the FPGA being reconfigured, may be in another
Altera FPGA, or processor/PC (PR over PCIe) , or can be implemented by user logic.

PR
 IP Core

PR
Region

PR Bitstream
file (.rbf) in

external memory
PR Control
Block (CB)

External
Host

PR
Region

PR Bitstream
file (.rbf) in

external memory

4-20 Implementation Details for Partial Reconfiguration
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The PR mode is independent of the full chip programming mode. You can use any of the supported full
chip configuration modes for configuring the full FPGA for your PR design.

If you are creating your own custom logic for implementing a PR internal host, you can use any interface
to load the PR bitstream data to the FPGA; for example, from a serial or a parallel flash device; and then
format the PR bitstream data to match the FPPx16 interface on the PR Control Block.

When using an external host, you must implement the control logic for managing system aspects of
partial reconfiguration on an external device. To use the external host for your design, turn on the Enable
PR Pins option in the Device and Pin Options dialog box in the Quartus Prime software when you
compile your design. If this setting is turned off, then you must use an internal host. Also, you must tie the
corectl port on the PR control block instance in the top-level of the design to the appropriate level for
the selected mode.

Related Information
Partial Reconfiguration Pins on page 4-21
Partial Reconfiguration Dedicated Pins Table

Partial Reconfiguration Pins
Partial reconfiguration can be performed through external pins or from inside the core of the FPGA.

When using PR from pins, some of the I/O pins are dedicated for implementing partial reconfiguration
functionality. If you perform partial reconfiguration from pins, then you must use the passive parallel
with 16 data bits (FPPx16) configuration mode. All dual-purpose pins should also be specified to Use as
regular I/O.

To enable partial reconfiguration from pins in the Quartus Prime software, perform the following steps:

1. From the Assignments menu, click Device, then click Device and Pin Options.
2. In the Device and Pin Options dialog box, select Partial Reconfiguration in the Category list and

turn on Enable PR pins from the Options list.
3. Click Configuration in the Category list and select Passive Parallel x16 from the Configuration

scheme list.
4. Click Dual-Purpose Pins in the Category list and verify that all pins are set to Use as regular I/O

rather than Use as input tri-stated.
5. Click OK, or continue to modify other settings in the Device and Pin Options dialog box.
6. Click OK.

Note: You can enable open drain on PR pins from the Device and Pin Options dialog box in the Partial
Reconfiguration dialog box.

Table 4-3: Partial Reconfiguration Dedicated Pins Description

Pin Name Pin Type Pin Description

PR_REQUEST Input Dedicated input when Enable
PR pins is turned on; otherwise,
available as user I/O.

Logic high on pin indicates the
PR host is requesting partial
reconfiguration.

QPS5V1
2015.11.02 Partial Reconfiguration Pins 4-21

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Pin Name Pin Type Pin Description

PR_READY Output Dedicated output when Enable
PR pins is turned on; otherwise,
available as user I/O.

Logic high on this pin indicates
the Stratix V control block is
ready to begin partial reconfigu‐
ration.

PR_DONE Output Dedicated output when Enable
PR pins is turned on; otherwise,
available as user I/O.

Logic high on this pin indicates
that partial reconfiguration is
complete.

PR_ERROR Output Dedicated output when Enable
PR pins is turned on; otherwise,
available as user I/O.

Logic high on this pin indicates
the device has encountered an
error during partial reconfigura‐
tion.

DATA[15:0] Input Dedicated input when Enable
PR pins is turned on; otherwise
available as user I/O. These pins
provide connectivity for PR_DATA
to transfer the PR bitstream to
the PR Controller.

DCLK Bidirectional Dedicated input when Enable
PR pins is turned on; PR_DATA is
sent synchronous to this clock.

For more information on different configuration modes for Stratix V devices, and specifically about
FPPx16 mode, refer to the Configuration, Design Security, and Remote System Upgrades in Stratix V
Devices chapter of the Stratix V Handbook.

Related Information
Configuration, Design Security, and Remote System Upgrades in Stratix V Devices

PR Control Signals Interface
You can use the Quartus Prime Assembler and the Convert Programming File utilities to generate the
different bitstreams necessary for full chip configuration and for partial reconfiguration. The
programming bit-stream for partial reconfiguration contains the instructions (opcodes) as well as the
configuration bits, necessary for reconfiguring each of the partial regions. When using an external host,
the interface ports on the control block are mapped to FPGA pins. When using an internal host, these

4-22 PR Control Signals Interface
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

https://documentation.altera.com/#/link/sam1403479391092/sam1403478721015/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

signals are within the core of the FPGA. When using the PR IP core as an internal host, connect the
signals on the PR IP core appropirately as described in the Partial Reconfiguration IP Core User Guide
and follow the instructions to start the PR process on the FPGA. If you are not using the PR IP core, make
sure you understand these PR interface signals.

Figure 4-11: Partial Reconfiguration Interface Signals

These handshaking control signals are used for partial reconfiguration.

PR Control Block (CB)

PR_Data[15:0]
PR_done
PR_ready
CRC_error

PR_error
PR_request

Clk

From Pins or
FPGA Core

corectl

• PR_DATA: The configuration bitstream is sent on PR_ DATA[15:0], synchronous to the Clk.
• PR_DONE: Sent from CB to control logic indicating the PR process is complete.
• PR_READY: Sent from CB to control logic indicating the CB is ready to accept PR data from the control

logic.
• CRC_Error: The CRC_Error generated from the device’s CRC block, is used to determine whether to

partially reconfigure a region again, when encountering a CRC_Error.
• PR_ERROR: Sent from CB to control logic indicating an error during partial reconfiguration.
• PR_REQUEST: Sent from your control logic to CB indicating readiness to begin the PR process.
• corectl: Determines whether partial reconfiguration is performed internally or through pins.

Reconfiguring a PR Region
The figure below shows an internal host for PR, where the PR IP core is implemented inside the FPGA.
However, these principles are also applicable for partial reconfiguration with an external host.

The PR control block (CB) represents the Stratix V PR controller inside the FPGA. PR1 and PR2 are two
PR regions in a user design. In addition to the four control signals (PR_REQUEST, PR_READY, PR_DONE, PR
_ERROR) and the data/clock signals interfacing with the PR control block, your PR Control IP should also
send a control signal (PR_CONTROL) to each PR region. This signal implements the freezing and unfreezing
of the PR Interface signals. This is necessary to avoid contention on the FPGA routing fabric. In a case
such as this, you need to add some decoding logic in the design, in addition to instantiating the PR IP
core.

QPS5V1
2015.11.02 Reconfiguring a PR Region 4-23

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-12: Example of a PR System with Two PR Regions

Implementation of PR Control logic in the FPGA.

PR_Request

PR_Ready, PR_Error,
PR_Done, CRC_Error Partial Reconfiguration

Data/Clock via FPPx16

PR1_Control PR2_Control

PR Control
Block (CB)

PR1
Region

PR2
Region

PR with additional
user logic

Static Region

After the FPGA device has been configured with a full chip configuration at least once, the INIT_DONE
signal is released, and the signal is asserted high due to the external resistor on this pin. The INIT_DONE
signal must be assigned to a pin to monitor it externally. When a full chip configuration is complete, and
the device is in user mode, the following steps describe the PR sequence:

1. Begin a partial reconfiguration process from your PR Control logic, which initiates the PR process for
one or more of the PR regions (asserting PR1_Control or PR2_Control in the figure). The wrapper
HDL described earlier freezes (pulls high) all non-global inputs of the PR region before the PR process.

2. If you are using the PR IP core, use the PR_START signal to start reconfiguring the PR region. When
you are not using the PR IP core, your control logic should send the PR_REQUEST signal from your
control logic to the PR Control Block (CB). If your design uses an external controller, monitor
INIT_DONE to verify that the chip is in user mode before asserting the PR_START or PR_REQUEST signal.
The CB initializes itself to accept the PR data and clock stream. After that, the CB asserts a PR_READY
signal to indicate it can accept PR data. If you are using the PR IP, the timing relationsips between the
control and data signals is managed by the IP core. Data and clock signals are sent to the PR control
block to partially reconfigure the PR region interface.

Note: If you write your own controller logic, specify that exactly four clock-cycles must occur before
sending the PR data to make sure the PR process progresses correctly.

4-24 Reconfiguring a PR Region
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When there are multiple PR personas for the PR region, your control logic must determine the
programming file data for partial reconfiguration and specify the correct file.

• When there are multiple PR regions in the design, then your control logic determines which
regions require reconfiguration based on system requirements.

• At the end of the PR process, the PR control block asserts a PR_DONE signal and deasserts the
PR_READY signal. The Altera PR IP core further processes these signals to assert a 3-bit status signal.
If you are not using the Altera PR IP, your design must take approcpriate action as defined by the
timing diagrams when PR_DONE is asserted.

• If you want to suspend sending data, you can implement logic to pause the clock at any point.
3. When you are not using the PR IP core, your custom control logic must deassert the PR_REQUEST

signal within eight clock cycles after the PR_DONE signal goes high. If your logic does not deassert the
PR_REQUEST signal within eight clock cycles, a new PR cycle starts.

4. If your design includes additional PR regions, repeat steps 2 – 3 for each region. Otherwise, proceed to
step 5.

5. When you are not using the PR IP core, your custom control logic must deassert the PR_CONTROL
signal(s) to the PR region. The freeze wrapper releases all input signals of the PR region, thus the PR
region is ready for normal user operation.

6. You must perform a reset cycle to the PR region to bring all logic in the region to a known state. After
partial reconfiguration is complete for a PR region, the states in which the logic in the region come up
is unknown.

The PR event is now complete, and you can resume operation of the FPGA with the newly configured PR
region.

At any time after the start of a partial reconfiguration cycle, the PR host can suspend sending the PR_DATA,
but the host must suspend sending the PR_CLK at the same time. If the PR_CLK is suspended after a PR
process, there must be at least 20 clock cycles after the PR_DONE or PR_ERROR signal is asserted to prevent
incorrect behavior.

For an overview of different reset schemes in Altera devices, refer to the Recommended Design Practices
chapter in the Quartus Prime Handbook.

Related Information

• Partial Reconfiguration Cycle Waveform on page 4-25
For more information on clock requirements for partial reconfiguration.

• Recommended Design Practices on page 11-1

Partial Reconfiguration Cycle Waveform
When you are using the Altera PR IP in the internal host mode, all the timing relations between various
interface signals are met by default, and you can skip reading this section. If you are using PR with an
external host or implementing your own custom PR internal host logic, pay attention to these timing
relationships when designing your logic. The PR host initiates the PR request, transfers the data to the
FPGA device when it is ready, and monitors the PR process for any errors or until it is done.

A PR cycle is initiated by the host (internal or external) by asserting the PR_REQUEST signal high. When
the FPGA device is ready to begin partial reconfiguration, it responds by asserting the PR_READY signal
high. The PR host responds by sending configuration data on DATA [15:0]. The data is sent synchronous
to PR_CLK. When the FPGA device receives all PR data successfully, it asserts the PR_DONE high, and de-
asserts PR_READY to indicate the completion of the PR cycle. The PR host must monitor the PR process
until either the successful completion of PR (indicated by PR_DONE), or an error condition is asserted.

QPS5V1
2015.11.02 Partial Reconfiguration Cycle Waveform 4-25

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-13: Partial Reconfiguration Timing Diagram

D0LSW D0MSW D1LSW D1MSW Dn-1MSW DnLSW DnLSW

PR_REQUEST

PR_CLK

PR_DATA[15:0]

PR_READY

PR_DONE

READY_to_FIRST_DATA

DONE_to_REQ_low

DONE_to_LAST_CLK

PR_ERROR

CRC_ERROR

If there is an error encountered during partial reconfiguration, the FPGA device asserts the PR_ERROR
signal high and de-asserts the PR_READY signal low.

Whenever either of these two signals are asserted, the host must de-assert PR_REQUEST within eight
PR_CLK cycles. As a response to PR_ERROR error, the host can optionally request another partial reconfigu‐
ration or perform a full FPGA configuration.

To prevent incorrect behavior, the PR_CLK signal must be active a minimum of twenty clock cycles after
PR_DONE or PR_ERROR signal is asserted high. Once PR_DONE is asserted, PR_REQUEST must be de-asserted
within eight clock cycles. PR_DONE is de-asserted by the device within twenty PR_CLK cycles. The host can
assert PR_REQUEST again after the 20 clocks after PR_DONE is de-asserted.

Table 4-4: Partial Reconfiguration Clock Requirements

Signal timing requirements for partial reconfiguration.
Timing Parameters Value (clock cycles)

PR_READY to first data 4 (exact)

PR_ERROR to last clock 20 (minimum)

PR_DONE to last clock 20 (minimum)

DONE_to_REQ_low 8 (maximum)

Compressed PR_READY to first data 4 (exact)

Encrypted PR_READY to first data (when using
double PR)

8 (exact)

Encrypted and Compressed PR_READY to first data
(when using double PR)

12 (exact)

4-26 Partial Reconfiguration Cycle Waveform
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

At any time during partial reconfiguration, to pause sending PR_DATA, the PR host can stop toggling
PR_CLK. The clock can be stopped either high or low.

At any time during partial reconfiguration, the PR host can terminate the process by de-asserting the PR
request. A partially completed PR process results in a PR error. You can have the PR host restart the PR
process after a failed process by sending out a new PR request 20 cycles later.

If you terminate a PR process before completion, and follow it up with a full FPGA configuration by
asserting nConfig, then you must toggle PR_CLK for an additional 20 clock cycles prior to asserting
nConfig to flush the PR_CONTROL_BLOCK and avoid lock up.

During these steps, the PR control block might assert a PR_ERROR or a CRC_ERROR signal to indicate that
there was an error during the partial reconfiguration process. Assertion of PR_ERROR indicates that the PR
bitstream data was corrupt, and the assertion of CRC error indicates a CRAM CRC error either during or
after completion of PR process. If the PR_ERROR or CRC_ERROR signals are asserted, you must plan whether
to reconfigure the PR region or reconfigure the whole FPGA, or leave it unconfigured.

Important: The PR_CLK signal has different a nominal maximum frequency for each device. Most Stratix
V devices have a nominal maximum frequency of at least 62.5 MHz.

Example of a Partial Reconfiguration Design with an External Host
For partial reconfiguration using an external host, you must set the MSEL [4:0] pins for FPPx16
configuration scheme.

You can use Altera PR IP implemented by another supported Altera FPGA device, implement your own
control logic in an FPGA or CPLD, or use a microcontroller to implement the configuration and PR
controller. In this setup, shown in the following figure, the Stratix V device configures in FPPx16 mode
during power-up. Alternatively, you can use a JTAG interface to configure the Stratix V device.

At any time during user-mode, the external host can initiate partial reconfiguration and monitor the
status using the external PR dedicated pins: PR_REQUEST, PR_READY, PR_DONE, and PR_ERROR. In this
mode, the external host must respond appropriately to the hand-shaking signals for a successful partial
reconfiguration. This includes acquiring the data from the flash memory and loading it into the Stratix V
device on DATA[15:0].

QPS5V1
2015.11.02 Example of a Partial Reconfiguration Design with an External Host 4-27

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-14: Connecting to an External Host

The connection setup for partial reconfiguration with an external host in the FPPx16 configuration
scheme.

External Host
(MAX V Device or
Microprocessor)

Stratix V Device
CONF_DONE
nSTATUS
nCONFIG
nCE

DATA[15:0]
DCLK
PR_REQUEST
PR_DONE
PR_READY
PR_ERROR
PR_CONTROL
PR_RESET
CRC_ERROR

10 K W10 K W10 K W

MSEL[4:0]

Memory
ADDR DATA[15:0]

VCCPGM VCCPGM VCCPGM

Note: If you don't care to write an external host controller, you can implement an external host with the
Partial Reconfiguration IP core on a MAX 10 or other FPGA device.

Related Information
Partial Reconfiguration IP Core User Guide

Example of Using an External Host with Multiple Devices
You must design the external host to accommodate the arbitration scheme that is required for your
system, as well as the partial reconfiguration interface requirement for each device.

4-28 Example of Using an External Host with Multiple Devices
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

https://documentation.altera.com/#/link/mwh1393631425397/mwh1393631402541/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-15: Connecting Multiple FPGAs to an External Host

An example of an external host controlling multiple Stratix V devices on a board.

DATA[15:0]

PR_REQUEST1
PR_DONE1

PR_READY1
PR_ERROR1

PR_REQUEST2
PR_DONE2

PR_READY2
PR_ERROR2

PR_REQUEST5
PR_DONE5

PR_READY5
PR_ERROR5

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA1

Address

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA2

DATA[15:0]
nCE

PR_REQUEST
PR_DONE
PR_READY
PR_ERROR FPGA5

External
Host

Memory

DATA[7:0]

Example Partial Reconfiguration with an Internal Host
You can create PR internal host logic with the PR IP core. If your design uses an internal host, the PR IP
core handles the required hand-shaking protocol with the PR control block.

The PR programming bitstream(s) stored in an external flash device can be routed through the regular
I/Os of the FPGA device, or received through the high speed transceiver channel (PCI Express, SRIO or
Gigabit Ethernet), for processing by the internal host.

The PR dedicated pins (PR_REQUEST, PR_READY, PR_DONE, and PR_ERROR) can be used as regular I/Os
when performing partial reconfiguration with an internal host. For the full FPGA configuration upon
power-up, you can set the MSEL[4:0] pins to match the configuration scheme, for example, Active Serial,
Passive Serial, FPPx8, FPPx16, or FPPx32. Alternatively, you can use the JTAG interface to configure the
FPGA device. At any time during user-mode, you can initiate partial reconfiguration through the FPGA
core fabric using the PR internal host.

QPS5V1
2015.11.02 Example Partial Reconfiguration with an Internal Host 4-29

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the following figure, the programming bitstream for partial reconfiguration is received through the PCI
Express link, and your logic converts the data to the FPPx16 mode.

Figure 4-16: Connecting to an Internal Host

An example of the configuration setup when performing partial reconfiguration using the internal host.

EPCS

Stratix V Device

AS_DATA1
DCLK
nCSO
ASDO

10 KW10 KW10 KW

MSEL[4:0]

PR
 IP Core

Partial Reconfiguration Data
Received through PCI Express Link

VCCPGM VCCPGM VCCPGM

DATA
DCLK

nCS
ASDI

nSTATUS
CONF_DONE
nCONFIG
nCE

Partial Reconfiguration Project Management
When compiling your PR project, you must create a base revision, and one or more reconfigurable
revisions. The project revision you start out is termed the base revision.

Create Reconfigurable Revisions
To create a reconfigurable revision, use the Revisions tab of the Project Navigator window in the
Quartus Prime software. When you create a reconfigurable revision, the Quartus Prime software adds the
required assignments to associate the reconfigurable revision with the base revision of the PR project. You
can add the necessary files to each revision with the Add/Remove Files option in the Project option
under the Project menu in the Quartus Prime software. With this step, you can associate the right
implementation files for each revision of the PR project.

Important: You must use the Revisions tab of the Project Navigator window in the Quartus
Prime software when creating revisions for partial reconfiguration. Revisions created using
Project > Revisions cannot be reconfigured.

4-30 Partial Reconfiguration Project Management
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compiling Reconfigurable Revisions
Altera recommends that you use the largest persona of the PR region for the base compilation so that the
Quartus Prime software can automatically budget sufficient routing.

Here are the typical steps involved in a PR design flow.

1. Compile the base revision with the largest persona for each PR region.
2. Create reconfigurable revisions for other personas of the PR regions by right-clicking in the Revisions

tab in the Project Navigator.
3. Compile your reconfigurable revisions.
4. Analyze timing on each reconfigurable revision to make sure the design performs correctly to specifi‐

cations.
5. Create aggregate revisions as needed.
6. Create programming files.

For more information on compiling a partial reconfiguration project, refer to Performing Partial
Reconfiguration in Quartus Prime Help.

Timing Closure for a Partial Reconfiguration Project
As with any other FPGA design project, simulate the functionality of various PR personas to make sure
they perform to your system specifications. You must also make sure there are no timing violations in the
implementation of any of the personas for every PR region in your design project.

In the Quartus Prime software, this process is manual, and you must run multiple timing analyses, on the
base, reconfigurable, and aggregate revisions. The different timing requirements for each PR persona can
be met by using different SDC constraints for each of the personas.

The interface between the partial and static partitions remains identical for each reconfigurable and
aggregate revision in the PR flow. If all the interface signals between the static and the PR regions are
registered, and there are no timing violations within the static region as well as within the PR regions, the
reconfigurable and aggregate revisions should not have any timing violations.

However, you should perform timing analysis on the reconfigurable and aggregate revisions, in case you
have any unregistered signals on the interface between partial reconfiguration and static regions.

Bitstream Compression and Encryption for PR Designs
You can choose to independently compress and encrypt the base bitstream as well as the PR bitstream for
your PR project using options available in the Quartus Prime software.

When you choose to compress the bitstreams, you can compress the base and PR programming
bitstreams independently, based on your design requirements. However, if you want to encrypt only the
base image, you can choose wether or not to encrypt the PR images.

• When you want to encrypt the bitstreams, you can encrypt the PR images only when the base image is
encrypted.

• The Encryption Key Programming (.ekp) file generated when encrypting the base image must be used
for encrypting PR bitstream.

• When you compress the bitstream, you must present each PR_DATA[15:0] word for exactly four clock
cycles.

For partial reconfiguration with the PR IP Core you can specify enhanced compression by turning on the
Enhanced compression option when specifying the parameters in theIP Catalog or Qsys dialog boxes.

Note: Encryption cannot be used with enhanced compression.

QPS5V1
2015.11.02 Compiling Reconfigurable Revisions 4-31

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4-5: Partial Reconfiguration Clock Requirements for Bitstream Compression

Timing Parameters Value (clock cycles)

PR_READY to first data 4 (exact)

PR_ERROR to last clock 80 (minimum)

PR_DONE to last clock 80 (minimum)

DONE_to_REQ_low 8 (maximum)

Related Information

• Enable Partial Reconfiguration Bitstream Decompression when Configuring Base Design SOF file
in JTAG mode on page 4-37

• Enable Bitstream Decryption Option on page 4-38
• Generate PR Programming Files with the Convert Programming Files Dialog Box on page 4-35

Programming Files for a Partial Reconfiguration Project
You must generate PR bitstream(s) based on the designs and send them to the control block for partial
reconfiguration.

Compile the PR project, including the base revision and at least one reconfigurable revision before
generating the PR bitstreams. The Quartus Prime Programmer generates PR bitstreams. This generated
bitstream can be sent to the PR ports on the control block for partial reconfiguration.

4-32 Programming Files for a Partial Reconfiguration Project
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-17: PR Project with Three Revisions

Consider a partial reconfiguration design that has three revisions and one PR region, a base revision with
persona a, one PR revision with persona b, and a second PR revision with persona c.

Base
Revision with

Persona a

Revision b

Revision c

pr_region.msf
static.msf
base.sof

b.sof
b.msf

c.sof
c.msf

Partial
Reconfiguration

Design

When these individual revisions are compiled in the Quartus Prime software, the assembler produces
Masked SRAM Object Files (.msf) and the SRAM Object Files (.sof) for each revision. The .sof files are
created as before (for non-PR designs). Additionally, .msf files are created specifically for partial reconfi‐
guration, one for each revision. The pr_region.mfsf file is the one of interest for generating the PR
bitstream. It contains the mask bits for the PR region. Similarly, the static.msf file has the mask bits for
the static region. The .sof files have the information on how to configure the static region as well as the
corresponding PR region. The pr_region.msf file is used to mask out the static region so that the bitstream
can be computed for the PR region. The default file name of the pr region .msf corresponds to the
LogicLock region name, unless the name is not alphanumeric. In the case of a non-alphanumeric region
name, the .msf file is named after the location of the lower left most coordinate of the region.

Note: Altera recommends naming all LogicLock regions to enhance documenting your design.

QPS5V1
2015.11.02 Programming Files for a Partial Reconfiguration Project 4-33

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-18: Generation of Partial-Masked SRAM Object Files (.pmsf)

You can convert files in the Convert Programming Files window or run the quartus_cpf -p command
to process the pr_region.msf and .sof files to generate the Partial-Masked SRAM Object File (.pmsf).

base.sof

pr_region.msf

a.pmsf+

b.sof

b_pr_region
.msf

b.pmsf+

c.sof

c_pr_region
.msf

c.pmsf+

The .msf file helps determine the PR region from each of the .sof files during the PR bitstream computa‐
tion.

Once all the .pmsf files are created, process the PR bitstreams by running the quartus_cpf -o command
to produce the raw binary .rbf files for reconfiguration.

If one wishes to partially reconfigure the PR region with persona a, use the a.rbf bitstream file, and so on
for the other personas.

Figure 4-19: Generating PR Bitstreams

This figure shows how three bitstreams can be created to partially reconfigure the region with persona a,
persona b, or persona c as desired.

a.rbfa.pmsf b.rbfb.pmsf c.rbfc.pmsf

In the Quartus Prime software, the Convert Programming Files window supports the generation of the
required programming bitstreams. When using the quartus_cpf from the command line, the following
options for generating the programming files are read from an option text file, for example, option.txt.

• If you want to use SCRUB mode, before generating the bitstreams create an option text file, with the
following line:

use_scrub=on

• If you have initialized M20K blocks in the PR region (ROM/Initialized RAM), then add the following
line in the option text file, before generating the bitstreams:

write_block_memory_contents=on

• If you want to compress the programming bitstream files, add the following line in the option text file.
This option is available when converting base .sof to any supported programming file types, such
as .rbf, .pof and JTAG Indirect Configuration File (. jic).

bitstream_compression=on

4-34 Programming Files for a Partial Reconfiguration Project
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Generate PR Programming Files with the Convert Programming Files Dialog Box on page 4-35

Generating Required Programming Files
1. Generate .sof and .msf files (part of a full compilation of the base and PR revisions).
2. Generate a Partial-Masked SRAM Object File (.pmsf) using the following commands:

quartus_cpf -p <pr_revision>.msf <pr_revision>.sof <new_filename>.pmsf

for example:

quartus_cpf -p x7y48.msf switchPRBS.sof x7y48_new.pmsf

3. Convert the .pmsf file for every PR region in your design to .rbf file format. The .rbf format is used to
store the bitstream in an external flash memory. This command should be run in the same directory
where the files are located:

quartus_cpf -o scrub.txt -c <pr_revision >.pmsf <pr_revision>.rbf

for example:

quartus_cpf -o scrub.txt -c x7y48_new.pmsf x7y48.rbf

When you do not have an option text file such as scrub.txt, the files generated would be for AND/OR
mode of PR, rather than SCRUB mode.

Generate PR Programming Files with the Convert Programming Files Dialog Box
In the Quartus Prime software, the flow to generate PR programming files is supported in the Convert
Programming Files dialog box. You can specify how the Quartus Prime software processes file types such
as .msf, .pmsf, and .sof to create .rbf and merged .msf and .pmsf files.

You can create

• A .pmsf output file, from .msf and .sof input files
• A .rbf output file from a .pmsf input file
• A merged .msf file from two or more .msf input files
• A merged .pmsf file from two or more .pmsf input files

Convert Programming Files dialog box also allows you to enable the option bit for bitstream decompres‐
sion during partial reconfiguration, when converting the base .sof (full design .sof) to any supported file
type.

For additional details, refer to the Quartus Prime Programmer chapter in the Quartus Prime Handbook.

Related Information
Quartus Prime Programmer

QPS5V1
2015.11.02 Generating Required Programming Files 4-35

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410385041468/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating a .pmsf File from a .msf and .sof Input File

Perform the following steps in the Quartus Prime software to generate the .pmsf file in the Convert
Programming Files dialog box.

1. Open the Convert Programming Files dialog box.
2. Specify the programming file type as Partial-Masked SRAM Object File (.pmsf).
3. Specify the output file name.
4. Select input files to convert (only a single .msf and .sof file are allowed). Click Add.
5. Click Generate to generate the .pmsf file.

Generating a .rbf File from a .pmsf Input File

Perform the following steps in the Quartus Prime software to generate the partial reconfiguration .rbf file
in the Convert Programming Files dialog box.

1. From the File menu, click Convert Programming Files.
2. Specify the programming file type as Raw Binary File for Partial Reconfiguration (.rbf).
3. Specify the output file name.
4. Select input file to convert. Only a single .pmsf input file is allowed. Click Add.
5. Select the new .pmsf and click Properties.
6. Turn the Compression, Enable SCRUB mode, Write memory contents, and Generate encrypted

bitstream options on or off depending on the requirements of your design. Click Generate to generate
the .rbf file for partial reconfiguration.

• Compression: Enables compression on the PR bitstream.
• Enable SCRUB mode: Default is based on AND/OR mode. This option is valid only when your design

does not contain vertically overlapped PR masks. The .rbf generation fails otherwise.
• Write memory contents: Turn this on when you have a .mif that was used during compilation.

Otherwise, turning this option on forces you to use double PR in AND/OR mode.
• Generate encrypted bitstream: If this option is enabled, you must specify the Encrypted Key

Programming (.ekp) file, which generated when converting a base .sof to an encrypted bitstream. The
same .ekp must be used to encrypt the PR bitstream.

When you turn on Compression, you must present each PR_DATA[15:0] word for exactly four clock
cycles.

Turn on the Write memory contents option only if you are using AND/OR mode and have M20K blocks
in your PR design that need to be initialized. When you check this box, you must to perform double PR
for regions with initialized M20K blocks.

Related Information

• Initializing M20K Blocks with a Double PR Cycle on page 4-44
• Initializing M20K Blocks with a Double PR Cycle on page 4-44

4-36 Generating a .pmsf File from a .msf and .sof Input File
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create a Merged .msf File from Multiple .msf Files

You can merge two or more .msf files in the Convert Programming Files window.

1. Open the Convert Programming Files window.
2. Specify the programming file type as Merged Mask Settings File (.msf).
3. Specify the output file name.
4. Select MSF Data in the Input files to convert window.
5. Click Add File to add input files. You must specify two or more files for merging.
6. Click Generateto generate the merged file.

To merge two or more .msf files from the command line, type:

quartus_cpf --merge_msf=<number of merged files> <msf_input_file_1>

<msf_input_file_2> <msf_input_file_etc> <msf_output_file>

For example, to merge two .msf files, type:

quartus_cpf --merge_msf=<2> <msf_input_file_1> <msf_input_file_2>

<msf_output_file>

Generating a Merged .pmsf File from Multiple .pmsf Files

You can merge two or more .pmsf files in the Convert Programming Files window.

1. Open the Convert Programming Files window.
2. Specify the programming file type as Merged Partial-Mask SRAM Object File (.pmsf).
3. Specify the output file name.
4. Select PMSF Data in the Input files to convert window.
5. Click Add File to add input files. You must specify two or more files for merging.
6. Click Generate to generate the merged file.

To merge two or more .pmsf files from the command line, type:

quartus_cpf --merge_pmsf=<number of merged files> <pmsf_input_file_1>

<pmsf_input_file_2> <pmsf_input_file_etc> <pmsf_output_file>

For example, to merge two .pmsf files, type:

quartus_cpf --merge_pmsf=<2> <pmsf_input_file_1> <pmsf_input_file_2>

<pmsf_output_file>

The merge operation checks for any bit conflict on the input files, and the operation fails with error
message if a bit conflict is detected. In most cases, a successful file merge operation indicates input files do
not have any bit conflict.

Enable Partial Reconfiguration Bitstream Decompression when Configuring Base Design SOF file
in JTAG mode

In the Quartus Prime software, the Convert Programming Files window provides the option in the .sof
file properties to enable bitstream decompression during partial reconfiguration.

QPS5V1
2015.11.02 Create a Merged .msf File from Multiple .msf Files 4-37

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This option is available when converting base .sof to any supported programming file types, such
as .rbf, .pof, and .jic.

In order to view this option, the base .sof must be targeted on Stratix V devices in the .sof File Properties.
This option must be turned on if you turned on the Compression option during .pmsf to .rbf file
generation.

Enable Bitstream Decryption Option
The Convert Programming Files window provides the option in the .sof file properties to enable
bitstream decryption during partial reconfiguration.

This option is available when converting base .sof to any supported programming file types, such
as .rbf, .pof, and .jic.

The base .sof must have partial reconfiguration enabled and the base .sof generated from a design that has
a PR Control Block instantiated, to view this option in the .sof File Properties. This option must be
turned on if you wants to turn on the Generate encrypted bitstream option during .pmsf to .rbf file
generation.

On-Chip Debug for PR Designs
You cannot instantiate a SignalTap II block inside a PR region. If you must monitor signals within a PR
region for debug purposes, bring those signals to the ports of the PR region.

The Quartus Prime software does not support the Incremental SignalTap feature for PR designs. After
you instantiate the SignalTap II block inside the static region, you must recompile your design. When you
recompile your design, the static region may have a modified implementation and you must also
recompile your PR revisions. If you modify an existing SignalTap II instance you must also recompile
your entire design; base revision and reconfigurable revisions.

Figure 4-20: Using SignalTap II with a PR Design

You can instantiate the SignalTap II block in the static region of the design and probe the signals you want
to monitor.

SignalTap II
Module

PR Region
with Signals to

Be Probed
Brought Out
on the Ports

Static Region

You can use other on-chip debug features in the Quartus Prime software, such as the In-System Sources
and Probes or SignalProbe, to debug a PR design. As in the case of SignalTap, In-System Sources and
Probes can only be instantiated within the static region of a PR design. If you have to probe any signal
inside the PR region, you must bring those signals to the ports of the PR region in order to monitor them
within the static region of the design.

4-38 Enable Bitstream Decryption Option
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Partial Reconfiguration Known Limitations
There are restrictions that derive from hardware limitations in specific Stratix V devices.

The restrictions in the following sections apply only if your design uses M20K blocks as RAMs or ROMs
in your PR project.

Memory Blocks Initialization Requirement for PR Designs
For a non-PR design, the power up value for the contents of a M20K RAM or a MLAB RAM are all set at
zero. However, at the end of performing a partial reconfiguration, the contents of a M20K or MLAB
memory block are unknown. You must intentionally initialize the contents of all the memory to zero, if
required by the functionality of the design, and not rely upon the power on values.

M20K RAM Blocks in PR Designs
When your PR design uses M20K RAM blocks in Stratix V devices, there are some restrictions which
limit how you utilize the respective memory blocks as ROMs or as RAMs with initial content.

Related Information
Implementing Memories with Initialized Content on page 4-42
If your design requires initialized memory content either as a ROM or a RAM inside a PR region, you
must follow these guidelines.

Limitations When Using Stratix V Production Devices
These workarounds allow your design to use M20K blocks with PR.

Figure 4-21: Limitations for Using M20Ks in PR Regions

If you implement a M20K block in your PR region as a ROM or a RAM with initialized content, when the
PR region is reconfigured, any data read from the memory blocks in static regions in columns that cross
the PR region is incorrect.

PR
Region

Static
Region

Stratix V Device

No Restrictions for RAM/ROM
Implementation in These M20K Columns

RAM/ROM Implementation in These M20K
Columns Has Restrictions

If the functionality of the static region depends on any data read out from M20K RAMs in the static
region, the design will malfunction.

QPS5V1
2015.11.02 Partial Reconfiguration Known Limitations 4-39

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use one of the following workarounds, which are applicable to both AND/OR and SCRUB modes of
partial reconfiguration:

• Do not use ROMs or RAMs with initialized content inside PR regions.
• If this is not possible for your design, you can program the memory content for M20K blocks with

a .mif using the suggested workarounds.
• Make sure your PR region extends vertically all the way through the device, in such a way that the

M20K column lies entirely inside a PR region.

Figure 4-22: Workaround for Using M20Ks in PR Regions

This figure shows the LogicLock region extended as a rectangle reducing the area available for the static
region. However, you can create non-rectangular LogicLock regions to allocate the resources required for
the partition more optimally. If saving area is a concern, extend the LogicLock region to include M20K
columns entirely.

PR
Region

Static
Region

Stratix V Device

Workaround: Extend the LogicLock Region
to Include the Entire M20K Column

M20K as Uninitialized RAM

M20K as Initialized RAM/ROM

•

4-40 Limitations When Using Stratix V Production Devices
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-23: Alternative Workaround for Using M20Ks in PR Region

Using Reserved LogicLock Regions, block all the M20K columns that are not inside a PR region, but that
are in columns above or below a PR region. In this case, you may choose to under-utilize M20K resources,
in order to gain ROM functionality within the PR region.

PR
Region

Static
Region

Stratix V Device

M20K as Uninitialized RAM

M20K as Initialized RAM/ROM

Workaround: Reserved LogicLock Region
No RAM/ROM In These Areas

For more information including a list of the Stratix V production devices, refer to the Errata Sheet for
Stratix V Devices.

Related Information
Errata Sheet for Stratix V Devices

MLAB Blocks in PR designs
Stratix V devices include dual-purpose blocks called MLABs, which can be used to implement RAMs or
LABs for user logic.

This section describes the restrictions while using MLAB blocks (sometimes also referred to as LUT-
RAM) in Stratix V devices for your PR designs.

If your design uses MLABS as LUT RAM, you must use all available MLAB bits within the region.

Table 4-6: RAM Implementation Restrictions Summary

The following table shows a summary of the LUT-RAM Restrictions.

PR Mode Type of memory in PR region Stratix V Production

SCRUB mode

LUT RAM (no initial content) OK

LUT ROM and LUT RAM with
your initial content

OK

QPS5V1
2015.11.02 MLAB Blocks in PR designs 4-41

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

http://www.altera.com/literature/es/es_StratixV.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PR Mode Type of memory in PR region Stratix V Production

AND/OR mode

LUT RAM (no initial content) While design is running: Write 1s
to all locations before partial
reconfiguration

At compile time: Explicitly
initialize all memory locations in
each new persona to 1 via initial‐
ization file (. mif).

LUT ROM and LUT RAM with
your initial content

No

If your design does not use any MLAB blocks as RAMs, the following discussion does not apply. The
restrictions listed below are the result of hardware limitations in specific devices.

Limitations with Stratix V Production Devices

When using SCRUB mode:

• LUT-RAMs without initialized content, LUT-RAMs with initialized content, and LUT-ROMs can be
implemented in MLABs within PR regions without any restriction.

When using AND/OR mode:

• LUT-RAMs with initialized content or LUT-ROMs cannot be implemented in a PR region.
• LUT-RAMs without initialized content in MLABs inside PR regions are supported with the following

restrictions.
• MLAB blocks contain 640 bits of memory. The LUT RAMs in PR regions in your design must occupy

all MLAB bits, you should not use partial MLABs.
• You must include control logic in your design with which you can write to all MLAB locations used

inside PR region.
• Using this control logic, write '1' at each MLAB RAM bit location in the PR region before starting the

PR process. This is to work around a false EDCRC error during partial reconfiguration.
• You must also specify a .mif that sets all MLAB RAM bits to '1' immediately after PR is complete.
• ROMs cannot be implemented in MLABs (LUT-ROMs).
• There are no restrictions to using MLABs in the static region of your PR design.

For more information, refer to the following documents in the Stratix V Handbook:

Related Information
Errata Sheet for Stratix V Devices

Implementing Memories with Initialized Content
If your Stratix V PR design implements ROMs, RAMs with initialization, or ROMs within the PR regions,
using either M20K blocks or LUT-RAMs, then you must follow the following design guidelines to
determine what is applicable in your case.

4-42 Implementing Memories with Initialized Content
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

http://www.altera.com/literature/es/es_StratixV.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4-7: Implementing Memory with Initialized Content in PR Designs

Mode
Production Devices

AND/OR SCRUB

LUT-RAM without
initialization

Suggested Method While design is running:
Write ‘1’ to all locations
before partial reconfigura‐
tion.

At compile time: Explicitly
initialize all memory
locations in each new
persona to ‘1’ via initializa‐
tion file (.mif)

Make sure no spurious
write on PR entry (4)

No special method
required

Without Suggested
Method

CRC Error No special method
required

LUT-RAM with
initialization

Suggested Method

Not supported

Make sure no spurious
write on PR exit (4)

Without Suggested
Method

Incorrect results

M20K without initiali‐
zation

Suggested Method No special method required

Without Suggested
Method

No special method required

M20K with initializa‐
tion

Suggested Method Use double PR cycle (5)

Make sure no spurious
write on PR exit (4)

No special method
required

Without Suggested
Method

Incorrect results No special method
required

(4) Use the circuit shown in the M20K/LUTRAM figure to create clock enable logic to safely exit partial
reconfiguration without spurious writes.

(5) Double partial reconfiguration is described in Initializing M20K Blocks with a Double PR Cycle

QPS5V1
2015.11.02 Implementing Memories with Initialized Content 4-43

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4-24: M20K/LUTRAM

To avoid spurious writes during PR entry and exit, implement the following clock enable circuit in the
same PR region as the RAM.

CLR

SETD Q

Q

CLR

SETD Q

QCLR

SETD Q

Q

CE

M20K/LUTRAM

1

Clock Enable
Logic

Clear Signal to
Safely Exit PR

The circuit depends on an active- high clear signal from the static region. Before entering PR, freeze this
signal in the same manner as all PR inputs. Your host control logic should de-assert the clear signal as the
final step in the PR process.

Related Information
Initializing M20K Blocks with a Double PR Cycle on page 4-44

Initializing M20K Blocks with a Double PR Cycle
When a PR region in your PR design contains an initialized M20K block and is reconfigured via AND/OR
mode, your host logic must complete a double PR cycle, instead of a single PR cycle.

The PR IP has a double_pr input port, that must be asserted high when your PR region contains RAM
blocks that must be initialized. The PR IP core handles the timing relations between the first and the
second PR cycles of a Double PR operation. From your user logic, assert the double_pr signal when you
assert the pr_start signal, and you deassert the double_pr signal when the freeze signal is deasserted by
the PR IP. This method is also applicable in cases when the programming bitstream is compressed or
encryted.

Document Revision History
Table 4-8: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II
to Quartus Prime.

4-44 Initializing M20K Blocks with a Double PR Cycle
QPS5V1

2015.11.02

Altera Corporation Design Planning for Partial Reconfiguration

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

2015.05.04 15.0.0 • Correct Verilog HDL partial
reconfiguration instantiation
code example.

• Added clear/set method to
SCRUB mode option.

2015.12.15 14.1.0 Minor revisions to some topics
to resolve design refinements:

• Implementing Memories
with Initialized Content

• Instantiating the PR Control
Block and CRC Block in
Verilog HDL

• Partial Reconfiguration Pins

June 2014 14.0.0 Minor updates to "Programming
File Sizes for a Partial Reconfigu‐
ration Project" and code samples
in "Freeze Logic for PR Regions"
sections.

November 2013 13.1.0 Added support for merging
multiple .msf and .pmsf files.

Added support for PR
Megafunction.

Updated for revisions on timing
requirements.

May 2013 13.0.0 Added support for encrypted
bitstreams.

Updated support for double PR.

November 2012 12.1.0 Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 4-45

Design Planning for Partial Reconfiguration Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Planning%20for%20Partial%20Reconfiguration%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating a System With Qsys 5
2015.11.02

QPS5V1 Subscribe Send Feedback

Qsys is a system integration tool included as part of the Quartus Prime software. Qsys simplifies the task
of defining and integrating customized IP Components (IP Cores) into your designs.

Qsys facilitates design reuse by packaging and integrating your custom IP components with Altera and
third-party IP components. Qsys automatically creates interconnect logic from the high-level connectivity
that you specify, which eliminates the error-prone and time-consuming task of writing HDL to specify
system-level connections.

Qsys is a more powerful tool if you design your custom IP components using standard interfaces available
in the Qsys IP Catalog. Standard interfaces inter-operate efficiently with the Altera IP components, and
you can take advantage of bus functional models (BFMs), monitors, and other verification IP to verify
your systems.

Qsys supports Avalon®, AMBA® AXI3™ (version 1.0), AMBA AXI4™ (version 2.0), AMBA AXI4-Lite™

(version 2.0), AMBA AXI4-Stream (version 1.0), and AMBA APB™3 (version 1.0) interface specifications.

Qsys provides the following advantages:

• Simplifies the process of customizing and integrating IP components into systems
• Generates an IP core variation for use in your Quartus Prime software projects
• Supports up to 64-bit addressing
• Supports modular system design
• Supports visualization of systems
• Supports optimization of interconnect and pipelining within the system
• Supports auto-adaptation of different data widths and burst characteristics
• Supports inter-operation between standard protocols, such as Avalon and AXI
• Fully integrated with the Quartus Prime software

Note: For information on how to define and generate stand-alone IP cores for use in your Quartus Prime
software projects, refer to Introduction to Altera IP Cores and Managing Quartus Prime Projects.

Related Information

• Introduction to Altera IP Cores
• Managing Quartus Prime Projects on page 1-1
• Avalon Interface Specifications
• AMBA Protocol Specifications

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Creating%20a%20System%20With%20Qsys&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Interface Support in Qsys
IP components (IP Cores) can have any number of interfaces in any combination. Each interface
represents a set of signals that you can connect within a Qsys system, or export outside of a Qsys system.

Qsys IP components can include the following interface types:

Table 5-1: IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing master devices with slave memory devices. Master
devices may be processors and DMAs, while slave memory devices may be RAMs,
ROMs, and control registers. Data transfers between master and slave may be uni-
directional (read only or write only), or bi-directional (read and write).

Streaming Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirec‐
tional data, as well as high-bandwidth, low-latency IP components. Streaming
creates datapaths for unidirectional traffic, including multichannel streams, packets,
and DSP data. The Avalon-ST interconnect is flexible and can implement on-chip
interfaces for industry standard telecommunications and data communications
cores, such as Ethernet, Interlaken, and video. You can define bus widths, packets,
and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Qsys supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their
IRQs simultaneously, the receiver logic (typically under software control)
determines which IRQ has highest priority, then responds appropriately

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-
out without the use of a bridge. A bridge is required only when a clock from an
external (exported) source connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a
particular positive-edge or negative-edge synchronized reset, Qsys inserts a reset
controller to create the appropriate reset signal. If you design a system with multiple
reset inputs, the reset controller ORs all reset inputs and generates a single reset
output.

Conduits Connects point-to-point conduit interfaces, or represent signals that are exported
from the Qsys system. Qsys uses conduits for component I/O signals that are not
part of any supported standard interface. You can connect two conduits directly
within a Qsys system as a point-to-point connection, or conduit interfaces can be
exported and brought to the top-level of the system as top-level system I/O. You can
use conduits to connect to external devices, for example external DDR SDRAM
memory, and to FPGA logic defined outside of the Qsys system.

5-2 Interface Support in Qsys
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Introduction to the Qsys IP Catalog
The Qsys IP Catalog offers a broad range of configurable IP Cores optimized for Altera devices to use in
your Qsys designs.

The Quartus Prime software installation includes the Altera IP library. You can integrate optimized and
verified Altera IP cores into your design to shorten design cycles and maximize performance. The IP
Catalog can include Altera-provided IP components, third-party IP components, custom IP components
that you create in the Qsys Component Editor, and previously generated Qsys systems.

The Qsys IP Catalog includes the following IP component types:

• Microprocessors, such as the Nios II processor
• DSP IP cores, such as the Reed Solomon Decoder II
• Interface protocols, such as the IP Compiler for PCI Express
• Memory controllers, such as the RLDRAM II Controller with UniPHY
• Avalon Streaming (Avalon-ST) IP cores, such as the Avalon-ST Multiplexer
• Qsys Interconnect
• Verification IP (VIP) Bus Functional Models (BFMs)

Related Information
Introduction to Altera IP Cores

Installing and Licensing IP Cores
The Quartus Prime software includes the Altera IP Library. The library provides many useful IP core
functions for production use without additional license. You can fully evaluate any licensed Altera IP core
in simulation and in hardware until you are satisfied with its functionality and performance. The HDMI
IP core is part of the Altera MegaCore IP Library, which is distributed with the Quartus Prime software
and downloadable from the Altera web site.

Figure 5-1: HDMI Installation Path

Installation directory

ip - Contains the Altera IP Library

altera - Contains the Altera IP Library source code

altera_hdmi - Contains the HDMI IP core files

Note: The default IP installation directory on Windows is <drive>:\altera\<version number>; on Linux it
is <home directory>/altera/ <version number>.

After you purchase a license for the HDMI IP core, you can request a license file from the Altera's
licensing site and install it on your computer. When you request a license file, Altera emails you a
license.dat file. If you do not have Internet access, contact your local Altera representative.

Adding IP Cores to IP Catalog
The IP Catalog automatically displays Altera IP cores found in the project directory, in the Altera
installation directory, and in the defined IP search path. The IP Catalog can include Altera-provided IP

QPS5V1
2015.11.02 Introduction to the Qsys IP Catalog 5-3

Creating a System With Qsys Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

components, third-party IP components, custom IP components that you provide, and previously
generated Qsys systems.

You can use the IP Search Path option (Tools > Options) to include custom and third-party IP
components in the IP Catalog. The IP Catalog displays all IP cores in the IP search path.

Figure 5-2: Specifying IP Search Locations

Adds new global IP search paths

Changes search path order

Adds new project-specific IP search paths

Lists current project and global search paths

The Quartus Prime software searches the directories listed in the IP search path for the following IP core
files:

• Component Description File (_hw.tcl)—Defines a single IP core.
• IP Index File (.ipx)—Each .ipx file indexes a collection of available IP cores, or a reference to other

directories to search. In general, .ipx files facilitate faster searches.

The Quartus Prime software searches some directories recursively and other directories only to a specific
depth. When the search is recursive, the search stops at any directory that contains an _hw.tcl or .ipx file.

In the following list of search locations, a recursive descent is annotated by **. A single * signifies any file.

Table 5-2: IP Search Locations

Location Description

PROJECT_DIR/* Finds IP components and index files in the Quartus Prime project directory.

PROJECT_DIR/ip/**/* Finds IP components and index files in any subdirectory of the /ip subdirectory
of the Quartus Prime project directory.

5-4 Adding IP Cores to IP Catalog
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the Quartus Prime software recognizes two IP cores with the same name, the following search path
precedence rules determine the resolution of files:

1. Project directory.
2. Project database directory.
3. Project IP search path specified in IP Search Locations, or with the SEARCH_PATH assignment for the

current project revision.
4. Global IP search path specified in IP Search Locations, or with the SEARCH_PATH assignment in the

quartus2.ini file.
5. Quartus software libraries directory, such as <Quartus Installation>\libraries.

Note: If you add a component to the search path, you must update the IP Catalog by clicking Refresh IP
Catalog in the drop-down list. In Qsys, click File > Refresh System to update the IP Catalog.

General Settings for IP
You can use the following settings to control how the Quartus Prime software manages IP cores in your
project.

Table 5-3: IP Core General Setting Locations

Setting Location Description

Tools > Options > IP
Settings

Or

Assignments > Settings >
IP Settings (only enabled
with open project)

• Specify your IP generation HDL preference. The parameter editor
generates IP files in your preferred HDL by default.

• Increase Maximum Qsys memory usage size if you experience slow
processing for large systems, or if Qsys reports an Out of Memory error.

• Specify whether to Automatically add Quartus Prime IP files to all
projects. Disable this option to control addition of IP files manually. You
may want to experiment with IP before adding to a project.

• Use the IP Regeneration Policy setting to control when synthesis files
regenerate for each IP variation. Typically you Always regenerate
synthesis files for IP cores after making changes to an IP variation.

Tools > Options > IP
Catalog Search Locations

Or

Assignments > Settings >
IP Catalog Search
Locations

• Specify project and global IP search locations. The Quartus Prime
software searches for IP cores in the project directory, in the Altera
installation directory, and in the IP search path.

Assignments > Settings >
Simulation

• NativeLink Settings allow you to automatically compile testbenches for
supported simulators. You can also specify a script to compile the
testbench, and a script to set up the simulation.

QPS5V1
2015.11.02 General Settings for IP 5-5

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Set up the IP Index File (.ipx) to Search for IP Components
An IP Index File (.ipx) contains a search path that Qsys uses to search for IP components. You can use the
ip-make-ipx command to create an .ipx file for a any directory tree, which can reduce the startup time
for Qsys.

You can specify a search path in the user_components.ipx file in either in Qsys (Tools > Options) or the
Quartus Prime software (Tools > Options > IP Catalog Search Locations). This method of discovering
IP components allows you to add a locations dependent of the default search path. The
user_components.ipx file directs Qsys to the location of an IP component or directory to search.

A <path> element in the .ipx file specifies a directory where multiple IP components may be found. A
<component> entry specifies the path to a single component. A <path> element can use wildcards in its
definition. An asterisk matches any file name. If you use an asterisk as a directory name, it matches any
number of subdirectories.

Example 5-1: Path Element in an .ipx File

<library>
 <path path="…<user directory>" />
 <path path="…<user directory>" />
 …
 <component … file="…<user directory>" />
 …
</library>

A <component> element in an .ipx file contains several attributes to define a component. If you provide
the required details for each component in an .ipx file, the startup time for Qsys is less than if Qsys must
discover the files in a directory. The example below shows two <component> elements. Note that the
paths for file names are specified relative to the .ipx file.

Example 5-2: Component Element in an .ipx File

<library>
 <component
 name="A Qsys Component"
 displayName="Qsys FIR Filter Component"
 version="2.1"
 file="./components/qsys_filters/fir_hw.tcl"
 />
 <component
 name="rgb2cmyk_component"
 displayName="RGB2CMYK Converter(Color Conversion Category!)"
 version="0.9"
 file="./components/qsys_converters/color/rgb2cmyk_hw.tcl"
 />
</library>

Note: You can verify that IP components are available with the ip-catalog command.

Related Information
Create an .ipx File with ip-make-ipx on page 5-78

5-6 Set up the IP Index File (.ipx) to Search for IP Components
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Integrate Third-Party IP Components into the Qsys IP Catalog
You can use IP components created by Altera partners in your Qsys systems. These IP components have
interfaces that are supported by Qsys, such as Avalon-MM or AXI. Additionally, some include timing and
placement constraints, software drivers, simulation models, and reference designs.

To locate supported third-party IP components on Altera's web page, navigate to the Intellectual Property
& Reference Designs page, type Qsys Certified in the Search box, select IP Core & Reference
Designs, and then press Enter.

Refer to Altera's Intellectual Property & Reference Designs page for more information.

Related Information
Intellectual Property & Reference Designs

Create a Qsys System
Click Tools > Qsys in the Quartus Prime software to open Qsys. A .qsys or .qip file represents your Qsys
system in your Quartus Prime software project.

Related Information

• Creating Qsys Components on page 6-1
• Component Interface Tcl Reference on page 9-1

Start a New Project or Open a Recent Project in Qsys
1. To start a new Qsys project, save the default system that appears when you open Qsys (File > Save), or

click File > New System, and then save your new project.
Qsys saves the new project in the Quartus Prime project directory. To alternatively save your Qsys
project in a different directory, click File > Save As.

2. To open a recent Qsys project, click File > Open to browse for the project, or locate a recent project
with the File > Recent Projects command.

3. To revert the project currently open in Qsys to the saved version, click the first item in the Recent
Projects list.

Note: You can edit the directory path information in the recent_projects.ini file to reflect a new location
for items that appear in the Recent Projects list.

Specify the Target Device
In Qsys, the Device Family tab allows you to select the device family and device for your Qsys system. IP
components, parameters, and output options that appear with your Qsys system vary according to the
device type. Qsys saves device settings in the .qsys file.

When you generate your Qsys system, the generated output is for the Qsys-selected device, which may be
different than your Quartus Prime project device settings.

The Quartus Prime software always uses the device specified in the Quartus Prime project settings, even if
you have already generated your Qsys system with the Qsys-selected device.

QPS5V1
2015.11.02 Integrate Third-Party IP Components into the Qsys IP Catalog 5-7

Creating a System With Qsys Altera Corporation

Send Feedback

http://www.altera.com/products/ip/ipm-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Qsys generates a warning message if the Qsys device family and device do not match the Quartus
Prime project settings. Also, when you open Qsys from within the Quartus Prime software, the
Quartus Prime project device settings apply.

Add IP Components (IP Cores) to a Qsys System
The Qsys IP Catalog displays IP components (IP Cores) available for your target device.

Double-click any component in the IP Catalog to launch the parameter editor. The parameter editor
allows you to create a custom IP component variation of the selected component. A Qsys system can
contain a single instance of an IP component, or multiple, individually parameterized variations of the
same IP component.

1. Right-click any IP component name in the Qsys IP Catalog to display details about device support,
installation location, versions, and links to documentation.

2. To locate a specific type of component, type some or all of the component’s name in the IP Catalog
search box.
For example, type memory to locate memory-mapped IP components, or axi to locate AXI IP. You
can also filter the IP Catalog display with options on the right-click menu.

3. Double-click any component to launch the parameter editor.
The parameter editor opens where you can set parameter values, and view the block diagram for
component.

4. For IP components that have preset parameter values, select the prest file in the preset editor, and then
click Apply.
Allows you to instantly apply preset parameter values for the IP component appropriate for a specific
application.

5. Click Finish to complete customization of the IP component.
The IP component appears in the System Contents tab.

5-8 Add IP Components (IP Cores) to a Qsys System
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-3: Qsys IP Catalog

Connect IP Components in Your Qsys System
The System Contents tab is the primary interface that you use to connect and configure components.

You connect interfaces of compatible types and opposite directions. For example, you can connect a
memory-mapped master interface to a slave interface, and an interrupt sender interface to an interrupt
receiver interface. You can connect any interfaces exported from a Qsys system within a parent Qsys
system.

Possible connections between interfaces appear as gray lines and open circles. To make a connection, click
the open circle at the intersection of the interfaces. When you make a connection, Qsys draws the
connection line in black and fills the connection circle. Clicking a filled-in circle removes a connection.

Qsys interconnect connects interface signals during system generation.

The Connections tab (View > Connections) shows a list of current and possible connections for selected
instances or interfaces in the Hierarchy or System Contents tabs. You can add and remove connections
by clicking the check box for each connection. Reporting columns provide information about each
connection. For example, the Clock Crossing, Data Width, and Burst columns provide interconnect
information about added adapters that can sometimes result in slower fMax, or larger area.

QPS5V1
2015.11.02 Connect IP Components in Your Qsys System 5-9

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-4: Connections Column in the System Contents Tab

When you finish adding connections, you can deselect Allow Connection Editing in the right-click
menu. This option sets the Connections column to read-only and hides the possible connections.

Related Information
Connecting Components

Create Connections Between Masters and Slaves
The Address Map tab provides the address range that each memory-mapped master must use to connect
to each slave in your system.

Qsys shows the slaves on the left, the masters across the top, and the address span of the connection in
each cell. If there is no connection between a master and a slave, the table cell is empty.

You can design a system where two masters access a slave at different addresses. If you use this feature,
Qsys labels the Base and End address columns in the System Contents tab as "mixed" rather than
providing the address range.

Follow these steps to change or create a connection between master and slave IP components:

1. In Qsys, click or open the Address Map tab.
2. Locate the table cell that represents the connection between the master and slave component pair.
3. Either type in a base address, or update the current base address in the cell.

Note: The base address of a slave component must be a multiple of the address span of the component.
This restriction is a requirement of the Qsys interconnect. The result is an efficient address
decoding logic, which allows Qsys to achieve the best possible fMAX.

5-10 Create Connections Between Masters and Slaves
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

http://quartushelp.altera.com/current/system/qsys/qsys_pro_connect_comps.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

View Your Qsys System
Qsys allows you to change the display of your system to match your design development. Each tab on
View menu allows you to view your design with a unique perspective. Multiple tabs open in your
workspace allows you to focus on a selected element in your system under different perspectives.

The Qsys GUI supports global selection and edit. When you make a selection or apply an edit in the
Hierarchy tab, Qsys updates all other open tabs to reflect your action. For example, when you select
cpu_0 in the Hierarchy tab, Qsys updates the Parameters tab to show the parameters for cpu_0.

By default, when you open Qsys, the IP Catalog and Hierarchy tab display to the left of the main frame.
The System Contents, Address Map, Interconnect Requirements, and Device Family tabs display in the
main frame.

The Messages tab displays in the lower portion of Qsys. Double-clicking a message in the Messages tab
changes focus to the associated element in the relevant tab to facilitate debugging. When the Messages tab
is closed or not open in your workspace, error and warning message counts continue to display in the
status bar of the Qsys window.

You can dock tabs in the main frame as a group, or individually by clicking the tab control in the upper-
right corner of the main frame. You can arrange your workspace by dragging and dropping, and then
grouping tabs in an order appropriate to your design development, or close or dock tabs that you are not
using. Tool tips on the upper-right corner of the tab describe possible workspace arrangements, for
example, restoring or disconnecting a tab to or from your workspace. When you save your system, Qsys
also saves the current workspace configuration. When you re-open a saved system, Qsys restores the last
saved workspace.

The Reset to System Layout command on the View menu restores the workspace to its default configura‐
tion for Qsys system design. The Reset to IP Layout command restores the workspace to its default
configuration for defining and generating single IP cores.

Note: Qsys contains some tabs which are not documented and appear on the View menu as "Beta". The
purpose in presenting these tabs is to allow you to explore their usefulness in Qsys system develop‐
ment.

QPS5V1
2015.11.02 View Your Qsys System 5-11

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-5: View Your Qsys System

Manage Qsys Window Views with Layouts
Qsys Layout controls what tabs are open in your Qsys design window. When you create a Qsys window
configuration that you want to keep, Qsys allows you to save that configuration as a custom layout. The
Qsys GUI and features are well-suited for Qsys system design. Though, you can also use Qsys to define
and generate single IP cores for use in your Quartus Prime software projects.

1. To configure your Qsys window with a layout suitable for Qsys system design, click View > Reset to
System Layout.
The System Contents, Address Map, Interconnect Requirements, and Messages tabs open in the
main pane, and the IP Catalog and Hierarchy tabs along the left pane.

2. To configure your Qsys window with a layout suitable for single IP core design, click View > Reset to
IP Layout.
The Parameters and Messages tabs open in the main pane, and the Details, Block Symbol and
Presets tabs along the right pane.

3. To save your current Qsys window configuration as a custom layout, click View > Custom Layouts >
Save.
Qsys saves your custom layout in your project directory, and adds the layout to the custom layouts list,
and the layouts.ini file. The layouts.ini file controls the order in which the layouts appear in the list.

4. To reset your Qsys window configuration to a previously saved configuration, click View > Custom
Layouts, and then select the custom layout in the list.
The Qsys windows opens with your previously saved Qsys window configuration.

5-12 Manage Qsys Window Views with Layouts
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-6: Save Your Qsys Window Views and Layouts

5. To manage your saved custom layouts, click View > Custom Layouts.

The Manage Custom Layouts dialog box opens and allows you to apply a variety of functions that
facilitate custom layout management. Foe example, you can import or export a layout from or to a
different directory.

QPS5V1
2015.11.02 Manage Qsys Window Views with Layouts 5-13

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-7: Manage Custom Layouts

The shortcut, Ctrl-3, for example, allows you to quickly change your Qsys window view with a quick
keystroke.

Filter the Display of the System Contents Tab
You can use the Filters dialog box to filter the display of your system by interface type, instance name, or
by using custom tags.

For example, in the System Contents tab, you can show only instances that include memory-mapped
interfaces or instances connected to a particular Nios II processor. The filter tool also allows you to
temporarily hide clock and reset interfaces to simplify the display.

5-14 Filter the Display of the System Contents Tab
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-8: Filter Icon in the System Contents Tab

Related Information
Filters Dialog Box

Display Details About a Component or Parameter
The Details tab provides information for a selected component or parameter. Qsys updates the
information in the Details tab as you select different components.

As you click through the parameters for a component in the parameter editor, Qsys displays the descrip‐
tion of the parameter in the Details tab. To return to the complete description for the component, click
the header in the Parameters tab.

Display a Graphical Representation of a Component

In the Block Symbol tab, Qsys displays a graphical representation of the element that you select in the
Hierarchy or System Contents tabs. You can view the selected component's port interfaces and signals.
The Show signals option allows you to turn on or off signal graphics.

The Block Symbol tab appears by default in the parameter editor when you add a component to your
system. When the Block Symbol tab is open in your workspace, it reflects changes that you make in other
tabs.

QPS5V1
2015.11.02 Display Details About a Component or Parameter 5-15

Creating a System With Qsys Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#system/qsys/qsys_db_filter.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

View a Schematic of Your Qsys System
The Schematic tab displays a schematic representation of your Qsys system. Tab controls allow you to
zoom into a component or connection, or to obtain tooltip details for your selection. You can use the
image handles in the right panel to resize the schematic image.

If your selection is a subsystem, use the Hierarchy tool to navigate to the parent subsystem, move up one
level, or to drill into the currently open subsystem.

Figure 5-9: Qsys Schematic Tab

Related Information
Edit a Qsys Subsystem on page 5-36

View Assignments and Connections in Your Qsys System
On the Assignments tab (View > Assignments), you can view assignments for a module or element that
you select in the System Contents tab. The Connections tab displays a lists of connections in your Qsys
system. On the Connections tab (View > Connections), you can choose to connect or un-connect a
module in your system, and then view the results in the System Contents tab.

5-16 View a Schematic of Your Qsys System
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-10: Assignments and Connections tabs in Qsys

Navigate Your Qsys System
The Hierarchy tab is a full system hierarchical navigator that expands the Qsys system contents to show
all elements in your system.

You can use the Hierarchy tab to browse, connect, parameterize IP, and drive changes in other open tabs.
Expanding each interface in the Hierarchy tab allows you to view sub-components, associated elements,
and signals for the interface. You can focus on a particular area of your system by coordinating selections
in the Hierarchy tab with other open tabs in your workspace.

Navigating your system using the Hierarchy tab in conjunction with relevant tabs is useful during the
debugging phase. Viewing your system with mutiple tabs open allows you to focus your debugging efforts
to a single element in your system.

The Hierarchy tab provides the following information and functionality:

• Connections between signals.
• Names of signals in exported interfaces.
• Right-click menu to connect, edit, add, remove, or duplicate elements in the hierarchy.
• Internal connections of Qsys subsystems that are included as IP components. In contrast, the System

Contents tab displays only the exported interfaces of Qsys subsystems.

QPS5V1
2015.11.02 Navigate Your Qsys System 5-17

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-11: Expanding System Contents in the Hierarchy Tab

The Hierarchy tab displays a unique icon for each element in the system. Context sensitivity between tabs
facilitates design development and debugging. For example, when you select an element in the Hierarchy
tab, Qsys selects the same element in other open tabs. This allows you to interact with your system in
more detail. In the example below, the ram_master selection appears selected in both the System
Contents and Hierarchy tabs.

Related Information
Create and Manage Hierarchical Qsys Systems on page 5-34

Specify IP Component Parameters
The Parameters tab allows you to configure parameters that define an IP component's functionality.

When you add a component to your system, or when you double-click a component in an open tab, the
parameter editor opens. In the parameter editor, you can configure the parameters of the component to to

5-18 Specify IP Component Parameters
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

align with the requirements of your design.. If you create your own IP components, use the Hardware
Component Description File (_hw.tcl) to specify configurable parameters.

With the Parameters tab open, when you select an element in the Hierarchy tab, Qsys shows the same
element in the Parameters tab. You can then make changes to the parameters that appear in the
parameter editor, including changing the name for top-level instance that appears in the System Contents
tab. Changes that you make in the Parameters tab affect your entire system and appear dynamically in
other open tabs in your workspace.

In the parameter editor, the Documentation button provides information about a component's
parameters, including the version.

At the top of the parameter editor, Qsys shows the hierarchical path for the component and its elements.
This feature is useful when you navigate deep within your system with the Hierarchy tab.

The Parameters tab also allows you to review the timing for an interfac and displays the read and write
waveforms at the bottom of the Parameters tab.

Figure 5-12: Avalon-MM Write Master Timing Waveforms in the Parameters Tab

QPS5V1
2015.11.02 Specify IP Component Parameters 5-19

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configure Your IP Component with a Pre-Defined Set of Parameters
The Presets tab allows you to apply a pre-defined set of parameters to your IP component to create a
unique variation. The Presets tab opens the preset editor and allows you to create, modify, and save
custom component parameter values as a preset file. Not all IP components have preset files.

When you add a new component to your system, if there are preset files available for the component, the
preset editor opens in the parameter editor. The name of each preset file describes a particular protocol.

1. In your Qsys system, select an element in the Hierarchy tab.
2. Click View > Presets.
3. Type text in the Presets search box to filter the list of preset files.

For example, if you add the DDR3 SDRAM Controller with UniPHY component to your system,
type 1g micron 256 in the search box, The Presets list displays only those preset files associated
with 1g micron 256.

4. Click Apply to assign the selected presets to the component.
Presets whose parameter values match the current parameter settings appear in bold.

5. In the Presets tab, click New to create a custom preset file if the available presets do not meet the
requirements of your design.
a. In the New Preset dialog box, specify the Preset name and Preset description.
b. In the Ceck or uncheck the parameters you want to include in the preset file.
c. Specify where you want to save the new preset file.

If the file location that you specify is not already in the IP search path, Qsys adds the location of the
new preset file to the IP search path.

d. Click Save.
6. In the Presets tab, click Update to update a custom preset.

Note: Custom presets are preset files that you create by clicking New in the Presets tab.
7. In the Presets tab, click Delete to delete a custom preset.

5-20 Configure Your IP Component with a Pre-Defined Set of Parameters
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Define Qsys Instance Parameters
You can use instance parameters to test the functionality of your Qsys system when you use another
system as a sub-component. A higher-level Qsys system can assign values to instance parameters, and
then test those values in the lower-level system.

The Instance Script on the Instance Parameters tab defines how the specified values for the instance
parameters affect the sub-components in your Qsys system. The instance script allows you to create
queries for the instance parameters and set the values of the parameters for the lower-level system
components.

When you click Preview Instance, Qsys creates a preview of the current Qsys system with the specified
parameters and instance script and opens the parameter editor. This command allows you to see how an
instance of a system appears when you use it in another system. The preview instance does not affect your
saved system.

To use instance parameters, the IP components or subsystems in your Qsys system must have parameters
that can be set when they are instantiated in a higher-level system.

If you create hierarchical Qsys systems, each Qsys system in the hierarchy can include instance
parameters to pass parameter values through multiple levels of hierarchy.

QPS5V1
2015.11.02 Define Qsys Instance Parameters 5-21

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create an Instance Parameter Script in Qsys
The first command in an instance parameter script must specify the Tcl command version. The version
command ensures the Tcl commands behave identically in future versions of the tool. Use the following
command to specify the version of the Tcl commands, where <version> is the Quartus Prime software
version number, such as 14.1:

package require -exact qsys <version>

To use Tcl commands that work with instance parameters in the instance script, you must specify the
commands within a Tcl composition callback. In the instance script, you specify the name for the
composition callback with the following command:

set_module_property COMPOSITION_CALLBACK <name of callback procedure>

Specify the appropriate Tcl commands inside the Tcl procedure with the following syntax:

proc <name of procedure defined in previous command> {}
{#Tcl commands to query and set parameters go here}

Example 5-3: Instance Parameter Script Example

In this example, an instance script uses the pio_width parameter to set the width parameter of a
parallel I/O (PIO) component. The script combines the get_parameter_value and
set_instance_parameter_value commands using brackets.

Request a specific version of the scripting API
package require -exact qsys 13.1

Set the name of the procedure to manipulate parameters:
set_module_property COMPOSITION_CALLBACK compose

proc compose {} {

Get the pio_width parameter value from this Qsys system and
pass the value to the width parameter of the pio_0 instance

set_instance_parameter_value pio_0 width \
[get_parameter_value pio_width]
}

Related Information
Component Interface Tcl Reference on page 9-1

5-22 Create an Instance Parameter Script in Qsys
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Supported Tcl Commands for Qsys Instance Parameter Scripts
You can use standard Tcl commands to manipulate parameters in the script, such as the set command to
create variables, or the expr command for mathematical manipulation of the parameter values. Instance
scripts also use Tcl commands to query the parameters of a Qsys system, or to set the values of the
parameters of the sub-IP-components instantiated in the system.

get_instance_parameter_value

Description

Returns the value of a parameter in a child instance.

Usage

get_instance_parameter_value <instance> <parameter>

Returns

The value of the parameter.

Arguments

instance
The name of the child instance.

parameter
The name of the parameter in the instance.

Example

get_instance_parameter_value pixel_converter input_DPI

QPS5V1
2015.11.02 Supported Tcl Commands for Qsys Instance Parameter Scripts 5-23

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameters

Description

Returns the names of all parameters on a child instance that can be manipulated by the parent. It omits
parameters that are derived and those that have the SYSTEM_INFO parameter property set.

Usage

get_instance_parameters <instance>

Returns

A list of parameters in the instance.

Arguments

instance
The name of the child instance.

Example

get_instance_parameters instance

5-24 get_instance_parameters
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_parameter_value

Description

Returns the current value of a parameter defined previously with the add_parameter command.

Usage

get_parameter_value <parameter>

Returns

The value of the parameter.

Arguments

parameter
The name of the parameter whose value is being retrieved.

Example

get_parameter_value fifo_width

QPS5V1
2015.11.02 get_parameter_value 5-25

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_parameters

Description

Returns the names of all the parameters in the component.

Usage

get_parameters

Returns

A list of parameter names.

Arguments

No arguments.

Example

get_parameters

5-26 get_parameters
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

send_message

Description

Sends a message to the user of the component. The message text is normally interpreted as HTML. The
 element can be used to provide emphasis. If you do not want the message text to be interpreted as
HTML, then pass a list like { Info Text } as the message level

Usage

send_message <level> <message>

Returns

No return value.

Arguments

level
The following message levels are supported:

• ERROR--Provides an error message.
• WARNING--Provides a warning message.
• INFO--Provides an informational message.
• PROGRESS--Provides a progress message.
• DEBUG--Provides a debug message when debug mode is enabled.

message
The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

QPS5V1
2015.11.02 send_message 5-27

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_parameter_value

Description

Sets the value of a parameter for a child instance. Derived parameters and SYSTEM_INFO parameters for
the child instance may not be set using this command.

Usage

set_instance_parameter_value <instance> <parameter> <value>

Returns

No return value.

Arguments

instance
The name of the child instance.

parameter
The name of the parameter.

value
The new parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

5-28 set_instance_parameter_value
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_module_property

Description

Used to specify the Tcl procedure invoked to evaluate changes in Qsys system instance parameters.

Usage

set_module_property <property> <value>

Returns

No return value.

Arguments

property
The name of the property. Refer to Module Properties.

value
The new value of the property.

Example

set_module_property COMPOSITION_CALLBACK "my_composition_callback"

QPS5V1
2015.11.02 set_module_property 5-29

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create a Custom IP Component (_hw.tcl)
Figure 5-13: Qsys System Design Flow

The Qsys system design flow describes how to create a custom IP component using the Qsys Component
Editor. You can optionally manually create a _hw_tcl file. The flow shows the simulation your custom IP,
and at what point you can integrate it with other IP components to create a Qsys system and complete
Quartus Prime project.

No

No

Yes

Yes

Simulation at Unit-Level,
Possibly Using BFMs

Debug Design

Does
Simulation Give

Expected Results?

Debug Design

Does
Simulation Give
Expected Results?

Complete System, Add and
Connect All IP Components,

Define Memory Map If Needed

Perform System-Level
Simulation

Generate Qsys System

Yes

No

Modify Design or
Constraints

Does
HW Testing Give
Expected Results? Qsys System Complete

Constrain, Compile
in Quartus Prime

Download .sof to PCB
with FPGA

Create Component
Using Component Editor, or
by Manually Creating the

_hw.tcl File

1

2

3

5
8

9

10

6

7

4

Generating .sof

Note: For information on how to define and generate single IP cores for use in your Quartus Prime
software projects, refer to Introduction to Altera IP Cores.

5-30 Create a Custom IP Component (_hw.tcl)
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Creating Qsys Components on page 6-1
• Introduction to Altera IP Cores
• Managing Quartus Prime Projects on page 1-1

Upgrade Outdated IP Components in Qsys
When you open a Qsys system that contains outdated IP components, Qsys automatically attempts to
upgrade the IP components if it cannot locate the requested version.

IP components that Qsys successfully upgradess appear in the Upgrade IP Cores dialog box with a green
check mark. Most Qsys IP components support automatic upgrade. You can include a path to older IP
components in the IP Search Path, which Qsys uses even if upgraded versions are available. However,
older versions of IP components may not work in newer version of Qsys.

Note: If your Qsys system includes an IP component(s) outside of the project directory, or the directory
of the .qsys file, you must add the location of these components to the Qsys IP Search Path
(Tools > Options).

1. With your Qsys system open, click System > Upgrade IP Cores.
Only IP Components that are associated with the open Qsys system, and that do not support
automatic upgrade appear in Upgrade IP Cores dialog box.

2. In the Upgrade IP Cores dialog box, click one or multiple IP components, and then click Upgrade.
A green check mark appears for the IP components that Qsys successfully upgrades.

3. Generate your Qsys system.

Note: Qsys supports command-line upgrade for IP components with the following command:

qsys-generate -–upgrade-ip-cores <qsys_file>

The <qsys_file> variable accepts a path to the .qsys file. You do not need to run this command in
the same directory as the .qsys file. Qsys reports the start and finish of the command-line upgrade,
but does not name the particular IP component(s) upgraded.

For device migration information, refer to Introduction to Altera IP Cores.

Related Information

• Introduction to the Qsys IP Catalog on page 5-3
• Introduction to Altera IP Cores

Troubleshooting IP or Qsys System Upgrade
The Upgrade IP Components dialog box reports the version and status of each IP core and Qsys system
following upgrade or migration. If any upgrade or migration fails, the Upgrade IP Components dialog
box provides information to help you resolve any errors.

Note: Make sure that your IP variation names or paths do not include spaces. Spaces can be problematic
for IP generation.

During automatic or manual upgrade, the Messages window dynamically displays upgrade information
for each IP core or Qsys system. You can use the following information to help you resolve any upgrade
errors following upgrade or migration.

QPS5V1
2015.11.02 Upgrade Outdated IP Components in Qsys 5-31

Creating a System With Qsys Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 5-4: IP Upgrade Error Information

Upgrade IP Components
Field

Description

Regeneration Status Displays the "Success" or "Failed" status of each upgrade or migration. Click the
status of any failed upgrade to open a detailed IP Upgrade Report.

Version Dynamically updates to the new version number when upgrade is successful.
The text is red when upgrade is required.

Device Family Dynamically updates to the new device family when migration is successful. The
text is red when upgrade is required.

Description Summarizes IP release information and displays actionable, corrective action for
resolving upgrade or migration failures. Follow these instructions to resolve
upgrade failures. Click the Release Notes link for the latest known issues about
the Altera IP core.

Perform Automatic
Upgrade

Runs automatic upgrade on all IP cores that support auto upgrade. Also,
automatically generates a <Project Directory>/ip_upgrade_port_diff_report
report for IP cores or Qsys systems that fail upgrade. Review these reports to
determine any port differences between the current and previous IP core
version.

Figure 5-14: Resolving Upgrade Errors

Upgrade failed
(click to open report)

Upgrade details

Generates Port
Diffs report

 Upgrade
manually

Upgrade
success

5-32 Troubleshooting IP or Qsys System Upgrade
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the following techniques to resolve errors if your Altera IP core or Qsys system "Failed" to upgrade
versions or migrate to another device. Review and implement the instructions in the Description field,
including one or more of the following:

1. If the IP variant is not supported in the current version of the software, right-click the component and
click Remove IP Component from Project. Replace this IP core or Qsys system with one supported in
the current version of the software.

2. If the IP variant is not supported by the current target device, select a supported device family for the
project, or replace the IP variant with a suitable replacement that supports your target device.

3. If an upgrade or migration fails, click Failed in the Regeneration Status field to display and review
details of the IP Upgrade Report. Click the Release Notes link for the latest known issues about the
Altera IP core. Use this information to determine the nature of the upgrade or migration failure and
make corrections before upgrade.

Figure 5-15: IP Upgrade Report

4. Run Perform Automatic Upgrade to automatically generate an IP Ports Diff report for each IP core
or Qsys system that fails upgrade. Review the reports to determine any port differences between the

QPS5V1
2015.11.02 Troubleshooting IP or Qsys System Upgrade 5-33

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

current and previous IP core version. Then, click Upgrade in Editor to make specific port changes and
regenerate your IP core or Qsys system.

5. If your IP core or Qsys system does not support Perform Automatic Upgrade, click Upgrade in
Editor to resolve errors and regenerate the component in the parameter editor.

Create and Manage Hierarchical Qsys Systems
Qsys supports hierarchical system design. You can add any Qsys system as a subsystem in another Qsys
system. Qsys hierarchical system design allows you to create, explore and edit hierarchies dynamically
within a single instance of the Qsys editor. Qsys generates the complete hierarchy during the top-level
system’s generation.

Note: You can explore parameterizable Qsys systems and _hw.tcl files, but you cannot edit their
elements.

Your Qsys systems appear in the IP Catalog under the System category under Project. You can reuse
systems across multiple designs. In a team-based hierarchical design flow, you can divide large designs
into subsystems and have team members develop subsystems simultaneously.

Related Information
Navigate Your Qsys System on page 5-17

Add a Subsystem to Your Qsys Design
You can create a child subsystem or nest subsystems at any level in the hierarchy. Qsys adds a subsystem
to the system you are currently editing. This can be the top-level system, or a subsystem.

To create or nest subsystems in your Qsys design, use the following methods within the System Contents
tab:

• Right-click command: Add a new subsystem to the current system.
• Left panel icon.
• CTRL+SHIFT+N.

5-34 Create and Manage Hierarchical Qsys Systems
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-16: Add a Subsystem to Your Qsys Design

Drill into a Qsys Subsystem to Explore its Contents
The ability to drill into a system provides visibility into its elements and connections. When you drill into
an instance, you open the system it instantiates for editing.

You can drill into a subsystem with the following commands:

• Double-click a system in the Hierarchy tab.
• Right-click a system in the Hierarchy, System Contents, or Schematic tabs, and then select Drill into

subsystem.
• CTRL+SHIFT+D in the System Contents tab.

Note: You can only drill into .qsys files, not parameterizable Qsys systems or _hw.tcl files.

The Hierarchy tab is rooted at the top-level and drives global selection. You can manage a hierarchical
Qsys system that you build across multiple Qsys files, and view and edit their interconnected paths and
address maps simultaneously. As an example, you can select a path to a subsystem in the Hierarchy tab,
and then drill deeper into the subsystem in the System Contents or Schematic tabs. You could also select
a subsystem in the System Contents tab, and then drill into the selected susbsystem in the Hierarchy tab.

Views that manage system-level editing, for example, the System Contents and Schematic tabs, contain
the hierarchy widget, which allows you to efficiently navigate your subsystems. The hierarchy widget also
displays the name of the current selection, and its path in the context of the system or subsystem.

QPS5V1
2015.11.02 Drill into a Qsys Subsystem to Explore its Contents 5-35

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The hierarchy widget contains the following controls and information:

• Top—Navigates to the project-level .qsys file that contains the subsystem.
• Up—Navigates up one level from the current selection.
• Drill Into—Allows you to drill into an editable system.
• System—Displays the hierarchical location of the system you are currently editing.
• Path—Displays the relative path to the current selection.

Note: In the System Contents tab, you can use CTRL+SHIFT+U to navigate up one level, and CTRL
+SHIFT+D to drill into a system.

Figure 5-17: Drill into a Qsys System to Explore its Contents

Edit a Qsys Subsystem
You can double-click a Qsys subsystem in the Hierarchy tab to edit its contents in any tab. When you
make a change, open tabs refresh their content to reflect your edit. You can change the level of a
subsystem, or push it into another subsystem with commands in the System Contents tab.

Note: To edit a .qsys file, the file must be writeable and reside outside of the ACDS installation directory.
You cannot edit systems that you create from composed _hw.tcl files, or systems that define
instance parameters.

1. In the System Contents or Schematic tabs, use the hierarchy widget to navigate to the top-level
system, up one level, or down one level (drill into a system).

5-36 Edit a Qsys Subsystem
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

All tabs refresh and display the requested hierarchy level.
2. To edit a system, double-click the system in the Hierarchy tab. You can also drill into the system with

the Hierarchy tool or right-click commands, which are available in the Hierarchy, Schematic, System
Contents tabs.
The system is open and available for edit in all Qsys views. A system currently open for edit appears as
bold in the Hierarchy tab.

3. In the System Contents tab, you can rename any element, add, remove, or duplicate connections, and
export interfaces, as appropriate.
Changes to a subsystem affect all instances. Qsys identifies unsaved changes to a subsystem with an
asterisk next to the subsystem in the Hierarchy tab.

Related Information
View a Schematic of Your Qsys System on page 5-16

Change the Hierarchy Level of a Qsys Component
You can push selected components down into their own subsytem, which can simplify your top-level
system view. Similarly, you can pull a component up out of a subsystem to perhaps share it between two
unique subsystems. Hierarchical-level management facilitates system optimization and can reduce
complex connectivity in your subsystems. When you make a change, open tabs refresh their content to
reflect your edit.

1. In the System Contents tab, to group multiple components that perhaps share a system-level
component, select the components, right-click, and then select Push down into new subsystem.
Qsys pushes the components into their own subsystem and re-establishes the exported signals and
connectivity in the new location.

2. In the System Contents tab, to pull a component up out of a subsystem, select the component, and
then click Pull up.
Qsys pulls the component up out of the subsystem and re-establishes the exported signals and
connectivity in the new location.

Save New Qsys Subsystem
When you save a subsystem to your Qsys design, Qsys confirms the new subsystem(s) in the Confirm
New System Filenames dialog box. The Confirm New System Filenames dialog box appears when you
save your Qsys design. Qsys uses the name that you give a subsystem as .qsys filename, and saves the
subsystems in the project’s ip directory.

1. Click File > Save to save your Qsys design.
2. In the Confirm New System Filenames dialog box, click OK to accept the subsystem file names.

Note: If you have not yet saved your top-level system, or multiple subsystems, you can type a name,
and then press Enter, to move to the next un-named system.

3. In the Confirm New System Filenames dialog box, to edit the name of a subsystem, click the
subsystem, and then type the new name.

4. To cancel the save process, click Cancel in the Confirm New System Filenames dialog box.

QPS5V1
2015.11.02 Change the Hierarchy Level of a Qsys Component 5-37

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create an IP Component Based on a Qsys System
The Export System as hw.tcl Component command on the File menu allows you to save the system
currently open in Qsys as an _hw.tcl file in project directory. The saved system displays as a new
component under the System category in the IP Catalog.

Hierarchical System Using Instance Parameters Example
This example illustrates how you can use instance parameters to control the implementation of an on-
chip memory component, onchip_memory_0 when instantiated into a higher-level Qsys system.

Follow the steps below to create a system that contains an on-chip memory IP component with instance
parameters, and the instantiating higher-level Qsys system. With your completed system, you can vary the
values of the instance parameters to review their effect within the On-Chip Memory component.

Create the Memory System
This procedure creates a Qsys system to use as subsystem as part of a hierarchical instance parameter
example.

1. In Qsys, click File > New System.
2. Right-click clk_0, and then click Remove.
3. In the IP Catalog search box, type on-chip to locate the On-Chip Memory (RAM or ROM)

component.
4. Double-click to add the On-Chip Memory component to your system.

The parameter editor opens. When you click Finish, Qsys adds the component to your system with
default selections.

5. Rename the On-Chip Memory component to onchip_memory_0.
6. In the System Contents tab, for the clk1 element (onchip_memory_0), double-click the Export

column.
7. In the System Contents tab, for the s1 element (onchip_memory_0), double-click the Export column.
8. In the System Contents tab, for the reset1 element (onchip_memory_0), double-click the Export

column.
9. Click File > Save to save your Qsys system as memory_system.qsys.

5-38 Create an IP Component Based on a Qsys System
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-18: On-Chip Memory Component System and Instance Parameters (memory_system.qsys)

Add Qsys Instance Parameters
The Instance Parameters tab allows you to define parameters to control the implementation of a
subsystem component. Each column in the Instance Parameters table defines a property of the
parameter. This procedure creates instance parameters in a Qsys system to be used as a subsystem in a
higher-level system.

1. In the memory_system.qsys system, click View > Instance Parameters.
2. Click Add Parameter.
3. In the Name and Display Name columns, rename the new_parameter_0 parameter to

component_data_width.
4. For component_data_width, select Integer for Type, and 8 as the Default Value.
5. Click Add Parameter.
6. In the Name and Display Name columns, rename the new_parameter_0 parameter to

component_memory_size.
7. For component_memory_size, select Integer for Type, and 1024 as the Default Value.

QPS5V1
2015.11.02 Add Qsys Instance Parameters 5-39

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-19: Qsys Instance Parameters Tab

8. In the Instance Script section, type the commands that control how Qsys passes parameters to an
instance from the higher-level system. For example, in the script below, the onchip_memory_0 instance
receives its dataWidth and memorySize parameter values from the instance parameters that you
define.

request a specific version of the scripting API
package require -exact qsys 15.0

Set the name of the procedure to manipulate parameters
set_module_property COMPOSITION_CALLBACK compose

proc compose {} {
 # manipulate parameters in here
 set_instance_parameter_value onchip_memory_0 dataWidth [get_parameter_value
component_data_width]
 set_instance_parameter_value onchip_memory_0 memorySize
[get_parameter_value component_memory_size]

 set value [get_instance_parameter_value onchip_memory_0 dataWidth]
 send_message info "Value of onchip memory ram data width is $value "
}

9. Click Preview Instance to open the parameter editor GUI.
Preview Instance allows you to see how an instance of a system appears when you use it in another
system.

5-40 Add Qsys Instance Parameters
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-20: Preview Your Instance in the Parameter Editor

10.Click File > Save.

Create a Qsys Instantiating Memory System
This procedure creates a Qsys system to use as a higher-level system as part of a hierarchical instance
parameter example.

1. In Qsys, click File > New System.
2. Right-click clk_0, and then click Remove.
3. In the IP Catalog, under System, double-click memory_system.

The parameter editor opens. When you click Finish, Qsys adds the component to your system.
4. In the Systems Contents tab, for each element under system_0, double-click the Export column.
5. Click File > Save to save your Qsys as instantiating_memory_system.qsys.

QPS5V1
2015.11.02 Create a Qsys Instantiating Memory System 5-41

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-21: Instantiating Memory System (instantiating_memory_system.qsys)

Apply Instance Parameters at a Higher-Level Qsys System and Pass the Parameters to the
Instantiated Lower-Level System

This procedure shows you how to use Qsys instance parameters to control the implementation of an on-
chip memory component as part of a hierarchical instance parameter example.

1. In the instantiating_memory_system.qsys system, in the Hierarchy tab, click and expand system_0
(memory_system.qsys).

2. Click View > Parameters.
The instance paramters for the memory_system.qsys display in the parameter editor.

5-42 Apply Instance Parameters at a Higher-Level Qsys System and Pass the...
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-22: Displays memory_system.qsys Instance Parameters in the Parameter Editor

3. On the Parameters tab, change the value of memory_data_width to 16, and memory_memory_size
to 2048.

4. In the Hierarchy tab, under system_0 (memory_system.qsys), click onchip_memory_0.
When you select onchip_memory_0, the new parameter values for Data width and Total memory size
size are displayed.

QPS5V1
2015.11.02 Apply Instance Parameters at a Higher-Level Qsys System and Pass the... 5-43

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-23: Changing the Values of Your Instance Parameters

View and Filter Clock and Reset Domains in Your Qsys System
The Qsys clock and reset domains tabs allow you to see clock domains and reset domains in your Qsys
system. Qsys determines clock and reset domains by the associated clocks and resets, which are displayed
in tooltips for each interface in your system. You can filter your system to display particular components
or interfaces within a selected clock or reset domain. The clock and reset domain tabs also provide quick
access to performance bottlenecks by indicating connection points where Qsys automatically inserts clock
crossing adapters and reset synchronizers during system generation. With these tools, you can more easily
create optimal connections between interfaces.

Click View > Clock Domains, or View > Reset Domains to open the respective tabs in your workspace.
The domain tools display as a tree with the current system at the root. You can select each clock or reset
domain in the list to view associated interfaces.

When you select an element in the Clock Domains tab, the corresponding selection appears in the
System Contents tab. You can select single or multiple interface(s) and module(s). Mouse over tooltips in
the System Contents tab to provide detailed information for all elements and connections. Colors that
appear for the clocks and resets in the domain tools correspond to the colors in the System Contents and
Schematic tabs.

Clock and reset control tools at the bottom on the System Contents tab allow you to toggle between
highlighting clock or reset domains. You can further filter your view with options in the Filters dialog

5-44 View and Filter Clock and Reset Domains in Your Qsys System
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

box, which is accessible by clicking the filter icon at the bottom of the System Contents tab. In the Filters
dialog box, you can choose to view a single interface, or to hide clock, reset, or interrupt interfaces.

Clock and reset domain tools respond to global selection and edits, and help to provide answers to the
following system design questions:

• How many clock and reset domains do you have in your Qsys system?
• What interfaces and modules does each clock or reset domain contain?
• Where do clock or reset crossings occur?
• At what connection points does Qsys automatically insert clock or reset adapters?
• Where do you have to manually insert a clock or reset adapter?

Figure 5-24: Qsys Clock and Reset Domains

View Clock Domains in Your Qsys System
With the Clock Domains tab, you can filter the System Contents tab to display a single clock domain, or
multiple clock domains. You can further filter your view with selections in the Filters dialog box. When
you select an element in the Clock Domains tab, the corresponding selection appears highlighted in the
System Contents tab.

QPS5V1
2015.11.02 View Clock Domains in Your Qsys System 5-45

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. To view clock domain interfaces and their connections in your Qsys system, click View > Clock
Domains to open the Clock Domains tab.

2. To enables and disable highlighting of the clock domains in the System Contents tab, click the clock
control tool at the bottom of the System Contents tab.

Figure 5-25: Clock Control Tool

3. To view a single clock domain, or multiple clock domains and their modules and connections, click the
clock name(s) in the Clock Domains tab.
The modules for the selected clock domain(s) and their connections appear highlighted in the System
Contents tab. Detailed information for the current selection appears in the clock domain details pane.
Red dots in the Connections column indicate auto insertions by Qsys during system generation, for
example, a reset synchronizer or clock crossing adapter.

Figure 5-26: Clock Domains

4. To view interfaces that cross clock domains, expand the Clock Domain Crossings icon in the Clock
Domains tab, and select each element to view its details in the System Contents tab.

Qsys lists the interfaces that cross clock domain under Clock Domain Crossings. As you click through
the elements, detailed information appears in the clock domain details pane. Qsys also highlights the
selection in the System Contents tab.

If a connection crosses a clock domain, the connection circle appears as a red dot in the System
Contents tab. Mouse over tooltips at the red dot connections provide details about the connection, as
well as what adapter type Qsys automatically inserts during system generation.

5-46 View Clock Domains in Your Qsys System
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-27: Clock Domain Crossings

View Reset Domains in Your Qsys System
With the Reset Domains tab, you can filter the System Contents tab to display a single reset domain, or
multiple reset domains. When you select an element in the Reset Domains tab, the corresponding
selection appears in the System Contents tab.

1. To view reset domain interfaces and their connections in your Qsys system, click View > Reset
Domains to open the Reset Domains tab.

2. To show reset domains in the System Contents tab, click the reset control tool at the bottom of the
System Contents tab.

Figure 5-28: Reset Control Tool

3. To view a single reset domain, or multiple reset domains and their modules and connections, click the
reset name(s) in the Reset Domain tab.

Qsys displays your selection according to the following rules:

QPS5V1
2015.11.02 View Reset Domains in Your Qsys System 5-47

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When you select multiple reset domains, the System Contents tab shows interfaces and modules in
both reset domains.

• When you select a single reset domain, the other reset domain(s) are grayed out, unless the two
domains have interfaces in common.

• Reset interfaces appear black when connected to multiple reset domains.
• Reset interfaces appear gray when they are not connected to all of the selected reset domains.
• If an interface is contained in multiple reset domains, the interface is grayed out.

Detailed information for your selection appears in the reset domain details pane.

Note: Red dots in the Connections column between reset sinks and sources indicate auto insertions
by Qsys during system generation, for example, a reset synchronizer. Qsys decides when to
display a red dot with the following protocol, and ends the decision process at first match.

• Multiple resets fan into a common sink.
• Reset inputs are associated with different clock domains.
• Reset inputs have different synchronicity.

Figure 5-29: Reset Domains

Filter Qsys Clock and Reset Domains in the System Contents Tab
You can filter the display of your Qsys clock and reset domains in the System Contents tab.

1. To filter the display in the System Contents tab to view only a particular interface and its connections,
or to choose to hide clock, reset, or interrupt interfaces, click the Filters icon in the clock and reset
control tool to open the Filters dialog box.
The selected interfaces appear in the System Contents tab.

5-48 Filter Qsys Clock and Reset Domains in the System Contents Tab
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-30: Filters Dialog Box

2. To clear all clock and reset filters in the System Contents tab and show all interfaces, click the Filters
icon with the red "x" in the clock and reset control tool.

Figure 5-31: Show All Interfaces

Specify Qsys Interconnect Requirements
The Interconnect Requirements tab allows you to apply system-wide, $system, and interface
interconnect requirements for IP components in your system. Options in the Setting column vary
depending on what you select in the Identifier column

Table 5-5: Specifying System-Wide Interconnect Requirements

Option Description

Limit interconnect pipeline
stages to

Specifies the maximum number of pipeline stages that Qsys may insert in
each command and response path to increase the fMAX at the expense of
additional latency. You can specify between 0–4 pipeline stages, where 0
means that the interconnect has a combinational data path. Choosing 3 or
4 pipeline stages may significantly increase the logic utilization of the
system. This setting is specific for each Qsys system or subsystem,
meaning that each subsystem can have a different setting. Additional
latency is added once on the command path, and once on the response
path. You can manually adjust this setting in the Memory-Mapped
Interconnect tab. Access this tab by clicking Show System With Qsys
Interconnect command on the System menu.

QPS5V1
2015.11.02 Specify Qsys Interconnect Requirements 5-49

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Clock crossing adapter type Specifies the default implementation for automatically inserted clock
crossing adapters:

• Handshake—This adapter uses a simple hand-shaking protocol to
propagate transfer control signals and responses across the clock
boundary. This methodology uses fewer hardware resources because
each transfer is safely propagated to the target domain before the next
transfer can begin. The Handshake adapter is appropriate for systems
with low throughput requirements.

• FIFO—This adapter uses dual-clock FIFOs for synchronization. The
latency of the FIFO-based adapter is a couple of clock cycles more than
the handshaking clock crossing component. However, the FIFO-based
adapter can sustain higher throughput because it supports multiple
transactions at any given time. FIFO-based clock crossing adapters
require more resources. The FIFO adapter is appropriate for
memory-mapped transfers requiring high throughput across clock
domains.

• Auto—If you select Auto, Qsys specifies the FIFO adapter for bursting
links, and the Handshake adapter for all other links.

Automate default slave
insertion

Specifies whether you want Qsys to automatically insert a default slave for
undefined memory region accesses during system generation.

Enable instrumentation Allows you to choose the converter type that Qsys applies to each burst.

•

• Generic converter (slower, lower area)—Default. Controls all burst
conversions with a single converter that is able to adapt incoming
burst types. This results in an adapter that has lower fmax, but smaller
area.

• Per-burst-type converter (faster, higher area)—Controls incoming
bursts with a particular converter, depending on the burst type. This
results in an adapter that has higher fmax, but higher area. This setting
is useful when you have AXI masters or slaves and you want a higher
fmax.

Burst Adapter Implementa‐
tion

Allows you to choose the converter type that Qsys applies to each burst.

• Generic converter (slower, lower area)—Default. Controls all burst
conversions with a single converter that is able to adapt incoming
burst types. This results in an adapter that has lower fmax, but smaller
area.

• Per-burst-type converter (faster, higher area)—Controls incoming
bursts with a particular converter, depending on the burst type. This
results in an adapter that has higher fmax, but higher area. This setting
is useful when you have AXI masters or slaves and you want a higher
fmax.

5-50 Specify Qsys Interconnect Requirements
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Enable ECC protection Specifies the default implementation for ECC protection for memory
elements. Currently supports only Read Data FIFO (rdata_FIFO)
instances..

• FALSE—Default. ECC protection is disabled for memory elements in
the Qsys interconnect.

• TRUE—ECC protection is enabled for memory elements. Qsys
interconnect sends ECC errors that cannot be corrected as
DECODEERROR (DECERR) on the Avalon response bus. This setting may
increase logic utilization and cause lower fMax, but provides additional
protection against data corruption.

Note: For more information about Error Correction Coding (ECC),
refer to Error Correction Coding in Qsys Interconnect.

Table 5-6: Specifying Interface Interconnect Requirements

You can apply the following interconnect requirements when you select a component interface as the Identifier in
the Interconnect Requirements tab, in the All Requirements table.

Option Value Description

Security • Non-secure
• Secure
• Secure ranges
• TrustZone-aware

After you establish connections between the
masters and slaves, allows you to set the
security options, as needed, for each master
and slave in your system.

Note: You can also set these values in the
Security column in the System
Contents tab.

Secure address ranges Accepts valid address
range.

Allows you to type in any valid address range.

For more information about HPS, refer to the Cyclone V Device Handbook in volume 3 of the Hard
Processor System Technical Reference Manual.

Related Information
Error Correction Coding in Qsys Interconnect

Manage Qsys System Security
TrustZone is the security extension of the ARM®-based architecture. It includes secure and non-secure
transactions designations, and a protocol for processing between the designations. TrustZone security
support is a part of the Qsys interconnect.

The AXI AxPROT protection signal specifies a secure or non-secure transaction. When an AXI master
sends a command, the AxPROT signal specifies whether the command is secure or non-secure. When an
AXI slave receives a command, the AxPROT signal determines whether the command is secure or non-

QPS5V1
2015.11.02 Manage Qsys System Security 5-51

Creating a System With Qsys Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/led1425927225022/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

secure. Determining the security of a transaction while sending or receiving a transaction is a run-time
protocol.

The Avalon specification does not include a protection signal as part of its specification. When an Avalon
master sends a command, it has no embedded security and Qsys recognizes the command as non-secure.
When an Avalon slave receives a command, it also has no embedded security, and the slave always accepts
the command and responds.

AXI masters and slaves can be TrustZone-aware. All other master and slave interfaces, such as Avalon-
MM interfaces, are non-TrustZone-aware. You can set compile-time security support for all components
(except AXI masters, including AXI3, AXI4,and AXI4-Lite) in the Security column in the System
Contents tab, or in the Interconnect Requirements tab under the Identifier column for the master or
slave interface. To begin creating a secure system, you must first add masters and slaves to your system,
and the connections between them. After you establish connections between the masters and slaves, you
can then set the security options, as needed

An example of when you may need to specify compile-time security support is when an Avalon master
needs to communicate with a secure AXI slave, and you can specify whether the connection point is
secure or non-secure. You can specify a compile-time secure address ranges for a memory slave if an
interface-level security setting is not sufficient.

Related Information

• Qsys Interconnect on page 7-1
• Qsys System Design Components on page 10-1

Configure Qsys Security Settings Between Interfaces

The AXI AxPROT signal specifies a transaction as secure or non-secure at runtime when a master sends a
transaction. Qsys identifies AXI master interfaces as TrustZone-aware. You can configure AXI slaves as
Trustzone-aware, secure, non-secure, or secure ranges.

Table 5-7: Compile-Time Security Options

For non-TrustZone-aware components, compile-time security support options are available in Qsys on the
System Contents tab, or on the Interconnect Requirements tab.

Compile-Time Security Options Description

Non-secure Master sends only non-secure transactions, and the slave receives
any transaction, secure or non-secure.

Secure Master sends only secure transactions, and the slave receives only
secure transactions.

Secure ranges Applies to only the slave interface. The specified address ranges
within the slave's address span are secure, all other address ranges
are not. The format is a comma-separated list of inclusive-low and
inclusive-high addresses, for example, 0x0:0xfff,
0x2000:0x20ff.

After setting compile-time security options for non-TrustZone-aware master and slave interfaces, you
must identify those masters that require a default slave before generation. To designate a slave interface as

5-52 Configure Qsys Security Settings Between Interfaces
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the default slave, turn on Default Slave in the System Contents tab. A master can have only one default
slave.

Note: The Security and Default Slave columns in the System Contents tab are hidden by default. Right-
click the System Contents header to select which columns you want to display.

The following are descriptions of security support for master and slave interfaces. These description can
guide you in your design decisions when you want to create secure systems that have mixed secure and
non-TrustZone-aware components:

• All AXI, AXI4, and AXI4-Lite masters are TrustZone-aware.
• You can set AXI, AXI4, and AXI4-Lite slaves as Trust-Zone-aware, secure, non-secure, or secure range

ranges.
• You can set non-AXI master interfaces as secure or non-secure.
• You can set non-AXI slave interfaces as secure, non-secure, or secure address ranges.

Specify a Default Slave in a Qsys System
If a master issues "per-access" or "not allowed" transactions, your design must contain a default slave. Per-
access refers to the ability of a TrustZone-aware master to allow or disallow access or transactions. A
transaction that violates security is rerouted to the default slave and subsequently responds to the master
with an error. You can designate any slave as the default slave.

You can share a default slave between multiple masters. You should have one default slave for each
interconnect domain. An interconnect domain is a group of connected memory-mapped masters and
slaves that share the same interconnect. The altera_axi_default_slave component includes the
required TrustZone features.

You can achieve an optimized secure system by partitioning your design and carefully designating secure
or non-secure address maps to maintain reliable data. Avoid a design where, under the same hierarchy, a
non-secure master initiates transactions to a secure slave resulting in unsuccessful transfers.

Table 5-8: Secure and Non-Secure Access Between Master, Slave, and Memory Components

Transaction Type TrustZone-aware Master Non-TrustZone-aware
Master

Secure

Non-TrustZone-aware
Master

Non-Secure

TrustZone-aware
slave/memory

OK OK OK

Non-TrustZone-aware
slave (secure)

Per-access OK Not allowed

Non-TrustZone-aware
slave (non-secure)

OK OK OK

Non-TrustZone-aware
memory (secure
region)

Per-access OK Not allowed

QPS5V1
2015.11.02 Specify a Default Slave in a Qsys System 5-53

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Transaction Type TrustZone-aware Master Non-TrustZone-aware
Master

Secure

Non-TrustZone-aware
Master

Non-Secure

Non-TrustZone-aware
memory (non-secure
region)

OK OK OK

Access Undefined Memory Regions
When a transaction from a master targets a memory region that is not specified in the slave memory map,
it is known as an "access to an undefined memory region." To ensure predictable response behavior when
this occurs, you must add a default slave to your design. Qsys then routes undefined memory region
accesses to the default slave, which terminates the transaction with an error response.

You can designate any memory-mapped slave as a default slave. Altera recommends that you have only
one default slave for each interconnect domain in your system. Accessing undefined memory regions can
occur in the following cases:

• When there are gaps within the accessible memory map region that are within the addressable range of
slaves, but are not mapped.

• Accesses by a master to a region that does not belong to any slaves that is mapped to the master.
• When a non-secured transaction is accessing a secured slave. This applies to only slaves that are

secured at compilation time.
• When a read-only slave is accessed with a write command, or a write-only slave is accessed with a read

command.

To designate a slave as the default slave, for the selected component, turn on Default Slave in the Systems
Content tab.

Note: If you do not specify the default slave, Qsys automatically assigns the slave at the lowest address
within the memory map for the master that issues the request as the default slave.

Related Information
Qsys System Design Components on page 10-1

Integrate a Qsys System with the Quartus Prime Software
To integrate a Qsys system with your Quartus Prime project, you must add either the Qsys System File
(.qsys) or the Quartus Prime IP File (.qip), but never both to your Quartus Prime project. Qsys creates
the .qsys file when you save your Qsys system, and produces the .qip file when you generate your Qsys
system. Both the .qsys and .qip files contain the information necessary for compiling your Qsys system
within a Quartus Prime project.

You can choose to include the .qsys file automatically in your Quartus Prime project when you generate
your Qsys system by turning on the Automatically add Quartus Prime IP files to all projects option in
the Quartus Prime software (Tools > Options > IP Settings). If this option is turned off, the Quartus
Prime software asks you if you want to include the .qsys file in your Quartus Prime project after you exit
Qsys.

5-54 Access Undefined Memory Regions
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you want file generation to occur as part of the Quartus Prime software's compilation, you should
include the .qsys file in your Quartus Prime project. If you want to manually control file generation
outside of the Quartus Prime software, you should include the .qip file in your Quartus Prime project.

Note: The Quartus Prime software generates an error message during compilation if you add both
the .qsys and .qip files to your Quartus Prime project.

Does Quartus Prime Overwrite Qsys-Generated Files During Compilation?

Qsys supports standard and legacy device generation. Standard device generation refers to generating files
for the Arria 10 device, and later device families. Legacy device generation refers to generating files for
device families prior to the release of the Arria 10 device, including Max 10 devices.

When you integrate your Qsys system with the Quartus Prime software, if a .qsys file is included as a
source file, Qsys generates standard device files under <system>/ next to the location of the .qsys file. For
legacy devices, if a .qsys file is included as a source file, Qsys generates HDL files in the Quartus Prime
project directory under /db/ip.

For standard devices, Qsys-generated files are only overwritten during Quartus Prime compilation if
the .qip file is removed or missing. For legacy devices, each time you compile your Quartus Prime project
with a .qsys file, the Qsys-generated files are overwritten. Therefore, you should not edit Qsys-generated
HDL in the /db/ip directory; any edits made to these files are lost and never used as input to the Quartus
HDL synthesis engine.

Related Information

• Introduction to the Qsys IP Catalog on page 5-3
• Generate a Qsys System on page 5-58
• Qsys Synthesis Standard and Legacy Device Output Directories
• Qsys Simulation Standard and Legacy Device Output Directories
• Introduction to Altera IP Cores
• Implementing and Parameterizing Memory IP

Integrate a Qsys System and the Quartus Prime Software With the .qsys File
Use the following steps to integrate your Qsys system and your Quartus Prime project using the .qsys file:

1. In Qsys, create and save a Qsys system.
2. To automatically include the .qsys file in the your Quartus Prime project during compilation, in the

Quartus Prime software, select Tools > Options > IP Settings, and turn on Automatically add
Quartus Prime IP files to all projects.

3. When the Automatically add Quartus Prime IP files to all projects option is not checked, when you
exit Qsys, the Quartus Prime software displays a dialog box asking whether you want to add the .qsys
file to your Quartus Prime project. Click Yes to add the .qsys file to your Quartus Prime project.

4. In the Quartus Prime software, select Processing > Start Compilation.

Integrate a Qsys System and the Quartus Prime Software With the .qip File
Use the following steps to integrate your Qsys system and your Quartus Prime project using the .qip file:

QPS5V1
2015.11.02 Integrate a Qsys System and the Quartus Prime Software With the .qsys... 5-55

Creating a System With Qsys Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
http://www.altera.com/literature/hb/external-memory/emi_parameters.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In Qsys, create and save a Qsys system.
2. In Qsys, click Generate HDL.
3. In the Quartus Prime software, select Assignments > Settings > Files.
4. On the Files page, use the controls to locate your .qip file, and then add it to your Quartus Prime

project.
5. In the Quartus Prime software, select Processing > Start Compilation.

Manage IP Settings in the Quartus Prime Software
To specify the following IP Settings in the Quartus Prime software, click Tools > Option > IP Settings:

Table 5-9: IP Settings

Setting Description

Maximum Qsys memory usage Allows you to increase memory usage for Qsys if
you experience slow processing for large systems, or
if Qsys reports an Out of Memory error.

IP generation HDL preference The Quartus Prime software uses this setting when
the .qsys file appears in the Files list for the current
project in the Settings dialog box and you run
Analysis & Synthesis. Qsys uses this setting when
you generate HDL files.

Automatically add Quartus Prime IP files to all
projects

The Quartus Prime software uses this setting when
you create an IP core file variation with options in
the Quartus Prime IP Catalog and parameter editor.
When turned on, the Quartus Prime software adds
the IP variation files to the project currently open.

IP Catalog Search Locations The Quartus Prime software uses the settings that
you specify for global and project search paths
under IP Search Locations, in addition to the IP
Search Path in Qsys (Tools > Options), to populate
the Quartus Prime software IP Catalog.

Qsys uses the uses the settings that you specify for
global search paths under IP Search Locations to
populate the Qsys IP Catalog, which appears in
Qsys (Tools > Options). Qsys uses the project
search path settings to populate the Qsys IP Catalog
when you open Qsys from within the Quartus
Prime software (Tools > Qsys), but not when you
open Qsys from the command-line.

Note: You can also access IP Settings by clicking Assignments > Settings > IP Settings. This access is
available only when you have a Quartus Prime project open. This allows you access to IP Settings

5-56 Manage IP Settings in the Quartus Prime Software
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

when you want to create IP cores independent of a Quartus Prime project. Settings that you apply
or create in either location are shared.

Opening Qsys with Additional Memory
If your Qsys system requires more than the 512 megabytes of default memory, you can increase the
amount of memory either in the Quartus Prime software Options dialog box, or at the command-line.

• When you open Qsys from within the Quartus Prime software, you can increase memory for your
Qsys system, by clicking Tools > Options > IP Settings, and then selecting the appropriate amount of
memory with the Maximum Qsys memory usage option.

• When you open Qsys from the command-line, you can add an option to increase the memory. For
example, the following qsys-edit command allows you to open Qsys with 1 gigabytes of memory.

qsys-edit --jvm-max-heap-size=1g

Set Qsys Clock Constraints
Many IP components include Synopsys Design Constraint (.sdc) files that provide timing constraints.
Generated .sdc files are included in your Quartus Prime project with the generated .qip file. For your top-
level clocks and PLLs, you must provide clock and timing constraints in SDC format to direct synthesis
and fitting to optimize the design appropriately, and to evaluate performance against timing constraints.

You can specify a base clock assignment for each clock input in the TimeQuest GUI or with the
create_clock command, and then use the derive_pll_clocks command to define the PLL clock output
frequencies and phase shifts for all PLLs in the Quartus Prime project using the .sdc file.

QPS5V1
2015.11.02 Opening Qsys with Additional Memory 5-57

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-32: Single Clock Input Signal

For the case of a single clock input signal called clk, and one PLL with a single output, you can use the
following commands in your Synopsys Design Constraint (.sdc) file:

create_clock -name master_clk -period 20 [get_ports {clk}]
derive_pll_clocks

Related Information
The Quartus Prime TimeQuest Timing Analyzer

Generate a Qsys System
In Qsys, you can choose options for generation of synthesis, simulation and testbench files for your Qsys
system.

Qsys system generation creates the interconnect between IP components and generates synthesis and
simulation HDL files. You can generate a testbench system that adds Bus Functional Models (BFMs) that
interact with your system in a simulator.

When you make changes to a system, Qsys gives you the option to exit without generating. If you choose
to generate your system before you exit, the Generation dialog box opens and allows you to select
generation options.

The Generate HDL button in the lower-right of the Qsys window allows you to quickly generate synthesis
and simulation files for your system.

5-58 Generate a Qsys System
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you cannot find the memory interface generated by Qsys when you use EMIF (External Memory
Interface Debug Toolkit), verify that the .sopcinfo file appears in your Qsys project folder.

Related Information

• Avalon Verification IP Suite User Guide
• Mentor Verification IP (VIP) Altera Edition (AE)
• External Memory Interface Debug Toolkit

Set the Generation ID
The Generation Id parameter is a unique integer value that is set to a timestamp during Qsys system
generation. System tools, such as NIOS II or HPS (Hard Processor System) use the Generation ID to
ensure software-build compatibility with your Qsys system.

To set the Generation Id parameter, select the top-level system in the Hierarchy tab, and then locating
the parameter in the open Parameters tab.

Generate Files for Synthesis and Simulation
Qsys generates files for synthesis in Quartus and simulation in a third-party simulator.

In Qsys, you can generate simulation HDL files (Generate > Generate HDL), which can include
simulation-only features targeted towards your simulator. You can generate simulation files as Verilog,
VHDL, or as a mixed-language simulation for use in 3rd party simulator.

Note: For a list of Altera-supported simulators, refer to Simulating Altera Designs.

Qsys supports standard and legacy device generation. Standard device generation refers to generating files
for the Arria 10 device, and later device families. Legacy device generation refers to generating files for
device families prior to the release of the Arria 10 device, including Max 10 devices.

The Output Directory option applies to both synthesis and simulation generation. By default, the path of
the generation output directory is fixed relative to the .qsys file. You can change the default directory in
the Generation dialog box for legacy devices. For standard devices, the generation directory is fixed to the
Qsys project directory.

Note: If you need to change top-level I/O pin or instance names, create a top-level HDL file that instanti‐
ates the Qsys system. The Qsys-generated output is then instantiated in your design without
changes to the Qsys-generated output files.

The following options in the Generation dialog box (Generate > Generate HDL) allow you to generate
synthesis and simulation files:

Option Description

Create HDL design files for synthesis Generates Verilog HDL or VHDL design files for
the system's top-level definition and child instances
for the selected target language. Synthesis file
generation is optional.

QPS5V1
2015.11.02 Set the Generation ID 5-59

Creating a System With Qsys Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf
http://www.altera.com/literature/ug/mentor_vip_ae_usr.pdf
https://documentation.altera.com/#/link/hco1416493470528/hco1416492284855/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Create timing and resource estimates for third-
party EDA synthesis tools

Generates a non-functional Verilog Design File (.v)
for use by some third-party EDA synthesis tools.
Estimates timing and resource usage for your IP
component. The generated netlist file name is
<your_ip_component_name>_syn.v.

Create Block Symbol File (.bsf) Allows you to optionally create a (.bsf) file to use in
a schematic Block Diagram File (.bdf).

Create simulation model Allows you to optionally generate Verilog HDL or
VHDL simulation model files, and simulation
scripts.

Allow mixed-language simulation Generates a simulation model that contains both
Verilog and VHDL as specified by the individual IP
cores. Using this option, each IP core produces their
HDL using it's native implementation, which results
in simulation HDL that is easier to understand and
faster to simulate. You must have a simulator that
supports mixed language simulation.

Clear output directories for selected generation
targets

Clears previous generation attempts for current
synthesis or simulation.

Note: Modelsim-Altera now supports native mixed-language (VHDL/Verilog/SystemVerilog)
simulation. Therefore, Altera simulation libraries may not be compatible with single language
simulators. If you have a VHDL-only license, some versions of Mentor simulators may not be able
to simulate IP written in Verilog. As a workaround, you can use Modelsim-Altera, or purchase a
mixed language simulation license from Mentor.

Related Information
Simulating Altera Designs

Files Generated for Altera IP Cores and Qsys Systems
The Quartus Prime software generates the following output file structure for IP cores and Qsys systems.
For Arria 10 devices and newer, the generated .qsys file must be added to your project to represent IP and
Qsys systems. For devices released prior to Arria 10 devices, the generated .qip and .sip files must be
added to your project to represent IP and Qsys systems.

5-60 Files Generated for Altera IP Cores and Qsys Systems
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383407761/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5-33: Files generated for IP cores and Qsys Systems

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

<your_ip>.debuginfo - Post-generation debug data

synth - IP synthesis files

<IP Submodule> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.qip or .qsys - System or IP integration file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Combines individual simulation startup scripts 1

 1

<your_ip>.html - Memory map data

<your_ip>.sopcinfo - Software tool-chain integration file

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>.sip - NativeLink simulation integration file

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system

<your_testbench>_tb.qsys - testbench system file

<your_ip>_tb - IP testbench files

<your_testbench>_tb.csv or .spd - testbench file

sim - IP testbench simulation files

 1. If supported and enabled for your IP core variation.

Table 5-10: IP Core and Qsys Simulation Generated Files

File Name Description

<my_ip>.qsys The Qsys system or top-level IP variation file. <my_ip> is the name
that you give your IP variation. You must add the .qsys file to your
Quartus project to enable NativeLink for Arria 10 and Stratix 10
device families.

QPS5V1
2015.11.02 Files Generated for Altera IP Cores and Qsys Systems 5-61

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

<system>.sopcinfo Describes the connections and IP component parameterizations in
your Qsys system. You can parse its contents to get requirements
when you develop software drivers for IP components.

Downstream tools such as the Nios II tool chain use this file.
The .sopcinfo file and the system.h file generated for the Nios II tool
chain include address map information for each slave relative to each
master that accesses the slave. Different masters may have a different
address map to access a particular slave component.

<my_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that
contains local generic and port definitions that you can use in VHDL
design files.

<my_ip>.html A report that contains connection information, a memory map
showing the address of each slave with respect to each master to
which it is connected, and parameter assignments.

<my_ip>_generation.rpt IP or Qsys generation log file. A summary of the messages during IP
generation.

<my_ip>.debuginfo Contains post-generation information. Used to pass System Console
and Bus Analyzer Toolkit information about the Qsys interconnect.
The Bus Analysis Toolkit uses this file to identify debug components
in the Qsys interconnect.

<my_ip>.qip Contains all the required information about the IP component to
integrate and compile the IP component in the Quartus Prime
software.

<my_ip>.csv Contains information about the upgrade status of the IP component.

<my_ip>.bsf A Block Symbol File (.bsf) representation of the IP variation for use
in Quartus Prime Block Diagram Files (.bdf).

<my_ip>.spd Required input file for ip-make-simscript to generate simulation
scripts for supported simulators. The .spd file contains a list of files
generated for simulation, along with information about memories
that you can initialize.

<my_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for
IP components created for use with the Pin Planner.

<my_ip>_bb.v You can use the Verilog black-box (_bb.v) file as an empty module
declaration for use as a black box.

<my_ip>.sip Contains information required for NativeLink simulation of IP
components. You must add the .sip file to your Quartus project to
enable NativeLink for Arria II, Arria V, Cyclone IV, Cyclone V, MAX
10, MAX II, MAX V, Stratix IV, and Stratix V devices.

<my_ip>_inst.v or _inst.vhd HDL example instantiation template. You can copy and paste the
contents of this file into your HDL file to instantiate the IP variation.

5-62 Files Generated for Altera IP Cores and Qsys Systems
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name Description

<my_ip>.regmap If the IP contains register information, the .regmap file generates.
The .regmap file describes the register map information of master
and slave interfaces. This file complements the .sopcinfo file by
providing more detailed register information about the system. This
enables register display views and user customizable statistics in
System Console.

<my_ip>.svd Allows HPS System Debug tools to view the register maps of
peripherals connected to HPS within a Qsys system.

During synthesis, the .svd files for slave interfaces visible to System
Console masters are stored in the .sof file in the debug section.
System Console reads this section, which Qsys can query for register
map information. For system slaves, Qsys can access the registers by
name.

<my_ip>.v

or

<my_ip>.vhd

HDL files that instantiate each submodule or child IP core for
synthesis or simulation.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a
simulation.

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS
simulation.

Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file
to set up and run a VCS MX simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up
and run an NCSIM simulation.

/submodules Contains HDL files for the IP core submodule.
<IP submodule>/ For each generated IP submodule directory, Qsys generates /synth

and /sim sub-directories.

Generate Files for a Testbench Qsys System
Qsys testbench is a new system that instantiates the current Qsys system by adding BFMs to drive the top-
level interfaces. BFMs interact with the system in the simulator. You can use options in the Generation
dialog box (Generate > Generate Testbench System) to generate a testbench Qsys system.

You can generate a standard or simple testbench system with BFM or Mentor Verification IP (for AXI3/
AXI4) IP components that drive the external interfaces of your system. Qsys generates a Verilog HDL or
VHDL simulation model for the testbench system to use in your simulation tool. You should first
generate a testbench system, and then modify the testbench system in Qsys before generating its
simulation model. In most cases, you should select only one of the simulation model options.

QPS5V1
2015.11.02 Generate Files for a Testbench Qsys System 5-63

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the path of the generation output directory is fixed relative to the .qsys file. You can change the
default directory in the Generation dialog box for legacy devices. For standard devices, the generation
directory is fixed to the Qsys project directory.

The following options are available for generating a Qsys testbench system:

Option Description

Create testbench Qsys system • Standard, BFMs for standard Qsys Interconnect—Creates
a testbench Qsys system with BFM IP components attached
to exported Avalon and AXI3/AXI4 interfaces. Includes any
simulation partner modules specified by IP components in
the system. The testbench generator supports AXI interfaces
and can connect AXI3/AXI4 interfaces to Mentor Graphics
AXI3/AXI4 master/slave BFMs. However, BFMs support
address widths only up to 32-bits.

• Simple, BFMs for clocks and resets—Creates a testbench
Qsys system with BFM IP components driving only clock
and reset interfaces. Includes any simulation partner
modules specified by IP components in the system.

Create testbench simulation model Creates Verilog HDL or VHDL simulation model files and
simulation scripts for the testbench Qsys system currently open
in your workspace. Use this option if you do not need to
modify the Qsys-generated testbench before running the
simulation.

Allow mixed-language simulation Generates a simulation model that contains both Verilog and
VHDL as specified by the individual IP cores. Using this
option, each IP core produces their HDL using it's native
implementation, which results in simulation HDL that is easier
to understand and faster to simulate. You must have a
simulator that supports mixed language simulation.

Note: Modelsim-Altera now supports native mixed-language (VHDL/Verilog/SystemVerilog)
simulation. Therefore, Altera simulation libraries may not be compatible with single language
simulators. If you have a VHDL-only license, some versions of Mentor simulators may not be able
to simulate IP written in Verilog. As a workaround, you can use Modelsim-Altera, or purchase a
mixed language simulation license from Mentor.

Files Generated for Qsys Testbench

Table 5-11: Qsys-Generated Testbench Files

File Name or Directory Name Description

<system>_tb.qsys The Qsys testbench system.

5-64 Files Generated for Qsys Testbench
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Name or Directory Name Description

<system>_tb.v

or

<system>_tb.vhd

The top-level testbench file that connects BFMs to the top-level
interfaces of <system>_tb.qsys.

<system>_tb.spd Required input file for ip-make-simscript to generate simulation
scripts for supported simulators. The .spd file contains a list of files
generated for simulation and information about memory that you can
initialize.

<system>.html

and

<system>_tb.html

A system report that contains connection information, a memory map
showing the address of each slave with respect to each master to which
it is connected, and parameter assignments.

<system>_generation.rpt Qsys generation log file. A summary of the messages that Qsys issues
during testbench system generation.

<system>.ipx The IP Index File (.ipx) lists the available IP components, or a
reference to other directories to search for IP components.

<system>.svd Allows HPS System Debug tools to view the register maps of
peripherals connected to HPS within a Qsys system.

Similarly, during synthesis the .svd files for slave interfaces visible to
System Console masters are stored in the .sof file in the debug section.
System Console reads this section, which Qsys can query for register
map information. For system slaves, Qsys can access the registers by
name.

mentor/ Contains a ModelSim script msim_setup.tcl to set up and run a
simulation

aldec/ Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS
simulation.

Contains a shell script vcsmx_setup.sh and synopsys_ sim.setup file to
set up and run a VCS MX simulation.

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up
and run an NCSIM simulation.

/submodules Contains HDL files for the submodule of the Qsys testbench system.

<child IP cores>/ For each generated child IP core directory, Qsys testbench generates /
synth and /sim subdirectories.

QPS5V1
2015.11.02 Files Generated for Qsys Testbench 5-65

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys Testbench Simulation Standard and Legacy Device Output Directories
The /sim and /simulation directories contain the Qsys-generated output files to simulate your Qsys
testbench system.

Figure 5-34: Qsys Simulation Testbench Directory Structure

<system>.qsys

<system>.sopcinfo

<system>_tb.csv

<system>_tb.spd

<system>

 <system>.html

 <system>_generation.rpt

 <system>_tb.html

 testbench/

 <system>.ipx

 <system>_tb.qsys

 <system>_tb

 simulation

 <HDL files>

 submodules

 <HDL files>

 aldec

 cadence

 mentor

 synopsys

<system>.qsys

<system>.sopcinfo

<system>_tb

 <system>.html

 <system>.ipx

 <system>.regmap

 <system>_generation.rpt

 <system>_tb.html

 <system>_tb.qsys

 <system>_tb

 <system>_tb.csv

 <system>_tb.spd

 sim

 <HDL files>

 aldec

 cadence

 mentor

 synopsys

 <Child IP core>

 sim

 <HDL files>

Standard Directory Structure Legacy Directory Structure

Generate and Modify a Qsys Testbench System
You can use the following steps to create a Qsys testbench system of your Qsys system.

5-66 Qsys Testbench Simulation Standard and Legacy Device Output Directories
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Create a Qsys system.
2. Generate a testbench system in the Qsys Generation dialog box (Generate > Generate Testbench

System).
3. Open the testbench system in Qsys. Make changes to the BFMs, as needed, such as changing the

instance names and VHDL ID value. For example, you can modify the VHDL ID value in the Altera
Avalon Interrupt Source IP component.

4. If you modify a BFM, regenerate the simulation model for the testbench system.
5. Create a custom test program for the BFMs.
6. Compile and load the Qsys system and testbench into your simulator, and then run the simulation.

Qsys Simulation Scripts
Qsys generates simulation scripts to set up the simulation environment for Mentor Graphics Modelsim®

and Questasim®, Synopsys VCS and VCS MX, Cadence Incisive Enterprise Simulator® (NCSIM), and the
Aldec Riviera-PRO® Simulator.

You can use scripts to compile the required device libraries and system design files in the correct order
and elaborate or load the top-level system for simulation.

Table 5-12: Simulation Script Variables

The simulation scripts provide variables that allow flexibility in your simulation environment.
Variable Description

TOP_LEVEL_NAME If the testbench Qsys system is not the top-level instance in your
simulation environment because you instantiate the Qsys testbench
within your own top-level simulation file, set the TOP_LEVEL_NAME
variable to the top-level hierarchy name.

QSYS_SIMDIR If the simulation files generated by Qsys are not in the simulation
working directory, use the QSYS_SIMDIR variable to specify the
directory location of the Qsys simulation files.

QUARTUS_INSTALL_DIR Points to the Quartus installation directory that contains the device
family library.

Example 5-4: Top-Level Simulation HDL File for a Testbench System

The example below shows the pattern_generator_tb generated for a Qsys system called
pattern_generator. The top.sv file defines the top-level module that instantiates the
pattern_generator_tb simulation model, as well as a custom SystemVerilog test program with
BFM transactions, called test_program.

module top();
 pattern_generator_tb tb();
 test_program pgm();
endmodule

Note: The VHDL version of the Altera Tristate Conduit BFM is not supported in Synopsys VCS, NCSim,
and Riviera-PRO in the Quartus Prime software version 14.0. These simulators do not support the
VHDL protected type, which is used to implement the BFM. For a workaround, use a simulator
that supports the VHDL protected type.

QPS5V1
2015.11.02 Qsys Simulation Scripts 5-67

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Modelsim-Altera now supports native mixed-language (VHDL/Verilog/SystemVerilog)
simulation. Therefore, Altera simulation libraries may not be compatible with single language
simulators. If you have a VHDL-only license, some versions of Mentor simulators may not be able
to simulate IP written in Verilog. As a workaround, you can use Modelsim-Altera, or purchase a
mixed language simulation license from Mentor.

Related Information
Incorporating IP Simulation Scripts in Top-Level Scripts

Generating a Combined Simulator Setup Script
The Quartus Prime software provides utilities to help you generate and update IP simulation scripts. You
can use the ip-setup-simulation utility to generate a combined simulator setup script, for all Altera IP
in your design, for each supported simulator. You can subsequently rerun ip-setup-simulation to
automatically update the combined script. Each simulator's combined script file contains a rudimentary
template that you can adapt for integration of the setup script into a top-level simulation script.

Table 5-13: Simulation Script Utilities

Utility Syntax

ip-setup-simulation—Generates a combined,
version-independent simulation script for all Altera
IP cores in your project, and automates regenera‐
tion of the script after upgrading software or IP
versions. Use the compile-to-work option to
compile all simulation files into a single work
library if your simulation environment requires that
structure. Use the --use-relative-paths option
to use relative paths whenever possible.

ip-setup-simulation
 --quartus-project=<my proj>
 --output-directory=<my_dir>
 --use-relative-paths
 --compile-to-work

--use-relative-paths and --compile-to-work are
optional. For command-line help listing all options
for these executables, type: <utility name> --help.

ip-make-simscript—Generates a combined
simulation script for all IP cores specified on the
command line. Specify one or more .spd files and
an output directory in the command. Running the
script compiles IP simulation models into various
simulation libraries.

ip-make-simscript
 --spd=<ipA.spd,ipB.spd>
 --output-directory=<directory>

Running ip-setup-simulation

To generate or update combined simulator setup scripts for all IP cores in your design, follow these steps:

1. Generate, regenerate, or upgrade one or more Altera IP core.
2. Run ip-setup-simulation on the project containing the IP core:

ip-setup-simulation --quartus-project=<my proj>.qpf
 --output-directory=<my dir>
 --use-relative-paths

3. To incorporate the simulator setup script into your top-level simulation script, refer to the template
section in the generated simulator setup script as a guide to sourcing the generated script:

5-68 Generating a Combined Simulator Setup Script
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

https://documentation.altera.com/#/link/jbr1437426657605/jbr1441153598434/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Copy the specified template sections from the simulator-specific generated scripts and paste them
into a new top-level file.

b. Remove the comments at the beginning of each line from the copied template sections.
c. Include the customizations required to match your design simulation requirements, for example:

• Specify the TOP_LEVEL_NAME variable to the design’s simulation top-level file. The top-level
entity of your simulation is often a testbench that instantiates your design, and then your design
instantiates IP cores and/or Qsys systems. Set the value of TOP_LEVEL_NAME to the top-level
entity.

• If necessary, set the QSYS_SIMDIR variable to point to the location of the generated IP simulation
files.

• Compile the top-level HDL file (e.g. a test program) and all other files in the design.
• Specify any other changes, such as using the grep command-line utility to search a transcript file

for error signatures, or e-mail a report.
4. To automatically update the combined IP simulation scripts, run ip-setup-simulation after any of

the following events:

• IP core initial generation or regeneration with new parameters
• Upgrade of Quartus Prime software version
• Upgrade of IP core version

Refer to the following topics for detailed steps for using the templates for each vendor.

Simulating Software Running on a Nios II Processor
To simulate the software in a system driven by a Nios II processor, generate the simulation model for the
Qsys testbench system with the following steps:

1. In the Generation dialog box (Generate > Generate Testbench System), select Simple, BFMs for
clocks and resets.

2. For the Create testbench simulation model option select Verilog or VHDL.
3. Click Generate.
4. Open the Nios II Software Build Tools for Eclipse.
5. Set up an application project and board support package (BSP) for the <system> .sopcinfo file.
6. To simulate, right-click the application project in Eclipse, and then click Run as > Nios II ModelSim.

Sets up the ModelSim simulation environment, and compiles and loads the Nios II software
simulation.

7. To run the simulation in ModelSim, type run -all in the ModelSim transcript window.
8. Set the ModelSim settings and select the Qsys Testbench Simulation Package Descriptor (.spd) file, <

system > _tb.spd. The .spd file is generated with the testbench simulation model for Nios II designs
and specifies the files required for Nios II simulation.

Related Information

• Getting Started with the Graphical User Interface (Nios II)
• Getting Started from the Command-Line (Nios II)

Add Assertion Monitors for Simulation
You can add monitors to Avalon-MM, AXI, and Avalon-ST interfaces in your system to verify protocol
and test coverage with a simulator that supports SystemVerilog assertions.

QPS5V1
2015.11.02 Simulating Software Running on a Nios II Processor 5-69

Creating a System With Qsys Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Modelsim Altera Edition does not support SystemVerilog assertions. If you want to use assertion
monitors, you must use a supported third-party simulators such as Mentor Questasim, Synopsys
VCS, or Cadence Incisive. For more information, refer to Introduction to Altera IP Cores.

Figure 5-35: Inserting an Avalon-MM Monitor Between an Avalon-MM Master and Slave Interface

This example demonstrates the use of a monitor with an Avalon-MM monitor between the
pcie_compiler bar1_0_Prefetchable Avalon-MM master interface, and the
dma_0 control_port_slave Avalon-MM slave interface.

Similarly, you can insert an Avalon-ST monitor between Avalon-ST source and sink interfaces.

Related Information
Introduction to Altera IP Cores

CMSIS Support for the HPS IP Component
Qsys systems that contain an HPS IP component generate a System View Description (.svd) file that lists
peripherals connected to the ARM processor.

The .svd (or CMSIS-SVD) file format is an XML schema specified as part of the Cortex Microcontroller
Software Interface Standard (CMSIS) provided by ARM. The .svd file allows HPS system debug tools
(such as the DS-5 Debugger) to view the register maps of peripherals connected to HPS in a Qsys system.

Related Information

• Component Interface Tcl Reference on page 9-1
• CMSIS - Cortex Microcontroller Software

Explore and Manage Qsys Interconnect
The System with Qsys Interconnect window allows you to see the contents of the Qsys interconnect
before you generate your system. In this display of your system, you can review a graphical representation
of the generated interconnect. Qsys converts connections between interfaces to interconnect logic during
system generation.

You access the System with Qsys Interconnect window by clicking Show System With Qsys Interconnect
command on the System menu.

5-70 CMSIS Support for the HPS IP Component
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The System with Qsys Interconnect window has the following tabs:

• System Contents—Displays the original instances in your system, as well as the inserted interconnect
instances. Connections between interfaces are replaced by connections to interconnect where
applicable.

• Hierarchy—Displays a system hierarchical navigator, expanding the system contents to show modules,
interfaces, signals, contents of subsystems, and connections.

• Parameters—Displays the parameters for the selected element in the Hierarchy tab.
• Memory-Mapped Interconnect—Allows you to select a memory-mapped interconnect module and

view its internal command and response networks. You can also insert pipeline stages to achieve
timing closure.

The System Contents, Hierarchy, and Parameters tabs are read-only. Edits that you apply on the
Memory-Mapped Interconnect tab are automatically reflected on the Interconnect Requirements tab.

The Memory-Mapped Interconnect tab in the System with Qsys Interconnect window displays a
graphical representation of command and response data paths in your system. Data paths allow you
precise control over pipelining in the interconnect. Qsys displays separate figures for the command and
response data paths. You can access the data paths by clicking their respective tabs in the Memory-
Mapped Interconnect tab.

Each node element in a figure represents either a master or slave that communicates over the intercon‐
nect, or an interconnect sub-module. Each edge is an abstraction of connectivity between elements, and
its direction represents the flow of the commands or responses.

Click Highlight Mode (Path, Successors, Predecessors) to identify edges and data paths between
modules. Turn on Show Pipeline Locations to add greyed-out registers on edges where pipelining is
allowed in the interconnect.

Note: You must select more than one module to highlight a path.

Manually Controlling Pipelining in the Qsys Interconnect
The Memory-Mapped Interconnect tab allows you to manipulate pipleline connections in the Qsys
interconnect. You access the Memory-Mapped Interconnect tab by clicking the Show System With Qsys
Interconnect command on the System menu.

Note: To increase interconnect frequency, you should first try increasing the value of the Limit intercon‐
nect pipeline stages to option on the Interconnect Requirements tab. You should only consider
manually pipelining the interconnect if changes to this option do not improve frequency, and you
have tried all other options to achieve timing closure, including the use of a bridge. Manually
pipelining the interconnect should only be applied to complete systems.

1. In the Interconnect Requirements tab, first try increasing the value of the Limit interconnect
pipeline stages to option until it no longer gives significant improvements in frequency, or until it
causes unacceptable effects on other parts of the system.

2. In the Quartus Prime software, compile your design and run timing analysis.
3. Using the timing report, identify the critical path through the interconnect and determine the approxi‐

mate mid-point. The following is an example of a timing report:

2.800 0.000 cpu_instruction_master|out_shifter[63]|q
3.004 0.204 mm_domain_0|addr_router_001|Equal5~0|datac
3.246 0.242 mm_domain_0|addr_router_001|Equal5~0|combout
3.346 0.100 mm_domain_0|addr_router_001|Equal5~1|dataa
3.685 0.339 mm_domain_0|addr_router_001|Equal5~1|combout

QPS5V1
2015.11.02 Manually Controlling Pipelining in the Qsys Interconnect 5-71

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.153 0.468 mm_domain_0|addr_router_001|src_channel[5]~0|datad
4.373 0.220 mm_domain_0|addr_router_001|src_channel[5]~0|combout

4. In Qsys, click System > Show System With Qsys Interconnect.
5. In the Memory-Mapped Interconnect tab, select the interconnect module that contains the critical

path. You can determine the name of the module from the hierarchical node names in the timing
report.

6. Click Show Pipelinable Locations. Qsys display all possible pipeline locations in the interconnect.
Right-click the possible pipeline location to insert or remove a pipeline stage.

7. Locate the possible pipeline location that is closest to the mid-point of the critical path. The names of
the blocks in the memory-mapped interconnect tab correspond to the module instance names in the
timing report.

8. Right-click the location where you want to insert a pipeline, and then click Insert Pipeline.
9. Regenerate the Qsys system, recompile the design, and then rerun timing analysis. If necessary, repeat

the manual pipelining process again until timing requirements are met.

Manual pipelining has the following limitations:

• If you make changes to your original system's connectivity after manually pipelining an interconnect,
your inserted pipelines may become invalid. Qsys displays warning messages when you generate your
system if invalid pipeline stages are detected. You can remove invalid pipeline stages with the Remove
Stale Pipelines option in the Memory-Mapped Interconnect tab. Altera recommends that you do not
make changes to the system's connectivity after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Qsys. Manually-inserted
pipelines in one version of Qsys may not be valid in a future version.

Related Information

• Specify Qsys $system Interconnect Requirements
• Qsys System Design Components on page 10-1

Implement Performance Monitoring
You use the Qsys Instrumentation tab in to set up real-time performance monitoring using throughput
metrics such as read and write transfers. The Add debug instrumentation to the Qsys Interconnect
option allows you to interact with the Bus Analyzer Toolkit, which you can access on the Tools menu in
the Quartus Prime software.

Qsys supports performance monitoring for only Avalon-MM interfaces. In your Qsys system, you can
monitor the performance of no less than three, and no greater than 15 components at one time. The
performance monitoring feature works with Quartus Prime software devices 13.1 and newer.

Note: For more information about the Bus Analyzer Toolkit and the Qsys Instrumentation tab,
refer to the Bus Analyzer Toolkit page.

Related Information
Bus Analyzer Toolkit

5-72 Implement Performance Monitoring
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

http://www.alterawiki.com/wiki/Bus_Analyzer_Toolkit
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys 64-Bit Addressing Support
Qsys interconnect supports up to 64-bit addressing for all Qsys interfaces and IP components, with a
range of: 0x0000 0000 0000 0000 to 0xFFFF FFFF FFFF FFFF, inclusive.

Address parameters appear in the Base and End columns in the System Contents tab, on the Address
Map tab, in the parameter editor, and in validation messages. Qsys displays as many digits as needed in
order to display the top-most set bit, for example, 12 hex digits for a 48-bit address.

A Qsys system can have multiple 64-bit masters, with each master having its own address space. You can
share slaves between masters and masters can map slaves to different addresses. For example, one master
can interact with slave 0 at base address 0000_0000_0000, and another master can see the same slave at
base address c000_000_000.

Quartus Prime debugging tools provide access to the state of an addressable system via the Avalon-MM
interconnect. These are also 64-bit compatible, and process within a 64-bit address space, including a
JTAG to Avalon master bridge.

For more information on design practices when using slaves with large address spans, refer to Address
Span Extender in volume 1 of the Quartus Prime Handbook.

Related Information
Qsys System Design Components on page 10-1

Support for Avalon-MM Non-Power of Two Data Widths
Qsys requires that you connect all multi-point Avalon-MM connections to interfaces with data widths
that are equal to powers of two.

Qsys issues a validation error if an Avalon-MM master or slave interface on a multi-point connection is
parameterized with a non-power of two data width.

Note: Avalon-MM point-to-point connections between an Avalon-MM master and an Avalon-MM slave
are an exception and may set their data widths to a non-power of two.

View the Qsys HDL Example
Click Generate > HDL Example to generate a template for the top-level HDL definition of your Qsys
system in either Verilog HDL or VHDL. The HDL template displays the IP component declaration.

You can copy and paste the example into a top-level HDL file that instantiates the Qsys system, if the Qsys
system is not the top-level module in your Quartus Prime project.

Qsys System Example Designs
Click the Example Design button in the parameter editor to generate an example design.

If there are multiple example designs for an IP component, then there is a button for each example in the
parameter editor. When you click the Example Design button, the Select Example Design Directory
dialog box appears, where you can select the directory to save the example design.

QPS5V1
2015.11.02 Qsys 64-Bit Addressing Support 5-73

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Example Design button does not appear in the parameter editor if there is no example. For some IP
components, you can click Generate > Example Designs to access an example design.

The following Qsys system example designs demonstrate various design features and flows that you can
replicate in your Qsys system.

Related Information

• NIOS II Qsys Example Design
• PCI Express Avalon-ST Qsys Example Design
• Triple Speed Ethernet Qsys Example Design

Qsys Command-Line Utilities
You can perform many of the functions available in the Qsys GUI from the command-line with the qsys-
edit, qsys-generate, and qsys-script utilities.

You run Qsys command-line executables from the Quartus Prime installation directory:

<Quartus Prime installation directory>\quartus\sopc_builder\bin
You can use qsys-generate to generate a Qsys system or IP variation outside of the Qsys GUI. You can
use qsys-script to create, manipulate or manage a Qsys system with command-line scripting.

For command-line help listing all options for these executables, type the following command:

<Quartus Prime installation directory>\quartus\sopc_builder\bin\<executable name> --help

Example 5-5: Qsys Command-Line Scripting Example

qsys-script --script=my_script.tcl \
--system-file=fancy.qsys my_script.tcl contains:
package require -exact qsys 13.1
get all instance names in the system and print one by one
set instances [get_instances]
foreach instance $instances {
 send_message Info "$instance"
}

Note: You must add $QUARTUS_ROOTDIR/sopc_builder/bin/ to the PATH variable to access command-
line utilities. Once you add this PATH variable, you can launch the unities from any directory
location.

Related Information
Altera Wiki Qsys Scripts

Run the Qsys Editor with qsys-edit
You can use the qsys-edit utility to run the Qsys editor from the command-line.

5-74 Qsys Command-Line Utilities
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

http://www.altera.com/support/examples/design-entry-tools/qsys/exm-qsys-tut.html
http://www.altera.com/support/refdesigns/ip/interface/ref-pciexpress-hp.html
http://www.altera.com/support/examples/nios2/exm-tse-sgdma.html
http://www.alterawiki.com/wiki/Qsys_Scripts
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the following options with the qsys-edit utility:

Table 5-14: qsys-edit Command-Line Options

Option Usage Description

1st arg file Optional The name of the .qsys system or .qvar variation
file to edit.

--search-path[=<value>] Optional If omitted, Qsys uses a standard default path. If
provided, Qsys searches a comma-separated list
of paths. To include the standard path in your
replacement, use "$", for example: /extra/dir.$.

--project-directory=<directory> Optional Allows you to find IP components in certain
locations relative to the project, if any. By default,
the current directory is:'.' . To exclude any
project directory, use ''.

--new-component-type=<value> Optional Allows you to specify the kind of instance that is
parameterized in a variation.

--debug Optional Enables debugging features and output.

--host-controller Optional Launches the application with an XML host
controller interface on standard input/output.

--jvm-max-heap-size=<value> Optional The maximum memory size Qsys uses for
allocations when running qsys-edit. You
specify this value as <size><unit>, where unit is
m (or M) for multiples of megabytes, or g (or G) for
multiples of gigabytes. The default value is 512m.

--help Optional Display help for qsys-edit.

Scripting IP Core Generation
You can use the qsys-script and qsys-generate utilities to define and generate an IP core variation
outside of the Quartus Prime GUI.

To parameterize and generate an IP core at the command-line, follow these steps:

1. Run qsys-script to execute a Tcl script that instantiates the IP and sets desired parameters:

qsys-script --script=<script_file>.tcl

2. Run qsys-generate to generate the IP core variation:

qsys-generate <IP variation file>.qsys

QPS5V1
2015.11.02 Scripting IP Core Generation 5-75

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Creating an IP generation script is an advanced feature that requires access to special IP core
parameters. For more information about creating an IP generation script, contact your Altera sales
representative.

Table 5-15: qsys-generate Command-Line Options

Option Usage Description

<1st arg file> Required The name of the .qsys system file to
generate.

--synthesis=<VERILOG|VHDL> Optional Creates synthesis HDL files that Qsys uses
to compile the system in a Quartus Prime
project. You must specify the preferred
generation language for the top-level RTL
file for the generated Qsys system.

--block-symbol-file Optional Creates a Block Symbol File (.bsf) for the
Qsys system.

--simulation=<VERILOG|VHDL> Optional Creates a simulation model for the Qsys
system. The simulation model contains
generated HDL files for the simulator, and
may include simulation-only features. You
must specify the preferred simulation
language.

--testbench=<SIMPLE|STANDARD> Optional Creates a testbench system that instantiates
the original system, adding bus functional
models (BFMs) to drive the top-level
interfaces. When you generate the system,
the BFMs interact with the system in the
simulator.

--testbench-simulation=<VERILOG|VHDL> Optional After you create the testbench system, you
can create a simulation model for the
testbench system.

--search-path=<value> Optional If you omit this command, Qsys uses a
standard default path. If you provide this
command, Qsys searches a comma-
separated list of paths. To include the
standard path in your replacement, use "$",
for example, "/extra/dir,$".

--jvm-max-heap-size=<value> Optional The maximum memory size that Qsys uses
for allocations when running qsys-
generate. You specify the value as <size>
<unit>, where unit is m (or M) for
multiples of megabytes or g (or G) for
multiples of gigabytes. The default value is
512m.

5-76 Scripting IP Core Generation
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--family=<value> Optional Specifies the device family.

--part=<value> Optional Specifies the device part number. If set, this
option overrides the --family option.

--allow-mixed-language-simulation Optional Enables a mixed language simulation
model generation. If true, if a preferred
simulation language is set, Qsys uses a
fileset of the component for the
simulation model generation. When false,
which is the default, Qsys uses the
language specified with --file-
set=<value> for all components for
simulation model generation. The current
version of the ModelSim-Altera simulator
supports mixed language simulation.

For command-line help listing all options for these executables, type <executable name> --help

Display Available IP Components with ip-catalog
The ip-catalog command displays a list of available IP components relative to the current Quartus
Prime project directory. Use the following format for the ip-catalog command:

ip-catalog
 [--project-dir=<directory>]
 [--name=<value>]
 [--verbose]
 [--xml]
 [--help]

Table 5-16: ip-catalog Command-Line Options

Option Usage Description

--project-dir= <directory> Optional Finds IP components relative to the Quartus Prime
project directory. By default, Qsys uses ‘.’ as the
current directory. To exclude a project directory, leave
the value empty.

--name=<value> Optional Provides a pattern to filter the names of the IP
components found. To show all IP components, use a
* or ‘ ‘. By default, Qsys shows all IP components. The
argument is not case sensitive.

--verbose Optional Reports the progress of the command.

--xml Optional Generates the output in XML format, in place of
colon-delimited format.

QPS5V1
2015.11.02 Display Available IP Components with ip-catalog 5-77

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Usage Description

--help Optional Displays help for the ip-catalog command.

Create an .ipx File with ip-make-ipx
The ip-make-ipx command creates an .ipx file and is a convenient way to include a collection of IP
components from an arbitrary directory. You can edit the .ipx file to disable visibility of one or more IP
components in the IP Catalog. Use the following format for the ip-make-ipx command:

ip-make-ipx
 [--source-directory=<directory>]
 [--output=<file>]
 [--relative-vars=<value>]
 [--thorough-descent]
 [--message-before=<value>]
 [--message-after=<value>]
 [--help]

Table 5-17: ip-make-ipx Command-Line Options

Option Usage Description

--source-directory=<directory> Optional Specifies the root directory for IP component files.
The default directory is *.*. You can provide a
comma-separated list of directories.

--output=<file> Optional Specifies the name of the file to generate. The
default name is /component.ipx.

--relative-vars=<value> Optional Causes the output file to include references relative
to the specified variable(s) where possible. You can
specify multiple variables as a comma-separated list.

--thorough-descent Optional If set, a component or .ipx file in a directory does
not stop Qsys from searching subdirectories.

--message-before=<value> Optional Prints a message: stdout when indexing begins.

--message-after=<value> Optional Sends a message: stdout when indexing is done.

--help Optional Displays help for the ip-make-ipx command.

Related Information
Set up the IP Index File (.ipx) to Search for IP Components on page 5-6

Generate a Qsys System with qsys-script
You can use the qsys-script utility to create and manipulate a Qsys system with Tcl scripting
commands.

5-78 Create an .ipx File with ip-make-ipx
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You must provide a package version for the qsys-script. If you do not specify the --package-
version=<value> command, you must then provide a Tcl script and request the system scripting
API directly with the package require -exact qsys < version > command.

Table 5-18: qsys-script Command-Line Options

Option Usage Description

--system-file=<file> Optional Specifies the path to a .qsys file. Qsys loads the system
before running scripting commands.

--script=<file> Optional A file that contains Tcl scripting commands that you
can use to create or manipulate Qsys systems. If you
specify both --cmd and --script, Qsys runs the --cmd
commands before the script specified by --script.

--cmd=<value> Optional A string that contains Tcl scripting commands that you
can use to create or manipulate a Qsys system. If you
specify both --cmd and --script, Qsys runs the --cmd
commands before the script specified by --script.

--package-version=<value> Optional Specifies which Tcl API scripting version to use and
determines the functionality and behavior of the Tcl
commands. The Quartus Prime software supports Tcl
API scripting commands. If you do not specify the
version on the command-line, your script must request
the scripting API directly with the package require -
exact qsys <version > command.

--search-path=<value> Optional If you omit this command, a Qsys uses a standard
default path. If you provide this command, Qsys
searches a comma-separated list of paths. To include
the standard path in your replacement, use "$", for
example, /< directory path >/dir,$. Separate
multiple directory references with a comma.

--jvm-max-heap-size=<value> Optional The maximum memory size that the qsys-script tool
uses. You specify this value as <size><unit>, where
unit is m (or M) for multiples of megabytes, or g (or G)
for multiples of gigabytes.

--help Optional Displays help for the qsys-script utility.

QPS5V1
2015.11.02 Generate a Qsys System with qsys-script 5-79

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys Scripting Command Reference
The following are Qsys scripting commands:

add_connection on page 5-83

add_instance on page 5-84

add_interface on page 5-85

apply_preset on page 5-86

auto_assign_base_addresses on page 5-87

auto_assign_system_base_addresses on page 5-88

auto_assign_irqs on page 5-89

auto_connect on page 5-90

create_system on page 5-91

export_hw_tcl on page 5-92

get_composed_connection_parameter_value on page 5-93

get_composed_connection_parameters on page 5-94

get_composed_connections on page 5-95

get_composed_instance_assignment on page 5-96

get_composed_instance_assignments on page 5-97

get_composed_instance_parameter_value on page 5-98

get_composed_instance_parameters on page 5-99

get_composed_instances on page 5-100

get_connection_parameter_property on page 5-101

get_connection_parameter_value on page 5-102

get_connection_parameters on page 5-103

get_connection_properties on page 5-104

get_connection_property on page 5-105

get_connections on page 5-106

get_instance_assignment on page 5-107

get_instance_assignments on page 5-108

get_instance_documentation_links on page 5-109

get_instance_interface_assignment on page 5-110

get_instance_interface_assignments on page 5-111

get_instance_interface_parameter_property on page 5-112

get_instance_interface_parameter_value on page 5-113

get_instance_interface_parameters on page 5-114

5-80 Qsys Scripting Command Reference
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_port_property on page 5-115

get_instance_interface_ports on page 5-116

get_instance_interface_properties on page 5-117

get_instance_interface_property on page 5-118

get_instance_interfaces on page 5-119

get_instance_parameter_property on page 5-120

get_instance_parameter_value on page 5-121

get_instance_parameters on page 5-122

get_instance_port_property on page 5-123

get_instance_properties on page 5-124

get_instance_property on page 5-125

get_instances on page 5-126

get_interconnect_requirement on page 5-127

get_interconnect_requirements on page 5-128

get_interface_port_property on page 5-129

get_interface_ports on page 5-130

get_interface_properties on page 5-131

get_interface_property on page 5-132

get_interfaces on page 5-133

get_module_properties on page 5-134

get_module_property on page 5-135

get_parameter_properties on page 5-136

get_port_properties on page 5-137

get_project_properties on page 5-138

get_project_property on page 5-139

load_system on page 5-140

lock_avalon_base_address on page 5-141

remove_connection on page 5-142

remove_dangling_connections on page 5-143

remove_instance on page 5-144

remove_interface on page 5-145

save_system on page 5-146

send_message on page 5-147

set_connection_parameter_value on page 5-148

QPS5V1
2015.11.02 Qsys Scripting Command Reference 5-81

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_parameter_value on page 5-149

set_instance_property on page 5-150

set_interconnect_requirement on page 5-151

set_interface_property on page 5-152

set_module_property on page 5-153

set_project_property on page 5-154

set_use_testbench_naming_pattern on page 5-155

set_validation_property on page 5-156

unlock_avalon_base_address on page 5-157

validate_connection on page 5-158

validate_instance on page 5-159

validate_instance_interface on page 5-160

validate_system on page 5-161

5-82 Qsys Scripting Command Reference
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_connection

Description

Connects the named interfaces using an appropriate connection type. Both interface names consist of a
child instance name, followed by the name of an interface provided by that module. For example,
mux0.out is the interface named on the instance named mux0. Be careful to connect the start to the end,
and not the reverse.

Usage

add_connection <start> [<end>]

Returns

No return value.

Arguments

start
The start interface that is connected, in <instance_name>.<interface_name> format. If
the end argument is omitted, the connection must be of the form
<instance1>.<interface>/<instance2>.<interface>.

end (optional)
The end interface that is connected, <instance_name>.<interface_name>.

Example

add_connection dma.read_master sdram.s1

Related Information

• get_connection_parameter_value on page 5-102
• get_connection_property on page 5-105
• get_connections on page 5-106
• remove_connection on page 5-142
• set_connection_parameter_value on page 5-148

QPS5V1
2015.11.02 add_connection 5-83

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_instance

Description

Adds an instance of a component, referred to as a child or child instance, to the system.

Usage

add_instance <name> <type> [<version>]

Returns

No return value.

Arguments

name
Specifies a unique local name that you can use to manipulate the instance. Qsys uses this
name in the generated HDL to identify the instance.

type
Refers to a kind of instance available in the IP Catalog, for example altera_avalon_uart.

version (optional)
The required version of the specified instance type. If no version is specified, Qsys uses the
latest version.

Example

add_instance uart_0 altera_avalon_uart

Related Information

• get_instance_parameter_value on page 5-121
• get_instance_property on page 5-125
• get_instances on page 5-126
• remove_instance on page 5-144
• set_instance_parameter_value on page 5-149

5-84 add_instance
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_interface

Description

Adds an interface to your system, which Qsys uses to export an interface from within the system. You
specify the exported internal interface with set_interface_property <interface> EXPORT_OF
instance.interface.

Usage

add_interface <name> <type> <direction>.

Returns

No return value.

Arguments

name
The name of the interface that Qsys exports from the system.

type
The type of interface.

direction
The interface direction.

Example

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Related Information

• get_interface_ports on page 5-130
• get_interface_properties on page 5-131
• get_interface_property on page 5-132
• set_interface_property on page 5-152

QPS5V1
2015.11.02 add_interface 5-85

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

apply_preset

Description

Applies the settings in a preset to the specified instance.

Usage

apply_preset <instance> <preset_name>

Returns

No return value.

Arguments

instance
The name of the instance.

preset_name
The name of the preset.

Example

apply_preset cpu_0 "Custom Debug Settings"

5-86 apply_preset
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

auto_assign_base_addresses

Description

Assigns base addresses to all memory mapped interfaces on an instance in the system. Instance interfaces
that are locked with lock_avalon_base_address keep their addresses during address auto-assignment.

Usage

auto_assign_base_addresses <instance>

Returns

No return value.

Arguments

instance
The name of the instance with memory mapped interfaces.

Example

auto_assign_base_addresses sdram

Related Information

• auto_assign_system_base_addresses on page 5-88
• lock_avalon_base_address on page 5-141
• unlock_avalon_base_address on page 5-157

QPS5V1
2015.11.02 auto_assign_base_addresses 5-87

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

auto_assign_system_base_addresses

Description

Assigns legal base addresses to all memory mapped interfaces on all instances in the system. Instance
interfaces that are locked with lock_avalon_base_address keep their addresses during address auto-
assignment.

Usage

auto_assign_system_base_addresses

Returns

No return value.

Arguments

No arguments.

Example

auto_assign_system_base_addresses

Related Information

• auto_assign_base_addresses on page 5-87
• lock_avalon_base_address on page 5-141
• unlock_avalon_base_address on page 5-157

5-88 auto_assign_system_base_addresses
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

auto_assign_irqs

Description

Assigns interrupt numbers to all connected interrupt senders on an instance in the system.

Usage

auto_assign_irqs <instance>

Returns

No return value.

Arguments

instance
The name of the instance with an interrupt sender.

Example

auto_assign_irqs uart_0

QPS5V1
2015.11.02 auto_assign_irqs 5-89

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

auto_connect

Description

Creates connections from an instance or instance interface to matching interfaces in other instances in the
system. For example, Avalon-MM slaves connect to Avalon-MM masters.

Usage

auto_connect <element>

Returns

No return value.

Arguments

element
The name of the instance interface, or the name of an instance.

Example

auto_connect sdram
auto_connect uart_0.s1

Related Information
add_connection on page 5-83

5-90 auto_connect
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

create_system

Description

Replaces the current system with a new system with the specified name.

Usage

create_system [<name>]

Returns

No return value.

Arguments

name (optional)
The name of the new system.

Example

create_system my_new_system_name

Related Information

• load_system on page 5-140
• save_system on page 5-146

QPS5V1
2015.11.02 create_system 5-91

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

export_hw_tcl

Description

Allows you to save the currently open system as an _hw.tcl file in the project directory. The saved systems
appears under the System category in the IP Category.

Usage

export_hw_tcl

Returns

No return value.

Arguments

No arguments

Example

export_hw_tcl

5-92 export_hw_tcl
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_connection_parameter_value

Description

Returns the value of a parameter in a connection in a child instance containing a subsystem.

Usage

get_composed_connection_parameter_value <instance> <child_connection> <parameter>

Returns

The parameter value.

Arguments

instance
The child instance that contains a subsystem

child_connection
The name of the connection in the subsystem

parameter
The name of the parameter to query on the connection.

Example

get_composed_connection_parameter_value subsystem_0 cpu.data_master/memory.s0
baseAddress

Related Information

• get_composed_connection_parameters on page 5-94
• get_composed_connections on page 5-95

QPS5V1
2015.11.02 get_composed_connection_parameter_value 5-93

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_connection_parameters

Description

Returns a list of all connections in the subsystem, for an instance that contains a subsystem.

Usage

get_composed_connection_parameters <instance> <child_connection>

Returns

A list of parameter names.

Arguments

instance
The child instance containing a subsystem.

child_connection
The name of the connection in the subsystem.

Example

get_composed_connection_parameters subsystem_0 cpu.data_master/memory.s0

Related Information

• get_composed_connection_parameter_value on page 5-93
• get_composed_connections on page 5-95

5-94 get_composed_connection_parameters
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_connections

Description

For an instance that contains a subsystem of the Qsys system, returns a list of all connections found in a
subsystem.

Usage

get_composed_connections <instance>

Returns

A list of connection names in the subsystem. These connection names are not qualified with the instance
name.

Arguments

instance
The child instance containing a subsystem.

Example

get_composed_connections subsystem_0

Related Information

• get_composed_connection_parameter_value on page 5-93
• get_composed_connection_parameters on page 5-94

QPS5V1
2015.11.02 get_composed_connections 5-95

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instance_assignment

Description

For an instance that contains a subsystem of the Qsys system, returns the value of an assignment found on
the instance in the subsystem.

Usage

get_composed_instance_assignment <instance> <child_instance> <assignment>

Returns

The value of the assignment.

Arguments

instance
The child instance containing a subsystem.

child_instance
The name of a child instance found in the subsystem.

assignment
The assignment key.

Example

get_composed_instance_assignment subsystem_0 video_0 "embeddedsw.CMacro.colorSpace"

Related Information

• get_composed_instance_assignments on page 5-97
• get_composed_instances on page 5-100

5-96 get_composed_instance_assignment
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instance_assignments

Description

For an instance that contains a subsystem of the Qsys system, returns a list of assignments found on the
instance in the subsystem.

Usage

get_composed_instance_assignments <instance> <child_instance>

Returns

A list of assignment names.

Arguments

instance
The child instance containing a subsystem.

child_instance
The name of a child instance found in the subsystem.

Example

get_composed_instance_assignments subsystem_0 cpu

Related Information

• get_composed_instance_assignment on page 5-96
• get_composed_instances on page 5-100

QPS5V1
2015.11.02 get_composed_instance_assignments 5-97

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instance_parameter_value

Description

For an instance that contains a subsystem of the Qsys system, returns the value of a parameters found on
the instance in the subsystem.

Usage

get_composed_instance_parameter_value <instance> <child_instance> <parameter>

Returns

The value of a parameter on the instance in the subsystem.

Arguments

instance
The child instance containing a subsystem.

child_instance
The name of a child instance found in the subsystem.

parameter
The name of the parameter to query on the instance in the subsystem.

Example

get_composed_instance_parameter_value subsystem_0 cpu DATA_WIDTH

Related Information

• get_composed_instance_parameters on page 5-99
• get_composed_instances on page 5-100

5-98 get_composed_instance_parameter_value
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instance_parameters

Description

For an instance that contains a subsystem of the Qsys system, returns a list of parameters found on the
instance in the subsystem.

Usage

get_composed_instance_parameters <instance> <child_instance>

Returns

A list of parameter names.

Arguments

instance
The child instance containing a subsystem.

child_instance
The name of a child instance found in the subsystem.

Example

get_composed_instance_parameters subsystem_0 cpu

Related Information

• get_composed_instance_parameter_value on page 5-98
• get_composed_instances on page 5-100

QPS5V1
2015.11.02 get_composed_instance_parameters 5-99

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_composed_instances

Description

For an instance that contains a subsystem of the Qsys system, returns a list of child instances found in the
subsystem.

Usage

get_composed_instances <instance>

Returns

A list of instance names found in the subsystem.

Arguments

instance
The child instance containing a subsystem.

Example

get_composed_instances subsystem_0

Related Information

• get_composed_instance_assignment on page 5-96
• get_composed_instance_assignments on page 5-97
• get_composed_instance_parameter_value on page 5-98
• get_composed_instance_parameters on page 5-99

5-100 get_composed_instances
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_parameter_property

Description

Returns the value of a property on a parameter in a connection. Parameter properties are metadata about
how Qsys uses the parameter.

Usage

get_connection_parameter_property <connection> <parameter> <property>

Returns

The value of the parameter property.

Arguments

connection
The connection to query.

parameter
The name of the parameter.

property
The property of the connection. Refer to Parameter Properties.

Example

get_connection_parameter_property cpu.data_master/dma0.csr baseAddress UNITS

Related Information

• get_connection_parameter_value on page 5-102
• get_connection_property on page 5-105
• get_connections on page 5-106
• get_parameter_properties on page 5-136
• Parameter Properties on page 5-171

QPS5V1
2015.11.02 get_connection_parameter_property 5-101

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_parameter_value

Description

Returns the value of a parameter on the connection. Parameters represent aspects of the connection that
you can modify, such as the base address for an Avalon-MM connection.

Usage

get_connection_parameter_value <connection> <parameter>

Returns

The value of the parameter.

Arguments

connection
The connection to query.

parameter
The name of the parameter.

Example

get_connection_parameter_value cpu.data_master/dma0.csr baseAddress

Related Information

• get_connection_parameters on page 5-103
• get_connections on page 5-106
• set_connection_parameter_value on page 5-148

5-102 get_connection_parameter_value
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_parameters

Description

Returns a list of parameters found on a connection.

Usage

get_connection_parameters <connection>

Returns

A list of parameter names.

Arguments

connection
The connection to query.

Example

get_connection_parameters cpu.data_master/dma0.csr

Related Information

• get_connection_parameter_property on page 5-101
• get_connection_parameter_value on page 5-102
• get_connection_property on page 5-105

QPS5V1
2015.11.02 get_connection_parameters 5-103

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_properties

Description

Returns a list of properties found on a connection.

Usage

get_connection_properties

Returns

A list of connection properties.

Arguments

No arguments.

Example

get_connection_properties

Related Information

• get_connection_property on page 5-105
• get_connections on page 5-106

5-104 get_connection_properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_property

Description

Returns the value of a property found on a connection. Properties represent aspects of the connection that
you can modify, such as the type of connection.

Usage

get_connection_property <connection> <property>

Returns

The value of a connection property.

Arguments

connection
The connection to query.

property
The name of the connection. property. Refer to Connection Properties.

Example

get_connection_property cpu.data_master/dma0.csr TYPE

Related Information

• get_connection_properties on page 5-104
• Connection Properties on page 5-163

QPS5V1
2015.11.02 get_connection_property 5-105

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connections

Description

Returns a list of all connections in the system if no element is specified. If you specify a child instance, for
example cpu, Qsys returns all connections to any interface on the instance. If specify an interface on a
child instance, for example cpu.instruction_master, Qsys returns all connections to that interface.

Usage

get_connections [<element>]

Returns

A list of connections.

Arguments

element (optional)
The name of a child instance, or the qualified name of an interface on a child instance.

Example

get_connections
get_connections cpu
get_connections cpu.instruction_master

Related Information

• add_connection on page 5-83
• remove_connection on page 5-142

5-106 get_connections
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_assignment

Description

Returns the value of an assignment on a child instance. Qsys uses assignments to transfer information
about hardware to embedded software tools and applications.

Usage

get_instance_assignment <instance> <assignment>

Returns

The value of the specified assignment.

Arguments

instance
The name of the child instance.

assignment
The assignment key to query.

Example

get_instance_assignment video_0 embeddedsw.CMacro.colorSpace

Related Information
get_instance_assignments on page 5-108

QPS5V1
2015.11.02 get_instance_assignment 5-107

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_assignments

Description

Returns a list of assignment keys for any assignments defined for the instance.

Usage

get_instance_assignments <instance>

Returns

A list of assignment keys.

Arguments

instance
The name of the child instance.

Example

get_instance_assignments sdram

Related Information

• get_instance_assignment on page 5-107
• get_instance_assignment on page 5-107

5-108 get_instance_assignments
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_documentation_links

Description

Returns a list of all documentation links provided by an instance.

Usage

get_instance_documentation_links <instance>

Returns

A list of documentation links.

Arguments

instance
The name of the child instance.

Example

get_instance_documentation_links cpu_0

Notes

The list of documentation links includes titles and URLs for the links. For instance, a component with a
single data sheet link may return:

{Data Sheet} {http://url/to/data/sheet}

QPS5V1
2015.11.02 get_instance_documentation_links 5-109

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_assignment

Description

Returns the value of an assignment on an interface of a child instance. Qsys uses assignments to transfer
information about hardware to embedded software tools and applications.

Usage

get_instance_interface_assignment <instance> <interface> <assignment>

Returns

The value of the specified assignment.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

assignment
The assignment key to query.

Example

get_instance_interface_assignment sdram s1 embeddedsw.configuration.isFlash

Related Information
get_instance_interface_assignments on page 5-111

5-110 get_instance_interface_assignment
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_assignments

Description

Returns a list of assignment keys for any assignments defined for an interface of a child instance.

Usage

get_instance_interface_assignments <instance> <interface>

Returns

A list of assignment keys.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

Example

get_instance_interface_assignments sdram s1

Related Information
get_instance_interface_assignment on page 5-110

QPS5V1
2015.11.02 get_instance_interface_assignments 5-111

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_parameter_property

Description

Returns the value of a property on a parameter in an interface of a child instance. Parameter properties
are metadata about how Qsys uses the parameter.

Usage

get_instance_interface_parameter_property <instance> <interface> <parameter>
<property>

Returns

The value of the parameter property.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

parameter
The name of the parameter on the interface.

property
The name of the property on the parameter. Refer to Parameter Properties.

Example

get_instance_interface_parameter_property uart_0 s0 setupTime ENABLED

Related Information

• get_instance_interface_parameters on page 5-114
• get_instance_interfaces on page 5-119
• get_parameter_properties on page 5-136
• Parameter Properties on page 5-171

5-112 get_instance_interface_parameter_property
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_parameter_value

Description

Returns the value of a parameter of an interface in a child instance.

Usage

get_instance_interface_parameter_value <instance> <interface> <parameter>

Returns

The value of the parameter.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

parameter
The name of the parameter on the interface.

Example

get_instance_interface_parameter_value uart_0 s0 setupTime

Related Information

• get_instance_interface_parameters on page 5-114
• get_instance_interfaces on page 5-119

QPS5V1
2015.11.02 get_instance_interface_parameter_value 5-113

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_parameters

Description

Returns a list of parameters for an interface in a child instance.

Usage

get_instance_interface_parameters <instance> <interface>

Returns

A list of parameter names for parameters in the interface.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the uart_0 s0.

Example

get_instance_interface_parameters instance interface

Related Information

• get_instance_interface_parameter_value on page 5-113
• get_instance_interfaces on page 5-119

5-114 get_instance_interface_parameters
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_port_property

Description

Returns the value of a property of a port found in the interface of a child instance.

Usage

get_instance_interface_port_property <instance> <interface> <port> <property>

Returns

The value of the port property.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

port
The name of the port in the interface.

property
The name of the property of the port. Refer to Port Properties.

Example

get_instance_interface_port_property uart_0 exports tx WIDTH

Related Information

• get_instance_interface_ports on page 5-116
• get_port_properties on page 5-137
• Port Properties on page 5-176

QPS5V1
2015.11.02 get_instance_interface_port_property 5-115

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_ports

Description

Returns a list of ports found in an interface of a child instance.

Usage

get_instance_interface_ports <instance> <interface>

Returns

A list of port names found in the interface.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

Example

get_instance_interface_ports uart_0 s0

Related Information

• get_instance_interface_port_property on page 5-115
• get_instance_interfaces on page 5-119

5-116 get_instance_interface_ports
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_properties

Description

Returns a list of properties that can be queried for an interface in a child instance.

Usage

get_instance_interface_properties

Returns

A list of property names.

Arguments

No arguments.

Example

get_instance_interface_properties

Related Information

• get_instance_interface_property on page 5-118
• get_instance_interfaces on page 5-119

QPS5V1
2015.11.02 get_instance_interface_properties 5-117

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_property

Description

Returns the value of a property for an interface in a child instance.

Usage

get_instance_interface_property <instance> <interface> <property>

Returns

The value of the property.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

property
The name of the property of the interface. Refer to Element Properties.

Example

get_instance_interface_property uart_0 s0 DESCRIPTION

Related Information

• get_instance_interface_properties on page 5-117
• get_instance_interfaces on page 5-119
• Element Properties on page 5-166

5-118 get_instance_interface_property
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interfaces

Description

Returns a list of interfaces found in a child instance

Usage

get_instance_interfaces <instance>

Returns

A list of interface names.

Arguments

instance
The name of the child instance.

Example

get_instance_interfaces uart_0

Related Information

• get_instance_interface_ports on page 5-116
• get_instance_interface_properties on page 5-117
• get_instance_interface_property on page 5-118

QPS5V1
2015.11.02 get_instance_interfaces 5-119

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameter_property

Description

Returns the value of a property on a parameter in a child instance. Parameter properties are metadata
about how Qsys uses the parameter.

Usage

get_instance_parameter_property <instance> <parameter> <property>

Returns

The value of the parameter property.

Arguments

instance
The name of the child instance.

parameter
The name of the parameter in the instance.

property
The name of the property of the parameter. Refer to Parameter Properties.

Example

get_instance_parameter_property uart_0 baudRate ENABLED

Related Information

• get_instance_parameters on page 5-122
• get_parameter_properties on page 5-136
• Parameter Properties on page 5-171

5-120 get_instance_parameter_property
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameter_value

Description

Returns the value of a parameter in a child instance.

Usage

get_instance_parameter_value <instance> <parameter>

Returns

The value of the parameter.

Arguments

instance
The name of the child instance.

parameter
The name of the parameter in the instance.

Example

get_instance_parameter_value uart_0 baudRate

Related Information

• get_instance_parameters on page 5-122
• set_instance_parameter_value on page 5-149

QPS5V1
2015.11.02 get_instance_parameter_value 5-121

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameters

Description

Returns a list of parameters in a child instance.

Usage

get_instance_parameters <instance>

Returns

A list of parameters in the instance.

Arguments

instance
The name of the child instance.

Example

get_instance_parameters uart_0

Related Information

• get_instance_parameter_property on page 5-120
• get_instance_interface_parameter_value on page 5-113
• set_instance_parameter_value on page 5-149

5-122 get_instance_parameters
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_port_property

Description

Returns the value of a property of a port contained by an interface in a child instance.

Usage

get_instance_port_property <instance> <port> <property>

Returns

The value of the property for the port.

Arguments

instance
The name of the child instance.

port
The name of a port in one of the interfaces on the child instance.

property
The name of a property found on the port. Refer to Port Properties.

Example

get_instance_port_property uart_0 tx WIDTH

Related Information

• get_instance_interface_ports on page 5-116
• get_port_properties on page 5-137
• Port Properties on page 5-176

QPS5V1
2015.11.02 get_instance_port_property 5-123

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_properties

Description

Returns a list of properties for a child instance.

Usage

get_instance_properties

Returns

A list of property names for the child instance.

Arguments

No arguments.

Example

get_instance_properties

Related Information
get_instance_property on page 5-125

5-124 get_instance_properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_property

Description

Returns the value of a property for a child instance.

Usage

get_instance_property <instance> <property>

Returns

The value of the property.

Arguments

instance
The name of the child instance.

property
The name of a property found on the instance. Refer to Element Properties.

Example

get_instance_property uart_0 ENABLED

Related Information

• get_instance_properties on page 5-124
• Element Properties on page 5-166

QPS5V1
2015.11.02 get_instance_property 5-125

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instances

Description

Returns a list of the instance names for all child instances in the system.

Usage

get_instances

Returns

A list of child instance names.

Arguments

No arguments.

Example

get_instances

Related Information

• add_instance on page 5-84
• remove_instance on page 5-144

5-126 get_instances
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interconnect_requirement

Description

Returns the value of an interconnect requirement for a system or interface on a child instance.

Usage

get_interconnect_requirement <element_id> <requirement>

Returns

The value of the interconnect requirement.

Arguments

element_id
{$system} for the system, or the qualified name of the interface of an instance, in
<instance>.<interface> format. In Tcl, the system identifier is escaped, for example,
{$system}.

requirement
The name of the requirement.

Example

get_interconnect_requirement {$system} qsys_mm.maxAdditionalLatency

QPS5V1
2015.11.02 get_interconnect_requirement 5-127

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interconnect_requirements

Description

Returns a list of all interconnect requirements in the system.

Usage

get_interconnect_requirements

Returns

A flattened list of interconnect requirements. Every sequence of three elements in the list corresponds to
one interconnect requirement. The first element in the sequence is the element identifier. The second
element is the requirement name. The third element is the value. You can loop over the returned list with
a foreach loop, for example:

foreach { element_id name value } $requirement_list { loop_body
 }

Arguments

No arguments.

Example

get_interconnect_requirements

5-128 get_interconnect_requirements
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_port_property

Description

Returns the value of a property of a port contained by one of the top-level exported interfaces

Usage

get_interface_port_property <interface> <port> <property>

Returns

The value of the property.

Arguments

interface
The name of a top-level interface on the system.

port
The name of a port found in the interface.

property
The name of a property found on the port. Refer to Port Properties.

Example

get_interface_port_property uart_exports tx DIRECTION

Related Information

• get_interface_ports on page 5-130
• get_port_properties on page 5-137
• Port Properties on page 5-176

QPS5V1
2015.11.02 get_interface_port_property 5-129

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_ports

Description

Returns the names of all of the ports that have been added to a given interface.

Usage

get_interface_ports <interface>

Returns

A list of port names.

Arguments

interface
The name of a top-level interface on the system.

Example

get_interface_ports export_clk_out

Related Information

• get_interface_port_property on page 5-129
• get_interfaces on page 5-133

5-130 get_interface_ports
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_properties

Description

Returns the names of all the available interface properties common to all interface types.

Usage

get_interface_properties

Returns

A list of interface properties.

Arguments

No arguments.

Example

get_interface_properties

Related Information

• get_interface_property on page 5-132
• set_interface_property on page 5-152

QPS5V1
2015.11.02 get_interface_properties 5-131

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_property

Description

Returns the value of a single interface property from the specified interface.

Usage

get_interface_property <interface> <property>

Returns

The property value.

Arguments

interface
The name of a top-level interface on the system.

property
The name of the property. Refer to Interface Properties.

Example

get_interface_property export_clk_out EXPORT_OF

Related Information

• get_interface_properties on page 5-131
• set_interface_property on page 5-152
• Interface Properties on page 5-168

5-132 get_interface_property
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interfaces

Description

Returns a list of top-level interfaces in the system.

Usage

get_interfaces

Returns

A list of the top-level interfaces exported from the system.

Arguments

No arguments.

Example

get_interfaces

Related Information

• add_interface on page 5-85
• get_interface_ports on page 5-130
• get_interface_property on page 5-132
• remove_interface on page 5-145
• set_interface_property on page 5-152

QPS5V1
2015.11.02 get_interfaces 5-133

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_properties

Description

Returns the properties that you can manage for top-level module of the Qsys system.

Usage

get_module_properties

Returns

A list of property names.

Arguments

No arguments.

Example

get_module_properties

Related Information

• get_module_property on page 5-135
• set_module_property on page 5-153

5-134 get_module_properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_property

Description

Returns the value of a top-level system property.

Usage

get_module_property <property>

Returns

The value of the property.

Arguments

property
The name of the property to query. Refer to Module Properties.

Example

get_module_property NAME

Related Information

• get_module_properties on page 5-134
• set_module_property on page 5-153

QPS5V1
2015.11.02 get_module_property 5-135

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_parameter_properties

Description

Returns a list of properties that you can query for any parameters, for example parameters on instances,
interfaces, instance interfaces, and connections.

Usage

get_parameter_properties

Returns

A list of parameter properties.

Arguments

No arguments.

Example

get_parameter_properties

Related Information

• get_connection_parameter_property on page 5-101
• get_instance_interface_parameter_property on page 5-112
• get_instance_parameter_property on page 5-120

5-136 get_parameter_properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_port_properties

Description

Returns a list of properties that you can query for ports.

Usage

get_port_properties

Returns

A list of port properties.

Arguments

No arguments.

Example

get_port_properties

Related Information

• get_instance_interface_port_property on page 5-115
• get_instance_interface_ports on page 5-116
• get_instance_port_property on page 5-123
• get_interface_port_property on page 5-129
• get_interface_ports on page 5-130

QPS5V1
2015.11.02 get_port_properties 5-137

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_project_properties

Description

Returns a list of properties that you can query for properties pertaining to the Quartus Prime project.

Usage

get_project_properties

Returns

A list of project properties.

Arguments

No arguments

Example

get_project_properties

Related Information

• get_project_property on page 5-139
• set_project_property on page 5-154

5-138 get_project_properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_project_property

Description

Returns the value of a Quartus Prime project property. Not all Quartus Prime project properties are
available.

Usage

get_project_property <property>

Returns

The value of the property.

Arguments

property
The name of the project property. Refer to Project properties.

Example

get_project_property DEVICE_FAMILY

Related Information

• get_module_properties on page 5-134
• get_module_property on page 5-135
• set_module_property on page 5-153

QPS5V1
2015.11.02 get_project_property 5-139

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

load_system

Description

Loads a Qsys system from a file, and uses the system as the current system for scripting commands.

Usage

load_system <file>

Returns

No return value.

Arguments

file
The path to a .qsys file.

Example

load_system example.qsys

Related Information

• create_system on page 5-91
• save_system on page 5-146

5-140 load_system
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

lock_avalon_base_address

Description

Prevents the memory-mapped base address from being changed for connections to the specified interface
on an instance when Qsys runs the auto_assign_base_addresses or
auto_assign_system_base_addresses commands.

Usage

lock_avalon_base_address <instance.interface>

Returns

No return value.

Arguments

instance.interface
The qualified name of the interface of an instance, in <instance>.<interface> format.

Example

lock_avalon_base_address sdram.s1

Related Information

• auto_assign_base_addresses on page 5-87
• auto_assign_system_base_addresses on page 5-88
• unlock_avalon_base_address on page 5-157

QPS5V1
2015.11.02 lock_avalon_base_address 5-141

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_connection

Description

This command removes a connection from the system.

Usage

remove_connection <connection>

Returns

no return value

Arguments

connection
The name of the connection to remove

Example

remove_connection cpu.data_master/sdram.s0

Related Information

• add_connection on page 5-83
• get_connections on page 5-106

5-142 remove_connection
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_dangling_connections

Description

Removes connections where both end points of the connection no longer exist in the system.

Usage

remove_dangling_connections

Returns

No return value.

Arguments

No arguments.

Example

remove_dangling_connections

QPS5V1
2015.11.02 remove_dangling_connections 5-143

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_instance

Description

Removes a child instance from the system.

Usage

remove_instance <instance>

Returns

No return value.

Arguments

instance
The name of the child instance to remove.

Example

remove_instance cpu

Related Information

• add_instance on page 5-84
• get_instances on page 5-126

5-144 remove_instance
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

remove_interface

Description

Removes an exported top-level interface from the system.

Usage

remove_interface <interface>

Returns

No return value.

Arguments

interface
The name of the exported top-level interface.

Example

remove_interface clk_out

Related Information

• add_interface on page 5-85
• get_interfaces on page 5-133

QPS5V1
2015.11.02 remove_interface 5-145

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

save_system

Description

Saves the current system to the named file. If you do not specify the file, Qsys saves the system to the same
file that was opened with the load_system command. You can specify the file as an absolute or relative
path. Relative paths are relative to directory of the most recently loaded system, or relative to the working
directory if no systems are loaded.

Usage

save_system <file>

Returns

No return value.

Arguments

file
If available, the path of the .qsys file to save.

Example

save_system

save_system file.qsys

5-146 save_system
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

send_message

Description

Sends a message to the user of the script. The message text is normally interpreted as HTML. You can use
the element to provide emphasis.

Usage

send_message <level> <message>

Returns

No return value.

Arguments

level
The following message levels are supported:

• ERROR--Provides an error message.
• WARNING--Provides a warning message.
• INFO--Provides an informational message.
• PROGRESS--Provides a progress message.
• DEBUG--Provides a debug message when debug mode is enabled. Refer to Message Levels

Properties.
message

The text of the message.

Example

send_message ERROR "The system is down!"

Related Information
Message Levels Properties on page 5-169

QPS5V1
2015.11.02 send_message 5-147

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_connection_parameter_value

Description

Sets the value of a parameter for a connection.

Usage

set_connection_parameter_value <connection> <parameter> <value>

Returns

No return value.

Arguments

connection
The name if the connection.

parameter
The name of the parameter.

value
The new parameter value.

Example

set_connection_parameter_value cpu.data_master/dma0.csr baseAddress "0x000a0000"

Related Information

• get_connection_parameter_value on page 5-102
• get_connection_parameters on page 5-103

5-148 set_connection_parameter_value
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_parameter_value

Description

Set the value of a parameter for a child instance. You cannot set derived parameters and SYSTEM_INFO
parameters for the child instance with this command.

Usage

set_instance_parameter_value <instance> <parameter> <value>

Returns

No return value.

Arguments

instance
The name of the child instance.

parameter
The name of the parameter.

value
The new parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Related Information

• get_instance_parameter_value on page 5-121
• get_instance_parameter_property on page 5-120

QPS5V1
2015.11.02 set_instance_parameter_value 5-149

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_property

Description

Sets the value of a property of a child instance. Most instance properties are read-only and can only be set
by the instance itself. The primary use for this command is to update the ENABLED parameter, which
includes or excludes a child instance when generating Qsys interconnect.

Usage

set_instance_property <instance> <property> <value>

Returns

No return value.

Arguments

instance
The name of the child instance.

property
The name of the property. Refer to Instance Properties.

value
The new property value.

Example

set_instance_property cpu ENABLED false

Related Information

• get_instance_parameters on page 5-122
• get_instance_property on page 5-125
• Instance Properties on page 5-167

5-150 set_instance_property
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_interconnect_requirement

Description

Sets the value of an interconnect requirement for a system or an interface on a child instance.

Usage

set_interconnect_requirement <element_id> <requirement> <value>

Returns

No return value.

Arguments

element_id
{$system} for the system, or qualified name of the interface of an instance, in
<instance>.<interface> format. In Tcl, the system identifier is escaped, for example,
{$system}.

requirement
The name of the requirement.

value
The new requirement value.

Example

set_interconnect_requirement {$system} qsys_mm.clockCrossingAdapter HANDSHAKE

QPS5V1
2015.11.02 set_interconnect_requirement 5-151

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_interface_property

Description

Sets the value of a property on an exported top-level interface. You use this command to set the
EXPORT_OF property to specify which interface of a child instance is exported via this top-level interface.

Usage

set_interface_property <interface> <property> <value>

Returns

No return value.

Arguments

interface
The name of an exported top-level interface.

property
The name of the property. Refer to Interface Properties.

value
The new property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out

Related Information

• add_interface on page 5-85
• get_interface_properties on page 5-131
• get_interface_property on page 5-132
• Interface Properties on page 5-168

5-152 set_interface_property
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_module_property

Description

Sets the value of a system property, such as the name of the system using the NAME property.

Usage

set_module_property <property> <value>

Returns

No return value.

Arguments

property
The name of the property. Refer to Module Properties.

value
The new property value.

Example

set_module_property NAME "new_system_name"

Related Information

• get_module_properties on page 5-134
• get_module_property on page 5-135
• Module Properties on page 5-170

QPS5V1
2015.11.02 set_module_property 5-153

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_project_property

Description

Sets the value of a project property, such as the device family.

Usage

set_project_property <property> <value>

Returns

No return value.

Arguments

property
The name of the property. Refer to Project Properties.

value
The new property value.

Example

set_project_property DEVICE_FAMILY "Cyclone IV GX"

Related Information

• get_project_properties on page 5-138
• set_project_property on page 5-154
• Project Properties on page 5-177
• get_project_properties on page 5-138
• get_project_property on page 5-139
• Project Properties on page 5-177

5-154 set_project_property
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_use_testbench_naming_pattern

Description

Use this command to create testbench systems so that the generated file names for the test system match
the system's original generated file names. Without setting this, the generated file names for the test
system receive the top-level testbench system name.

Usage

set_use_testbench_naming_pattern <value>

Returns

No return value.

Arguments

value
True or false.

Example

set_use_testbench_naming_pattern true

Notes

Use this command only to create testbench systems.

QPS5V1
2015.11.02 set_use_testbench_naming_pattern 5-155

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_validation_property

Description

Sets a property that affects how and when validation is run. To disable system validation after each
scripting command, set AUTOMATIC_VALIDATION to False.

Usage

set_validation_property <property> <value>

Returns

No return value.

Arguments

property
The name of the property. Refer to Validation Properties.

value
The new property value.

Example

set_validation_property AUTOMATIC_VALIDATION false

Related Information

• validate_system on page 5-161
• Validation Properties on page 5-181

5-156 set_validation_property
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

unlock_avalon_base_address

Description

Allows the memory-mapped base address to change for connections to the specified interface on an
instance when Qsys runs the auto_assign_base_addresses or auto_assign_system_base_addresses
commands.

Usage

unlock_avalon_base_address <instance.interface>

Returns

No return value.

Arguments

instance.interface
The qualified name of the interface of an instance, in <instance>.<interface> format.

Example

unlock_avalon_base_address sdram.s1

Related Information

• auto_assign_base_addresses on page 5-87
• auto_assign_system_base_addresses on page 5-88
• lock_avalon_base_address on page 5-141

QPS5V1
2015.11.02 unlock_avalon_base_address 5-157

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

validate_connection

Description

Validates the specified connection and returns validation messages.

Usage

validate_connection <connection>

Returns

A list of messages produced during validation.

Arguments

connection
The name of the connection to validate.

Example

validate_connection cpu.data_master/sdram.s1

Related Information

• validate_instance on page 5-159
• validate_instance_interface on page 5-160
• validate_system on page 5-161

5-158 validate_connection
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

validate_instance

Description

Validates the specified child instance and returns validation messages.

Usage

validate_instance <instance>

Returns

A list of messages produced during validation.

Arguments

instance
The name of the child instance to validate.

Example

validate_instance cpu

Related Information

• validate_connection on page 5-158
• validate_instance_interface on page 5-160
• validate_system on page 5-161

QPS5V1
2015.11.02 validate_instance 5-159

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

validate_instance_interface

Description

Validates an interface on a child instance and returns validation messages.

Usage

validate_instance_interface <instance> <interface>

Returns

A list of messages produced during validation.

Arguments

instance
The name of a child instance.

interface
The name of the interface on the child instance to validate.

Example

validate_instance_interface cpu data_master

Related Information

• validate_connection on page 5-158
• validate_instance on page 5-159
• validate_system on page 5-161

5-160 validate_instance_interface
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

validate_system

Description

Validates the system and returns validation messages.

Usage

validate_system

Returns

A list of validation messages produced during validation.

Arguments

No arguments.

Example

validate_system

Related Information

• validate_connection on page 5-158
• validate_instance on page 5-159
• validate_instance_interface on page 5-160

QPS5V1
2015.11.02 validate_system 5-161

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys Scripting Property Reference
Interface properties work differently for _hw.tcl scripting than with qsys scripting. In _hw.tcl, interfaces
do not distinguish between properties and parameters. In qsys scripting, properties and parameters are
unique.

Connection Properties on page 5-163

Design Environment Type Properties on page 5-164

Direction Properties on page 5-165

Element Properties on page 5-166

Instance Properties on page 5-167

Interface Properties on page 5-168

Message Levels Properties on page 5-169

Module Properties on page 5-170

Parameter Properties on page 5-171

Parameter Status Properties on page 5-174

Parameter Type Properties on page 5-175

Port Properties on page 5-176

Project Properties on page 5-177

System Info Type Properties on page 5-178

Units Properties on page 5-180

Validation Properties on page 5-181

5-162 Qsys Scripting Property Reference
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Connection Properties

Type Name Description

string END The end interface of the connection.

string NAME The name of the connection.

string START The start interface of the connection.

String TYPE The type of the connection.

QPS5V1
2015.11.02 Connection Properties 5-163

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Environment Type Properties

Description

IP cores use the design environment to identify what sort of interfaces are most appropriate to connect in
the parent system.

Name Description

NATIVE The design environment supports native IP interfaces.

QSYS The design environment supports standard Qsys interfaces.

5-164 Design Environment Type Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Direction Properties

Name Description

BIDIR The direction for a bidirectional signal.

INOUT The direction for an input signal.

OUTPUT The direction for an output signal.

QPS5V1
2015.11.02 Direction Properties 5-165

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Element Properties

Description

Element properties are, with the exception of ENABLED and NAME, read-only properties of the types of
instances, interfaces, and connections. These read-only properties represent metadata that does not vary
between copies of the same type. ENABLED and NAME properties are specific to particular instances,
interfaces, or connections.

Type Name Description

String AUTHOR The author of the component or interface.

Boolean AUTO_EXPORT Indicates whether unconnected interfaces on the instance are automatically
exported.

String CLASS_NAME The type of the instance, interface or connection, for example, altera_nios2
or avalon_slave.

String DESCRIPTION The description of the instance, interface or connection type.

String DISPLAY_NAME The display name for referencing the type of instance, interface or connection.

Boolean EDITABLE Indicates whether you can edit the component in the Qsys Component Editor.

Boolean ENABLED Indicates whether the instance is turned on.

String GROUP The IP Catalog category.

Boolean INTERNAL Hides internal IP components or sub-components from the IP Catalog..

String NAME The name of the instance, interface or connection.

String VERSION The version number of the instance, interface or connection, for example,
14.0.

5-166 Element Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instance Properties

Type Name Description

String AUTO_EXPORT Indicates whether unconnected interfaces on the instance are automatically
exported.

Boolean ENABLED If true, this instance is included in the generated system. if false, it is not
included.

String NAME The name of the system, which is used as the name of the top-level module in
the generated HDL.

QPS5V1
2015.11.02 Instance Properties 5-167

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Properties

Type Name Description

String EXPORT_OF Indicates which interface of a child instance to export through the top-level
interface. Before using this command, you must create the top-level interface using
the add_interface command. You must use the format:
<instanceName.interfaceName>. For example:

set_interface_property CSC_input EXPORT_OF my_colorSpace-
Converter.input_port

5-168 Interface Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Message Levels Properties

Name Description

COMPONENT_INFO Reports an informational message only during component editing.

DEBUG Provides messages when debug mode is turned on.

ERROR Provides an error message.

INFO Provides an informational message.

PROGRESS Reports progress during generation.

TODOERROR Provides an error message that indicates the system is incomplete.

WARNING Provides a warning message.

QPS5V1
2015.11.02 Message Levels Properties 5-169

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Module Properties

Type Name Description

String GENERATION_ID The generation ID for the system.

String NAME The name of the instance.

5-170 Module Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not affect
the external interface of the module. An example of a parameter that
does not affect the external interface is isNonVolatileStorage. An
example of a parameter that does affect the external interface is
width. When the value of a parameter changes and
AFFECTS_ELABORATION is false, the elaboration phase does not repeat
and improves performance. When AFFECTS_ELABORATION is set to
true, the default value, Qsys reanalyzes the HDL file to determine the
port widths and configuration each time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you provide a
top-level HDL module. The default value is true if you provide a
fileset callback. Set AFFECTS_GENERATION to false if the value of a
parameter does not change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property determines whether a
parameter's value sets derived parameters, and whether the value
affects validation messages. When set to false, this may improve
response time in the parameter editor when the value changes.

String[] ALLOWED_RANGES Indicates the range or ranges of the parameter. For integers, Each
range is a single value, or a range of values defined by a start and end
value, and delimited by a colon, for example, 11:15. This property
also specifies the legal values and description strings for integers, for
example, {0:None 1:Monophonic 2:Stereo 4:Quadrophonic},
where 0, 1, 2, and 4 are the legal values. You can assign description
strings in the parameter editor for string variables. For example,

ALLOWED_RANGES {"dev1:Cyclone IV GX""dev2:Stratix V
 GT"}

String DEFAULT_VALUE The default value.

Boolean DERIVED When True, indicates that the parameter value is set by the
component and cannot be set by the user. Derived parameters are not
saved as part of an instance's parameter values. The default value is
False.

String DESCRIPTION A short user-visible description of the parameter, suitable for a
tooltip description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property.

QPS5V1
2015.11.02 Parameter Properties 5-171

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

• boolean--For integer parameters whose value are 0 or 1. The
parameter displays as an option that you can turn on or off.

• radio--Displays a parameter with a list of values as radio buttons.
• hexadecimal--For integer parameters, displays and interprets

the value as a hexadecimal number, for example: 0x00000010
instead of 16.

• fixed_size--For string_list and integer_list parameters,
the fixed_size DISPLAY_HINT eliminates the Add and Remove
buttons from tables.

String DISPLAY_NAME The GUI label that appears to the left of this parameter.

String DISPLAY_UNITS The GUI label that appears to the right of the parameter.

Boolean ENABLED When False, the parameter is turned off. It displays in the parameter
editor but is grayed out, indicating that you cannot edit this
parameter.

String GROUP Controls the layout of parameters in the GUI.

Boolean HDL_PARAMETER When True, Qsys passes the parameter to the HDL component
description. The default value is False.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to DESCRIPTION,
but allows a more detailed explanation.

String NEW_INSTANCE_VALUE Changes the default value of a parameter without affecting older
components that do not explicitly set a parameter value, and use the
DEFAULT_VALUE property. Oder instances continue to use
DEFAULT_VALUE for the parameter and new instances use the value
assigned by NEW_INSTANCE_VALUE.

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to a
parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information for example,

SYSTEM_INFO <info-type>

String SYSTEM_INFO_ARG Defines an argument to pass to SYSTEM_INFO. For example, the name
of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies the types of system information that you can query. Refer to
System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the parameter
editor.

5-172 Parameter Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

String WIDTH Indicates the width of the logic vector for the STD_LOGIC_VECTOR
parameter.

Related Information

• System Info Type Properties on page 5-178
• Parameter Type Properties on page 5-175
• Units Properties on page 5-180

QPS5V1
2015.11.02 Parameter Properties 5-173

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates that this parameter is an active parameter.

Boolean DEPRECATED Indicates that this parameter exists only for backwards compatibility, and may
not have any effect.

Boolean EXPERIMENTAL Indicates that this parameter is experimental and not exposed in the design
flow.

5-174 Parameter Status Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Type Properties

Name Description

BOOLEAN A boolean parameter set to true or false.

FLOAT A signed 32-bit floating point parameter. (Not supported for HDL parameters.)

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. (Not supported for HDL
parameters.)

LONG A signed 64-bit integer parameter. (Not supported for HDL parameters.)

NATURAL A 32-bit number that contains values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter set to 0 or 1.

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of
the logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. (Not supported for HDL parameters.)

QPS5V1
2015.11.02 Parameter Type Properties 5-175

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Properties

Type Name Description

(various) DIRECTION The direction of the signal. Refer to Direction Properties.

String ROLE The type of the signal. Each interface type defines a set of interface types for its
ports.

Integer WIDTH The width of the signal in bits.

5-176 Port Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Project Properties

Type Name Description

String DEVICE The device part number in the Quartus Prime project that contains the Qsys
system.

String DEVICE_FAMILY The device family name in the Quartus Prime project that contains the Qsys
system.

QPS5V1
2015.11.02 Project Properties 5-177

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string that describes the address
map for the interface specified in the SYSTEM_INFO
parameter property.

Integer ADDRESS_WIDTH The number of address bits that Qsys requires to address
memory-mapped slaves connected to the specified
memory-mapped master in this instance.

String AVALON_SPEC The version of the Qsys interconnect. Refer to Avalon
Interface Specifications.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the SYSTEM_INFO parameter
property. If this instance has interfaces on multiple clock
domains, you can use this property to determine which
interfaces are on each clock domain. The absolute value
of the integer is arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the SYSTEM_INFO parameter property. If
zero, the clock rate is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. You use this property to determine the reset
sink for global reset when you use SOPC Builder
interconnect that conforms to Avalon Interface
Specifications.

String CUSTOM_INSTRUCTION_SLAVES Provides slave information, including the name, base
address, address span, and clock cycle type.

String DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the selected device.

String DEVICE_FAMILY The family name of the selected device.

String DEVICE_FEATURES A list of key/value pairs delimited by spaces that indicate
whether a device feature is available in the selected
device family. The format of the list is suitable for
passing to the array command. The keys are device
features. The values are 1 if the feature is present, and 0 if
the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the selected device.

Integer GENERATION_ID A integer that stores a hash of the generation time that
Qsys uses as a unique ID for a generation run.

5-178 System Info Type Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest slave connected to the
specified memory-mapped master.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer representing the reset domain for the
interface specified in the SYSTEM_INFO parameter
property If this instance has interfaces on multiple reset
domains, you can use this property to determine which
interfaces are on each reset domain. The absolute value
of the integer is arbitrary.

String TRISTATECONDUIT_INFO An XML description of the tri-state conduit masters
connected to a tri-state conduit slave. The slave is
specified as the SYSTEM_INFO parameter property. The
value contains information about the slave, connected
master instance and interface names, and signal names,
directions, and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit slaves.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Information

• Design Environment Type Properties on page 5-164
• Avalon Interface Specifications
• Qsys Interconnect on page 7-1

QPS5V1
2015.11.02 System Info Type Properties 5-179

Creating a System With Qsys Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Units Properties

Name Description

ADDRESS A memory-mapped address.

BITS Memory size in bits.

BITSPERSECOND Rate in bits per second.

BYTES Memory size in bytes.

CYCLES A latency or count in clock cycles.

GIGABITSPERSECOND Rate in gigabits per second.

GIGABYTES Memory size in gigabytes.

GIGAHERTZ Frequency in GHz.

HERTZ Frequency in Hz.

KILOBITSPERSECOND Rate in kilobits per second.

KILOBYTES Memory size in kilobytes.

KILOHERTZ Frequency in kHz.

MEGABITSPERSECOND Rate, in megabits per second.

MEGABYTES Memory size in megabytes.

MEGAHERTZ Frequency in MHz.

MICROSECONDS Time in microseconds.

MILLISECONDS Time in milliseconds.

NANOSECONDS Time in nanoseconds.

NONE Unspecified units.

PERCENT A percentage.

PICOSECONDS Time in picoseconds.

SECONDS Time in seconds.

5-180 Units Properties
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Validation Properties

Type Name Description

Boolean AUTOMATIC_VALIDATION When true, Qsys runs system validation and elaboration after each
scripting command. When false, Qsys runs system validation with
validation scripting commands. Some queries affected by system
elaboration may be incorrect if automatic validation is turned off.
You can disable validation to make a system script run faster.

QPS5V1
2015.11.02 Validation Properties 5-181

Creating a System With Qsys Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History
The table below indicates edits made to the Creating a System With Qsys content since its creation.

Table 5-19: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Added: Troubleshooting IP or Qsys System Upgrade.
• Added: Generating Version-Agnostic IP and Qsys Simulation

Scripts.
• Changed instances of Quartus II to Quartus Prime.

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • New figure: Avalon-MM Write Master Timing Waveforms in
the Parameters Tab.

• Added Enable ECC protection option, Specify Qsys
Interconnect Requirements.

• Added External Memory Interface Debug Toolkit note,
Generate a Qsys System.

• Modelsim-Altera now supports native mixed-language
(VHDL/Verilog/SystemVerilog) simulation, Generating
Files for Synthesis and Simulation.

December 2014 14.1.0 • Create and Manage Hierarchical Qsys Systems.
• Schematic tab.
• View and Filter Clock and Reset Domains.
• File > Recent Projects menu item.
• Updated example: Hierarchical System Using Instance

Parameters

August 2014 14.0a10.0 • Added distinction between legacy and standard device
generation.

• Updated: Upgrading Outdated IP Components.
• Updated: Generating a Qsys System.
• Updated: Integrating a Qsys System with the Quartus Prime

Software.
• Added screen shot: Displaying Your Qsys System.

June 2014 14.0.0 • Added tab descriptions: Details, Connections.
• Added Managing IP Settings in the Quartus Prime Software.
• Added Upgrading Outdated IP Components.
• Added Support for Avalon-MM Non-Power of Two Data

Widths.

5-182 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Creating a System With Qsys

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November 2013 13.1.0 • Added Integrating with the .qsys File.
• Added Using the Hierarchy Tab.
• Added Managing Interconnect Requirements.
• Added Viewing Qsys Interconnect.

May 2013 13.0.0 • Added AMBA APB support.
• Added qsys-generate utility.
• Added VHDL BFM ID support.
• Added Creating Secure Systems (TrustZones) .
• Added CMSIS Support for Qsys Systems With An HPS

Component.
• Added VHDL language support options.

November 2012 12.1.0 • Added AMBA AXI4 support.

June 2012 12.0.0 • Added AMBA AX3I support.
• Added Preset Editor updates.
• Added command-line utilities, and scripts.

November 2011 11.1.0 • Added Synopsys VCS and VCS MX Simulation Shell Script.
• Added Cadence Incisive Enterprise (NCSIM) Simulation

Shell Script.
• Added Using Instance Parameters and Example Hierarchical

System Using Parameters.

May 2011 11.0.0 • Added simulation support in Verilog HDL and VHDL.
• Added testbench generation support.
• Updated simulation and file generation sections.

December 2010 10.1.0 Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 5-183

Creating a System With Qsys Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20a%20System%20With%20Qsys%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating Qsys Components 6
2015.11.02

QPS5V1 Subscribe Send Feedback

In order to describe and package IP components for use in a Qsys system, you must create a Hardware
Component Definition File (_hw.tcl) which will describes your component, its interfaces and HDL files.
Qsys provides the Component Editor to help you create a simple _hw.tcl file.

The Demo AXI Memory example on the Qsys Design Examples page of the Altera web site provides the
full code examples that appear in the following topics.

Qsys supports Avalon, AMBA AXI3 (version 1.0), AMBA AXI4 (version 2.0), AMBA AXI4-Lite (version
2.0), AMBA AXI4-Stream (version 1.0), and AMBA APB3 (version 1.0) interface specifications.

Related Information

• Avalon Interface Specifications
• AMBA Protocol Specifications
• Demo AXI Memory Example

Qsys Components
A Qsys component includes the following elements:

• Information about the component type, such as name, version, and author.
• HDL description of the component’s hardware, including SystemVerilog, Verilog HDL, or VHDL files
• Constraint files (Synopsys Design Constraints File (.sdc) and/or Quartus Prime IP File (.qip)) that

define the component for synthesis and simulation.
• A component’s interfaces, including I/O signals.
• The parameters that configure the operation of the component.

Interface Support in Qsys
IP components (IP Cores) can have any number of interfaces in any combination. Each interface
represents a set of signals that you can connect within a Qsys system, or export outside of a Qsys system.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Creating%20Qsys%20Components&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
http://www.altera.com/support/examples/design-entry-tools/qsys/exm-demo-axi3-memory.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Qsys IP components can include the following interface types:

Table 6-1: IP Component Interface Types

Interface Type Description

Memory-Mapped Connects memory-referencing master devices with slave memory devices. Master
devices may be processors and DMAs, while slave memory devices may be RAMs,
ROMs, and control registers. Data transfers between master and slave may be uni-
directional (read only or write only), or bi-directional (read and write).

Streaming Connects Avalon Streaming (Avalon-ST) sources and sinks that stream unidirec‐
tional data, as well as high-bandwidth, low-latency IP components. Streaming
creates datapaths for unidirectional traffic, including multichannel streams, packets,
and DSP data. The Avalon-ST interconnect is flexible and can implement on-chip
interfaces for industry standard telecommunications and data communications
cores, such as Ethernet, Interlaken, and video. You can define bus widths, packets,
and error conditions.

Interrupts Connects interrupt senders to interrupt receivers. Qsys supports individual,
single-bit interrupt requests (IRQs). In the event that multiple senders assert their
IRQs simultaneously, the receiver logic (typically under software control)
determines which IRQ has highest priority, then responds appropriately

Clocks Connects clock output interfaces with clock input interfaces. Clock outputs can fan-
out without the use of a bridge. A bridge is required only when a clock from an
external (exported) source connects internally to more than one source.

Resets Connects reset sources with reset input interfaces. If your system requires a
particular positive-edge or negative-edge synchronized reset, Qsys inserts a reset
controller to create the appropriate reset signal. If you design a system with multiple
reset inputs, the reset controller ORs all reset inputs and generates a single reset
output.

Conduits Connects point-to-point conduit interfaces, or represent signals that are exported
from the Qsys system. Qsys uses conduits for component I/O signals that are not
part of any supported standard interface. You can connect two conduits directly
within a Qsys system as a point-to-point connection, or conduit interfaces can be
exported and brought to the top-level of the system as top-level system I/O. You can
use conduits to connect to external devices, for example external DDR SDRAM
memory, and to FPGA logic defined outside of the Qsys system.

Component Structure
Altera provides components automatically installed with the Quartus Prime software. You can obtain a
list of Qsys-compliant components provided by third-party IP developers on Altera's Intellectual
Property & Reference Designs page by typing: qsys certified in the Search box, and then selecting IP
Core & Reference Designs. Components are also provided with Altera development kits, which are listed
on the All Development Kits page.

6-2 Component Structure
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Every component is defined with a < component_name >_hw.tcl file, a text file written in the Tcl scripting
language that describes the component to Qsys. When you design your own custom component, you can
create the _hw.tcl file manually, or by using the Qsys Component Editor.

The Component Editor simplifies the process of creating _hw.tcl files by creating a file that you can edit
outside of the Component Editor to add advanced procedures. When you edit a previously saved _hw.tcl
file, Qsys automatically backs up the earlier version as _hw.tcl~.

You can move component files into a new directory, such as a network location, so that other users can
use the component in their systems. The _hw.tcl file contains relative paths to the other files, so if you
move an _hw.tcl file, you should also move all the HDL and other files associated with it.

There are three component types:

• Static— Static components always generate the same output, regardless of their parameterization.
Components that instantiate static components must have only static children.

• Generated—A generated component's fileset callback allows an instance of the component to create
unique HDL design files based on the instance's parameter values.

• Composed—Composed components are subsystems constructed from instances of other components.
You can use a composition callback to manage the subsystem in a composed component.

Related Information

• Create a Composed Component or Subsystem on page 6-28
• Add Component Instances to a Static or Generated Component on page 6-31
• Intellectual Property & Reference Designs

Component File Organization
A typical component uses the following directory structure where the names of the directories are not
significant:

<component_directory>/

• <hdl>/—Contains the component HDL design files, for example .v, .sv, or .vhd files that contain the
top-level module, along with any required constraint files.

• <component_name> _hw.tcl—The component description file.
• <component_name> _sw.tcl—The software driver configuration file. This file specifies the paths for

the .c and .h files associated with the component, when required.
• <software>/—Contains software drivers or libraries related to the component.

Note: Refer to the Nios II Software Developer’s Handbook for information about writing a device driver or
software package suitable for use with the Nios II processor.

Related Information

• Hardware Abstraction LayerTool Reference (Nios II Software Developer’s Handbook)
• Nios II Software Build Tool Reference (Nios II Software Developer’s Handbook)

Component Versions
Qsys systems support multiple versions of the same component within the same system; you can create
and maintain multiple versions of the same component.

QPS5V1
2015.11.02 Component File Organization 6-3

Creating Qsys Components Altera Corporation

Send Feedback

http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you have multiple _hw.tcl files for components with the same NAME module properties and different
VERSION module properties, both versions of the component are available.

If multiple versions of the component are available in the IP Catalog, you can add a specific version of a
component by right-clicking the component, and then selecting Add version <version_number>.

Upgrade IP Components to the Latest Version
When you open a Qsys design, if Qsys detects IP components that require regeneration, the Upgrade IP
Cores dialog box appears and allows you to upgrade outdated components.

Components that you must upgrade in order to successfully compile your design appear in red. Status
icons indicate whether a component is currently being regenerated, the component is encrypted, or that
there is not enough information to determine the status of component. To upgrade a component, in the
Upgrade IP Cores dialog box, select the component that you want to upgrade, and then click Upgrade.
The Quartus Prime software maintains a list of all IP components associated with your design on the
Components tab in the Project Navigator.

Related Information
Upgrade IP Components Dialog Box

Design Phases of an IP Component
When you define a component with the Qsys Component Editor, or a custom _hw.tcl file, you specify the
information that Qsys requires to instantiate the component in a Qsys system and to generate the
appropriate output files for synthesis and simulation.

The following phases describe the process when working with components in Qsys:

• Discovery—During the discovery phase, Qsys reads the _hw.tcl file to identify information that
appears in the IP Catalog, such as the component's name, version, and documentation URLs. Each
time you open Qsys, the tool searches for the following file types using the default search locations and
entries in the IP Search Path:

• _hw.tcl files—Each _hw.tcl file defines a single component.
• IP Index (.ipx) files—Each .ipx file indexes a collection of available components, or a reference to

other directories to search.
• Static Component Definition—During the static component definition phase, Qsys reads the _hw.tcl

file to identify static parameter declarations, interface properties, interface signals, and HDL files that
define the component. At this stage of the life cycle, the component interfaces may be only partially
defined.

• Parameterization—During the parameterization phase, after an instance of the component is added
to a Qsys system, the user of the component specifies parameters with the component’s parameter
editor.

• Validation—During the validation phase, Qsys validates the values of each instance's parameters
against the allowed ranges specified for each parameter. You can use callback procedures that run
during the validation phase to provide validation messages. For example, if there are dependencies
between parameters where only certain combinations of values are supported, you can report errors
for the unsupported values.

6-4 Upgrade IP Components to the Latest Version
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

http://quartushelp.altera.com/current/index.htm#global/pjn/pjn_com_upgrade_ip.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Elaboration—During the elaboration phase, Qsys queries the component for its interface information.
Elaboration is triggered when an instance of a component is added to a system, when its parameters
are changed, or when a system property changes. You can use callback procedures that run during the
elaboration phase to dynamically control interfaces, signals, and HDL files based on the values of
parameters. For example, interfaces defined with static declarations can be enabled or disabled during
elaboration. When elaboration is complete, the component's interfaces and design logic must be
completely defined.

• Composition—During the composition phase, a component can manipulate the instances in the
component's subsystem. The _hw.tcl file uses a callback procedure to provide parameterization and
connectivity of sub-components.

• Generation—During the generation phase, Qsys generates synthesis or simulation files for each
component in the system into the appropriate output directories, as well as any additional files that
support associated tools.

Create IP Components in the Qsys Component Editor
The Qsys Component Editor allows you to create and package an IP component. When you use the
Component Editor to define a component, Qsys writes the information to an _hw.tcl file.

The Qsys Component Editor allows you to perform the following tasks:

• Specify component’s identifying information, such as name, version, author, etc.
• Specify the SystemVerilog, Verilog HDL, VHDL files, and constraint files that define the component

for synthesis and simulation.
• Create an HDL template to define a component interfaces, signals, and parameters.
• Set parameters on interfaces and signals that can alter the component's structure or functionality.

If you add the top-level HDL file that defines the component on Files tab in the Qsys Component Editor,
you must define the component's parameters and signals in the HDL file. You cannot add or remove them
in the Component Editor.

If you do not have a top-level HDL component file, you can use the Qsys Component Editor to add
interfaces, signals, and parameters. In the Component Editor, the order in which the tabs appear reflects
the recommended design flow for component development. You can use the Prev and Next buttons to
guide you through the tabs.

In a Qsys system, the interfaces of a component are connected in the system, or exported as top-level
signals from the system.

If the component is not based on an existing HDL file, enter the parameters, signals, and interfaces first,
and then return to the Files tab to create the top-level HDL file template. When you click Finish, Qsys
creates the component _hw.tcl file with the details that you enter in the Component Editor.

When you save the component, it appears in the IP Catalog.

If you require custom features that the Qsys Component Editor does not support, for example, an
elaboration callback, use the Component Editor to create the _hw.tcl file, and then manually edit the file
to complete the component definition.

Note: If you add custom coding to a component, do not open the component file in the Qsys Component
Editor. The Qsys Component Editor overwrites your custom edits.

QPS5V1
2015.11.02 Create IP Components in the Qsys Component Editor 6-5

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 6-1: Qsys Creates an _hw.tcl File from Entries in the Component Editor

connection point clock

add_interface clock clock end
set_interface_property clock clockRate 0
set_interface_property clock ENABLED true

add_interface_port clock clk clk Input 1

connection point reset

add_interface reset reset end
set_interface_property reset associatedClock clock
set_interface_property reset synchronousEdges DEASSERT
set_interface_property reset ENABLED true

add_interface_port reset reset_n reset_n Input 1

connection point streaming

add_interface streaming avalon_streaming start
set_interface_property streaming associatedClock clock
set_interface_property streaming associatedReset reset
set_interface_property streaming dataBitsPerSymbol 8
set_interface_property streaming errorDescriptor ""
set_interface_property streaming firstSymbolInHighOrderBits true
set_interface_property streaming maxChannel 0
set_interface_property streaming readyLatency 0
set_interface_property streaming ENABLED true

add_interface_port streaming aso_data data Output 8
add_interface_port streaming aso_valid valid Output 1
add_interface_port streaming aso_ready ready Input 1

connection point slave

add_interface slave axi end
set_interface_property slave associatedClock clock
set_interface_property slave associatedReset reset
set_interface_property slave readAcceptanceCapability 1
set_interface_property slave writeAcceptanceCapability 1
set_interface_property slave combinedAcceptanceCapability 1
set_interface_property slave readDataReorderingDepth 1
set_interface_property slave ENABLED true

add_interface_port slave axs_awid awid Input AXI_ID_W
...
add_interface_port slave axs_rresp rresp Output 2

Related Information
Component Interface Tcl Reference on page 9-1

Save an IP Component and Create the _hw.tcl File
You save a component by clicking Finish in the Qsys Component Editor. The Component Editor saves
the component as <component_name> _hw.tcl file.

6-6 Save an IP Component and Create the _hw.tcl File
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Altera recommends that you move _hw.tcl files and their associated files to an ip/ directory within your
Quartus Prime project directory. You can use IP components with other applications, such as the C
compiler and a board support package (BSP) generator.

Refer to Creating a System with Qsys for information on how to search for and add components to the IP
Catalog for use in your designs.

Related Information

• Publishing Component Information to Embedded Software (Nios II Software Developer’s
Handbook)

• Creating a System with Qsys on page 5-1

Edit an IP Component with the Qsys Component Editor
In Qsys, you make changes to a component by right-clicking the component in the System Contents tab,
and then clicking Edit. After making changes, click Finish to save the changes to the _hw.tcl file.

You can open an _hw.tcl file in a text editor to view the hardware Tcl for the component. If you edit the
_hw.tcl file to customize the component with advanced features, you cannot use the Component Editor to
make further changes without over-writing your customized file.

You cannot use the Component Editor to edit components installed with the Quartus Prime software,
such as Altera-provided components. If you edit the HDL for a component and change the interface to
the top-level module, you must edit the component to reflect the changes you make to the HDL.

Specify IP Component Type Information
The Component Type tab in the Qsys Component Editor allows you to specify the following information
about the component:

• Name—Specifies the name used in the _hw.tcl filename, as well as in the top-level module name when
you create a synthesis wrapper file for a non HDL-based component.

• Display name—Identifies the component in the parameter editor, which you use to configure and
instance of the component, and also appears in the IP Catalog under Project and on the System
Contents tab.

• Version—Specifies the version number of the component.
• Group—Represents the category of the component in the list of available components in the IP

Catalog. You can select an existing group from the list, or define a new group by typing a name in the
Group box. Separating entries in the Group box with a slash defines a subcategory. For example, if you
type Memories and Memory Controllers/On-Chip, the component appears in the IP Catalog under
the On-Chip group, which is a subcategory of the Memories and Memory Controllers group. If you
save the component in the project directory, the component appears in the IP Catalog in the group you
specified under Project. Alternatively, if you save the component in the Quartus Prime installation
directory, the component appears in the specified group under IP Catalog.

• Description—Allows you to describe the component. This description appears when the user views
the component details.

QPS5V1
2015.11.02 Edit an IP Component with the Qsys Component Editor 6-7

Creating Qsys Components Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52018.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Created By—Allows you to specify the author of the component.
• Icon—Allows you to enter the relative path to an icon file (.gif, .jpg, or .png format) that represents

the component and appears as the header in the parameter editor for the component. The default
image is the Altera MegaCore function icon.

• Documentation—Allows you to add links to documentation for the component, and appears when
you right-click the component in the IP Catalog, and then select Details.

• To specify an Internet file, begin your path with http://, for example: http://mydomain.com/
datasheets/my_memory_controller.html.

• To specify a file in the file system, begin your path with file:/// for Linux, and file://// for Windows;
for example (Windows): file:////company_server/datasheets my_memory_controller.pdf.

Figure 6-1: Component Type Tab in the Component Editor

The Display name, Group, Description, Created By, Icon, and Documentation entries are optional.

When you use the Component Editor to create a component, it writes this basic component information
in the _hw.tcl file. The package require command specifies the Quartus Prime software version that
Qsys uses to create the _hw.tcl file, and ensures compatibility with this version of the Qsys API in future
ACDS releases.

6-8 Specify IP Component Type Information
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 6-2: _hw.tcl Created from Entries in the Component Type Tab

The component defines its basic information with various module properties using the
set_module_property command. For example, set_module_property NAME specifies the name
of the component, while set_module_property VERSION allows you to specify the version of the
component. When you apply a version to the _hw.tcl file, it allows the file to behave exactly the
same way in future releases of the Quartus Prime software.

request TCL package from ACDS 14.0

package require -exact qsys 14.0

demo_axi_memory

set_module_property DESCRIPTION \
"Demo AXI-3 memory with optional Avalon-ST port"

set_module_property NAME demo_axi_memory
set_module_property VERSION 1.0
set_module_property GROUP "My Components"
set_module_property AUTHOR Altera
set_module_property DISPLAY_NAME "Demo AXI Memory"

Related Information
Component Interface Tcl Reference on page 9-1

Create an HDL File in the Qsys Component Editor
If you do not have an HDL file for your component, you can use the Qsys Component Editor to define the
component signals, interfaces, and parameters of your component, and then create a simple top-level
HDL file.

You can then edit the HDL file to add the logic that describes the component's behavior.

1. In the Qsys Component Editor, specify the information about the component in the Signals &
Interfaces, and Interfaces, and Parameters tabs.

2. Click the Files tab.
3. Click Create Synthesis File from Signals.

The Component Editor creates an HDL file from the specified signals, interfaces, and parameters, and
the .v file appears in the Synthesis File table.

Related Information
Specify Synthesis and Simulation Files in the Qsys Component Editor on page 6-11

Create an HDL File Using a Template in the Qsys Component Editor
You can use a template to create interfaces and signals for your Qsys component

QPS5V1
2015.11.02 Create an HDL File in the Qsys Component Editor 6-9

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In Qsys, click new_component in the IP Catalog.
2. On the Component Type tab, define your component information in the Name, Display Name,

Version, Group, Description, Created by, Icon, and Documentation boxes.
3. Click Finish.

Your new component appears in the IP Catalog under the category that you define for "Group".
4. In Qsys, right-click your new component in the IP Catalog, and then click Edit.
5. In the Qsys Component Editor, click any interface from the Templates drop-down menu.

The Component Editor fills the Signals and Interfaces tabs with the component interface template
details.

6. On the Files tab, click Create Synthesis File from Signals.
7. Do the following in the Create HDL Template dialog box as shown below:

a. Verify that the correct files appears in File path, or browse to the location where you want to save
your file.

b. Select the HDL language.
c. Click Save to save your new interface, or Cancel to discard the new interface definition.

6-10 Create an HDL File Using a Template in the Qsys Component Editor
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create HDL Template Dialog Box

8. Verify the <component_name>.v file appears in the Synthesis Files table on the Files tab.

Related Information
Specify Synthesis and Simulation Files in the Qsys Component Editor on page 6-11

Specify Synthesis and Simulation Files in the Qsys Component Editor
The Files tab in the Qsys Component Editor allows you to specify synthesis and simulation files for your
custom component.

QPS5V1
2015.11.02 Specify Synthesis and Simulation Files in the Qsys Component Editor 6-11

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you already an HDL files that describe the behavior and structure of your component, you can specify
those files on the Files tab.

If you do not yet have an HDL file, you can specify the signals, interfaces, and parameters of the
component in the Component Editor, and then use the Create Synthesis File from Signals option on the
Files tab to create the top-level HDL file. The Component Editor generates the _hw.tcl commands to
specify the files.

Note: After you analyze the component's top-level HDL file (on the Files tab), you cannot add or remove
signals or change the signal names on the Signals & Interfaces tab. If you need to edit signals, edit
your HDL source, and then click Create Synthesis File from Signals on the Files tab to integrate
your changes.

A component uses filesets to specify the different sets of files that you can generate for an instance of the
component. The supported fileset types are: QUARTUS_SYNTH, for synthesis and compilation in the Quartus
Prime software, SIM_VERILOG, for Verilog HDL simulation, and SIM_VHDL, for VHDL simulation.

In an _hw.tcl file, you can add a fileset with the add_fileset command. You can then list specific files
with the add_fileset_file command. The add_fileset_property command allows you to add
properties such as TOP_LEVEL.

You can populate a fileset with a a fixed list of files, add different files based on a parameter value, or even
generate an HDL file with a custom HDL generator function outside of the _hw.tcl file.

Related Information

• Create an HDL File in the Qsys Component Editor on page 6-9
• Create an HDL File Using a Template in the Qsys Component Editor on page 6-9

Specify HDL Files for Synthesis in the Qsys Component Editor
In the Qsys Component Editor, you can add HDL files and other support files with options on the Files
tab.

A component must specify an HDL file as the top-level file. The top-level HDL file contains the top-level
module. The Synthesis Files list may also include supporting HDL files, such as timing constraints, or
other files required to successfully synthesize and compile in the Quartus Prime software. The synthesis
files for a component are copied to the generation output directory during Qsys system generation.

6-12 Specify HDL Files for Synthesis in the Qsys Component Editor
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-2: Using HDL Files to Define a Component

In the Synthesis Files section on the Files tab in the Qsys Component Editor, the demo_axi_memory.sv
file should be selected as the top-level file for the component.

Analyze Synthesis Files in the Qsys Component Editor
After you specify the top-level HDL file in the Qsys Component Editor, click Analyze Synthesis Files to
analyze the parameters and signals in the top-level, and then select the top-level module from the Top
Level Module list. If there is a single module or entity in the HDL file, Qsys automatically populates the
Top-level Module list.

Once analysis is complete and the top-level module is selected, you can view the parameters and signals
on the Parameters and Signals & Interfaces tabs. The Component Editor may report errors or warnings
at this stage, because the signals and interfaces are not yet fully defined.

Note: At this stage in the Component Editor flow, you cannot add or remove parameters or signals
created from a specified HDL file without editing the HDL file itself.

The synthesis files are added to a fileset with the name QUARTUS_SYNTH and type QUARTUS_SYNTH in the
_hw.tcl file created by the Component Editor. The top-level module is used to specify the TOP_LEVEL
fileset property. Each synthesis file is individually added to the fileset. If the source files are saved in a
different directory from the working directory where the _hw.tcl is located, you can use standard fixed or
relative path notation to identify the file location for the PATH variable.

Example 6-3: _hw.tcl Created from Entries in the Files tab in the Synthesis Files Section

file sets

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH "" ""
set_fileset_property QUARTUS_SYNTH TOP_LEVEL demo_axi_memory

add_fileset_file demo_axi_memory.sv
SYSTEM_VERILOG PATH demo_axi_memory.sv

QPS5V1
2015.11.02 Analyze Synthesis Files in the Qsys Component Editor 6-13

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

Related Information

• Specify HDL Files for Synthesis in the Qsys Component Editor on page 6-12
• Component Interface Tcl Reference on page 9-1

Name HDL Signals for Automatic Interface and Type Recognition in the Qsys
Component Editor

If you create the component's top-level HDL file before using the Component Editor, the Component
Editor recognizes the interface and signal types based on the signal names in the source HDL file. This
auto-recognition feature eliminates the task of manually assigning each interface and signal type in the
Component Editor.

To enable auto-recognition, you must create signal names using the following naming convention:

<interface type prefix>_<interface name>_<signal type>

Specifying an interface name with <interface name> is optional if you have only one interface of each type
in the component definition. For interfaces with only one signal, such as clock and reset inputs, the
<interface type prefix> is also optional.

Table 6-2: Interface Type Prefixes for Automatic Signal Recognition

When the Component Editor recognizes a valid prefix and signal type for a signal, it automatically assigns an
interface and signal type to the signal based on the naming convention. If no interface name is specified for a
signal, you can choose an interface name on the Signals & Interfaces tab in the Component Editor.

Interface Prefix Interface Type

asi Avalon-ST sink (input)

aso Avalon-ST source (output)

avm Avalon-MM master

avs Avalon-MM slave

axm AXI master

axs AXI slave

apm APB master

aps APB slave

coe Conduit

csi Clock Sink (input)

6-14 Name HDL Signals for Automatic Interface and Type Recognition in the...
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Prefix Interface Type

cso Clock Source (output)

inr Interrupt receiver

ins Interrupt sender

ncm Nios II custom instruction master

ncs Nios II custom instruction slave

rsi Reset sink (input)

rso Reset source (output)

tcm Avalon-TC master

tcs Avalon-TC slave

Refer to the Avalon Interface Specifications or the AMBA Protocol Specification for the signal types
available for each interface type.

Related Information

• Avalon Interface Specifications
• AMBA Protocol Specification

Specify Files for Simulation in the Component Editor
To support Qsys system generation for your custom component, you must specify VHDL or Verilog
simulation files.

You can choose to generate Verilog or VHDL simulation files. In most cases, these files are the same as
the synthesis files. If there are simulation-specific HDL files or simulation models, you can use them in
addition to, or in place of the synthesis files. To use your synthesis files as your simulation files, click Copy
From Synthesis Files on the Files tab in the Qsys Component Editor.

Note: The order that you add files to the fileset determines the order of compilation. For VHDL filesets
with VHDL files, you must add the files bottom-up, adding the top-level file last.

QPS5V1
2015.11.02 Specify Files for Simulation in the Component Editor 6-15

Creating Qsys Components Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html#specsl
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-3: Specifying the Simulation Output Files on the Files Tab

You specify the simulation files in a similar way as the synthesis files with the fileset commands in a
_hw.tcl file. The code example below shows SIM_VERILOG and SIM_VHDL filesets for Verilog and VHDL
simulation output files. In this example, the same Verilog files are used for both Verilog and VHDL
outputs, and there is one additional System Verilog file added. This method works for designers of
Verilog IP to support users who want to generate a VHDL top-level simulation file when they have a
mixed-language simulation tool and license that can read the Verilog output for the component.

Example 6-4: _hw.tcl Created from Entries in the Files tab in the Simulation Files Section

add_fileset SIM_VERILOG SIM_VERILOG "" ""
set_fileset_property SIM_VERILOG TOP_LEVEL demo_axi_memory
add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset SIM_VHDL SIM_VHDL "" ""
set_fileset_property SIM_VHDL TOP_LEVEL demo_axi_memory
set_fileset_property SIM_VHDL ENABLE_RELATIVE_INCLUDE_PATHS false

add_fileset_file demo_axi_memory.sv SYSTEM_VERILOG PATH \
demo_axi_memory.sv

add_fileset_file single_clk_ram.v VERILOG PATH single_clk_ram.v

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

6-16 Specify Files for Simulation in the Component Editor
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Component Interface Tcl Reference on page 9-1

Include an Internal Register Map Description in the .svd for Slave Interfaces
Connected to an HPS Component

Qsys supports the ability for IP component designers to specify register map information on their slave
interfaces. This allows components with slave interfaces that are connected to an HPS component to
include their internal register description in the generated .svd file.

To specify their internal register map, the IP component designer must write and generate their own .svd
file and attach it to the slave interface using the following command:

set_interface_property <slave interface> CMSIS_SVD_FILE <file path>

The CMSIS_SVD_VARIABLES interface property allows for variable substitution inside the .svd file. You can
dynamically modify the character data of the .svd file by using the CMSIS_SVD_VARIABLES property.

Example 6-5: Setting the CMSIS_SVD_VARIBLES Interface Property

For example, if you set the CMSIS_SVD_VARIABLES in the _hw tcl file, then in the .svd file if there
is a variable {width} that describes the element <size>${width}</size>, it is replaced by
<size>23</size> during generation of the .svd file. Note that substitution works only within
character data (the data enclosed by <element>...</element>) and not on element attributes.

set_interface_property <interface name> \
CMSIS_SVD_VARIABLES "{width} {23}"

Related Information

• Component Interface Tcl Reference on page 9-1
• CMSIS - Cortex Microcontroller Software

Add Signals and Interfaces in the Qsys Component Editor
In the Qsys Component Editor, the Signals & Interfaces tab allows you to add signals and interfaces for
your custom IP component.

As you select interfaces and associated signals, you can customize the parameters. Messages appear as you
add interfaces and signals to guide you when customizing the component. In the parameter editor, a block
diagram displays for each interface. Some interfaces display waveforms to show the timing of the
interface. If you update timing parameters, the waveforms update automatically.

1. In Qsys, click New Component in the IP Catalog.
2. In the Qsys Component Editor, click the Signals & Interfaces tab.
3. To add an interface, click <<add interface>> in the left pane.

A drop-down list appears where you select the interface type.
4. Select an interface from the drop-down list.

The selected interface appears in the parameter editor where you can specify its parameters.
5. To add signals for the selected interface click <<add signal>> below the selected interface.

QPS5V1
2015.11.02 Include an Internal Register Map Description in the .svd for Slave... 6-17

Creating Qsys Components Altera Corporation

Send Feedback

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. To move signals between interfaces, select the signal, and then drag it to another interface.
7. To rename a nsignal or interface, select the element, and then press F2.
8. To remove a signal or interface, right-click the element, and then click Remove.

Alternatively, to remove an signal or interface, you can select the element, and then press Delete.
When you remove an interface, Qsys also removes all of its associated signals.

Figure 6-4: Qsys Signals & Interfaces tab

Specify Parameters in the Qsys Component Editor
Components can include parameterized HDL, which allow users of the component flexibility in meeting
their system requirements. For example, a component may have a configurable memory size or data
width, where one HDL implementation can be used in different systems, each with unique parameters
values.

The Parameters tab allows you specify the parameters that are used to configure instances of the
component in a Qsys system. You can specify various properties for each parameter that describe how to
display and use the parameter. You can also specify a range of allowed values that are checked during the
validation phase. The Parameters table displays the HDL parameters that are declared in the top-level
HDL module. If you have not yet created the top-level HDL file, the parameters that you create on the
Parameters tab are included in the top-level synthesis file template created from the Files tab.

When the component includes HDL files, the parameters match those defined in the top-level module,
and you cannot be add or remove them on the Parameters tab. To add or remove the parameters, edit
your HDL source, and then re-analyze the file.

6-18 Specify Parameters in the Qsys Component Editor
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you used the Component Editor to create a top-level template HDL file for synthesis, you can remove
the newly-created file from the Synthesis Files list on the Files tab, make your parameter changes, and
then re-analyze the top-level synthesis file.

You can use the Parameters table to specify the following information about each parameter:

• Name—Specifies the name of the parameter.
• Default Value—Sets the default value used in new instances of the component.
• Editable—Specifies whether or not the user can edit the parameter value.
• Type—Defines the parameter type as string, integer, boolean, std_logic, logic vector, natural, or

positive.
• Group—Allows you to group parameters in parameter editor.
• Tooltip—Allows you to add a description of the parameter that appears when the user of the

component points to the parameter in the parameter editor.

QPS5V1
2015.11.02 Specify Parameters in the Qsys Component Editor 6-19

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-5: Parameters Tab in the Qsys Components Editor

On the Parameters tab, you can click Preview the GUI at any time to see how the declared parameters
appear in the parameter editor. Parameters with their default values appear with checks in the Editable
column, indicating that users of this component are allowed to modify the parameter value. Editable
parameters cannot contain computed expressions. You can group parameters under a common heading
or section in the parameter editor with the Group column, and a tooltip helps users of the component
understand the function of the parameter. Various parameter properties allow you to customize the
component’s parameter editor, such as using radio buttons for parameter selections, or displaying an
image.

Example 6-6: _hw.tcl Created from Entries in the Parameters Tab

In this example, the first add_parameter command includes commonly-specified properties. The
set_parameter_property command specifies each property individually. The Tooltip column
on the Parameters tab maps to the DESCRIPTION property, and there is an additional unused
UNITS property created in the code. The HDL_PARAMETER property specifies that the value of the
parameter is specified in the HDL instance wrapper when creating instances of the component.
The Group column in the Parameters tab maps to the display items section with the
add_display_item commands.

6-20 Specify Parameters in the Qsys Component Editor
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If a parameter <n> defines the width of a signal, the signal width must follow the
format: <n-1>:0.

parameters

add_parameter AXI_ID_W INTEGER 4 "Width of ID fields"
set_parameter_property AXI_ID_W DEFAULT_VALUE 4
set_parameter_property AXI_ID_W DISPLAY_NAME AXI_ID_W
set_parameter_property AXI_ID_W TYPE INTEGER
set_parameter_property AXI_ID_W UNITS None
set_parameter_property AXI_ID_W DESCRIPTION "Width of ID fields"
set_parameter_property AXI_ID_W HDL_PARAMETER true
add_parameter AXI_ADDRESS_W INTEGER 12
set_parameter_property AXI_ADDRESS_W DEFAULT_VALUE 12

add_parameter AXI_DATA_W INTEGER 32
...

display items

add_display_item "AXI Port Widths" AXI_ID_W PARAMETER ""

Note: If an AXI slave's ID bit width is smaller than required for your system, the AXI slave response may
not reach all AXI masters. The formula of an AXI slave ID bit width is calculated as follows:

maximum_master_id_width_in_the_interconnect + log2

(number_of_masters_in_the_same_interconnect)

For example, if an AXI slave connects to three AXI masters and the maximum AXI master ID
length of the three masters is 5 bits, then the AXI slave ID is 7 bits, and is calculated as follows:

5 bits + 2 bits (log2(3 masters)) = 7

Table 6-3: AXI Master and Slave Parameters

Qsys refers to AXI interface parameters to build AXI interconnect. If these parameter settings are incompatible
with the component's HDL behavior, Qsys interconnect and transactions may not work correctly. To prevent
unexpected interconnect behavior, you must set the AXI component parameters.

AXI Master Parameters AXI Slave Parameters

readIssuingCapability readAcceptanceCapability

writeIssuingCapability writeAcceptanceCapability

combinedIssuingCapability combinedAcceptanceCapability

readDataReorderingDepth

Related Information
Component Interface Tcl Reference on page 9-1

Valid Ranges for Parameters in the _hw.tcl File
In the _hw.tcl file, you can specify valid ranges for parameters.

QPS5V1
2015.11.02 Valid Ranges for Parameters in the _hw.tcl File 6-21

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys validation checks each parameter value against the ALLOWED_RANGES property. If the values specified
are outside of the allowed ranges, Qsys displays an error message. Specifying choices for the allowed
values enables users of the component to choose the parameter value from a drop-down list or radio
button in the parameter editor GUI instead of entering a value.

The ALLOWED_RANGES property is a list of valid ranges, where each range is a single value, or a range of
values defined by a start and end value.

Table 6-4: ALLOWED_RANGES Property

ALLOWED_RANGES Property Values

{a b c}
a, b, or c

{"No Control" "Single Control"
"Dual Controls"}

Unique string values. Quotation marks are required if the
strings include spaces .

{1 2 4 8 16}
1, 2, 4, 8, or 16

{1:3}
1 through 3, inclusive.

{1 2 3 7:10} 1, 2, 3, or 7 through 10 inclusive.

Related Information
Declare Parameters with Custom _hw.tcl Commands on page 6-23

Types of Qsys Parameters
Qsys uses the following parameter types: user parameters, system information parameters, and derived
parameters.

Qsys User Parameters on page 6-22

Qsys System Information Parameters on page 6-23

Qsys Derived Parameters on page 6-23

Related Information
Declare Parameters with Custom _hw.tcl Commands on page 6-23

Qsys User Parameters

User parameters are parameters that users of a component can control, and appear in the parameter
editor for instances of the component. User parameters map directly to parameters in the component
HDL. For user parameter code examples, such as AXI_DATA_W and ENABLE_STREAM_OUTPUT, refer to
Declaring Parameters with Custom hw.tcl Commands.

6-22 Types of Qsys Parameters
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys System Information Parameters

A SYSTEM_INFO parameter is a parameter whose value is set automatically by the Qsys system. When you
define a SYSTEM_INFO parameter, you provide an information type, and additional arguments.

For example, you can configure a parameter to store the clock frequency driving a clock input for your
component. To do this, define the parameter as SYSTEM_INFO of type CLOCK_RATE:

set_parameter_property <param> SYSTEM_INFO CLOCK_RATE

You then set the name of the clock interface as the SYSTEM_INFO argument:

set_parameter_property <param> SYSTEM_INFO_ARG <clkname>

Qsys Derived Parameters

Derived parameter values are calculated from other parameters during the Elaboration phase, and are
specified in the hw.tcl file with the DERIVED property. Derived parameter values are calculated from other
parameters during the Elaboration phase, and are specified in the hw.tcl file with the DERIVED property.
For example, you can derive a clock period parameter from a data rate parameter. Derived parameters are
sometimes used to perform operations that are difficult to perform in HDL, such as using logarithmic
functions to determine the number of address bits that a component requires.

Related Information
Declare Parameters with Custom _hw.tcl Commands on page 6-23

Parameterized Parameter Widths
Qsys allows a std_logic_vector parameter to have a width that is defined by another parameter, similar
to derived parameters. The width can be a constant or the name of another parameter.

Declare Parameters with Custom _hw.tcl Commands
The example below illustrates a custom _hw.tcl file, with more advanced parameter commands than those
generated when you specify parameters in the Component Editor. Commands include the
ALLOWED_RANGES property to provide a range of values for the AXI_ADDRESS_W (Address Width)
parameter, and a list of parameter values for the AXI_DATA_W (Data Width) parameter. This example also
shows the parameter AXI_NUMBYTES (Data width in bytes) parameter; that uses the DERIVED property. In
addition, these commands illustrate the use of the GROUP property, which groups some parameters under a
heading in the parameter editor GUI. You use the ENABLE_STREAM_OUTPUT_GROUP (Include Avalon
streaming source port) parameter to enable or disable the optional Avalon-ST interface in this design,
and is displayed as a check box in the parameter editor GUI because the parameter is of type BOOLEAN.
Refer to figure below to see the parameter editor GUI resulting from these hw.tcl commands.

Example 6-7: Parameter Declaration

In this example, the AXI_NUMBYTES parameter is derived during the Elaboration phase based on
another parameter, instead of being assigned to a specific value. AXI_NUMBYTES describes the
number of bytes in a word of data. Qsys calculates the AXI_NUMBYTES parameter from the
DATA_WIDTH parameter by dividing by 8. The _hw.tcl code defines the AXI_NUMBYTES parameter
as a derived parameter, since its value is calculated in an elaboration callback procedure. The

QPS5V1
2015.11.02 Qsys System Information Parameters 6-23

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI_NUMBYTES parameter value is not editable, because its value is based on another parameter
value.

add_parameter AXI_ADDRESS_W INTEGER 12

set_parameter_property AXI_ADDRESS_W DISPLAY_NAME \
"AXI Slave Address Width"

set_parameter_property AXI_ADDRESS_W DESCRIPTION \
"Address width."

set_parameter_property AXI_ADDRESS_W UNITS bits
set_parameter_property AXI_ADDRESS_W ALLOWED_RANGES 4:16
set_parameter_property AXI_ADDRESS_W HDL_PARAMETER true

set_parameter_property AXI_ADDRESS_W GROUP \
"AXI Port Widths"

add_parameter AXI_DATA_W INTEGER 32
set_parameter_property AXI_DATA_W DISPLAY_NAME "Data Width"

set_parameter_property AXI_DATA_W DESCRIPTION \
"Width of data buses."

set_parameter_property AXI_DATA_W UNITS bits

set_parameter_property AXI_DATA_W ALLOWED_RANGES \
{8 16 32 64 128 256 512 1024}

set_parameter_property AXI_DATA_W HDL_PARAMETER true
set_parameter_property AXI_DATA_W GROUP "AXI Port Widths"

add_parameter AXI_NUMBYTES INTEGER 4
set_parameter_property AXI_NUMBYTES DERIVED true

set_parameter_property AXI_NUMBYTES DISPLAY_NAME \
"Data Width in bytes; Data Width/8"

set_parameter_property AXI_NUMBYTES DESCRIPTION \
"Number of bytes in one word"

set_parameter_property AXI_NUMBYTES UNITS bytes
set_parameter_property AXI_NUMBYTES HDL_PARAMETER true
set_parameter_property AXI_NUMBYTES GROUP "AXI Port Widths"

add_parameter ENABLE_STREAM_OUTPUT BOOLEAN true

set_parameter_property ENABLE_STREAM_OUTPUT DISPLAY_NAME \
"Include Avalon Streaming Source Port"

set_parameter_property ENABLE_STREAM_OUTPUT DESCRIPTION \
"Include optional Avalon-ST source (default),\
or hide the interface"

set_parameter_property ENABLE_STREAM_OUTPUT GROUP \
"Streaming Port Control"

...

6-24 Declare Parameters with Custom _hw.tcl Commands
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-6: Resulting Parameter Editor GUI from Parameter Declarations

Related Information

• Control Interfaces Dynamically with an Elaboration Callback on page 6-26
• Component Interface Tcl Reference on page 9-1

Validate Parameter Values with a Validation Callback
You can use a validation callback procedure to validate parameter values with more complex validation
operations than the ALLOWED_RANGES property allows. You define a validation callback by setting the
VALIDATION_CALLBACK module property to the name of the Tcl callback procedure that runs during the
validation phase. In the validation callback procedure, the current parameter values is queried, and
warnings or errors are reported about the component's configuration.

Example 6-8: Demo AXI Memory Example

If the optional Avalon streaming interface is enabled, then the control registers must be wide
enough to hold an AXI RAM address, so the designer can add an error message to ensure that the
user enters allowable parameter values.

set_module_property VALIDATION_CALLBACK validate
proc validate {} {
if {
 [get_parameter_value ENABLE_STREAM_OUTPUT] &&
 ([get_parameter_value AXI_ADDRESS_W] >
 [get_parameter_value AV_DATA_W])
}
send_message error "If the optional Avalon streaming port\
is enabled, the AXI Data Width must be equal to or greater\
than the Avalon control port Address Width"
}
}

Related Information

• Component Interface Tcl Reference on page 9-1
• Demo AXI Memory Example

QPS5V1
2015.11.02 Validate Parameter Values with a Validation Callback 6-25

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Control Interfaces Dynamically with an Elaboration Callback
You can allow user parameters to dynamically control your component's behavior with a an elaboration
callback procedure during the elaboration phase. Using an elaboration callback allows you to change
interface properties, remove interfaces, or add new interfaces as a function of a parameter value. You
define an elaboration callback by setting the module property ELABORATION_CALLBACK to the name of the
Tcl callback procedure that runs during the elaboration phase. In the callback procedure, you can query
the parameter values of the component instance, and then change the interfaces accordingly.

Example 6-9: Avalon-ST Source Interface Optionally Included in a Component Specified with an
Elaboration Callback

set_module_property ELABORATION_CALLBACK elaborate

proc elaborate {} {

 # Optionally disable the Avalon- ST data output

 if{[get_parameter_value ENABLE_STREAM_OUTPUT] == "false" }{
 set_port_property aso_data termination true
 set_port_property aso_valid termination true
 set_port_property aso_ready termination true
 set_port_property aso_ready termination_value 0
 }
 # Calculate the Data Bus Width in bytes

 set bytewidth_var [expr [get_parameter_value AXI_DATA_W]/8]
 set_parameter_value AXI_NUMBYTES $bytewidth_var
}

Related Information

• Creating Custom _hw.tcl Interface Settings and Properties
• Validate Parameter Values with a Validation Callback on page 6-25
• Component Interface Tcl Reference on page 9-1

Control File Generation Dynamically with Parameters and a Fileset
Callback

You can use a fileset callback to control which files are created in the output directories during the
generation phase based on parameter values, instead of providing a fixed list of files. In a callback
procedure, you can query the values of the parameters and use them to generate the appropriate files. To
define a fileset callback, you specify a callback procedure name as an argument in the add_fileset
command. You can use the same fileset callback procedure for all of the filesets, or create separate
procedures for synthesis and simulation, or Verilog and VHDL.

Example 6-10: Fileset Callback Using Parameters to Control Filesets in Two Different Ways

The RAM_VERSION parameter chooses between two different source files to control the implemen‐
tation of a RAM block. For the top-level source file, a custom Tcl routine generates HDL that

6-26 Control Interfaces Dynamically with an Elaboration Callback
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

optionally includes control and status registers, depending on the value of the CSR_ENABLED
parameter.

During the generation phase, Qsys creates a a top-level Qsys system HDL wrapper module to
instantiate the component top-level module, and applies the component's parameters, for any
parameter whose parameter property HDL_PARAMETER is set to true.

#Create synthesis fileset with fileset_callback and set top level

add_fileset my_synthesis_fileset QUARTUS_SYNTH fileset_callback

set_fileset_property my_synthesis_fileset TOP_LEVEL \
demo_axi_memory

Create Verilog simulation fileset with same fileset_callback
and set top level

add_fileset my_verilog_sim_fileset SIM_VERILOG fileset_callback

set_fileset_property my_verilog_sim_fileset TOP_LEVEL \
demo_axi_memory

Add extra file needed for simulation only

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH \
verification_lib/verbosity_pkg.sv

Create VHDL simulation fileset (with Verilog files
for mixed-language VHDL simulation)

add_fileset my_vhdl_sim_fileset SIM_VHDL fileset_callback
set_fileset_property my_vhdl_sim_fileset TOP_LEVEL demo_axi_memory

add_fileset_file verbosity_pkg.sv SYSTEM_VERILOG PATH
verification_lib/verbosity_pkg.sv

Define parameters required for fileset_callback

add_parameter RAM_VERSION INTEGER 1
set_parameter_property RAM_VERSION ALLOWED_RANGES {1 2}
set_parameter_property RAM_VERSION HDL_PARAMETER false
add_parameter CSR_ENABLED BOOLEAN enable
set_parameter_property CSR_ENABLED HDL_PARAMETER false

Create Tcl callback procedure to add appropriate files to
filesets based on parameters

proc fileset_callback { entityName } {
 send_message INFO "Generating top-level entity $entityName"
 set ram [get_parameter_value RAM_VERSION]
 set csr_enabled [get_parameter_value CSR_ENABLED]

 send_message INFO "Generating memory
 implementation based on RAM_VERSION $ram "

 if {$ram == 1} {
 add_fileset_file single_clk_ram1.v VERILOG PATH \
 single_clk_ram1.v
 } else {
 add_fileset_file single_clk_ram2.v VERILOG PATH \
 single_clk_ram2.v
 }

send_message INFO "Generating top-level file for \
CSR_ENABLED $csr_enabled"

QPS5V1
2015.11.02 Control File Generation Dynamically with Parameters and a Fileset... 6-27

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

generate_my_custom_hdl $csr_enabled demo_axi_memory_gen.sv

add_fileset_file demo_axi_memory_gen.sv VERILOG PATH \
demo_axi_memory_gen.sv
}

Related Information

• Specify Synthesis and Simulation Files in the Qsys Component Editor on page 6-11
• Component Interface Tcl Reference on page 9-1

Create a Composed Component or Subsystem
A composed component is a subsystem containing instances of other components. Unlike an HDL-based
component, a composed component's HDL is created by generating HDL for the components in the
subsystem, in addition to the Qsys interconnect to connect the subsystem instances.

You can add child instances in a composition callback of the _hw.tcl file.

With a composition callback, you can also instantiate and parameterize sub-components as a function of
the composed component’s parameter values. You define a composition callback by setting the COMPOSI-
TION_CALLBACK module property to the name of the composition callback procedures.

A composition callback replaces the validation and elaboration phases. HDL for the subsystem is
generated by generating all of the sub-components and the top-level that combines them.

To connect instances of your component, you must define the component's interfaces. Unlike an HDL-
based component, a composed component does not directly specify the signals that are exported. Instead,
interfaces of submodules are chosen as the external interface, and each internal interface's ports are
connected through the exported interface.

Exporting an interface means that you are making the interface visible from the outside of your
component, instead of connecting it internally. You can set the EXPORT_OF property of the externally
visible interface from the main program or the composition callback, to indicate that it is an exported
view of the submodule's interface.

Exporting an interface is different than defining an interface. An exported interface is an exact copy of the
subcomponent’s interface, and you are not allowed to change properties on the exported interface. For
example, if the internal interface is a 32-bit or 64-bit master without bursting, then the exported interface
is the same. An interface on a subcomponent cannot be exported and also connected within the
subsystem.

When you create an exported interface, the properties of the exported interface are copied from the
subcomponent’s interface without modification. Ports are copied from the subcomponent’s interface with
only one modification; the names of the exported ports on the composed component are chosen to ensure
that they are unique.

6-28 Create a Composed Component or Subsystem
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-7: Top-Level of a Composed Component

slave

my_component

pins
my_regs_microcore

clk

reset
altera
reset

bridge

altera
clock

bridge

my_phy_microcore

Example 6-11: Composed _hw.tcl File that Instantiates Two Sub-Components

Qsys connects the components, and also connects the clocks and resets. Note that clock and reset
bridge components are required to allow both sub-components to see common clock and reset
inputs.

package require -exact qsys 14.0
set_module_property name my_component
set_module_property COMPOSITION_CALLBACK composed_component

proc composed_component {} {
 add_instance clk altera_clock_bridge
 add_instance reset altera_reset_bridge
 add_instance regs my_regs_microcore
 add_instance phy my_phy_microcore

 add_interface clk clock end
 add_interface reset reset end
 add_interface slave avalon slave
 add_interface pins conduit end

 set_interface_property clk EXPORT_OF clk.in_clk
 set_instance_property_value reset synchronous_edges deassert
 set_interface_property reset EXPORT_OF reset.in_reset
 set_interface_property slave EXPORT_OF regs.slave
 set_interface_property pins EXPORT_OF phy.pins

QPS5V1
2015.11.02 Create a Composed Component or Subsystem 6-29

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 add_connection clk.out_clk reset.clk
 add_connection clk.out_clk regs.clk
 add_connection clk.out_clk phy.clk
 add_connection reset.out_reset regs.reset
 add_connection reset.out_reset phy.clk_reset
 add_connection regs.output phy.input
 add_connection phy.output regs.input
}

Related Information
Component Interface Tcl Reference on page 9-1

Create an IP Component with Qsys a System View Different from the
Generated Synthesis Output Files

There are cases where it may be beneficial to have the structural Qsys system view of a component differ
from the generated synthesis output files. The structural composition callback allows you to define a
structural hierarchy for a component separately from the generated output files.

One application of this feature is for IP designers who want to send out a placed-and-routed component
that represents a Qsys system in order to ensure timing closure for the end-user. In this case, the designer
creates a design partition for the Qsys system, and then exports a post-fit Quartus Prime Exported
Partition File (.qxp) when satisfied with the placement and routing results.

The designer specifies a .qxp file as the generated synthesis output file for the new component. The
designer can specify whether to use a simulation output fileset for the custom simulation model file, or to
use simulation output files generated from the original Qsys system.

When the end-user adds this component to their Qsys system, the designer wants the end-user to see a
structural representation of the component, including lower-level components and the address map of the
original Qsys system. This structural view is a logical representation of the component that is used during
the elaboration and validation phases in Qsys.

Example 6-12: Structural Composition Callback and .qxp File as the Generated Output

To specify a structural representation of the component for Qsys, connect components or
generate a hardware Tcl description of the Qsys system, and then insert the Tcl commands into a
structural composition callback. To invoke the structural composition callback use the command:

set_module_property STRUCTURAL_COMPOSITION_CALLBACK structural_hierarchy

package require -exact qsys 14.0
set_module_property name example_structural_composition

set_module_property STRUCTURAL_COMPOSITION_CALLBACK \
structural_hierarchy

add_fileset synthesis_fileset QUARTUS_SYNTH \
synth_callback_procedure

add_fileset simulation_fileset SIM_VERILOG \
sim_callback_procedure

set_fileset_property synthesis_fileset TOP_LEVEL \
my_custom_component

6-30 Create an IP Component with Qsys a System View Different from the...
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_fileset_property simulation_fileset TOP_LEVEL \
my_custom_component

proc structural_hierarchy {} {

called during elaboration and validation phase
exported ports should be same in structural_hierarchy
and generated QXP

These commands could come from the exported hardware Tcl

 add_interface clk clock sink
 add_interface reset reset sink

 add_instance clk_0 clock_source
 set_interface_property clk EXPORT_OF clk_0.clk_in
 set_interface_property reset EXPORT_OF clk_0.clk_in_reset

 add_instance pll_0 altera_pll
 # connections and connection parameters
 add_connection clk_0.clk pll_0.refclk clock
 add_connection clk_0.clk_reset pll_0.reset reset
}

proc synth_callback_procedure { entity_name } {

the QXP should have the same name for ports
as exportedin structural_hierarchy

 add_fileset_file my_custom_component.qxp QXP PATH \
 "my_custom_component.qxp"
}

proc sim_callback_procedure { entity_name } {

the simulation files should have the same name for ports as
exported in structural_hierarchy

add_fileset_file my_custom_component.v VERILOG PATH \
"my_custom_component.v"
 ….
 ….
}

Related Information
Create a Composed Component or Subsystem on page 6-28

Add Component Instances to a Static or Generated Component
You can create nested components by adding component instances to an existing component. Both static
and generated components can create instances of other components. You can add child instances of a
component in a _hw.tcl using elaboration callback.

With an elaboration callback, you can also instantiate and parameterize sub-components with the
add_hdl_instance command as a function of the parent component's parameter values.

When you instantiate multiple nested components, you must create a unique variation name for each
component with the add_hdl_instance command. Prefixing a variation name with the parent

QPS5V1
2015.11.02 Add Component Instances to a Static or Generated Component 6-31

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

component name prevents conflicts in a system. The variation name can be the same across multiple
parent components if the generated parameterization of the nested component is exactly the same.

Note: If you do not adhere to the above naming variation guidelines, Qsys validation-time errors occur,
which are often difficult to debug.

Related Information

• Static Components on page 6-32
• Generated Components on page 6-33

Static Components
Static components always generate the same output, regardless of their parameterization. Components
that instantiate static components must have only static children.

A design file that is static between all parameterizations of a component can only instantiate other static
design files. Since static IPs always render the same HDL regardless of parameterization, Qsys generates
static IPs only once across multiple instantiations, meaning they have the same top-level name set.

Example 6-13: Typical Usage of the add_hdl_instance Command for Static Components

package require -exact qsys 14.0

set_module_property name add_hdl_instance_example
add_fileset synth_fileset QUARTUS_SYNTH synth_callback
set_fileset_property synth_fileset TOP_LEVEL basic_static
set_module_property elaboration_callback elab

proc elab {} {
 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 }
proc synth_callback { output_name } {
 add_fileset_file "basic_static.v" VERILOG PATH basic_static.v
}

Example 6-14: Top-Level HDL Instance and Wrapper File Created by Qsys

In this example, Qsys generates a wrapper file for the instance name specified in the _hw.tcl file.

//Top Level Component HDL
module basic_static (input_wire, output_wire, inout_wire);
input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added via
// the add_hdl_instance command can be used
// in the top-level file of the component.

emif_instance_name fixed_name_instantiation_in_top_level(
.pll_ref_clk (input_wire), // pll_ref_clk.clk

6-32 Static Components
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

.global_reset_n (input_wire), // global_reset.reset_n

.soft_reset_n (input_wire), // soft_reset.reset_n

...

...);
endmodule

//Wrapper for added HDL instance
// emif_instance_name.v
// Generated using ACDS version 14.0

`timescale 1 ps / 1 ps
module emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system
_add_hdl_instance_example_0_emif_instance
_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Generated Components
A generated component's fileset callback allows an instance of the component to create unique HDL
design files based on the instance's parameter values. For example, you can write a fileset callback to
include a control and status interface based on the value of a parameter. The callback overcomes a
limitation of HDL languages, which do not allow run-time parameters.

Generated components change their generation output (HDL) based on their parameterization. If a
component is generated, then any component that may instantiate it with multiple parameter sets must
also be considered generated, since its HDL changes with its parameterization. This case has an effect that
propagates up to the top-level of a design.

Since generated components are generated for each unique parameterized instantiation, when
implementing the add_hdl_instance command, you cannot use the same fixed name (specified using
instance_name) for the different variants of the child HDL instances. To facilitate unique naming for the
wrapper of each unique parameterized instantiation of child HDL instances, you must use the following
command so that Qsys generates a unique name for each wrapper. You can then access this unique
wrapper name with a fileset callback so that the instances are instantiated inside the component's top-level
HDL.

QPS5V1
2015.11.02 Generated Components 6-33

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To declare auto-generated fixed names for wrappers, use the command:

set_instance_property instance_name HDLINSTANCE_USE_GENERATED_NAME \
true

Note: You can only use this command with a generated component in the global context, or in an
elaboration callback.

• To obtain auto-generated fixed name with a fileset callback, use the command:

get_instance_property instance_name HDLINSTANCE_GET_GENERATED_NAME

Note: You can only use this command with a fileset callback. This command returns the value of the
auto-generated fixed name, which you can then use to instantiate inside the top-level HDL.

Example 6-15: Typical Usage of the add_hdl_instance Command for Generated Components

Qsys generates a wrapper file for the instance name specified in the _hw.tcl file.

package require -exact qsys 14.0
set_module_property name generated_toplevel_component
set_module_property ELABORATION_CALLBACK elaborate
add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

proc elaborate {} {

 # Actual API to instantiate an IP Core
 add_hdl_instance emif_instance_name altera_mem_if_ddr3_emif

 # Make sure the parameters are set appropriately
 set_instance_parameter_value emif_instance_name SPEED_GRADE {7}
 ...
 # instruct Qsys to use auto generated fixed name
 set_instance_property emif_instance_name \
 HDLINSTANCE_USE_GENERATED_NAME 1
}

proc generate { entity_name } {

 # get the autogenerated name for emif_instance_name added
 # via add_hdl_instance

 set autogeneratedfixedname [get_instance_property \
 emif_instance_name HDLINSTANCE_GET_GENERATED_NAME]

 set fileID [open "generated_toplevel_component.v" r]
 set temp ""

 # read the contents of the file

 while {[eof $fileID] != 1} {
 gets $fileID lineInfo

 # replace the top level entity name with the name provided
 # during generation

 regsub -all "substitute_entity_name_here" $lineInfo \
 "${entity_name}" lineInfo

 # replace the autogenerated name for emif_instance_name added
 # via add_hdl_instance

6-34 Generated Components
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 regsub -all "substitute_autogenerated_emifinstancename_here" \
 $lineInfo"${autogeneratedfixedname}" lineInfo \
 append temp "${lineInfo}\n"
}

adding a top level component file

add_fileset_file ${entity_name}.v VERILOG TEXT $temp
}

Example 6-16: Top-Level HDL Instance and Wrapper File Created By Qsys

// Top Level Component HDL

module substitute_entity_name_here (input_wire, output_wire,
inout_wire);

input [31:0] input_wire;
output [31:0] output_wire;
inout [31:0] inout_wire;

// Instantiation of the instance added via add_hdl_instance
// command. This is an example of how the instance added
// via add_hdl_instance command can be used
// in the top-level file of the component.

substitute_autogenerated_emifinstancename_here
fixed_name_instantiation_in_top_level (
.pll_ref_clk (input_wire), // pll_ref_clk.clk
.global_reset_n (input_wire), // global_reset.reset_n
.soft_reset_n (input_wire), // soft_reset.reset_n
...
...);
endmodule

// Wrapper for added HDL instance
// generated_toplevel_component_0_emif_instance_name.v is the
// auto generated //emif_instance_name
// Generated using ACDS version 13.

`timescale 1 ps / 1 ps
module generated_toplevel_component_0_emif_instance_name (
input wire pll_ref_clk, // pll_ref_clk.clk
input wire global_reset_n, // global_reset.reset_n
input wire soft_reset_n, // soft_reset.reset_n
output wire afi_clk, // afi_clk.clk
...
...);
example_addhdlinstance_system_add_hdl_instance_example_0_emif
_instance_name_emif_instance_name emif_instance_name (

.pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk

.global_reset_n (global_reset_n), // global_reset.reset_n

.soft_reset_n (soft_reset_n), // soft_reset.reset_n

...

...);
endmodule

Related Information
Control File Generation Dynamically with Parameters and a Fileset Callback on page 6-26

QPS5V1
2015.11.02 Generated Components 6-35

Creating Qsys Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Guidelines for Adding Component Instances
In order to promote standard and predictable results when generating static and generated components,
Altera recommends the following best-practices:

• For two different parameterizations of a component, a component must never generate a file of the
same name with different instantiations. The contents of a file of the same name must be identical for
every parameterization of the component.

• If a component generates a nested component, it must never instantiate two different parameteriza‐
tions of the nested component using the same instance name. If the parent component's parameteriza‐
tion affects the parameters of the nested component, the parent component must use a unique instance
name for each unique parameterization of the nested component.

• Static components that generate differently based on parameterization have the potential to cause
problems in the following cases:

• Different file names with the same entity names, results in same entity conflicts at compilation-time
• Different contents with the same file name results in overwriting other instances of the component,

and in either file, compile-time conflicts or unexpected behavior.
• Generated components that generate files not based on the output name and that have different

content results in either compile-time conflicts, or unexpected behavior.

Document Revision History
The table below indicates edits made to the Creating Qsys Components content since its creation.

Table 6-5: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II
to Quartus Prime.

2015.05.04 15.0.0 • Updated screen shots Files
tab, Qsys Component Editor.

• Added topic: Specify
Interfaces and Signals in the
Qsys Component Editor.

• Added topic: Create an HDL
File in the Qsys Component
Editor.

• Added topic: Create an HDL
File Using a Template in the
Qsys Component Editor.

6-36 Design Guidelines for Adding Component Instances
QPS5V1

2015.11.02

Altera Corporation Creating Qsys Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November 2013 13.1.0 • add_hdl_instance

• Added Creating a Component
With Differing Structural
Qsys View and Generated
Output Files.

May 2013 13.0.0 • Consolidated content from
other Qsys chapters.

• Added Upgrading IP
Components to the Latest
Version.

• Updated for AMBA APB
support.

November 2012 12.1.0 • Added AMBA AXI4 support.
• Added the demo_axi_

memory example with screen
shots and example _hw.tcl
code.

June 2012 12.0.0 • Added new tab structure for
the Component Editor.

• Added AMBA AXI3 support.

November 2011 11.1.0 Template update.

May 2011 11.0.0 • Removed beta status.
• Added Avalon Tri-state

Conduit (Avalon-TC)
interface type.

• Added many interface
templates for Nios custom
instructions and Avalon-TC
interfaces.

December 2010 10.1.0 Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 6-37

Creating Qsys Components Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Creating%20Qsys%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys Interconnect 7
2015.11.02

QPS5V1 Subscribe Send Feedback

Qsys interconnect is a high-bandwidth structure that allows you to connect IP components to other IP
components with various interfaces.

Qsys supports Avalon, AMBA AXI3 (version 1.0), AMBA AXI4 (version 2.0), AMBA AXI4-Lite (version
2.0), AMBA AXI4-Stream (version 1.0), and AMBA APB3 (version 1.0) interface specifications.

Note: The video, AMBA AXI and Altera Avalon Interoperation Using Qsys, describes seamless integration
of IP components using the AMBA AXI interface, and the Altera Avalon interface.

Related Information

• Avalon Interface Specifications
• AMBA Specifications
• Creating a System with Qsys on page 5-1
• Creating Qsys Components on page 6-1
• Qsys System Design Components on page 10-1
• AMBA AXI and Altera Avalon Interoperation Using Qsys

Memory-Mapped Interfaces
Qsys supports the implementation of memory-mapped interfaces for Avalon, AXI, and APB protocols.

Qsys interconnect transmits memory-mapped transactions between masters and slaves in packets. The
command network transports read and write packets from master interfaces to slave interfaces. The
response network transports response packets from slave interfaces to master interfaces.

For each component interface, Qsys interconnect manages memory-mapped transfers and interacts with
signals on the connected interface. Master and slave interfaces can implement different signals based on
interface parameterizations, and Qsys interconnect provides any necessary adaptation between them. In
the path between master and slaves, Qsys interconnect may introduce registers for timing synchroniza‐
tion, finite state machines for event sequencing, or nothing at all, depending on the services required by
the interfaces.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Qsys%20Interconnect&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.youtube.com/watch?v=LdD2B1x-5vo
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Qsys interconnect supports the following implementation scenarios:

• Any number of components with master and slave interfaces. The master-to-slave relationship can be
one-to-one, one-to-many, many-to-one, or many-to-many.

• Masters and slaves of different data widths.
• Masters and slaves operating in different clock domains.
• IP Components with different interface properties and signals. Qsys adapts the component interfaces

so that interfaces with the following differences can be connected:

• Avalon and AXI interfaces that use active-high and active-low signaling. AXI signals are active
high, except for the reset signal.

• Interfaces with different burst characteristics.
• Interfaces with different latencies.
• Interfaces with different data widths.
• Interfaces with different optional interface signals.

Note: AXI3/4 to AXI3/4 interface connections declare a fixed set of signals with variable latency.
As a result, there is no need for adapting between active-low and active-high signaling, burst
characteristics, different latencies, or port signatures. Some adaptation may be necessary
between Avalon interfaces.

7-2 Memory-Mapped Interfaces
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-1: Qsys interconnect for an Avalon-MM System with Multiple Masters

In this example, there are two components mastering the system, a processor and a DMA controller, each
with two master interfaces. The masters connect through the Qsys interconnect to several slaves in the
Qsys system. The dark blue blocks represent interconnect components. The dark grey boxes indicate
items outside of the Qsys system and the Quartus Prime software design, and show how component
interfaces can be exported and connected to external devices.

Processor

M

DMA Controller

DDR3
Controller

DDR3 Chip

Data
Memory

S

Instruction

M

Data

MM

Control

Read Write

Instruction
Memory

SSS

Interconnect

Qsys Design
in Altera FPGA

PCB

Command Switch
(Avalon-ST)

Response Switch
(Avalon-ST)

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Master
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Slave
Network
Interface

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

Tri-State Conduit
 Pin Sharer & Bridge

TCS TCS

Tri-State
Controller

S

TCM

Tri-State
Conduit

S

TCM

Slave
Network
Interface

Master Command Connectivity

Slave Response Connectivity

Interface to Off-Chip Device

M Avalon-MM Master Interface

S Avalon-MM Slave Interface

TCM Avalon Tri-State Conduit Master

TCS Avalon Tri-State Conduit Slave

QPS5V1
2015.11.02 Memory-Mapped Interfaces 7-3

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys Packet Format
The Qsys packet format supports Avalon, AXI, and APB transactions. Memory-mapped transactions
between masters and slaves are encapsulated in Qsys packets. For Avalon systems without AXI or APB
interfaces, some fields are ignored or removed.

Qsys Packet Format

Table 7-1: Qsys Packet Format for Memory-Mapped Master and Slave Interfaces

The fields of the Qsys packet format are of variable length to minimize resource usage. However, if the majority of
components in a design have a single data width, for example 32-bits, and a single component has a data width of
64-bits, Qsys inserts a width adapter to accommodate 64-bit transfers.

Command Description

Address Specifies the byte address for the lowest byte in the current cycle. There are no
restrictions on address alignment.

Size Encodes the run-time size of the transaction.

In conjunction with address, this field describes the segment of the payload that
contains valid data for a beat within the packet.

Address Sideband Carries “address” sideband signals. The interconnect passes this field from
master to slave. This field is valid for each beat in a packet, even though it is only
produced and consumed by an address cycle.

Up to 8-bit sideband signals are supported for both read and write address
channels.

Cache Carries the AXI cache signals.

Transaction

(Exclusive)
Indicates whether the transaction has exclusive access.

Transaction

(Posted)
Used to indicate non-posted writes (writes that require responses).

Data For command packets, carries the data to be written. For read response packets,
carries the data that has been read.

7-4 Qsys Packet Format
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Byteenable Specifies which symbols are valid. AXI can issue or accept any byteenable
pattern. For compatibility with Avalon, Altera recommends that you use the
following legal values for 32-bit data transactions between Avalon masters and
slaves:

• 1111—Writes full 32 bits
• 0011—Writes lower 2 bytes
• 1100—Writes upper 2 bytes
• 0001—Writes byte 0 only
• 0010—Writes byte 1 only
• 0100—Writes byte 2 only
• 1000—Writes byte 3 only

Source_ID The ID of the master or slave that initiated the command or response.

Destination_ID The ID of the master or slave to which the command or response is directed.

Response Carries the AXI response signals.

Thread ID Carries the AXI transaction ID values.

Byte count The number of bytes remaining in the transaction, including this beat. Number
of bytes requested by the packet.

QPS5V1
2015.11.02 Qsys Packet Format 7-5

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Burstwrap The burstwrap value specifies the wrapping behavior of the current burst. The
burstwrap value is of the form 2<n> -1. The following types are defined:

• Variable wrap–Variable wrap bursts can wrap at any integer power of 2 value.
When the burst reaches the wrap boundary, it wraps back to the previous
burst boundary so that only the low order bits are used for addressing. For
example, a burst starting at address 0x1C, with a burst wrap boundary of 32
bytes and a burst size of 20 bytes, would write to addresses 0x1C, 0x0, 0x4,
0x8, and 0xC.

• For a burst wrap boundary of size <m>, Burstwrap = <m> - 1, or for this
case Burstwrap = (32 - 1) = 31 which is 25 -1.

• For AXI masters, the burstwrap boundary value (m) is based on the different
AXBURST:

• Burstwrap set to all 1’s. For example, for a 6-bit burstwrap, burstwrap is
6'b111111.

• For WRAP bursts, burstwrap = AXLEN * size – 1.
• For FIXED bursts, burstwrap = size – 1.
• Sequential bursts increment the address for each transfer in the burst. For

sequential bursts, the Burstwrap field is set to all 1s. For example, with a
6-bit Burstwrap field, the value for a sequential burst is 6'b111111 or 63,
which is 26 - 1.

For Avalon masters, Qsys adaptation logic sets a hardwired value for the
burstwrap field, according the declared master burst properties. For example, for
a master that declares sequential bursting, the burstwrap field is set to ones.
Similarly, masters that declare burst have their burstwrap field set to the
appropriate constant value.

AXI masters choose their burst type at run-time, depending on the value of the
AW or ARBURST signal. The interconnect calculates the burstwrap value at run-
time for AXI masters.

Protection Access level protection. When the lowest bit is 0, the packet has normal access.
When the lowest bit is 1, the packet has privileged access. For Avalon-MM
interfaces, this field maps directly to the privileged access signal, which allows an
memory-mapped master to write to an on-chip memory ROM instance. The
other bits in this field support AXI secure accesses and uses the same encoding,
as described in the AXI specification.

QoS QoS (Quality of Service Signaling) is a 4-bit field that is part of the AXI4
interface that carries QoS information for the packet from the AXI master to the
AXI slave.

Transactions from AXI3 and Avalon masters have the default value 4'b0000,
that indicates that they are not participating in the QoS scheme. QoS values are
dropped for slaves that do not support QoS.

7-6 Qsys Packet Format
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Data sideband Carries data sideband signals for the packet. On a write command, the data
sideband directly maps to WUSER. On a read response, the data sideband directly
maps to RUSER. On a write response, the data sideband directly maps to BUSER.

Transaction Types for Memory-Mapped Interfaces

Table 7-2: Transaction Types for Memory-Mapped Interfaces

The table below describes the information that each bit transports in the packet format's transaction field.

Bit Name Definition

0 PKT_TRANS_READ When asserted, indicates a read transaction.

1 PKT_TRANS_COMPRESSED_READ For read transactions, specifies whether or not the read
command can be expressed in a single cycle, that is
whether or not it has all byteenables asserted on every
cycle.

2 PKT_TRANS_WRITE When asserted, indicates a write transaction.

3 PKT_TRANS_POSTED When asserted, no response is required.

4 PKT_TRANS_LOCK When asserted, indicates arbitration is locked. Applies to
write packets.

Qsys Transformations
The memory-mapped master and slave components connect to network interface modules that
encapsulate the transaction in Avalon-ST packets. The memory-mapped interfaces have no information
about the encapsulation or the function of the layer transporting the packets. The interfaces operate in
accordance with memory-mapped protocol and use the read and write signals and transfers.

QPS5V1
2015.11.02 Transaction Types for Memory-Mapped Interfaces 7-7

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-2: Transformation when Generating a System with Memory-Mapped and Slave Components

Qsys components that implement the blocks appear shaded.

Slave Response Connectivity

Master Command Connectivity

Avalon-STAvalon-MM or AXI Avalon-MM or AXI

Avalon-ST
Network

(Command)

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Master
Network
Interface

Master
Interface

Slave
Network
Interface

Slave
Interface

Avalon-ST
Network

(Response)

Related Information

• Master Network Interfaces on page 7-11
• Slave Network Interfaces on page 7-13

Interconnect Domains
An interconnect domain is a group of connected memory-mapped masters and slaves that share the same
interconnect. The components in a single interconnect domain share the same packet format.

Using One Domain with Width Adaptation

When one of the masters in a system connects to all of the slaves, Qsys creates a single domain with two
packet formats: one with 64-bit data, and one with 16-bit data. A width adapter manages accesses between
the 16-bit master and 64-bit slaves.

7-8 Interconnect Domains
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-3: One Domain with 1:4 and 4:1 Width Adapters

In this system example, there are two 64-bit masters that access two 64-bit slaves. It also includes one 16-
bit master, that accesses two 16-bit slaves and two 64-bit slaves. The 16-bit Avalon master connects
through a 1:4 adapter, then a 4:1 adapter to reach its 16-bit slaves.

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Slave

S

16-Bit
Avalon-MM

Master
M

Single Domain with 1:4 & 4:1 Width Adapters

64-Bit
Avalon-MM

Slave

S

64-Bit
Avalon-MM

Master
M

64-Bit
Avalon-MM

Master
M

4:1 1:4

64-Bit
Avalon-MM

Slave

S

QPS5V1
2015.11.02 Using One Domain with Width Adaptation 7-9

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using Two Separate Domains

Figure 7-4: Two Separate Domains

In this system example, Qsys uses two separate domains. The first domain includes two 64-bit masters
connected to two 64-bit slaves. A second domain includes one 16-bit master connected to two 16-bit
slaves. Because the interfaces in Domain 1 and Domain 2 do not share any connections, Qsys can
optimize the packet format for the two separate domains. In this example, the first domain uses a 64-bit
data width and the second domain uses 16-bit data.

16-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Slave

S

Domain 1

Command Network Response Network

Domain 2

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Master

M

64-bit
Avalon-MM

Slave

S

64-bit
Avalon-MM

Slave

S

16-bit
Avalon-MM

Master

M

Component 1 Component 2

7-10 Using Two Separate Domains
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Master Network Interfaces
Figure 7-5: Avalon-MM Master Network Interface

Avalon network interfaces drive default values for the QoS and BUSER, WUSER, and RUSER packet fields in
the master agent, and drop the packet fields in the slave agent.

Note: The response signal from the Limiter to the Agent is optional.

Master
Interface

Master Network Interface

Translator Agent Limiter

Router

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

response [1:0]

Figure 7-6: AXI Master Network Interface

An AXI4 master supports INCR bursts up to 256 beats, QoS signals, and data sideband signals.

Master Network Interface

AXI
Translator

Router

Limiter

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

AXI
Master
Agent

Router

Read Command

Write Command

Limiter

Write Response

Read Response

Master
Interface

Note: For a complete definition of the optional read response signal, refer to Avalon Memory-Mapped
Interface Signal Types in the Avalon Interface Specifications.

Related Information

• Read and Write Responses on page 7-27
• Avalon Interface Specifications
• Creating a System with Qsys on page 5-1

QPS5V1
2015.11.02 Master Network Interfaces 7-11

Qsys Interconnect Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-MM Master Agent
The Avalon-MM Master Agent translates Avalon-MM master transactions into Qsys command packets
and translates the Qsys Avalon-MM slave response packets into Avalon-MM responses.

Avalon-MM Master Translator
The Avalon-MM Master Translator interfaces with an Avalon-MM master component and converts the
Avalon-MM master interface to a simpler representation for use in Qsys.

The Avalon-MM Master translator performs the following functions:

• Translates active-low signaling to active-high signaling
• Inserts wait states to prevent an Avalon-MM master from reading invalid data
• Translates word and symbol addresses
• Translates word and symbol burst counts
• Manages re-timing and re-sequencing bursts
• Removes unnecessary address bits

AXI Master Agent
An AXI Master Agent accepts AXI commands and produces Qsys command packets. It also accepts Qsys
response packets and converts those into AXI responses. This component has separate packet channels
for read commands, write commands, read responses, and write responses. Avalon master agent drives
the QoS and BUSER, WUSER, and RUSER packet fields with default values AXQO and b0000, respectively.

Note: For signal descriptions, refer to Qsys Packet Format.

Related Information
Qsys Packet Format on page 7-4

AXI Translator
AXI4 allows some signals to be omitted from interfaces. The translator bridges between these
“incomplete” AXI4 interfaces and the “complete” AXI4 interface on the network interfaces.

The AXI translator is inserted for both AXI4 masters and slaves and performs the following functions:

• Matches ID widths between the master and slave in 1x1 systems.
• Drives default values as defined in the AMBA Protocol Specifications for missing signals.
• Performs lock transaction bit conversion when an AXI3 master connects to an AXI4 slave in 1x1

systems.

Related Information
AMBA Protocol Specifications

APB Master Agent
An APB master agent accepts APB commands and produces or generates Qsys command packets. It also
converts Qsys response packets to APB responses.

APB Slave Agent
An APB slave agent issues resulting transaction to the APB interface. It also accepts creates Qsys response
packets.

7-12 Avalon-MM Master Agent
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

APB Translator
An APB peripheral does not require pslverr signals to support additional signals for the APB debug
interface.

The APB translator is inserted for both the master and slave and performs the following functions:

• Sets the response value default to OKAY if the APB slave does not have a pslverr signal.
• Turns on or off additional signals between the APB debug interface, which is used with HPS (Altera

SoC’s Hard Processor System).

AHB Slave Agent
The Qsys interconnect supports non-bursting Advanced High-performance Bus (AHB) slave interfaces.

Memory-Mapped Router
The Memory-Mapped Router routes command packets from the master to the slave, and response packets
from the slave to the master. For master command packets, the router uses the address to set the
Destination_ID and Avalon-ST channel. For the slave response packet, the router uses the
Destination_ID to set the Avalon-ST channel. The demultiplexers use the Avalon-ST channel to route
the packet to the correct destination.

Memory-Mapped Traffic Limiter
The Memory-Mapped Traffic Limiter ensures the responses arrive in order. It prevents any command
from being sent if the response could conflict with the response for a command that has already been
issued. By guaranteeing in-order responses, the Traffic Limiter simplifies the response network.

Slave Network Interfaces
Figure 7-7: Avalon-MM Slave Network Interface

Slave
Interface

Slave Network Interface

Agent Translator

Waitrequest

Overflow Error

Command

Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

QPS5V1
2015.11.02 APB Translator 7-13

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-8: AXI Slave Network Interface

An AXI4 slave supports up to 256 beat INCR bursts, QoS signals, and data sideband signals.

AXI
Translator

AXI
Agent

Write Response

Read Command

Read Response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Write Command

Network Interface

Slave
Interface

Avalon-MM Slave Translator
The Avalon-MM Slave Translator interfaces to an Avalon-MM slave component as the Avalon-MM Slave
Network Interface figure illustrates. It converts the Avalon-MM slave interface to a simplified
representation that the Qsys network can use.

An Avalon-MM Merlin Slave Translator performs the following functions:

• Drives the beginbursttransfer and byteenable signals.
• Supports Avalon-MM slaves that operate using fixed timing and or slaves that use the readdatavalid

signal to identify valid data.
• Translates the read, write, and chipselect signals into the representation that the Avalon-ST slave

response network uses.
• Converts active low signals to active high signals.
• Translates word and symbol addresses and burstcounts.
• Handles burstcount timing and sequencing.
• Removes unnecessary address bits.

Related Information
Slave Network Interfaces on page 7-13

AXI Translator
AXI4 allows some signals to be omitted from interfaces. The translator bridges between these
“incomplete” AXI4 interfaces and the “complete” AXI4 interface on the network interfaces.

The AXI translator is inserted for both AXI4 master and slave, and performs the following functions:

• Matches ID widths between master and slave in 1x1 systems.
• Drives default values as defined in the AMBA Protocol Specifications for missing signals.
• Performs lock transaction bit conversion when an AXI3 master connects to an AXI4 slave in 1x1

systems.

7-14 Avalon-MM Slave Translator
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Wait State Insertion
Wait states extend the duration of a transfer by one or more cycles. Wait state insertion logic
accommodates the timing needs of each slave, and causes the master to wait until the slave can proceed.
Qsys interconnect inserts wait states into a transfer when the target slave cannot respond in a single clock
cycle, as well as in cases when slave read and write signals have setup or hold time requirements.

Figure 7-9: Wait State Insertion Logic for One Master and One Slave

Wait state insertion logic is a small finate-state machine that translates control signal sequencing between
the slave side and the master side. Qsys interconnect can force a master to wait for the wait state needs of
a slave. For example, arbitration logic in a multi-master system. Qsys generates wait state insertion logic
based on the properties of all slaves in the system.

Master
Port

Slave
Port

Wait-State
Insertion

Logic read/writeread/write

wait request

address

data

Avalon-MM Slave Agent
The Avalon-MM Slave Agent accepts command packets and issues the resulting transactions to the
Avalon interface. For pipelined slaves, an Avalon-ST FIFO stores information about pending transactions.
The size of this FIFO is the maximum number of pending responses that you specify when creating the
slave component. The Avalon-MM Slave Agent also backpressures the Avalon-MM master command
interface when the FIFO is full if the slave component includes the waitrequest signal.

AXI Slave Agent
An AXI Slave Agent works similar to a master agent in reverse. The AXI slave Agent accepts Qsys
command packets to create AXI commands, and accepts AXI responses to create Qsys response packets.
This component has separate packet channels for read commands, write commands, read responses, and
write responses.

Arbitration
When multiple masters contend for access to a slave, Qsys automatically inserts arbitration logic, which
grants access in fairness-based, round-robin order. You can alternatively choose to designate a slave as a
fixed priority arbitration slave, and then manually assign priorities in the Qsys GUI.

Round-Robin Arbitration
When multiple masters contend for access to a slave, Qsys automatically inserts arbitration logic which
grants access in fairness-based, round-robin order.

In a fairness-based arbitration protocol, each master has an integer value of transfer shares with respect to
a slave. One share represents permission to perform one transfer. The default arbitration scheme is equal

QPS5V1
2015.11.02 Wait State Insertion 7-15

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

share round-robin that grants equal, sequential access to all requesting masters. You can change the
arbitration scheme to weighted round-robin by specifying a relative number of arbitration shares to the
masters that access a particular slave. AXI slaves have separate arbitration for their independent read and
write channels, and the Arbitration Shares setting affects both the read and write arbitration. To display
arbitration settings, right-click an instance on the System Contents tab, and then click Show Arbitration
Shares.

Figure 7-10: Arbitration Shares in the Connections Column

Fairness-Based Shares
In a fairness-based arbitration scheme, each master-to-slave connection provides a transfer share count.
This count is a request for the arbiter to grant a specific number of transfers to this master before giving
control to a different master. One share represents permission to perform one transfer.

7-16 Fairness-Based Shares
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-11: Arbitration of Continuous Transfer Requests from Two Masters

Consider a system with two masters connected to a single slave. Master 1 has its arbitration shares set to
three, and Master 2 has its arbitration shares set to four. Master 1 and Master 2 continuously attempt to
perform back-to-back transfers to the slave. The arbiter grants Master 1 access to the slave for three
transfers, and then grants Master 2 access to the slave for four transfers. This cycle repeats indefinitely.
The figure below describes the waveform for this scenario.

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master Master 1 Master 2 Master 1 Master 2 Master 1

Figure 7-12: Arbitration of Two Masters with a Gap in Transfer Requests

If a master stops requesting transfers before it exhausts its shares, it forfeits all of its remaining shares, and
the arbiter grants access to another requesting master. After completing one transfer, Master 2 stops
requesting for one clock cycle. As a result, the arbiter grants access back to Master 1, which gets a
replenished supply of shares.

Master 1 Master 1 Master 2 Master 1 Master 2Master 2

clk

M1_transfer_request

M1_waitrequest

M2_transfer_request

M2_waitrequest

Current_Master

Round-Robin Scheduling
When multiple masters contend for access to a slave, the arbiter grants shares in round-robin order. Qsys
includes only requesting masters in the arbitration for each slave transaction.

Fixed Priority Arbitration
Fixed priority arbitration is an alternative arbitration scheme to the default round-robin arbitration
scheme.

You can selectively apply fixed priority arbitration to any slave in a Qsys system. You can design Qsys
systems where some slaves use the default round-robin arbitration, and other slaves use fixed priority
arbitration. Fixed priority arbitration uses a fixed priority algorithm to grant access to a slave amongst its
connected masters.

To set up fixed priority arbitration, you must first designate a fixed priority slave in your Qsys system in
the Interconnect Requirements tab. You can then assign an arbitration priority number for each master

QPS5V1
2015.11.02 Round-Robin Scheduling 7-17

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

connected to a fixed priority slave in the System Contents tab, where the highest numeric value receives
the highest priority. When multiple masters request access to a fixed priority arbitrated slave, the arbiter
gives the master with the highest priority first access to the slave.

For example, when a fixed priority slave receives requests from three masters on the same cycle, the
arbiter grants the master with highest assigned priority first access to the slave, and backpreasures the
other two masters.

Note: When you connect an AXI master to an Avalon-MM slave designated to use a fixed priority
arbitrator, the interconnect instantiates a command-path intermediary round-robin multiplexer in
front of the designated slave.

Designate a Qsys Slave to Use Fixed Priority Arbitration
You can designate any slave in your Qsys system to use fixed priority arbitration. You must assign each
master connected to a fixed priority slave a numeric priority. The master with the highest higher priority
receives first access to the slave. No two masters can have the same priority.

1. In Qsys, navigate to the Interconnect Requirements tab.
2. Click Add to add a new requirement.
3. In the Identifier column, select the slave for fixed priority arbitration.
4. In the Setting column, select qsys mm.arbitrationScheme.
5. In the Value column, select fixed-priority.

Figure 7-13: Designate a Slave to Use Fixed Priority Arbitration

6. Navigate to the System Contents tab.

7-18 Designate a Qsys Slave to Use Fixed Priority Arbitration
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. In the System Contents tab, right-click the designated fixed priority slave, and then select Show
Arbitration Shares.

8. For each master connected to the fixed priory arbitration slave, type a numerical arbitration priority in
the box that appears in place of the connection circle.

Figure 7-14: Arbitration Priorities in the Qsys System Contents Tab

9. Right click the designated fixed priority slave and uncheck Show Arbitration Shares to return to the
connection circles.

Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves
When an AXI master is connected to a designated fixed priority arbitration Avalon-MM slave, Qsys
interconnect automatically instantiates an intermediary multiplexer in front of the Avalon-MM slave.

Since AXI masters have separate read and write channels, each channel appears as two separate masters to
the Avalon-MM slave. To support fairness between the AXI master’s read and write channels, the
instantiated round-robin intermediary multiplexer arbitrates between simultaneous read and write
commands from the AXI master to the fixed-priority Avalon-MM slave.

When an AXI master is connected to a fixed priority AXI slave, the master’s read and write channels are
directly connected to the AXI slave’s fixed-priority multiplexers. In this case, there is one multiplexer for
the read command, and one multiplexer for the write command and therefore an intermediary
multiplexer is not required.

QPS5V1
2015.11.02 Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves 7-19

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The red circles indicate placement of the intermediary multiplexer between the AXI master and Avalon-
MM slave due to the separate read and write channels of the AXI master.

Figure 7-15: Intermediary Multiplexer Between AXI Master and Avalon-MM Slave

Memory-Mapped Arbiter
The input to the Memory-Mapped Arbiter is the command packet for all masters requesting access to a
particular slave. The arbiter outputs the channel number for the selected master. This channel number
controls the output of a multiplexer that selects the slave device. The figure below illustrates this logic.

7-20 Memory-Mapped Arbiter
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-16: Arbitration Logic

In this example, four Avalon-MM masters connect to four Avalon-MM slaves. In each cycle, an arbiter
positioned in front of each Avalon-MM slave selects among the requesting Avalon-MM masters.

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

Note: If you specify a Limit interconnect pipeline stages to parameter greater than zero, the output of
the Arbiter is registered. Registering this output reduces the amount of combinational logic
between the master and the interconnect, increasing the fMAX of the system.

Note: You can use the Memory-Mapped Arbiter for both round-robin and fixed priority arbitration.

QPS5V1
2015.11.02 Memory-Mapped Arbiter 7-21

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Datapath Multiplexing Logic
Datapath multiplexing logic drives the writedata signal from the granted master to the selected slave,
and the readdata signal from the selected slave back to the requesting master. Qsys generates separate
datapath multiplexing logic for every master in the system (readdata), and for every slave in the system
(writedata). Qsys does not generate multiplexing logic if it is not needed.

Figure 7-17: Datapath Multiplexing Logic for One Master and Two Slaves

Master
Port

readdata

address

writedata

control

readdata2

readdata1

Data
Path

Multiplexer

Slave
Port 2

Slave
Port 1

Width Adaptation
Qsys width adaptation converts between Avalon memory-mapped master and slaves with different data
and byte enable widths, and manages the run-time size requirements of AXI. Width adaptation for AXI to
Avalon interfaces is also supported.

Memory-Mapped Width Adapter
The Memory-Mapped Width Adapter is used in the Avalon-ST domain and operates with information
contained in the packet format.

The memory-mapped width adapter accepts packets on its sink interface with one data width and
produces output packets on its source interface with a different data width. The ratio of the narrow data
width must be a power of two, such as 1:4, 1:8, and 1:16. The ratio of the wider data width to the narrower
width must also be a power of two, such as 4:1, 8:1, and 16:1 These output packets may have a different
size if the input size exceeds the output data bus width, or if data packing is enabled.

When the width adapter converts from narrow data to wide data, each input beat's data and byte enables
are copied to the appropriate segment of the wider output data and byte enables signals.

7-22 Datapath Multiplexing Logic
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-18: Width Adapter Timing for a 4:1 Adapter

This adapter assumes that the field ordering of the input and output packets is the same, with the only
difference being the width of the data and accompanying byte enable fields. When the width adapter
converts from wide data to narrow data, the narrower data is transmitted over several beats. The first
output beat contains the lowest addressed segment of the input data and byte enables.

Adapter
Input

Adapter
Output

addr_out[7:0]

clock

addr_in[7:0]

wide_data[31:0]

byteenable_in[3:0]

byteenable_out[3:0]

write

narrow_data[7:0]

08

AABBCCDD

C

08 09 0A 0B

0 0 1 1

DD CC BB AA

AXI Wide-to-Narrow Adaptation
For all cases of AXI wide-to-narrow adaptation, read data is re-packed to match the original size.
Responses are merged, with the following error precedence: DECERR, SLVERR, OKAY, and EXOKAY.

Table 7-3: AXI Wide-to-Narrow Adaptation (Downsizing)

Burst Type Behavior

Incrementing If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to an incrementing burst with a larger length and size equal
to the output width.

If the resulting burst is unsuitable for the slave, the burst is converted to multiple
sequential bursts of the largest allowable lengths. For example, for a 2:1 downsizing
ratio, an INCR9 burst is converted into INCR16 + INCR2 bursts. This is true if the
maximum burstcount a slave can accept is 16, which is the case for AXI3 slaves.
Avalon slaves have a maximum burstcount of 64.

QPS5V1
2015.11.02 AXI Wide-to-Narrow Adaptation 7-23

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Burst Type Behavior

Wrapping If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted to a wrapping burst with a larger length, with a size equal to
the output width.

If the resulting burst is unsuitable for the slave, the burst is converted to multiple
sequential bursts of the largest allowable lengths; respecting wrap boundaries. For
example, for a 2:1 downsizing ratio, a WRAP16 burst is converted into two or three INCR
bursts, depending on the address.

Fixed If the transaction size is less than or equal to the output width, the burst is unmodified.
Otherwise, it is converted into repeated sequential bursts over the same addresses. For
example, for a 2:1 downsizing ratio, a FIXED single burst is converted into an INCR2
burst.

AXI Narrow-to-Wide Adaptation

Table 7-4: AXI Narrow-to-Wide Adaptation (Upsizing)

Burst Type Behavior

Incrementing The burst (and its response) passes through unmodified. Data and write strobes are
placed in the correct output segment.

Wrapping The burst (and its response) passes through unmodified.

Fixed The burst (and its response) passes through unmodified.

Burst Adapter
Qsys interconnect uses the memory-mapped burst adapter to accommodate the burst capabilities of each
interface in the system, including interfaces that do not support burst transfers.

The maximum burst length for each interface is a property of the interface and is independent of other
interfaces in the system. Therefore, a particular master may be capable of initiating a burst longer than a
slave’s maximum supported burst length. In this case, the burst adapter translates the large master burst
into smaller bursts, or into individual slave transfers if the slave does not support bursting. Until the
master completes the burst, arbiter logic prevents other masters from accessing the target slave. For
example, if a master initiates a burst of 16 transfers to a slave with maximum burst length of 8, the burst
adapter initiates 2 bursts of length 8 to the slave.

Avalon-MM and AXI burst transactions allow a master uninterrupted access to a slave for a specified
number of transfers. The master specifies the number of transfers when it initiates the burst. Once a burst
begins between a master and slave, arbiter logic is locked until the burst completes. For burst masters, the
length of the burst is the number of cycles that the master has access to the slave, and the selected arbitra‐
tion shares have no effect.

Note: AXI masters can issue burst types that Avalon cannot accept, for example, fixed bursts. In this case,
the burst adapter converts the fixed burst into a sequence of transactions to the same address.

7-24 AXI Narrow-to-Wide Adaptation
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For AXI4 slaves, Qsys allows 256-beat INCR bursts. You must ensure that 256-beat narrow-sized
INCR bursts are shortened to 16-beat narrow-sized INCR bursts for AXI3 slaves.

Avalon-MM masters always issue addresses that are aligned to the size of the transfer. However, when
Qsys uses a narrow-to-wide width adaptation, the resulting address may be unaligned. For unaligned
addresses, the burst adapter issues the maximum sized bursts with appropriate byte enables. This brings
the burst-in-progress up to an aligned slave address. Then, it completes the burst on aligned addresses.

The burst adapter supports variable wrap or sequential burst types to accommodate different properties of
memory-mapped masters. Some bursting masters can issue more than one burst type.

Burst adaptation is available for Avalon to Avalon, Avalon to AXI, and AXI to Avalon, and AXI to AXI
connections. For information about AXI-to-AXI adaptation, refer to AXI Wide-to-Narrow Adaptation

Note: For AXI4 to AXI3 connections, Qsys follows an AXI4 256 burst length to AXI3 16 burst length.

Burst Adapter Implementation Options
Qsys automatically inserts burst adapters into your system depending on your master and slave
connections, and properties. You can select burst adapter implementation options on the Interconnect
Requirements tab.

To access the implementation options, you must select the Burst adapter implementation setting for the
$system identifier.

• Generic converter (slower, lower area)—Default. Controls all burst conversions with a single
converter that is able to adapt incoming burst types. This results in an adapter that has lower fmax, but
smaller area.

• Per-burst-type converter (faster, higher area)—Controls incoming bursts with a particular converter,
depending on the burst type. This results in an adapter that has higher fmax, but higher area. This
setting is useful when you have AXI masters or slaves and you want a higher fmax.

Note: For more information about the Interconnect Requirements tab, refer to Creating a System with
Qsys.

Related Information
Creating a System with Qsys on page 5-1

QPS5V1
2015.11.02 Burst Adapter Implementation Options 7-25

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Burst Adaptation: AXI to Avalon

Table 7-5: Burst Adaptation: AXI to Avalon

Entries specify the behavior when converting between AXI and Avalon burst types.

Burst Type Behavior

Incrementing Sequential Slave

Bursts that exceed slave_max_burst_length are converted to multiple
sequential bursts of a length less than or equal to the slave_max_burst_length.
Otherwise, the burst is unconverted. For example, for an Avalon slave with a
maximum burst length of 4, an INCR7 burst is converted to INCR4 + INCR3.

Wrapping Slave

Bursts that exceed the slave_max_burst_length are converted to multiple
sequential bursts of length less than or equal to the slave_max_burst_length.
Bursts that exceed the wrapping boundary are converted to multiple sequential
bursts that respect the slave's wrapping boundary.

Wrapping Sequential Slave

A WRAP burst is converted to multiple sequential bursts. The sequential bursts
are less than or equal to the max_burst_length and respect the transaction's
wrapping boundary

Wrapping Slave

If the WRAP transaction's boundary matches the slave's boundary, then the
burst passes through. Otherwise, the burst is converted to sequential bursts that
respect both the transaction and slave wrap boundaries.

Fixed Fixed bursts are converted to sequential bursts of length 1 that repeatedly access
the same address.

Narrow All narrow-sized bursts are broken into multiple bursts of length 1.

Burst Adaptation: Avalon to AXI

Table 7-6: Burst Adaptation: Avalon to AXI

Entries specify the behavior when converting between Avalon and AXI burst types.

Burst Type Definition

Sequential Bursts of length greater than16 are converted to multiple INCR bursts of a length
less than or equal to16. Bursts of length less than or equal to16 are not converted.

7-26 Burst Adaptation: AXI to Avalon
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Burst Type Definition

Wrapping Only Avalon masters with alwaysBurstMaxBurst = true are supported. The
WRAP burst is passed through if the length is less than or equal to16. Otherwise,
it is converted to two or more INCR bursts that respect the transaction's wrap
boundary.

GENERIC_CONVERTER Controls all burst conversions with a single converter that is able to adapt all
incoming burst types. This results in an adapter that has smaller area, but lower
fMax.

Read and Write Responses
Qsys merges write responses if a write is converted (burst adapted) into multiple bursts. Qsys requires
read response merging for a downsized (wide-to-narrow width adapted) read.

Qsys merges responses based on the following precedence rule:

DECERR > SLVERR > OKAY > EXOKAY

Adaptation between a master with write responses and a slave without write responses can be costly,
especially if there are multiple slaves, or the slave supports bursts. To minimize the cost of logic between
slaves, consider placing the slaves that do not have write responses behind a bridge so that the write
response adaptation logic cost is only incurred once, at the bridge’s slave interface.

The following table describes what happens when there is a mismatch in response support between the
master and slave.

Figure 7-19: Mismatched Master and Slave Response Support

Slave with Response Slave without Response

Master with
Response

Master without
Response

Interconnect delivers response
from the slave to the master.

Response merging or duplication
may be necessary for bus sizing.

Master ignores responses from
the slave.

Interconnect delivers an OKAY
response to the master.

No need for responses. Master,
slave, and interconnect operate
without response support.

Note: If there is a bridge between the master and the endpoint slave, and the responses must come from
the endpoint slave, ensure that the bridge passes the appropriate response signals through from the
endpoint slave to the master.

If the bridge does not support responses, then the responses are generated by the interconnect at
the slave interface of the bridge, and responses from the endpoint slave are ignored.

QPS5V1
2015.11.02 Read and Write Responses 7-27

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For the response case where the transaction violates security settings or uses an illegal address, the
interconnect routes the transactions to the default slave. For information about Qsys system security and
how to specify a default slave, refer to Creating a System with Qsys.

Note: Avalon-MM slaves without a response signal are not able to notify a connected master that a
transaction has not completed successfully. As a result, Qsys interconnect generates an OKAY
response on behalf of the Avalon-MM slave.

Related Information

• Master Network Interfaces on page 7-11
• Error Correction Coding (ECC) in Qsys Interconnect on page 7-69
• Avalon-MM Interface Signal Roles
• Interface Properties

Qsys Address Decoding
Address decoding logic forwards appropriate addresses to each slave.

Address decoding logic simplifies component design in the following ways:

• The interconnect selects a slave whenever it is being addressed by a master. Slave components do not
need to decode the address to determine when they are selected.

• Slave addresses are properly aligned to the slave interface.
• Changing the system memory map does not involve manually editing HDL.

Figure 7-20: Address Decoding for One Master and Two Slaves

In this example, Qsys generates separate address decoding logic for each master in a system. The address
decoding logic processes the difference between the master address width (<M>) and the individual slave
address widths (<S >) and (<T >). The address decoding logic also maps only the necessary master address
bits to access words in each slave’s address space.

Slave
Port 1
(8-bit)

Slave
Port 2

(32-bit)

address [S..0]

read/write

read/write

address [T..2]

address [M..0] Address
Decoding

Logic
Master

Port

7-28 Qsys Address Decoding
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467948258/en-us
https://documentation.altera.com/#/link/nik1412467993397/nik1412467947219/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-21: Address Decoding Base Settings

Qsys controls the base addresses with the Base setting of active components on the System Contents tab.
The base address of a slave component must be a multiple of the address span of the component. This
restriction is part of the Qsys interconnect to allow the address decoding logic to be efficient, and to
achieve the best possible fMAX.

Avalon Streaming Interfaces
High bandwidth components with streaming data typically use Avalon-ST interfaces for the high
throughput datapath. Streaming interfaces can also use memory-mapped connection interfaces to provide
an access point for control. In contrast to the memory-mapped interconnect, the Avalon-ST interconnect
always creates a point-to-point connection between a single data source and data sink.

QPS5V1
2015.11.02 Avalon Streaming Interfaces 7-29

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-22: Memory-Mapped and Avalon-ST Interfaces

In this example, there are the following connection pairs:

• Data source in the Rx Interface transfers data to the data sink in the FIFO.
• Data source in the FIFO transfers data to the Tx Interface data sink.

The memory-mapped interface allows a processor to access the data source, FIFO, or data sink to provide
system control. If your source and sink interfaces have different formats, for example, a 32-bit source and
an 8-bit sink, Qsys automatically inserts the necessary adapters. You can view the adapters on the System
Contents tab by clicking System > Show System with Qsys Interconnect.

 FIFO

Data
Sink

Data
Source

Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

Data
Sink

Data
Source

ready
valid

data

ready
valid

data
channel

Control
Slave

Control
Slave

Control
Slave

Processor UART Timer

Control Plane Memory Mapped Intefaces

Data Plane Avalon-Streaming Interface

RAM

7-30 Avalon Streaming Interfaces
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-23: Avalon‑ST Connection Between the Source and Sink

This source-sink pair includes only the data signal. The sink must be able to receive data as soon as the
source interface comes out of reset.

Data Source Data Sinkdata

Figure 7-24: Signals Indicating the Start and End of Packets, Channel Numbers, Error Conditions, and
Backpressure

All data transfers using Avalon-ST interconnect occur synchronously on the rising edge of the associated
clock interface. Throughput and frequency of a system depends on the components and how they are
connected.

ready

Data Source Data Sink

valid
channel

startof packet
endofpacket

empty
error
data

The IP Catalog includes a number of Avalon-ST components that you can use to create datapaths,
including datapaths whose input and output streams have different properties. Generated systems that
include memory-mapped master and slave components may also use these Avalon-ST components
because Qsys generation creates interconnect with a structure similar to a network topology, as described
in Qsys Transformations. The following sections introduce the Avalon-ST components.

Related Information

• Avalon-ST Adapters on page 7-31
• Qsys Transformations on page 7-7
• Avalon Interface Specification

Avalon-ST Adapters
Qsys automatically adds Avalon-ST adapters between two components during system generation when it
detects mismatched interfaces. If you connect mismatched Avalon-ST sources and sinks, for example, a

QPS5V1
2015.11.02 Avalon-ST Adapters 7-31

Qsys Interconnect Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

32-bit source and an 8-bit sink, Qsys inserts the appropriate adapter type to connect the mismatched
interfaces.

After generation, you can view the inserted adapters with the Show System With Qsys Interconnect
command in the System menu. For each mismatched source-sink pair, Qsys inserts an Avalon-ST
Adapter. The adapter instantiates the necessary adaptation logic as sub-components. You can review the
logic for each adapter instantiation in the Hierarchy view by expanding each adapter's source and sink
interface and comparing the relevant ports. For example, to determine why a channel adapter is inserted,
expand the channel adapter's sink and source interfaces and review the channel port properties for each
interface.

You can turn off the auto-inserted adapters feature by adding the
qsys_enable_avalon_streaming_transform=off command to the quartus.ini file. When you turn off
the auto-inserted adapters feature, if mismatched interfaces are detected during system generation, Qsys
does not insert adapters and reports the mismatched interface with validation error message.

Note: The auto-inserted adapters feature does not work for video IP core connections.

Avalon-ST Adapter
The Avalon-ST adapter combines the logic of the channel, error, data format, and timing adapters. The
Avalon-ST adapter provides adaptations between interfaces that have mismatched Avalon-ST endpoints.
Based on the source and sink interface parameterizations for the Avalon-ST adapter, Qsys instantiates the
necessary adapter logic (channel, error, data format, or timing) as hierarchal sub-components.

Avalon-ST Adapter Parameters Common to Source and Sink Interfaces

Table 7-7: Avalon-ST Adapter Parameters Common to Source and Sink Interfaces

Parameter Name Description

Symbol Width Width of a single symbol in bits.

Use Packet Indicates whether the source and sink interfaces connected to the
adapter's source and sink interfaces include the startofpacket and
endofpacket signals, and the optional empty signal.

Avalon-ST Adapter Upstream Source Interface Parameters

Table 7-8: Avalon-ST Adapter Upstream Source Interface Parameters

Parameter Name Description

Source Data Width Controls the data width of the source interface data port.

Source Top Channel Maximum number of output channels allowed.

Source Channel Port Width Sets the bit width of the source interface channel port. If set to 0, there
is no channel port on the sink interface.

Source Error Port Width Sets the bit width of the source interface error port. If set to 0, there is
no error port on the sink interface.

Source Error Descriptors A list of strings that describe the error conditions for each bit of the
source interface error signal.

7-32 Avalon-ST Adapter
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description

Source Uses Empty Port Indicates whether the source interface includes the empty port, and
whether the sink interface should also include the empty port.

Source Empty Port Width Indicates the bit width of the source interface empty port, and sets the
bit width of the sink interface empty port.

Source Uses Valid Port Indicates whether the source interface connected to the sink interface
uses the valid port, and if set, configures the sink interface to use the
valid port.

Source Uses Ready Port Indicates whether the sink interface uses the ready port, and if set,
configures the source interface to use the ready port.

Source Ready Latency Specifies what ready latency to expect from the source interface
connected to the adapter's sink interface.

Avalon-ST Adapter Downstream Sink Interface Parameters

Table 7-9: Avalon-ST Adapter Downstream Sink Interface Parameters

Parameter Name Description

Sink Data Width Indicates the bit width of the data port on the sink interface connected
to the source interface.

Sink Top Channel Maximum number of output channels allowed.

Sink Channel Port Width Indicates the bit width of the channel port on the sink interface
connected the source interface.

Sink Error Port Width Indicates the bit width of the error port on the sink interface
connected to the adapter's source interface. If set to zero, there is no
error port on the source interface.

Sink Error Descriptors A list of strings that describe the error conditions for each bit of the
error port on the sink interface connected to the source interface.

Sink Uses Empty Port Indicates whether the sink interface connected to the source interface
uses the empty port, and whether the source interface should also use
the empty port.

Sink Empty Port Width Indicates the bit width of the empty port on the sink interface
connected to the source interface, and configures a corresponding
empty port on the source interface.

Sink Uses Valid Port Indicates whether the sink interface connected to the source interface
uses the valid port, and if set, configures the source interface to use
the valid port.

Sink Uses Ready Port Indicates whether the ready port on the sink interface is connected to
the source interface , and if set, configures the sink interface to use the
ready port.

QPS5V1
2015.11.02 Avalon-ST Adapter Downstream Sink Interface Parameters 7-33

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description

Sink Ready Latency Specifies what ready latency to expect from the source interface
connected to the sink interface.

Channel Adapter
The channel adapter provides adaptations between interfaces that have different channel signal widths.

Table 7-10: Channel Adapter Adaptations

Condition Description of Adapter Logic

The source uses channels, but the sink does not. Qsys gives a warning at generation time. The
adapter provides a simulation error and signals an
error for data for any channel from the source other
than 0.

The sink has channel, but the source does not. Qsys gives a warning at generation time, and the
channel inputs to the sink are all tied to a logical 0.

The source and sink both support channels, and the
source's maximum channel number is less than the
sink's maximum channel number.

The source's channel is connected to the sink's
channel unchanged. If the sink's channel signal has
more bits, the higher bits are tied to a logical 0.

The source and sink both support channels, but the
source's maximum channel number is greater than
the sink's maximum channel number.

The source’s channel is connected to the sink’s
channel unchanged. If the source’s channel signal
has more bits, the higher bits are left unconnected.
Qsys gives a warning that channel information may
be lost.

An adapter provides a simulation error message and
an error indication if the value of channel from the
source is greater than the sink's maximum number
of channels. In addition, the valid signal to the sink
is deasserted so that the sink never sees data for
channels that are out of range.

Avalon-ST Channel Adapter Input Interface Parameters

Table 7-11: Avalon-ST Channel Adapter Input Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the input channel signal in bits

Max Channel Maximum number of input channels allowed.

7-34 Channel Adapter
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Channel Adapter Output Interface Parameters

Table 7-12: Avalon-ST Channel Adapter Output Interface Parameters

Parameter Name Description

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

Table 7-13: Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon-ST Channel adapter supports
packets, the startofpacket, endofpacket, and
optional empty signals are included on its sink and
source interfaces.

Include Empty Signal Indicates whether an empty signal is required.

Data Symbols Per Beat Number of symbols per transfer.

Support Backpreasure with the ready signal Indicates whether a ready signal is required.

Ready Latency Specifies the ready latency to expect from the sink
connected to the module's source interface.

Error Signal Width (bits) Bit width of the error signal.

Error Signal Description A list of strings that describes what each bit of the
error signal represents.

Data Format Adapter
The data format adapter allows you to connect interfaces that have different values for the parameters
defining the data signal, or interfaces where the source does not use the empty signal, but the sink does
use the empty signal. One of the most common uses of this adapter is to convert data streams of different
widths.

QPS5V1
2015.11.02 Avalon-ST Channel Adapter Output Interface Parameters 7-35

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-14: Data Format Adapter Adaptations

Condition Description of Adapter Logic

The source and sink’s bits per
symbol parameters are different.

The connection cannot be made.

The source and sink have a
different number of symbols per
beat.

The adapter converts the source's width to the sink’s width.

If the adaptation is from a wider to a narrower interface, a beat of data
at the input corresponds to multiple beats of data at the output. If the
input error signal is asserted for a single beat, it is asserted on output
for multiple beats.

If the adaptation is from a narrow to a wider interface, multiple input
beats are required to fill a single output beat, and the output error is
the logical OR of the input error signal.

The source uses the empty signal,
but the sink does not use the
empty signal.

Qsys cannot make the connection.

7-36 Data Format Adapter
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-25: Avalon Streaming Interconnect with Data Format Adapter

In this example, the data format adapter allows a connection between a 128-bit output data stream and
three 32-bit input data streams.

128-Bit RX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

32-Bit TX
Interface

128 Bits

128 Bits

128 Bits

Data
Format
Adapter

Data
Format
Adapter

Data
Format
Adapter

32 Bits

32 Bits

32 Bits

128 Bits

Avalon-ST Data Format Adapter Input Interface Parameters

Table 7-15: Avalon-ST Data Format Adapter Input Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signal Indicates whether an empty signal is required.

Avalon-ST Data Format Adapter Output Interface Parameters

Table 7-16: Avalon-ST Data Format Adapter Output Interface Parameters

Parameter Name Description

Data Symbols Per Beat Number of symbols per transfer.

Include Empty Signals Indicates whether an empty signal is required.

QPS5V1
2015.11.02 Avalon-ST Data Format Adapter Input Interface Parameters 7-37

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Data Format Adapter Common to Input and Output Interface Parameters

Table 7-17: Avalon-ST Data Format Adapter Common to Input and Output Interface Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support When the Avalon-ST Data Format adapter supports
packets, Qsys uses startofpacket, endofpacket, and
empty signals.

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of channels allowed.

Read Latency Specifies the ready latency to expect from the sink
connected to the module's source interface.

Error Signal Width (bits) Width of the error signal output in bits.

Error Signal Description A list of strings that describes what each bit of the error
signal represents.

Error Adapter
The error adapter ensures that per-bit-error information provided by the source interface is correctly
connected to the sink interface’s input error signal. Error conditions that both the source and sink are able
to process are connected. If the source has an error signal representing an error condition that is not
supported by the sink, the signal is left unconnected; the adapter provides a simulation error message and
an error indication if the error is asserted. If the sink has an error condition that is not supported by the
source, the sink's input error bit corresponding to that condition is set to 0.

Note: The output interface error signal descriptor accepts an error set with an other descriptor. Qsys
assigns the bit-wise ORing of all input error bits that are unmatched, to the output interface error
bits set with the other descriptor.

Avalon-ST Error Adapter Input Interface Parameters

Table 7-18: Avalon-ST Error Adapter Input Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits. Type 0 if the
error signal is not used.

Error Signal Description The description for each of the error bits. If scripting, separate the
description fields by commas. For a successful connection, the descrip‐
tion strings of the error bits in the source and sink must match and are
case sensitive.

7-38 Avalon-ST Data Format Adapter Common to Input and Output Interface...
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Error Adapter Output Interface Parameters

Table 7-19: Avalon-ST Error Adapter Output Interface Parameters

Parameter Name Description

Error Signal Width (bits) The width of the error signal. Valid values are 0–256 bits.
Type 0 if you do not need to send error values.

Error Signal Description The description for each of the error bits. Separate the
description fields by commas. For successful connection, the
description of the error bits in the source and sink must
match, and are case sensitive.

Avalon-ST Error Adapter Common to Input and Output Interface Parameters

Table 7-20: Avalon-ST Error Adapter Common to Input and Output Interface Parameters

Parameter Name Description

Support Backpressure with the ready signal Turn on this option to add the backpressure function‐
ality to the interface.

Ready Latency When the ready signal is used, the value for ready_
latency indicates the number of cycles between
when the ready signal is asserted and when valid data
is driven.

Channel Signal Width (bits) The width of the channel signal. A channel width of 4
allows up to 16 channels. The maximum width of the
channel signal is eight bits. Set to 0 if channels are
not used.

Max Channel The maximum number of channels that the interface
supports. Valid values are 0–255.

Data Bits Per Symbol Number of bits per symbol.

Data Symbols Per Beat Number of symbols per active transfer.

Include Packet Support Turn on this option if the connected interfaces
support a packet protocol, including the startof-
packet, endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This
signal is not necessary if the number of symbols per
beat is 1.

QPS5V1
2015.11.02 Avalon-ST Error Adapter Output Interface Parameters 7-39

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Timing Adapter
The timing adapter allows you to connect component interfaces that require a different number of cycles
before driving or receiving data. This adapter inserts a FIFO buffer between the source and sink to buffer
data or pipeline stages to delay the back pressure signals. You can also use the timing adapter to connect
interfaces that support the ready signal, and those that do not. The timing adapter treats all signals other
than the ready and valid signals as payload, and simply drives them from the source to the sink.

Table 7-21: Timing Adapter Adaptations

Condition Adaptation

The source has ready, but the sink does not. In this case, the source can respond to backpres-
sure, but the sink never needs to apply it. The
ready input to the source interface is connected
directly to logical 1.

The source does not have ready, but the sink does. The sink may apply backpressure, but the source is
unable to respond to it. There is no logic that the
adapter can insert that prevents data loss when the
source asserts valid but the sink is not ready. The
adapter provides simulation time error messages if
data is lost. The user is presented with a warning,
and the connection is allowed.

The source and sink both support backpressure, but
the sink’s ready latency is greater than the source's.

The source responds to ready assertion or deasser‐
tion faster than the sink requires it. A number of
pipeline stages equal to the difference in ready
latency are inserted in the ready path from the sink
back to the source, causing the source and the sink
to see the same cycles as ready cycles.

The source and sink both support backpressure, but
the sink’s ready latency is less than the source's.

The source cannot respond to ready assertion or
deassertion in time to satisfy the sink. A FIFO
whose depth is equal to the difference in ready
latency is inserted to compensate for the source’s
inability to respond in time.

Avalon-ST Timing Adapter Input Interface Parameters

Table 7-22: Avalon-ST Timing Adapter Input Interface Parameters

Parameter Name Description

Support Backpreasure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink
connected to the module's source interface.

7-40 Timing Adapter
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Name Description

Include Valid Signal Indicates whether the sink interface requires a valid
signal.

Avalon-ST Timing Adapter Output Interface Parameters

Table 7-23: Avalon-ST Timing Adapter Output Interface Parameters

Parameter Name Description

Support Backpreasure with the ready signal Indicates whether a ready signal is required.

Read Latency Specifies the ready latency to expect from the sink
connected to the module's source interface.

Include Valid Signal Indicates whether the sink interface requires a valid
signal.

Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

Table 7-24: Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

Parameter Name Description

Data Bits Per Symbol Number of bits for each symbol in a transfer.

Include Packet Support Turn this option on if the connected interfaces
support a packet protocol, including the startof-
packet, endofpacket and empty signals.

Include Empty Signal Turn this option on if the cycle that includes the
endofpacket signal can include empty symbols. This
signal is not necessary if the number of symbols per
beat is 1.

Data Symbols Per Beat Number of symbols per active transfer.

Channel Signal Width (bits) Width of the output channel signal in bits.

Max Channel Maximum number of output channels allowed.

Error Signal Width (bits) Width of the output error signal in bits.

Error Signal Description A list of strings that describes errors.

QPS5V1
2015.11.02 Avalon-ST Timing Adapter Output Interface Parameters 7-41

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interrupt Interfaces
Using individual requests, the interrupt logic can process up to 32 IRQ inputs connected to each interrupt
receiver. With this logic, the interrupt sender connected to interrupt receiver_0 is the highest priority
with sequential receivers being successively lower priority. You can redefine the priority of interrupt
senders by instantiating the IRQ mapper component. For more information refer to IRQ Mapper.

You can define the interrupt sender interface as asynchronous with no associated clock or reset interfaces.
You can also define the interrupt receiver interface as asynchronous with no associated clock or reset
interfaces. As a result, the receiver does its own synchronization internally. Qsys does not insert interrupt
synchronizers for such receivers.

For clock crossing adaption on interrupts, Qsys inserts a synchronizer, which is clocked with the interrupt
end point interface clock when the corresponding starting point interrupt interface has no clock or a
different clock (than the end point). Qsys inserts the adapter if there is any kind of mismatch between the
start and end points. Qsys does not insert the adapter if the interrupt receiver does not have an associated
clock.

Related Information
IRQ Mapper on page 7-44

Individual Requests IRQ Scheme
In the individual requests IRQ scheme, Qsys interconnect passes IRQs directly from the sender to the
receiver, without making assumptions about IRQ priority. In the event that multiple senders assert their

7-42 Interrupt Interfaces
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

IRQs simultaneously, the receiver logic determines which IRQ has highest priority, and then responds
appropriately.

Figure 7-26: Interrupt Controller Mapping IRQs

Using individual requests, the interrupt controller can process up to 32 IRQ inputs. The interrupt
controller generates a 32-bit signal irq[31:0] to the receiver, and maps slave IRQ signals to the bits of
irq[31:0]. Any unassigned bits of irq[31:0] are disabled.

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Sender
1

Sender
2

Sender
3

Sender
4

Interrupt
Controller

irq

irq

irq

irq

Receiver

Assigning IRQs in Qsys
You assign IRQ connections on the System Contents tab of Qsys. After adding all components to the
system, you connect interrupt senders and receivers. You can use the IRQ column to specify an IRQ
number with respect to each receiver, or to specify a receiver's IRQ as unconnected. Qsys uses the
following three components to implement interrupt handling: IRQ Bridge, IRQ Mapper, and IRQ Clock
Crosser.

IRQ Bridge
The IRQ Bridge allows you to route interrupt wires between Qsys subsystems.

QPS5V1
2015.11.02 Assigning IRQs in Qsys 7-43

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-27: Qsys IRQ Bridge Application

The peripheral subsystem example below has three interrupt senders that are exported to the to- level of
the subsystem. The interrupts are then routed to the CPU subsystem using the IRQ bridge.

3-bit bus

4-bit bus

 IRQ Bridge

IR

IS

 Interrupt
 Sender 1

IS

 Interrupt
 Sender 2

IS

 Interrupt
 Sender 3

IS Interrupt
 Sender 4

IS

export export export

export

IR

 Nios II
Processor

CPU Subsystem

Peripheral Subsystem

Top-Level Qsys System

IS Interrupt Sender IR Interrupt Receiver

Note: Nios II BSP tools support the IRQ Bridge. Interrupts connected via an IRQ Bridge appear in the
generated system.h file. You can use the following properties with the IRQ Bridge, which do not
effect Qsys interconnect generation. Qsys uses these properties to generate the correct IRQ
information for downstream tools:

• set_interface_property <sender port> bridgesToReceiver <receiver port>—The <sender
port> of the IP generates a signal that is received on the IP's <receiver port>. Sender ports are
single bits. Receivers ports can be multiple bits. Qsys requires the bridgedReceiverOffset
property to identify the <receiver port> bit that the <sender port> sends.

• set_interface_property <sender port> bridgedReceiverOffset <port number>—
Indicates the <port number> of the receiver port that the <sender port> sends.

IRQ Mapper
Qsys inserts the IRQ Mapper automatically during generation. The IRQ Mapper converts individual
interrupt wires to a bus, and then maps the appropriate IRQ priority number onto the bus.

7-44 IRQ Mapper
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the interrupt sender connected to the receiver0 interface of the IRQ mapper is the highest
priority, and sequential receivers are successively lower priority. You can modify the interrupt priority of
each IRQ wire by modifying the IRQ priority number in Qsys under the IRQ column. The modified
priority is reflected in the IRQ_MAP parameter for the auto-inserted IRQ Mapper.

Figure 7-28: IRQ Column in Qsys

Circled in the IRQ column are the default interrupt priorities allocated for the CPU subsystem.

Related Information
IRQ Bridge on page 7-43

IRQ Clock Crosser
The IRQ Clock Crosser synchronizes interrupt senders and receivers that are in different clock domains.
To use this component, connect the clocks for both the interrupt sender and receiver, and for both the
interrupt sender and receiver interfaces. Qsys automatically inserts this component when it is required.

Clock Interfaces
Clock interfaces define the clocks used by a component. Components can have clock inputs, clock
outputs, or both. To update the clock frequency of the component, use the Parameters tab for the clock
source.

QPS5V1
2015.11.02 IRQ Clock Crosser 7-45

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Clock Source parameters allows you to set the following options:

• Clock frequency—The frequency of the output clock from this clock source.
• Clock frequency is known— When turned on, the clock frequency is known. When turned off, the

frequency is set from outside the system.

Note: If turned off, system generation may fail because the components do not receive the necessary
clock information. For best results, turn this option on before system generation.

• Reset synchronous edges

• None—The reset is asserted and deasserted asynchronously. You can use this setting if you have
internal synchronization circuitry that matches the reset required for the IP in the system.

• Both—The reset is asserted and deasserted synchronously.
• Deassert—The reset is deasserted synchronously and asserted asynchronously.

For more information about synchronous design practices, refer to Recommended Design Practices

Related Information
Recommended Design Practices on page 11-1

(High Speed Serial Interface) HSSI Clock Interfaces
You can use HSSI Serial Clock and HSSI Bonded Clock interfaces in Qsys to enable high speed serial
connectivity between clocks that are used by certain IP protocols.

HSSI Serial Clock Interface
You can connect the HSSI Serial Clock interface with only similar type of interfaces, for example, you can
connect a HSSI Serial Clock Source interface to a HSSI Serial Clock Sink interface.

HSSI Serial Clock Source
The HSSI Serial Clock interface includes a source in the Start direction.

You can instantiate the HSSI Serial Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock start

You can connect the HSSI Serial Clock Source to multiple HSSI Serial Clock Sinks because the HSSI Serial
Clock Source supports multiple fan-outs. This Interface has a single clk port role limited to a 1 bit width,
and a clockRate parameter, which is the frequency of the clock driven by the HSSI Serial Clock Source
interface.

An unconnected and unexported HSSI Serial Source is valid and does not generate error messages.

Table 7-25: HSSI Serial Clock Source Port Roles

Name Direction Width Description

clk Output 1 bit A single bit wide port role, which provides synchronization
for internal logic.

7-46 (High Speed Serial Interface) HSSI Clock Interfaces
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-26: HSSI Serial Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial
Clock Source interface.

HSSI Serial Clock Sink
The HSSI Serial Clock interface includes a sink in the End direction.

You can instantiate the HSSI Serial Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_serial_clock end

You can connect the HSSI Serial Clock Sink interface to a single HSSI Serial Clock Source interface; you
cannot connect it to multiple sources. This Interface has a single clk port role limited to a 1 bit width, and
a clockRate parameter, which is the frequency of the clock driven by the HSSI Serial Clock Source
interface.

An unconnected and unexported HSSI Serial Sink is invalid and generates error messages.

Table 7-27: HSSI Serial Clock Sink Port Roles

Name Direction Width Description

clk Output 1 A single bit wide port role, which provides synchronization
for internal logic

Table 7-28: HSSI Serial Clock Sink Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven by the HSSI Serial
Clock Source interface. When you specify a clockRate
greater than 0, then this interface can be driven only at
that rate.

HSSI Serial Clock Connection
The HSSI Serial Clock Connection defines a connection between a HSSI Serial Clock Source connection
point, and a HSSI Serial Clock Sink connection point.

A valid HSSI Serial Clock Connection exists when all of the following criteria are satisfied. If the following
criteria are not satisfied, Qsys generates error messages and the connection is prohibited.

• The starting connection point is an HSSI Serial Clock Source with a single port role clk and maximum
1 bit in width. The direction of the starting port is Output.

• The ending connection point is an HSSI Serial Clock Sink with a single port role clk, and maximum 1
bit in width. The direction of the ending port is Input.

• If the parameter, clockRate of the HSSI Serial Clock Sink is greater than 0, the connection is only valid
if the clockRate of the HSSI Serial Clock Source is the same as the clockRate of the HSSI Serial Clock
Sink.

QPS5V1
2015.11.02 HSSI Serial Clock Sink 7-47

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HSSI Serial Clock Example

Example 7-1: HSSI Serial Clock Interface Example

You can make connections to declare the HSSI Serial Clock interfaces in the _hw.tcl.

package require -exact qsys 14.0

set_module_property name hssi_serial_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset QUARTUS_SYNTH QUARTUS_SYNTH generate
add_fileset SIM_VERILOG SIM_VERILOG generate
add_fileset SIM_VHDL SIM_VHDL generate

set_fileset_property QUARTUS_SYNTH TOP_LEVEL \
"hssi_serial_component"

set_fileset_property SIM_VERILOG TOP_LEVEL "hssi_serial_component"
set_fileset_property SIM_VHDL TOP_LEVEL "hssi_serial_component"

proc elaborate {} {
 # declaring HSSI Serial Clock Source
 add_interface my_clock_start hssi_serial_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_serial_clock_port_out \
 clk Output 1

 # declaring HSSI Serial Clock Sink
 add_interface my_clock_end hssi_serial_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_serial_clock_port_in clk \
 Input 1
}

proc generate { output_name } {

 add_fileset_file hssi_serial_component.v VERILOG PATH \
 "hssi_serial_component.v"
}

Example 7-2: HSSI Serial Clock Instantiated in a Composed Component

If you use the components in a hierarchy, for example, instantiated in a composed component,
you can declare the connections as illustrated in this example.

add_instance myinst1 hssi_serial_component
add_instance myinst2 hssi_serial_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_serial_clock

7-48 HSSI Serial Clock Example
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HSSI Bonded Clock Interface
You can connect the HSSI Bonded Clock interface with only similar type of Interfaces, for example, you
can connect a HSSI Bonded Clock Source interface to a HSSI Bonded Clock Sink interface.

HSSI Bonded Clock Source
The HSSI Bonded Clock interface includes a source in the Start direction.

You can instantiate the HSSI Bonded Clock Source interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock start

You can connect the HSSI Bonded Clock Source to multiple HSSI Bonded Clock Sinks because the HSSI
Serial Clock Source supports multiple fanouts. This Interface has a single clk port role limited to a width
range of 1 to 1024 bits. The HSSI Bonded Clock Source interface has two parameters: clockRate and
serialzationFactor. clockRate is the frequency of the clock driven by the HSSI Bonded Clock Source
interface, and the serializationFactor is the parallel data width that operates the HSSI TX serializer. The
serialization factor determines the required frequency and phases of the individual clocks within the HSSI
Bonded Clock interface

An unconnected and unexported HSSI Bonded Source is valid and does not generate error messages.

Table 7-29: HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization
for internal logic.

Table 7-30: HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial
Clock Source interface.

serialization long 0 No The serialization factor is the parallel data width that
operates the HSSI TX serializer. The serialization factor
determines the necessary frequency and phases of the
individual clocks within the HSSI Bonded Clock
interface.

HSSI Bonded Clock Sink
The HSSI Bonded Clock interface includes a sink in the End direction.

You can instantiate the HSSI Bonded Clock Sink interface in the _hw.tcl file as:

add_interface <name> hssi_bonded_clock end

You can connect the HSSI Bonded Clock Sink interface to a single HSSI Bonded Clock Source interface;
you cannot connect it to multiple sources. This Interface has a single clk port role limited to a width range
of 1 to 1024 bits. The HSSI Bonded Clock Source interface has two parameters: clockRate and serialza‐

QPS5V1
2015.11.02 HSSI Bonded Clock Interface 7-49

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

tionFactor. clockRate is the frequency of the clock driven by the HSSI Bonded Clock Source interface,
and the serialization factor is the parallel data width that operates the HSSI TX serializer. The serialization
factor determines the required frequency and phases of the individual clocks within the HSSI Bonded
Clock interface

An unconnected and unexported HSSI Bonded Sink is invalid and generates error messages.

Table 7-31: HSSI Bonded Clock Source Port Roles

Name Direction Width Description

clk Output 1 to 24 bits A multiple bit wide port role which provides synchronization
for internal logic.

Table 7-32: HSSI Bonded Clock Source Parameters

Name Type Default Derived Description

clockRate long 0 No The frequency of the clock driven byte HSSI Serial
Clock Source interface.

serialization long 0 No The serialization factor is the parallel data width that
operates the HSSI TX serializer. The serialization factor
determines the necessary frequency and phases of the
individual clocks within the HSSI Bonded Clock
interface.

HSSI Bonded Clock Connection
The HSSI Bonded Clock Connection defines a connection between a HSSI Bonded Clock Source
connection point, and a HSSI Bonded Clock Sink connection point.

A valid HSSI Bonded Clock Connection exists when all of the following criteria are satisfied. If the
following criteria are not satisfied, Qsys generates error messages and the connection is prohibited.

• The starting connection point is an HSSI Bonded Clock Source with a single port role clk with a width
range of 1 to 24 bits. The direction of the starting port is Output.

• The ending connection point is an HSSI Bonded Clock Sink with a single port role clk with a width
range of 1 to 24 bits. The direction of the ending port is Input.

• The width of the starting connection point clk must be the same as the width of the ending connection
point.

• If the parameter, clockRate of the HSSI Bonded Clock Sink greater than 0, then the connection is only
valid if the clockRate of the HSSI Bonded Clock Source is same as the clockRate of the HSSI Bonded
Clock Sink.

• If the parameter, serializationFactor of the HSSI Bonded Clock Sink is greater than 0, Qsys generates
a warning if the serializationFactor of HSSI Bonded Clock Source is not same as the serialization‐
Factor of the HSSI Bonded Clock Sink.

7-50 HSSI Bonded Clock Connection
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HSSI Bonded Clock Example

Example 7-3: HSSI Bonded Clock Interface Example

You can make connections to declare the HSSI Bonded Clock interfaces in the _hw.tcl file.

package require -exact qsys 14.0

set_module_property name hssi_bonded_component
set_module_property ELABORATION_CALLBACK elaborate

add_fileset synthesis QUARTUS_SYNTH generate
add_fileset verilog_simulation SIM_VERILOG generate

set_fileset_property synthesis TOP_LEVEL "hssi_bonded_component"

set_fileset_property verilog_simulation TOP_LEVEL \
"hssi_bonded_component"

proc elaborate {} {
 add_interface my_clock_start hssi_bonded_clock start
 set_interface_property my_clock_start ENABLED true

 add_interface_port my_clock_start hssi_bonded_clock_port_out \
 clk Output 1024

 add_interface my_clock_end hssi_bonded_clock end
 set_interface_property my_clock_end ENABLED true

 add_interface_port my_clock_end hssi_bonded_clock_port_in \
 clk Input 1024
}

proc generate { output_name } {
 add_fileset_file hssi_bonded_component.v VERILOG PATH \
 "hssi_bonded_component.v"}

If you use the components in a hierarchy, for example, instantiated in a composed component, you can
declare the connections as illustrated in this example.

Example 7-4: HSII Bonded Clock Instantiated in a Composed Component

add_instance myinst1 hssi_bonded_component
add_instance myinst2 hssi_bonded_component
add connection from source of myinst1 to sink of myinst2

add_connection myinst1.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

adding connection from source of myinst2 to sink of myinst1

add_connection myinst2.my_clock_start myinst2.my_clock_end \
hssi_bonded_clock

QPS5V1
2015.11.02 HSSI Bonded Clock Example 7-51

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Interfaces
Reset interfaces provide both soft and hard reset functionality. Soft reset logic typically re-initializes
registers and memories without powering down the device. Hard reset logic initializes the device after
power-on. You can define separate reset sources for each clock domain, a single reset source for all clocks,
or any combination in between.

You can choose to create a single global reset domain by selecting Create Global Reset Network on the
System menu. If your design requires more than one reset domain, you can implement your own reset
logic and connectivity. The IP Catalog includes a reset controller, reset sequencer, and a reset bridge to
implement the reset functionality. You can also design your own reset logic.

Note: If you design your own reset circuitry, you must carefully consider situations which may result in
system lockup. For example, if an Avalon-MM slave is reset in the middle of a transaction, the
Avalon-MM master may lockup.

Single Global Reset Signal Implemented by Qsys
If you select Create Global Reset Network on the System menu, the Qsys interconnect creates a global
reset bus. All of the reset requests are ORed together, synchronized to each clock domain, and fed to the
reset inputs. The duration of the reset signal is at least one clock period.

The Qsys interconnect inserts the system-wide reset under the following conditions:

• The global reset input to the Qsys system is asserted.
• Any component asserts its resetrequest signal.

Reset Controller
Qsys automatically inserts a reset controller block if the input reset source does not have a reset request,
but the connected reset sink requires a reset request.

The Reset Controller has the following parameters that you can specify to customize its behavior:

• Number of inputs— Indicates the number of individual reset interfaces the controller ORs to create a
signal reset output.

• Output reset synchronous edges—Specifies the level of synchronization. You can select one the
following options:

• None—The reset is asserted and deasserted asynchronously. You can use this setting if you have
designed internal synchronization circuitry that matches the reset style required for the IP in the
system.

• Both—The reset is asserted and deasserted synchronously.
• Deassert—The reset is deasserted synchronously and asserted asynchronously.

• Synchronization depth—Specifies the number of register stages the synchronizer uses to eliminate the
propagation of metastable events.

• Reset request—Enables reset request generation, which is an early signal that is asserted before reset
assertion. The reset request is used by blocks that require protection from asynchronous inputs, for
example, M20K blocks.

7-52 Reset Interfaces
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys automatically inserts reset synchronizers under the following conditions:

• More than one reset source is connected to a reset sink
• There is a mismatch between the reset source’s synchronous edges and the reset sinks’ synchronous

edges

Reset Bridge
The Reset Bridge allows you to use a reset signal in two or more subsystems of your Qsys system. You can
connect one reset source to local components, and export one or more to other subsystems, as required.

The Reset Bridge parameters are used to describe the incoming reset and include the following options:

• Active low reset—When turned on, reset is asserted low.
• Synchronous edges—Specifies the level of synchronization and includes the following options:

• None—The reset is asserted and deasserted asynchronously. Use this setting if you have internal
synchronization circuitry.

• Both—The reset is asserted and deasserted synchronously.
• Deassert—The reset is deasserted synchronously, and asserted asynchronously.

• Number of reset outputs—The number of reset interfaces that are exported.

Note: Qsys supports multiple reset sink connections to a single reset source interface. However, there are
situations in composed systems where an internally generated reset must be exported from the
composed system in addition to being used to connect internal components. In this situation, you
must declare one reset output interface as an export, and use another reset output to connect
internal components.

Reset Sequencer
The Reset Sequencer allows you to control the assertion and de-assertion sequence for Qsys system resets.
The Parameter Editor displays the expected assertion and de-assertion sequences based on the current
settings. You can connect multiple reset sources to the reset sequencer, and then connect the output of the
reset sequencer to components in the system.

QPS5V1
2015.11.02 Reset Bridge 7-53

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-29: Elements and Flow of a Reset Sequencer

CSR

Sync
Sync
Sync
Sync

Reset
Controller

Main
FSM

ASRT SEQ

DSRT SEQ
RESET_OUT

Deglitch
Deglitch
Deglitch
Deglitch

Avalon
Interface

reset_in0
reset_in1
reset_in2
reset_in M

reset_dsrt_qual0
reset_dsrt_qual1
reset_dsrt_qual2
reset_dsrt_qual N

reset_in_sync

assrt_en

reset_logging
CSR_CONTROL(csr_*)
CSR_MASK/PVR

enable
done
enable
done

set_reset[N :0]

dr_reset[N :0]

reset_out0
reset_out1
reset_out2
reset_out N

Reset Sequencer

Parameter:
DSRT_QUALCNT_(0:N)

Parameter:
MIN_ASRT_TIME

Parameter:
ASRT_DELAY(0:N)

Parameter:
DSRT_DELAY(0:N)
ENABLE_DEASSERTION_INPUT_QUAL(0:N)

Reset Controller —Reused reset controller block. It synchronizes the reset inputs into one and feed into the main FSM of the sequencer
block.
Sync —Synchronization block (double flip-flop).
Deglitch —Deglitch block. This block waits for a signal to be at a level for X clocks before propagating the input to the output.
CSR —This block contains the CSR Avalon interface and related CSR register and control block in the sequencer.
Main FSM —Main sequencer. This block determines when assertion/deassertion and assertion hold timing occurs.
[A/D]SRT SEQ —Generic sequencer block that sequences out assertion/deassertion of reset from 0:N. The block has multiple
counters that saturate upon reaching count.
RESET_OUT —Controls the end output via:
– Set/clear from the ASRT_SEQ/DSRT_SEQ.
– Masking/forcing from CSR controls.
– Remap of numbering (parameterization).

Reset Sequencer Parameters

Table 7-33: Reset Sequencer Parameters

Parameter Description

Number of reset outputs Sets the number of output resets to be sequenced, which is the
number of output reset signals defined in the component with a
range of 2 to 10.

Number of reset inputs Sets the number of input reset signals to be sequenced, which is
the number of input reset signals defined in the component with a
range of 1 to 10.

Minimum reset assertion time Specifies the minimum assertion cycles between the assertion of
the last sequenced reset, and the de-assertion of the first
sequenced reset. The range is 0 to 1023.

7-54 Reset Sequencer Parameters
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Enable Reset Sequencer CSR Enables CSR functionality of the Reset Sequencer through an
Avalon interface.

reset_out# Lists the reset output signals. Set the parameters in the other
columns for each reset signal in the table.

ASRT Seq# Determines the order of reset assertion. Enter the values 1, 2, 3,
etc. to specify the required non-overlapping assertion order. This
value determines the ASRT_REMAP value in the component HDL.

ASRT Cycle# Number of cycles to wait before assertion of the reset. The value
set here corresponds to the ASRT_DELAY value in the component
HDL.The range is 0 to1023.

DSRT Seq# Determines the reset order of reset de-assertion. Enter the values
1, 2, 3, etc .to specify the required non-overlapping de-assertion
order. This value determines the DSRT_REMAP value in the
component HDL.

DSRT Cycle#/Deglitch# Number of cycles to wait before de-asserting or de-glitching the
reset. If the USE_DRST_QUAL parameter is set to 0, specifies the
number of cycles to wait before de-asserting the reset. If USE_
DSRT_QUAL is set to1, specifies the number of cycles to deglitch
the input reset_dsrt_qual signal. This value determines either
the DSRT_DELAY, or the DSRT_QUALCNT value in the component
HDL, depending on the USE_DSRT_QUAL parameter setting.
The range is 0 to 1023.

USE_DSRT_QUAL If you set USE_DSRT_QUAL to 1, the de-assertion sequence
waits for an external input signal for sequence qualification
instead of waiting for a fixed delay count. To use a fixed delay
count for de-assertion, set this parameter to 0.

QPS5V1
2015.11.02 Reset Sequencer Parameters 7-55

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Sequencer Timing Diagrams

Figure 7-30: Basic Sequencing

Figure 7-31: Sequencing with USE_DSRT_QUAL Set

Reset Sequencer CSR Registers

7-56 Reset Sequencer Timing Diagrams
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The CSR registers on the reset sequencer provide the following functionality:

• Supports reset logging

• Ability to identify which reset is asserted.
• Ability to determine whether any reset is currently active.

• Supports software triggered resets

• Ability to generate reset by writing to the register.
• Ability to disable assertion or de-assertion sequence.

• Supports software sequenced reset

• Ability for the software to fully control the assertion/de-assertion sequence by writing to registers
and stepping through the sequence.

• Support reset override

• Ability to assert a particular component reset through software.

Reset Sequencer Status Register Offset 0x00
The Status register contains bits that indicate the sources of resets that cause a reset.

You can clear bits by writing 1 to the bit location. The Reset Sequencer ignores writes to bits with a value
of 0. If the sequencer is reset (power-on-reset), all bits are cleared, except the power on reset bit.

Table 7-34: Values for the Status Register at Offset 0x00

Bit Attrib
ute

Defaul
t

Description

31 RO 0 Reset Active—Indicates that the sequencer is currently active in reset sequence
(assertion or de-assertion).

30 RW1C 0 Reset Asserted and waiting for SW to proceed:—Set when there is an active
reset assertion, and the next sequence is waiting for the software to proceed.

Only valid when the Enable SW sequenced reset entry option is turned on.

29 RW1C 0 Reset De-asserted and waiting for SW to proceed:—Set when there is an
active reset de-assertion, and the next sequence is waiting for the software to
proceed.

Only valid when the Enable SW sequenced reset bring up option is turned on.

28:26 RO 0 Reserved.

25:16 RW1C 0 Reset de-assertion input qualification signal reset_dsrt_qual [9:0] status—
Indicates that the reset de-assertion's input signal qualification signal is set. This
bit is set on the detection of assertion of the signal.

15:12 RO 0 Reserved.

11 RW1C 0 reset_in9 was triggered—Indicates that resetin9 triggered the reset. Cleared
by software by writing 1 to this bit location.

QPS5V1
2015.11.02 Reset Sequencer Status Register Offset 0x00 7-57

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Attrib
ute

Defaul
t

Description

10 RW1C 0 reset_in8 was triggered—Indicates that reset_in8 triggered the reset. Cleared
by software by writing a1 to this bit location.

9 RW1C 0 reset_in7 was triggered—Indicates that reset_in7 triggered the reset. Cleared
by software by writing 1 to this bit location.

8 RW1C 0 reset_in6 was triggered—Indicates that reset_in6 triggered the reset. Cleared
by software by writing 1 to this bit location.

7 RW1C 0 reset_in5 was triggered—Indicates that reset_in5 triggered the reset. Cleared
by software by writing 1 to this bit location.

6 RW1C 0 reset_in4 was triggered—Indicates that reset_in4 triggered the reset. Cleared
by software by writing 1 to this bit location.

5 RW1C 0 reset_in3 was triggered—Indicates that reset_in3 triggered the reset. Cleared
by software by writing 1 to this bit location.

4 RW1C 0 reset_in2 was triggered—Indicates that reset_in2 triggered the reset. Cleared
by software by writing 1 to this bit location.

3 RW1C 0 reset_in1 was triggered—Indicates that reset_in1 triggered the reset. Cleared
by software by writing 1 to this bit location.

2 RW1C 0 reset_in0 was triggered—Indicates that reset_in0 triggered. Cleared by
software by writing 1 to this bit location.

1 RW1C 0 Software triggered reset—Indicates that the software triggered reset is set by
the software, and triggering a reset.

0 RW1C 0 Power-On-Reset was triggered—Asserted whenever the reset to the sequencer
is triggered. This bit is NOT reset when sequencer is reset. Cleared by software
by writing 1 to this bit location.

Reset Sequencer Interrupt Enable Register Offset 0x04
The Interrupt Enable register contains the interrupt enable bit that you can use to enable any event
triggering the IRQ of the reset sequencer.

Table 7-35: Values for the Interrupt Enable Register at Offset 0x04

Bit Attrib
ute

Defaul
t

Description

31 RO 0 Reserved.

7-58 Reset Sequencer Interrupt Enable Register Offset 0x04
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Attrib
ute

Defaul
t

Description

30 RW 0 Interrupt on Reset Asserted and waiting for SW to proceed enable. When set,
the IRQ is set when the sequencer is waiting for the software to proceed in an
assertion sequence.

29 RW 0 Interrupt on Reset De-asserted and waiting for SW to proceed enable. When
set, the IRQ is set when the sequencer is waiting for the software to proceed in a
de-assertion sequence.

28:26 RO 0 Reserved.

25:16 RW 0 Interrupt on Reset de-assertion input qualification signal reset_dsrt_qual_
[9:0] status— When set, the IRQ is set when the reset_dsrt_qual[9:0] status
bit (per bit enable) is set.

15:12 RO 0 Reserved.

11 RW 0 Interrupt on reset_in9 Enable—When set, the IRQ is set when the reset_in9
trigger status bit is set.

10 RW 0 Interrupt on reset_in8 Enable—When set, the IRQ is set when the reset_in8
trigger status bit is set.

9 RW 0 Interrupt on reset_in7 Enable—When set, the IRQ is set when the reset_in7
trigger status bit is set.

8 RW 0 Interrupt on reset_in6 Enable—When set, the IRQ is set when the reset_in6
trigger status bit is set.

7 RW 0 Interrupt on reset_in5 Enable—When set, the IRQ is set when the reset_in5
trigger status bit is set.

6 RW 0 Interrupt on reset_in4 Enable—When set, the IRQ is set when the reset_in4
trigger status bit is set.

5 RW 0 Interrupt on reset_in3 Enable—When set, the IRQ is set when the reset_in3
trigger status bit is set.

4 RW 0 Interrupt on reset_in2 Enable—When set, the IRQ is set when the reset_in2
trigger status bit is set.

3 RW 0 Interrupt on reset_in1 Enable—When set, the IRQ is set when the reset_in1
trigger status bit is set.

2 RW 0 Interrupt on reset_in0 Enable—When set, the IRQ is set when the reset_in0
trigger status bit is set.

QPS5V1
2015.11.02 Reset Sequencer Interrupt Enable Register Offset 0x04 7-59

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Attrib
ute

Defaul
t

Description

1 RW 0 Interrupt on Software triggered reset Enable—When set, the IRQ is set when
the software triggered reset status bit is set.

0 RW 0 Interrupt on Power-On-Reset Enable—When set, the IRQ is set when the
power-on-reset status bit is set.

Reset Sequencer Control Register Offset 0x08
The Control register contains registers that you can use to control the reset sequencer.

Table 7-36: Values for the Control Register at Offset 0x08

Bit Attrib
ute

Defaul
t

Description

31:3 RO 0 Reserved.

2 RW 0 Enable SW sequenced reset entry—Enable a software sequenced reset entry
sequence. Timer delays and input qualification are ignored, and only the
software can sequence the entry.

1 RW 0 Enable SW sequenced reset bring up—Enable a software sequenced reset
bring up sequence. Timer delays and input qualification are ignored, and only
the software can sequence the bring up.

0 WO 0 Initiate Reset Sequence—Reset Sequencer writes this bit to 1 a single time in
order to trigger the hardware sequenced warm reset. Reset Sequencer verifies
that Reset Active is 0 before setting this bit, and always reads the value 0. To
monitor this sequence, verify that Reset Active is asserted, and then
subsequently de-asserted.

Reset Sequencer Software Sequenced Reset Entry Control Register Offset 0x0C
You can program the Reset Sequencer Software Sequenced Reset Entry Control register to control the
reset entry sequence of the sequencer.

When the corresponding enable bit is set, the sequencer stops when the desired reset asserts, and then sets
the Reset Asserted and waiting for SW to proceed bit. The Reset Sequencer proceeds only after the Reset
Asserted and waiting for SW to proceed bit is cleared.

Table 7-37: Values for the Reset Sequencer Software Sequenced Reset Entry Controls Register at Offset
0x0C

Bit Attrib
ute

Defaul
t

Description

31:10 RO 0 Reserved.

7-60 Reset Sequencer Control Register Offset 0x08
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Attrib
ute

Defaul
t

Description

9:0 RW 3FF Per-reset SW sequenced reset entry enable—This is a per-bit enable for SW
sequenced reset entry. If bitN of this register is set, the sequencer sets the bit30
of the status register when a resetN is asserted. It then waits for the bit30 of
the status register to clear before proceeding with the sequence. By default, all
bits are enabled (fully SW sequenced).

Reset Sequencer Software Sequenced Reset Bring Up Control Register Offset 0x10
You can program the Software Sequenced Reset Bring Up Control register to control the reset bring up
sequence of the sequencer.

When the corresponding enable bit is set, the sequencer stops when the desired reset asserts, and then sets
the Reset De-asserted and waiting for SW to proceed bit. The Reset Sequencer proceeds only after the
Reset De-asserted and waiting for SW to proceed bit is cleared..

Table 7-38: Values for the Reset Sequencer Software Sequenced Bring Up Control Register at Offset 0x10

Bit Attrib
ute

Defaul
t

Description

31:10 RO 0 Reserved.

9:0 RW 3FF Per-reset SW sequenced reset entry enable—This is a per-bit enable for SW
sequenced reset bring up. If bitN of this register is set, the sequencer sets bit29
of the status register when a resetN is asserted. It then waits for the bit29 of
the status register to clear before proceeding with the sequence. By default, all
bits are enabled (fully SW sequenced).

Reset Sequencer Software Direct Controlled Resets Offset 0x14
You can write a bit to 1 to assert the reset_outN signal, and to 0 to de-assert the reset_outN signal.

Table 7-39: Values for the Software Direct Controlled Resets at Offset 0x14

Bit Attrib
ute

Defaul
t

Description

31:26 RO 0 Reserved.

25:16 WO 0 Reset Overwrite Trigger Enable

—This is a per-bit control trigger bit for the overwrite value to take effect.

15:10 RO 0 Reserved.

9:0 WO 0 reset_outN Reset Overwrite Value—This is a per-bit control of the reset_out
bit. The Reset Sequencer can use this to forcefully drive the reset to a specific
value. A value of 1 sets the reset_out. A value of 0 clears the reset_out. A
write to this register only takes effect if the corresponding trigger bit in this
register is set.

QPS5V1
2015.11.02 Reset Sequencer Software Sequenced Reset Bring Up Control Register... 7-61

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Sequencer Software Reset Masking Offset 0x18
You can write a bit to 1 to assert the reset_outN signal, and to 0 to de-assert the reset_outN signal.

Table 7-40: Values for the Reset Sequencer Software Reset Masking at Offset 0x18

Bit Attrib
ute

Defaul
t

Description

31:10 RO 0 Reserved.

9:0 RW 0 reset_outN "Reset Mask Enable"—This is a per-bit control to mask the reset_
outN bit. The Software Reset Masking masks the reset bit from being asserted
during a reset assertion sequence. If the reset_out is already asserted, it does
not de-assert the reset.

7-62 Reset Sequencer Software Reset Masking Offset 0x18
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Sequencer Software Flows

Reset Sequencer (Software-Triggered) Flow

Figure 7-32: Reset Sequencer (Software-Triggered) Flow

Software verifies there is no active reset
by ensuring bit31 (reset active bit) in the
Status Resgister is not set.

Software clears all pending statuses by
writing all 1s to the Status Register.

Software initiates reset by writing a 1 to
bit 0 of the Control Register at offset 0x08.

Software waits for the IRQ.
IRQ

Asserted?
yes

no

Software checks bit 1 of the Status
egister. When set, it indicates that Reset
Sequencer has completed initiating a
rest throught he sequencer.

Software clears bit1 of the Status Register
by writing a 1 to the Status Register.

QPS5V1
2015.11.02 Reset Sequencer Software Flows 7-63

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Entry Flow

The following flow sequence occurs for a Reset Entry Flow:

• A reset is triggered either by the software, or when input resets to the Reset Sequencer are asserted.
• The IRQ is asserted, if the IRQ is enabled.
• Software reads the Status register to determine what reset was triggered.

Reset Bring-Up Flow

The following flow sequence occurs for a Reset Bring-Up Flow:

• When a reset source is de-asserted, or when the reset entry sequence has completed without any more
pending resets asserted, the bring-up flow is initiated.

• The IRQ is asserted, if the IRQ is enabled.
• Software reads the Status register to determine what reset was triggered.

7-64 Reset Entry Flow
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reset Entry (Software-Sequenced) Flow

Figure 7-33: Reset Entry (Software-Sequenced) Flow

Software sets up which reset sequence it
wants to control (or all reset outputs) with
the Per-reset-software-sequenced
reset entry enable bit.

Software enables Interrupt on reset
asserted so that the Resrt Sequencer
waits for software upon setting the IRQ
in the sequence.

Hardware sequences a reset where the
software has previously set up the Reset
Sequencer to wait for a software signal.

Reset Sequencer asserts an IRQ.

Software acknowledges that the reset is
asserted and bit 30 of the Status Register
is set.

Setup is complete.

Software clears Reset asserted and
waiting for software to proceed bit
30 of the Status Register and the Reset
Sequencer proceeds with the sequence.

The IRQ is set on the next Reset
Sequencer trigger point (if any).

Software sets the Enable software-
sequenced reset entry bit (bit 2 of the
Control Register).

Software asserts reset.

Reset Bring-Up (Software-Sequenced) Flow

The sequence and flow is similar to the Reset Entry (SW Sequenced) flow, though, this flow uses the reset
bring-up registers/bits in place of the reset entry registers/bits.

Related Information
Reset Entry (Software-Sequenced) Flow on page 7-65

QPS5V1
2015.11.02 Reset Entry (Software-Sequenced) Flow 7-65

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Conduits
You can use the conduit interface type for interfaces that do not fit any of the other interface types, and to
group any arbitrary collection of signals. Like other interface types, you can export or connect conduit
interfaces. The PCI Express-to-Ethernet example in Creating a System with Qsys is an example of using a
conduit interface for export. You can declare an associated clock interface for conduit interfaces in the
same way as memory-mapped interfaces with the associatedClock.

To connect two conduit interfaces inside Qsys, the following conditions must be met:

• The interfaces must match exactly with the same signal roles and widths.
• The interfaces must be the opposite directions.
• Clocked conduit connections must have matching associatedClocks on each of their endpoint

interfaces.

Note: To connect a conduit output to more than one input conduit interface, you can create a custom
component. The custom component could have one input that connects to two outputs, and you
can use this component between other conduits that you want to connect. For information about
the Avalon Conduit interface, refer to the Avalon Interface Specifications

Related Information

• Avalon Interface Specifications
• Creating a System with Qsys on page 5-1

Interconnect Pipelining
If you set the Limit interconnect pipeline stages to parameter to a value greater than 0 on the Project
Settings tab, Qsys automatically inserts Avalon-ST pipeline stages when you generate your design. The
pipeline stages increase the fMAX of your design by reducing the combinational logic depth. The cost is
additional latency and logic.

The insertion of pipeline stages depends upon the existence of certain interconnect components. For
example, in a single-slave system, no multiplexer exists; therefore multiplexer pipelining does not occur.
In an extreme case, of a single-master to single-slave system, no pipelining occurs, regardless of the value
of theLimit interconnect pipeline stages to option.

7-66 Conduits
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-34: Pipeline Placement in Arbitration Logic

The example below shows the possible placement of up to four potential pipeline stages, which could be,
before the input to the demultiplexer, at the output of the multiplexer, between the arbiter and the
multiplexer, and at the outputs of the demultiplexer.

Logic included in the Avalon-ST Command Network

Arbiter
for

slave 0

Master 0

= Pipeline stage, masters 0-3

= Pipeline stage, selected request

Arbiter
for

slave 1

Arbiter
for

slave 2

Arbiter
for

slave 3

Master 1

Master 2

Master 3

Arbiter
for

slave 1

Command
packet for
master 0

Command
packet for
master 1

Command
packet for
master 2

Command
packet for
master 3

Selected request

Selected request

Selected request

Selected request

Note: For more information about manually inserting and removing pipelines from your system, refer to
Creating a System With Qsys. Refer to Optimizing Qsys System Performance for more information
about pipelined Avalon-MM Interfaces.

Related Information
Creating a System With Qsys on page 5-1

QPS5V1
2015.11.02 Interconnect Pipelining 7-67

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Manually Controlling Pipelining in the Qsys Interconnect
The Memory-Mapped Interconnect tab allows you to manipulate pipleline connections in the Qsys
interconnect. You access the Memory-Mapped Interconnect tab by clicking the Show System With Qsys
Interconnect command on the System menu.

Note: To increase interconnect frequency, you should first try increasing the value of the Limit intercon‐
nect pipeline stages to option on the Interconnect Requirements tab. You should only consider
manually pipelining the interconnect if changes to this option do not improve frequency, and you
have tried all other options to achieve timing closure, including the use of a bridge. Manually
pipelining the interconnect should only be applied to complete systems.

1. In the Interconnect Requirements tab, first try increasing the value of the Limit interconnect
pipeline stages to option until it no longer gives significant improvements in frequency, or until it
causes unacceptable effects on other parts of the system.

2. In the Quartus Prime software, compile your design and run timing analysis.
3. Using the timing report, identify the critical path through the interconnect and determine the approxi‐

mate mid-point. The following is an example of a timing report:

2.800 0.000 cpu_instruction_master|out_shifter[63]|q
3.004 0.204 mm_domain_0|addr_router_001|Equal5~0|datac
3.246 0.242 mm_domain_0|addr_router_001|Equal5~0|combout
3.346 0.100 mm_domain_0|addr_router_001|Equal5~1|dataa
3.685 0.339 mm_domain_0|addr_router_001|Equal5~1|combout
4.153 0.468 mm_domain_0|addr_router_001|src_channel[5]~0|datad
4.373 0.220 mm_domain_0|addr_router_001|src_channel[5]~0|combout

4. In Qsys, click System > Show System With Qsys Interconnect.
5. In the Memory-Mapped Interconnect tab, select the interconnect module that contains the critical

path. You can determine the name of the module from the hierarchical node names in the timing
report.

6. Click Show Pipelinable Locations. Qsys display all possible pipeline locations in the interconnect.
Right-click the possible pipeline location to insert or remove a pipeline stage.

7. Locate the possible pipeline location that is closest to the mid-point of the critical path. The names of
the blocks in the memory-mapped interconnect tab correspond to the module instance names in the
timing report.

8. Right-click the location where you want to insert a pipeline, and then click Insert Pipeline.
9. Regenerate the Qsys system, recompile the design, and then rerun timing analysis. If necessary, repeat

the manual pipelining process again until timing requirements are met.

Manual pipelining has the following limitations:

• If you make changes to your original system's connectivity after manually pipelining an interconnect,
your inserted pipelines may become invalid. Qsys displays warning messages when you generate your
system if invalid pipeline stages are detected. You can remove invalid pipeline stages with the Remove
Stale Pipelines option in the Memory-Mapped Interconnect tab. Altera recommends that you do not
make changes to the system's connectivity after manual pipeline insertion.

• Review manually-inserted pipelines when upgrading to newer versions of Qsys. Manually-inserted
pipelines in one version of Qsys may not be valid in a future version.

Related Information

• Specify Qsys $system Interconnect Requirements
• Qsys System Design Components on page 10-1

7-68 Manually Controlling Pipelining in the Qsys Interconnect
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Error Correction Coding (ECC) in Qsys Interconnect
Error Correction Coding (ECC) allows the Qsys interconnect to detect and correct errors in order to
improve data integrity in memory blocks.

As transistors become smaller, computer hardware is more susceptible to data corruption. Data
corruption causes Single Event Upsets (SEUs) and increases the probability of Failures in Time (FIT) rates
in computer systems. SEU events without error notification can cause the system to be stuck in an
unknown response state, and increase the probability of FIT rates.

ECC encodes the data bus with a Hamming code before it writes it to the memory device, and then
decodes and performs error checking on the data on output.

Note: Qsys sends uncorrectable errors in memeory elements as a DECERR on the response bus. This
feature is currently only supported for rdata_FIFO instances when back pressure occurs on the
wait_request signal.

Figure 7-35: High-Level Implementation of RDATA FIFO with ECC Enabled

ECC Encode
Memory
Element

ECC Decode
Data and ECC
Encoded Bits

Data and ECC
Encoded Bits

Data
Input

Data
Output

Related Information

• Read and Write Responses on page 7-27
• Specify Qsys Interconnect Requirements

AMBA 3 AXI Protocol Specification Support (version 1.0)
Qsys allows memory-mapped connections between AXI3 components, AXI3 and AXI4 components, and
AXI3 and Avalon interfaces with some unique or exceptional support.

Refer to the AMBA 3 Protocol Specifications on the ARM website for more information.

Related Information
AMBA 3 Protocol Specifications

Channels
Qsys 14.0 has the following support and restrictions for AXI3 channels.

Read and Write Address Channels
All signals are allowed with some limitations.

QPS5V1
2015.11.02 Error Correction Coding (ECC) in Qsys Interconnect 7-69

Qsys Interconnect Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958617496/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following limitations are present in Qsys 14.0:

• Supports 64-bit addressing.
• ID width limited to 18-bits.
• HPS-FPGA master interface has a 12-bit ID.

Write Data, Write Response, and Read Data Channels
All signals are allowed with some limitations.

The following limitations are present in Qsys 14.0:

• Data widths limited to a maximum of 1024-bits
• Limited to a fixed byte width of 8-bits

Low Power Channel
Low power extensions are not supported in Qsys, version 14.0.

Cache Support
AWCACHE and ARCACHE are passed to an AXI slave unmodified.

Bufferable
Qsys interconnect treats AXI transactions as non-bufferable. All responses must come from the terminal
slave.

When connecting to Avalon-MM slaves, since they do not have write responses, the following exceptions
apply:

• For Avalon-MM slaves, the write response are generated by the slave agent once the write transaction
is accepted by the slave. The following limitation exists for an Avalon bridge:

• For an Avalon bridge, the response is generated before the write reaches the endpoint; users must be
aware of this limitation and avoid multiple paths past the bridge to any endpoint slave, or only
perform bufferable transactions to an Avalon bridge.

Cacheable (Modifiable)
Qsys interconnect acknowledges the cacheable (modifiable) attribute of AXI transactions.

It does not change the address, burst length, or burst size of non-modifiable transactions, with the
following exceptions:

• Qsys considers a wide transaction to a narrow slave as modifiable because the size requires reduction.
• Qsys may consider AXI read and write transactions as modifiable when the destination is an Avalon

slave. The AXI transaction may be split into multiple Avalon transactions if the slave is unable to
accept the transaction. This may occur because of burst lengths, narrow sizes, or burst types.

Qsys ignores all other bits, for example, read allocate or write allocate because the interconnect does not
perform caching. By default, Qsys considers Avalon master transactions as non-bufferable and non-
cacheable, with the allocate bits tied low. Qsys provides compile-time options to control the cache
behavior of Avalon transactions on a per-master basis.

7-70 Write Data, Write Response, and Read Data Channels
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Security Support
TrustZone refers to the security extension of the ARM architecture, which includes the concept of "secure"
and "non-secure" transactions, and a protocol for processing between the designations.

The interconnect passes the AWPROT and ARPROT signals to the endpoint slave without modification. It
does not use or modify the PROT bits.

Refer to Creating a System with Qsys for more information about secure systems and the TrustZone
feature.

Related Information
Creating a System with Qsys on page 5-1

Atomic Accesses
Exclusive accesses are supported for AXI slaves by passing the lock, transaction ID, and response signals
from master to slave, with the limitation that slaves that do not reorder responses. Avalon slaves do not
support exclusive accesses, and always return OKAY as a response. Locked accesses are also not supported.

Response Signaling
Full response signaling is supported. Avalon slaves always return OKAY as a response.

Ordering Model
Qsys interconnect provides responses in the same order as the commands are issued.

To prevent reordering, for slaves that accept reordering depths greater than 0, Qsys does not transfer the
transaction ID from the master, but provides a constant transaction ID of 0. For slaves that do not
reorder, Qsys allows the transaction ID to be transferred to the slave. To avoid cyclic dependencies, Qsys
supports a single outstanding slave scheme for both reads and writes. Changing the targeted slave before
all responses have returned stalls the master, regardless of transaction ID.

AXI and Avalon Ordering
According to the AMBA Protocol Specifications, there is no ordering requirement between reads and
writes. However, Avalon has an implicit ordering model that requires transactions from a master to the
same slave to be in order. As a result, there is a potential read-after-write risk when Avalon masters
transact to AXI slaves. In response to this potential risk, Avalon interfaces provide a compile-time option
to enforce strict order. When turned on, the Avalon interface waits for outstanding write responses before
issuing reads.

Data Buses
Narrow bus transfers are supported. AXI write strobes can have any pattern that is compatible with the
address and size information. Altera recommends that transactions to Avalon slaves follow Avalon
byteenable limitations for maximum compatibility.

Note: Byte 0 is always bits [7:0] in the interconnect, following AXI's and Avalon's byte (address)
invariance scheme.

Unaligned Address Commands
Unaligned address commands are commands with addresses that do not conform to the data width of a
slave. Since Avalon-MM slaves accept only aligned addresses, Qsys modifies unaligned commands from

QPS5V1
2015.11.02 Security Support 7-71

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI masters to the correct data width. Qsys must preserve commands issued by AXI masters when
passing the commands to AXI slaves.

Note: Unaligned transfers are aligned if downsizing occurs. For example, when downsizing to a bus
width narrower than that required by the transaction size, AWSIZE or ARSIZE, the transaction must
be modified.

Avalon and AXI Transaction Support
Qsys 14.0 supports transactions between Avalon and interfaces with some limitations.

Transaction Cannot Cross 4KB Boundaries
When an Avalon master issues a transaction to an AXI slave, the transaction cannot cross 4KB
boundaries. Non-bursting Avalon masters already follow this boundary restriction.

Handling Read Side Effects
Read side effects can occur when more bytes than necessary are read from the slave, and the unwanted
data that are read are later inaccessible on subsequent reads. For write commands, the correct byteenable
paths are asserted based on the size of the transactions. For read commands, narrow-sized bursts are
broken up into multiple non-bursting commands, and each command with the correct byteenable paths
asserted.

Note: Qsys always assumes that the byteenable is asserted based on the size of the command, not the
address of the command. The following scenarios are examples:

• For a 32-bit AXI master that issues a read command with an unaligned address starting at
address 0x01, and a burstcount of 2 to a 32-bit Avalon slave, the starting address is: 0x00.

• For a 32-bit AXI master that issues a read command with an unaligned address starting at
address 0x01, with 4-bytes to an 8-bit AXI slave, the starting address is: 0x00.

AMBA 3 APB Protocol Specification Support (version 1.0)
AMBA APB provides a low-cost interface that is optimized for minimal power consumption and reduced
interface complexity. You can use AMBA APB to interface to peripherals which are low-bandwidth and
do not require the high performance of a pipelined bus interface. Signal transitions are sampled at the
rising edge of the clock to enable the integration of APB peripherals easily into any design flow.

Qsys allows connections between APB components, and AXI3, AXI4, and Avalon memory-mapped
interfaces. The following sections describe unique or exceptional APB support in the Qsys software.

Refer to the AMBA APB Protocol Specifications for AXI4 on the ARM website for more information.

Related Information
AMBA APB Protocol Specifications

Bridges
With APB, you cannot use bridge components that use multiple PSELx in Qsys. As a workaround, you can
group PSELx, and then send the packet to the slave directly.

Altera recommends as an alternative that you instantiate the APB bridge and all the APB slaves in Qsys.
You should then connect the slave side of the bridge to any high speed interface and connect the master

7-72 Avalon and AXI Transaction Support
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

side of the bridge to the APB slaves. Qsys creates the interconnect on either side of the APB bridge and
creates only one PSEL signal.

Alternatively, you can connect a bridge to the APB bus outside of Qsys. Use an Avalon/AXI bridge to
export the Avalon/AXI master to the top-level, and then connect this Avalon/AXI interface to the slave
side of the APB bridge. Alternatively, instantiate the APB bridge in Qsys and export APB master to the
top- level, and from there connect to APB bus outside of Qsys.

Burst Adaptation
APB is a non-bursting interface. Therefore, for any AXI or Avalon master with bursting support, a burst
adapter is inserted before the slave interface and the burst transaction is translated into a series of non-
bursting transactions before reaching the APB slave.

Width Adaptation
Qsys allows different data width connections with APB. When connecting a wider master to a narrower
APB slave, the width adapter converts the wider transactions to a narrower transaction to fit the APB
slave data width. APB does not support Write Strobe. Therefore, when you connect a narrower
transaction to a wider APB slave, the slave cannot determine which byte lane to write. In this case, the
slave data may be overwritten or corrupted.

Error Response
Error responses are returned to the master. Qsys performs error mapping if the master is an AXI3 or
AXI4 master, for example, RRESP/BRESP= SLVERR. For the case when the slave does not use SLVERR
signal, an OKAY response is sent back to master by default.

AMBA AXI4 Memory-Mapped Interface Support (version 2.0)
Qsys allows memory-mapped connections between AXI4 components, AXI4 and AXI3 components, and
AXI4 and Avalon interfaces with some unique or exceptional support.

Burst Support
Qsys supports INCR bursts up to 256 beats. Qsys converts long bursts to multiple bursts in a packet with
each burst having a length less than or equal to MAX_BURST when going to AXI3 or Avalon slaves.

For narrow-sized transfers, bursts with Avalon slaves as destinations are shortened to multiple non-
bursting transactions in order to transmit the correct address to the slaves, since Avalon slaves always
perform full-sized datawidth transactions.

Bursts with AXI3 slaves as destinations are shortened to multiple bursts, with each burst length less than
or equal to 16. Bursts with AXI4 slaves as destinations are not shortened.

QoS
Qsys routes 4-bit QoS signals (Quality of Service Signaling) on the read and write address channels
directly from the master to the slave.

Transactions from AXI3 and Avalon masters have a default value of 4'b0000, which indicates that the
transactions are not part of the QoS flow. QoS values are not used for slaves that do not support QoS.

QPS5V1
2015.11.02 Burst Adaptation 7-73

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For Qsys 14.0, there are no programmable QoS registers or compile-time QoS options for a master that
overrides its real or default value.

Regions
For Qsys 14.0, there is no support for the optional regions feature. AXI4 slaves with AXREGION signals are
allowed. AXREGION signals are driven with the default value of 0x0, and are limited to one entry in a
master's address map.

Write Response Dependency
Write response dependency as specified in the AMBA Protocol Specifications for AXI4 is not supported.

Related Information
AMBA Protocol Specifications

AWCACHE and ARCACHE
For AXI4, Qsys meets the requirement for modifiable and non-modifiable transactions. The modifiable
bit refers to ARCACHE[1]and AWCACHE[1].

Width Adaptation and Data Packing in Qsys
Data packing applies only to systems where the data width of masters is less than the data width of slaves.

The following rules apply:

• Data packing is supported when masters and slaves are Avalon-MM.
• Data packing is not supported when any master or slave is an AXI3, AXI4, or APB component.

For example, for a read/write command with a 32-bit master connected to a 64-bit slave, and a transaction
of 2 burstcounts, Qsys sends 2 separate read/write commands to access the 64-bit data width of the slave.
Data packing is only supported if the system does not contain AXI3, AXI4, or APB masters or slaves.

Ordering Model
Out of order support is not implemented in Qsys, version 14.0. Qsys processes AXI slaves as device non-
bufferable memory types.

The following describes the required behavior for the device non-bufferable memory type:

• Write response must be obtained from the final destination.
• Read data must be obtained from the final destination.
• Transaction characteristics must not be modified.
• Reads must not be pre-fetched. Writes must not be merged.
• Non-modifiable read and write transactions.

(AWCACHE[1] = 0 or ARCACHE[1] = 0) from the same ID to the same slave must remain ordered. The
interconnect always provides responses in the same order as the commands issued. Slaves that support
reordering provide a constant transaction ID to prevent reordering. AXI slaves that do not reorder are
provided with transaction IDs, which allows exclusive accesses to be used for such slaves.

7-74 Regions
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Read and Write Allocate
Read and write allocate does not apply to Qsys interconnect, which does not have caching features, and
always receives responses from an endpoint.

Locked Transactions
Locked transactions are not supported for Qsys, version 14.0.

Memory Types
For AXI4, Qsys processes transactions as though the endpoint is a device memory type. For device
memory types, using non-bufferable transactions to force previous bufferable transactions to finish is
irrelevant, because Qsys interconnect always identifies transactions as being non-bufferable.

Mismatched Attributes
There are rules for how multiple masters issue cache values to a shared memory region. The interconnect
meets requirements as long as cache signals are not modified.

Signals
Qsys supports up to 64-bits for the BUSER, WUSER and RUSER sideband signals. AXI4 allows some signals to
be omitted from interfaces by aligning them with the default values as defined in the AMBA Protocol
Specifications on the ARM website.

Related Information
AMBA Protocol Specifications

AMBA AXI4 Streaming Interface Support (version 1.0)

Connection Points
Qsys allows you to connect an AXI4 stream interface to another AXI4 stream interface.

The connection is point-to-point without adaptation and must be between an axi4stream_master and
axi4stream_slave. Connected interfaces must have the same port roles and widths.

Non matching master to slave connections, and multiple masters to multiple slaves connections are not
supported.

AXI4 Streaming Connection Point Parameters

Table 7-41: AXI4 Streaming Connection Point Parameters

Name Type Description

associatedClock string Name of associated clock interface.

associatedReset string Name of associated reset interface

QPS5V1
2015.11.02 Read and Write Allocate 7-75

Qsys Interconnect Altera Corporation

Send Feedback

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI4 Streaming Connection Point Signals

Table 7-42: AXI4 Stream Connection Point Signals

Port Role Width Master
Direction

Slave Direction Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata(6) 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid(7) 1:8 Output Input No

tdest(8) 1:4 Output Input No

tuser(9) 1:4096 Output Input No

tlast 1 Output Input No

Adaptation
AXI4 stream adaptation support is not available. AXI4 stream master and slave interface signals and
widths must match.

AMBA AXI4-Lite Protocol Specification Support (version 2.0)
AXI4-Lite is a sub-set of AMBA AXI4. It is suitable for simpler control register-style interfaces that do not
require the full functionality of AXI4.

Qsys 14.0 supports the following AXI4-Lite features:

• Transactions with a burst length of 1.
• Data accesses use the full width of a data bus (32- bit or 64-bit) for data accesses, and no narrow-size

transactions.
• Non-modifiable and non-bufferable accesses.
• No exclusive accesses.

AXI4-Lite Signals
Qsys supports all AXI4-Lite interface signals. All signals are required.

(6) integer in mutiple of bytes
(7) maximum 8-bits
(8) maximum 4-bits
(9) number of bits in multiple of the number of bytes of tdata

7-76 AXI4 Streaming Connection Point Signals
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-43: AXI4-Lite Signals

Global Write Address
Channel

Write Data
Channel

Write
Response
Channel

Read Address
Channel

Read Data Channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

- AWADDR WDATA BRESP ARADDR RDATA

- AWPROT WSTRB - ARPROT RRESP

AXI4-Lite Bus Width
AXI4-Lite masters or slaves must have either 32-bit or 64-bit bus widths. Qsys interconnect inserts a
width adapter if a master and slave pair have different widths.

AXI4-Lite Outstanding Transactions
AXI-Lite supports outstanding transactions. The options to control outstanding transactions is set in the
parameter editor for the selected component.

AXI4-Lite IDs
AXI4-Lite does not support IDs. Qsys performs ID reflection inside the slave agent.

Connections Between AXI3/4 and AXI4-Lite

AXI4-Lite Slave Requirements

For an AXI4-Lite slave side, the master can be any master interface type, such as an Avalon (with
bursting), AXI3, or AXI4. Qsys allows the following connections and inserts adapters, if needed.

• Burst adapter—Avalon and AXI3 and AXI4 bursting masters require a burst adapter to shorten the
burst length to 1 before sending a transaction to an AXI4-Lite slave.

• Qsys interconnect uses a width adapter for mismatched data widths.
• Qsys interconnect performs ID reflection inside the slave agent.
• An AXI4-Lite slave must have an address width of at least 12-bits.
• AXI4-Lite does not have the AXSIZE parameter. Narrow master to a wide AXI4-Lite slave is not

supported. For masters that support narrow-sized bursts, for example, AXI3 and AXI4, a burst to an
AXI4-Lite slave must have a burst size equal to or greater than the slave's burst size.

AXI4-Lite Data Packing
Qsys interconnect does not support AXI4-Lite data packing.

AXI4-Lite Response Merging
When Qsys interconnect merges SLVERR and DECERR, the error responses are not sticky. The response is
based on priority and the master always sees a DECERR. When SLVERR and DECERR are merged, it is based
on their priorities, not stickiness. DECERR receives priority in this case, even if SLVERR returns first.

QPS5V1
2015.11.02 AXI4-Lite Bus Width 7-77

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Roles (Interface Signal Types)
Each interfaces defines a number of signal roles and their behavior. Many signal roles are optional,
allowing IP component designers the flexibility to select only the signal roles necessary to implement the
required functionality.

AXI Master Interface Signal Types

Table 7-44: AXI Master Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

arcache output 4

arid output 1 - 18

arlen output 4

arlock output 2

arprot output 3

arready input 1

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 4

awlock output 2

awprot output 3

awready input 1

awsize output 3

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

bready output 1

7-78 Port Roles (Interface Signal Types)
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

bresp input 2

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

rready output 1

rresp input 2

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wvalid output 1

AXI Slave Interface Signal Types

Table 7-45: AXI Slave Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 4

arlock input 2

arprot input 3

arready output 1

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

QPS5V1
2015.11.02 AXI Slave Interface Signal Types 7-79

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

awcache input 4

awid input 1 - 18

awlen input 4

awlock input 2

awprot input 3

awready output 1

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wid input 1 - 18

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wvalid input 1

AXI4 Master Interface Signal Types

Table 7-46: AXI4 Master Interface Signal Types

Name Direction Width

araddr output 1 - 64

arburst output 2

7-80 AXI4 Master Interface Signal Types
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

arcache output 4

arid output 1 - 18

arlen output 8

arlock output 1

arprot output 3

arready input 1

arregion output 1 - 4

arsize output 3

aruser output 1 - 64

arvalid output 1

awaddr output 1 - 64

awburst output 2

awcache output 4

awid output 1 - 18

awlen output 8

awlock output 1

awprot output 3

awqos output 1 - 4

awready input 1

awregion output 1 - 4

awsize output 3

awuser output 1 - 64

awvalid output 1

bid input 1 - 18

bready output 1

bresp input 2

buser input 1 - 64

bvalid input 1

rdata input 8, 16, 32, 64, 128, 256, 512, 1024

rid input 1 - 18

rlast input 1

QPS5V1
2015.11.02 AXI4 Master Interface Signal Types 7-81

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

rready output 1

rresp input 2

ruser input 1 - 64

rvalid input 1

wdata output 8, 16, 32, 64, 128, 256, 512, 1024

wid output 1 - 18

wlast output 1

wready input 1

wstrb output 1, 2, 4, 8, 16, 32, 64, 128

wuser output 1 - 64

wvalid output 1

AXI4 Slave Interface Signal Types

Table 7-47: AXI4 Slave Interface Signal Types

Name Direction Width

araddr input 1 - 64

arburst input 2

arcache input 4

arid input 1 - 18

arlen input 8

arlock input 1

arprot input 3

arqos input 1 - 4

arready output 1

arregion input 1 - 4

arsize input 3

aruser input 1 - 64

arvalid input 1

awaddr input 1 - 64

awburst input 2

awcache input 4

7-82 AXI4 Slave Interface Signal Types
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Direction Width

awid input 1 - 18

awlen input 8

awlock input 1

awprot input 3

awqos input 1 - 4

awready output 1

awregion inout 1 - 4

awsize input 3

awuser input 1 - 64

awvalid input 1

bid output 1 - 18

bready input 1

bresp output 2

bvalid output 1

rdata output 8, 16, 32, 64, 128, 256, 512, 1024

rid output 1 - 18

rlast output 1

rready input 1

rresp output 2

ruser output 1 - 64

rvalid output 1

wdata input 8, 16, 32, 64, 128, 256, 512, 1024

wlast input 1

wready output 1

wstrb input 1, 2, 4, 8, 16, 32, 64, 128

wuser input 1 - 64

wvalid input 1

QPS5V1
2015.11.02 AXI4 Slave Interface Signal Types 7-83

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI4 Stream Master and Slave Interface Signal Types

Table 7-48: AXI4 Stream Master and Slave Interface Signal Types

Name Width Master Direction Slave Direction Required

tvalid 1 Output Input Yes

tready 1 Input Output No

tdata 8:4096 Output Input No

tstrb 1:512 Output Input No

tkeep 1:512 Output Input No

tid 1:8 Output Input No

tdest 1:4 Output Input No

tuser 1 Output Input No

tlast 1:4096 Output Input No

APB Interface Signal Types

Table 7-49: APB Interface Signal Types

Name Width Direction

APB Master

Direction

APB Slave

Required

paddr [1:32] output input yes

psel [1:16] output input yes

penable 1 output input yes

pwrite 1 output input yes

pwdata [1:32] output input yes

prdata [1:32] input output yes

pslverr 1 input output no

pready 1 input output yes

paddr31 1 output input no

Avalon Memory-Mapped Interface Signal Roles
The following table lists signal roles for the Avalon-MM interface. Signal roles allow you to create masters
that use bursts for read and write processing. When necessary, Qsys interconnect enables the connection
between the master and slave pair. When the master and slave interfaces match, a direct connection is
possible.

7-84 AXI4 Stream Master and Slave Interface Signal Types
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This specification does not require all signals to exist in an Avalon-MM interface. There is no one signal
that is always required. The minimum requirements for an Avalon-MM interface are readdata for a read-
only interface, or writedata and write for a write-only interface.

Table 7-50: Avalon-MM Signal Roles

Avalon-MM signals can be active high or active low. When active low, the signal name ends with _n.
Signal Role Width Direction Description

Fundamental Signals
address 1 - 64 Master → Slave Masters: By default, the address signal

represents a byte address. The value of the
address must be aligned to the data width. To
write to specific bytes within a data word, the
master must use the byteenable signal. Refer
to the addressUnits interface property for
word addressing.

Slaves: By default, the interconnect translates
the byte address into a word address in the
slave’s address space. Each slave access is for a
word of data from the perspective of the slave.
For example, address = 0 selects the first
word of the slave. address = 1 selects the
second word of the slave. Refer to the
addressUnits interface property for byte
addressing.

byteenable

byteenable_n

2, 4, 8, 16, 32,
64, 128

Master → Slave Enables specific byte lane(s) during transfers on
interfaces of width greater than 8 bits. Each bit
in byteenable corresponds to a byte in
writedata and readdata. The master bit <n>
of byteenable indicates whether byte <n> is
being written to. During writes, byteenables
specify which bytes are being written to. Other
bytes should be ignored by the slave. During
reads, byteenables indicate which bytes the
master is reading. Slaves that simply return
readdata with no side effects are free to ignore
byteenables during reads. If an interface does
not have a byteenable signal, the transfer
proceeds as if all byteenables are asserted.

When more than one bit of the byteenable
signal is asserted, all asserted lanes are adjacent.
The number of adjacent lines must be a power
of 2. The specified bytes must be aligned on an
address boundary for the size of the data. For

QPS5V1
2015.11.02 Avalon Memory-Mapped Interface Signal Roles 7-85

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Description

example, the following values are legal for a 32-
bit slave:

• 1111 writes full 32 bits
• 0011 writes lower 2 bytes
• 1100 writes upper 2 bytes
• 0001 writes byte 0 only
• 0010 writes byte 1 only
• 0100 writes byte 2 only
• 1000 writes byte 3 only

To avoid unintended side effects, Altera
strongly recommends that you use the
byteenable signal in systems with different
word sizes.

Note: The AXI interface supports
unaligned accesses while Avalon-
MM does not. Unaligned accesses
going from an AXI master to an
Avalon-MM slave may result in an
illegal transaction. To avoid this
issue, only use aligned accesses to
Avalon-MM slaves.

debugaccess 1 Master → Slave When asserted, allows the Nios II processor to
write on-chip memories configured as ROMs.

read

read_n

1 Master → Slave Asserted to indicate a read transfer. If present,
readdata is required.

readdata 8,16, 32, 64,128,
256, 512, 1024

Slave → Master The readdata driven from the slave to the
master in response to a read transfer.

7-86 Avalon Memory-Mapped Interface Signal Roles
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Description

response [1:0] 2 Slave → Master The response signal is an optional signal that
carries the response status.

Note: Because the signal is shared, an
interface cannot issue or accept a
write response and a read response
in the same clock cycle.

• 00: OKAY—Successful response for a
transaction.

• 01: RESERVED—Encoding is reserved.
• 10: SLAVEERROR—Error from an endpoint

slave. Indicates an unsuccessful transaction.
• 11: DECODEERROR—Indicates attempted

access to an undefined location.

For read responses:

• One response is sent with each readdata. A
read burst length of N results in N responses.
It is not valid to produce fewer responses,
even in the event of an error. It is valid for
the response signal value to be different for
each readdata in the burst.

• The interface must have read control
signals. Pipeline support is possible with the
readdatavalid signal.

• On read errors, the corresponding readdata
is "don't care".

For write responses:

• The interface must have write control
signals. Qsys completes all write commands
with write responses if the write signal is
present. The interface must have a
writeresponsevalid signal.

• One write response must be sent for each
write command. A write burst results in
only one response, which must be sent after
the final write transfer in the burst is
accepted.

write

write_n

1 Master → Slave Asserted to indicate a write transfer. If present,
writedata is required.

writedata 8,16, 32, 64,
128, 256, 512,

1024

Master → Slave Data for write transfers. The width must be the
same as the width of readdata if both are
present.

Wait-State Signals
lock 1 Master → Slave lock ensures that once a master wins arbitra‐

tion, it maintains access to the slave for

QPS5V1
2015.11.02 Avalon Memory-Mapped Interface Signal Roles 7-87

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Description

multiple transactions. It is asserted coincident
with the first read or write of a locked
sequence of transactions. It is deasserted on the
final transaction of a locked sequence of
transactions. lock assertion does not guarantee
that arbitration will be won. After the lock-
asserting master has been granted, it retains
grant until it is deasserted.

A master equipped with lock cannot be a burst
master. Arbitration priority values for lock-
equipped masters are ignored.

lock is particularly useful for read-modify-
write (RMW) operations. The typical read-
modify-write operation includes the following
steps:

1. Master A asserts lock and reads 32-bit data
that has multiple bit fields.

2. Master A deasserts lock, changes one bit
field, and writes the 32-bit data back.

lock prevents master B from performing a
write between Master A’s read and write.

waitrequest

waitrequest_n

1 Slave → Master Asserted by the slave when it is unable to
respond to a read or write request. Forces the
master to wait until the interconnect is ready to
proceed with the transfer. At the start of all
transfers, a master initiates the transfer and
waits until waitrequest is deasserted. A master
must make no assumption about the assertion
state of waitrequest when the master is idle:
waitrequest may be high or low, depending
on system properties.

When waitrequest is asserted, master control
signals to the slave are to remain constant with
the exception of beginbursttransfer. For a
timing diagram illustrating the beginburst-
transfer signal, refer to the figure in Read
Bursts.
An Avalon-MM slave may assert waitrequest
during idle cycles. An Avalon-MM master may
initiate a transaction when waitrequest is
asserted and wait for that signal to be
deasserted. To avoid system lockup, a slave
device should assert waitrequest when in
reset.

Pipeline Signals

7-88 Avalon Memory-Mapped Interface Signal Roles
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Description

readdatavalid

readdatavalid_n

1 Slave → Master Used for variable-latency, pipelined read
transfers. When asserted, indicates that the
readdata signal contains valid data. A slave
with readdatavalid must assert this signal for
one cycle for each read access received. There
must be at least one cycle of latency between
acceptance of the read and assertion of
readdatavalid. For a timing diagram
illustrating the readdatavalid signal, refer to
Pipelined Read Transfer with Variable Latency.

A slave may assert readdatavalid to transfer
data to the master independently of whether or
not the slave is stalling a new command with
waitrequest.

Required if the master supports pipelined reads.
Bursting masters with read functionality must
include the readdatavalid signal.

writeresponse-

valid
An optional signal. If present, the interface
issues write responses for write commands.

When asserted, the value on the response signal
is a valid write response.

Writeresponsevalid is only asserted one clock
cycle or more after the write command is
accepted. There is at least a one clock cycle
latency from command acceptance to assertion
of writeresponsevalid.

Burst Signals
burstcount 1 – 11 Master → Slave Used by bursting masters to indicate the

number of transfers in each burst. The value of
the maximum burstcount parameter must be a
power of 2. A burstcount interface of width <n>
can encode a max burst of size 2(<n>-1). For
example, a 4-bit burstcount signal can support
a maximum burst count of 8. The minimum
burstcount is 1. The constantBurstBehavior
property controls the timing of the burstcount
signal. Bursting masters with read functionality
must include the readdatavalid signal.

For bursting masters and slaves using byte
addresses, the following restriction applies to
the width of the address:

<address_w> >= <burstcount_w>

+log2(<symbols_per_word_of_interface>).

For bursting masters and slaves using word
addresses, the log2 term above is omitted.

QPS5V1
2015.11.02 Avalon Memory-Mapped Interface Signal Roles 7-89

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Description

beginburst-

transfer

1 Interconnect →
Slave

Asserted for the first cycle of a burst to indicate
when a burst transfer is starting. This signal is
deasserted after one cycle regardless of the
value of waitrequest. For a timing diagram
illustrating beginbursttransfer, refer to the
figure in Read Bursts.
beginbursttransfer is optional. A slave can
always internally calculate the start of the next
write burst transaction by counting data
transfers.

Altera recommends that you do not use this
signal. This signal exists to support legacy
memory controllers.

Avalon Streaming Interface Signal Roles
Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST signal role. An
Avalon-ST interface may contain only one instance of each signal role. All Avalon-ST signal roles apply to
both sources and sinks and have the same meaning for both.

Table 7-51: Avalon-ST Interface Signals

In the following table, all signal roles are active high.
Signal Role Width Direction Description

Fundamental Signals
channel 1 – 128 Source → Sink The channel number for data being transferred

on the current cycle.

If an interface supports the channel signal, it must
also define the maxChannel parameter.

data 1 – 4,096 Source → Sink The data signal from the source to the sink,
typically carries the bulk of the information being
transferred.

The contents and format of the data signal is
further defined by parameters.

error 1 – 256 Source → Sink A bit mask used to mark errors affecting the data
being transferred in the current cycle. A single bit
in error is used for each of the errors recognized
by the component, as defined by the errorDe-
scriptor property.

7-90 Avalon Streaming Interface Signal Roles
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Description

ready 1 Sink → Source Asserted high to indicate that the sink can accept
data. ready is asserted by the sink on cycle <n> to
mark cycle <n + readyLatency> as a ready cycle.
The source may only assert valid and transfer
data during ready cycles.

Sources without a ready input cannot be
backpressured. Sinks without a ready output
never need to backpressure.

valid 1 Source → Sink Asserted by the source to qualify all other source
to sink signals. The sink samples data and other
source-to-sink signals on ready cycles where
valid is asserted. All other cycles are ignored.

Sources without a valid output implicitly
provide valid data on every cycle that they are not
being backpressured. Sinks without a valid input
expect valid data on every cycle that they are not
backpressuring.

Packet Transfer Signals
empty 1 – 5 Source → Sink Indicates the number of symbols that are empty,

that is, do not represent valid data. The empty
signal is not used on interfaces where there is one
symbol per beat.

endofpacket 1 Source → Sink Asserted by the source to mark the end of a
packet.

startofpacket 1 Source → Sink Asserted by the source to mark the beginning of a
packet.

Avalon Clock Source Signal Roles
An Avalon Clock source interface drives a clock signal out of a component.

Table 7-52: Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.

Avalon Clock Sink Signal Roles
A clock sink provides a timing reference for other interfaces and internal logic.

Table 7-53: Clock Sink Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for
internal logic and for other interfaces.

QPS5V1
2015.11.02 Avalon Clock Source Signal Roles 7-91

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Conduit Signal Roles

Table 7-54: Conduit Signal Roles

Signal Role Width Direction Description

<any> <n> In, out, or
bidirectional

A conduit interface consists of one or more input, output, or
bidirectional signals of arbitrary width. Conduits can have any
user-specified role. You can connect compatible Conduit
interfaces inside a Qsys system provided the roles and widths
match and the directions are opposite.

Avalon Tristate Conduit Signal Roles
The following table lists the signal defined for the Avalon Tristate Conduit interface. All Avalon-TC
signals apply to both masters and slaves and have the same meaning for both

Table 7-55: Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Master → Slave Yes The meaning of request depends on the state
of the grant signal, as the following rules
dictate.

When request is asserted and grant is
deasserted, request is requesting access for
the current cycle.

When request is asserted and grant is
asserted, request is requesting access for the
next cycle. Consequently, request should be
deasserted on the final cycle of an access.

The request is deasserted in the last cycle of
a bus access. It can be reasserted immediately
following the final cycle of a transfer. This
protocol makes both rearbitration and
continuous bus access possible if no other
masters are requesting access.

Once asserted, request must remain asserted
until granted. Consequently, the shortest bus
access is 2 cycles. Refer to Tristate Conduit
Arbitration Timing for an example of arbitra‐
tion timing.

grant 1 Slave → Master Yes When asserted, indicates that a tristate
conduit master has been granted access to
perform transactions. grant is asserted in
response to the request signal. It remains
asserted until 1 cycle following the deasser‐
tion of request.

<name>_in 1 – 1024 Slave → Master No The input signal of a logical tristate signal.

7-92 Avalon Conduit Signal Roles
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

<name>_out 1 – 1024 Master → Slave No The output signal of a logical tristate signal.
<name>_

outen

1 Master → Slave No The output enable for a logical tristate signal.

QPS5V1
2015.11.02 Avalon Tristate Conduit Signal Roles 7-93

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Tri-State Slave Interface Signal Types

Table 7-56: Tri-state Slave Interface Signal Types

Name Width Direction Required Description

address 1 - 32 input No Address lines to the slave
port. Specifies a byte offset
into the slave’s address space.

read

read_n

1 input No Read-request signal. Not
required if the slave port
never outputs data.

If present, data must also be
used.

write

write_n

1 input No Write-request signal. Not
required if the slave port
never receives data from a
master.

If present, data must also be
present, and writebyteen-
able cannot be present.

chipselect

chipselect_n

1 input No When present, the slave port
ignores all Avalon-MM
signals unless chipselect is
asserted. chipselect is
always present in combina‐
tion with read or write

outputenable

outputenable_n

1 input Yes Output-enable signal. When
deasserted, a tri-state slave
port must not drive its data
lines otherwise data
contention may occur.

data 8,16, 32, 64,
128, 256, 512,

1024

bidir No Bidirectional data. During
write transfers, the FPGA
drives the data lines. During
read transfers the slave device
drives the data lines, and the
FPGA captures the data
signals and provides them to
the master.

7-94 Avalon Tri-State Slave Interface Signal Types
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Width Direction Required Description

byteenable

byteenable_n

2, 4, 8,16, 32,
64, 128

input No Enables specific byte lane(s)
during transfers.

Each bit in byteenable
corresponds to a byte lane in
data. During writes, byteena-
bles specify which bytes the
master is writing to the slave.
During reads, byteenables
indicates which bytes the
master is reading. Slaves that
simply return data with no
side effects are free to ignore
byteenables during reads.

When more than one byte
lane is asserted, all asserted
lanes are guaranteed to be
adjacent. The number of
adjacent lines must be a
power of 2, and the specified
bytes must be aligned on an
address boundary for the size
of the data. The are legal
values for a 32-bit slave:

1111 writes full
32 bits
0011 writes lower
2 bytes
1100 writes upper
2 bytes
0001 writes byte 0
only
0010 writes byte 1
only
0100 writes byte 2
only
1000 writes byte 3
only

writebyteenable

writebyteenable_n

2,4,8,16, 32,
64,128

input No Equivalent to the logical AND
of the byteenable and write
signals. When used, the write
signal is not used.

begintransfer1 1 input No Asserted for the first cycle of
each transfer.

Note: All Avalon signals are active high. Avalon signals that can also be asserted low list both
versions in the Signal Role column.

QPS5V1
2015.11.02 Avalon Tri-State Slave Interface Signal Types 7-95

Qsys Interconnect Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Interrupt Sender Signal Roles

Table 7-57: Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n

1 Output Yes Interrupt Request. A slave asserts irq when it
needs service. The interrupt receiver
determines the relative priority of the
interrupts.

Avalon Interrupt Receiver Signal Roles

Table 7-58: Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–32 Input Yes irq is an <n>-bit vector, where each bit
corresponds directly to one IRQ sender with no
inherent assumption of priority.

Document Revision History
The table below indicates edits made to the Qsys Interconnect content since its creation.

Table 7-59: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Fixed Priority Arbitration.
• Added topic: Read and Write Responses.
• Added topic: Error Correction Coding (ECC) in Qsys

Interconnect.
• Added: response [1:0], Avalon Memory-Mapped Interface

Signal Roles.
• Added writeresponsevalid, Avalon Memory-Mapped

Interface Signal Roles.

December 2014 14.1.0 • Read error responses, Avalon Memory-Mapped Interface
Signal, response.

• Burst Adapter Implementation Options: Generic converter
(slower, lower area), Per-burst-type converter (faster, higher
area).

7-96 Avalon Interrupt Sender Signal Roles
QPS5V1

2015.11.02

Altera Corporation Qsys Interconnect

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

August 2014 14.0a10.0 • Updated Qsys Packet Format for Memory-Mapped Master
and Slave Interfaces table, Protection.

• Streaming Interface renamed to Avalon Streaming
Interfaces.

• Added Response Merging under Memory-Mapped Interfaces.

June 2014 14.0.0 • AXI4-Lite support.
• AXI4-Stream support.
• Avalon-ST adapter parameters.
• IRQ Bridge.
• Handling Read Side Effects note added.

November 2013 13.1.0 • HSSI clock support.
• Reset Sequencer.
• Interconnect pipelining.

May 2013 13.0.0 • AMBA APB support.
• Auto-inserted Avalon-ST adapters feature.
• Moved Address Span Extender to the Qsys System Design

Components chapter.

November 2012 12.1.0 • AMBA AXI4 support.

June 2012 12.0.0 • AMBA AXI3 support.
• Avalon-ST adapters.
• Address Span Extender.

November 2011 11.0.1 Template update.

May 2011 11.0.0 Removed beta status.

December 2010 10.1.0 Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 7-97

Qsys Interconnect Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20Interconnect%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimizing Qsys System Performance 8
2015.11.02

QPS5V1 Subscribe Send Feedback

You can optimize system interconnect performance for Altera® designs that you create with the Qsys
system integration tool.

The foundation of any system is the interconnect logic that connects hardware blocks or components.
Creating interconnect logic is prone to errors, is time consuming to write, and is difficult to modify when
design requirements change. The Qsys system integration tool addresses these issues and provides an
automatically generated and optimized interconnect designed to satisfy your system requirements.

Qsys supports Avalon, AMBA AXI3 (version 1.0), AMBA AXI4 (version 2.0), AMBA AXI4-Lite (version
2.0), AMBA AXI4-Stream (version 1.0), and AMBA APB3 (version 1.0) interface specifications.

Note: Recommended Altera practices may improve clock frequency, throughput, logic utilization, or
power consumption of your Qsys design. When you design a Qsys system, use your knowledge of
your design intent and goals to further optimize system performance beyond the automated
optimization available in Qsys.

Related Information

• Avalon Interface Specifications
• AMBA Protocol Specifications
• Creating a System with Qsys on page 5-1
• Creating Qsys Components on page 6-1
• Qsys Interconnect on page 7-1

Designing with Avalon and AXI Interfaces
Qsys Avalon and AXI interconnect for memory-mapped interfaces is flexible, partial crossbar logic that
connects master and slave interfaces.

Avalon Streaming (Avalon-ST) links connect point-to-point, unidirectional interfaces and are typically
used in data stream applications. Each a pair of components is connected without any requirement to
arbitrate between the data source and sink.

Because Qsys supports multiplexed memory-mapped and streaming connections, you can implement
systems that use multiplexed logic for control and streaming for data in a single design.

Related Information
Creating Qsys Components on page 6-1

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Optimizing%20Qsys%20System%20Performance&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Designing Streaming Components
When you design streaming component interfaces, you must consider integration and communication for
each component in the system. One common consideration is buffering data internally to accommodate
latency between components.

For example, if the component’s Avalon-ST output or source of streaming data is back-pressured because
the ready signal is de-asserted, then the component must back-pressure its input or sink interface to avoid
overflow.

You can use a FIFO to back-pressure internally on the output side of the component so that the input can
accept more data even if the output is back-pressured. Then, you can use the FIFO almost full flag to
back-pressure the sink interface or input data when the FIFO has only enough space to satisfy the internal
latency. You can drive the data valid signal of the output or source interface with the FIFO not empty flag
when that data is available.

Designing Memory-Mapped Components
When designing with memory-mapped components, you can implement any component that contains
multiple registers mapped to memory locations, for example, a set of four output registers to support
software read back from logic. Components that implement read and write memory-mapped transactions
require three main building blocks: an address decoder, a register file, and a read multiplexer.

The decoder enables the appropriate 32-bit or 64-bit register for writes. For reads, the address bits drive
the multiplexer selection bits. The read signal registers the data from the multiplexer, adding a pipeline
stage so that the component can achieve a higher clock frequency.

8-2 Designing Streaming Components
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-1: Control and Status Registers (CSR) in a Slave Component

write

writedata[31:0]

address[1:0]

read

readdata[31:0]

Avalon-MM
Slave Port

EN

D Q

EN

D Q

EN

D Q

EN

D Q

EN

Q D

0

2

3

1

Read Multiplexer

s

Decode
2:4

Register File

User
Logic

EN

address[1:0]

This slave component has write wait states and one read wait state. Alternatively, if you want high
throughput, you may set both the read and write wait states to zero, and then specify a read latency of one,
because the component also supports pipelined reads.

Using Hierarchy in Systems
You can use hierarchy to sub-divide a system into smaller subsystems that you can then connect in a top-
level Qsys system. Additionally, If a design contains one or more identical functional units, the functional
unit can be defined as a subsystem and instantiated multiple times within a top-level system.

QPS5V1
2015.11.02 Using Hierarchy in Systems 8-3

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hierarchy can simplify verification control of slaves connected to each master in a memory-mapped
system. Before you implement subsystems in your design, you should plan the system hierarchical blocks
at the top-level, using the following guidelines:

• Plan shared resources—Determine the best location for shared resources in the system hierarchy. For
example, if two subsystems share resources, add the components that use those resources to a higher-
level system for easy access.

• Plan shared address space between subsystems—Planning the address space ensures you can set
appropriate sizes for bridges between subsystems.

• Plan how much latency you may need to add to your system—When you add an Avalone-MM
Pipeline Bridge between subsystems, you may add latency to the overall system. You can reduce the
added latency by parameterizing the bridge with zero cycles of latency, and by turning off the pipeline
command and response signals.

8-4 Using Hierarchy in Systems
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-2: Passing Messages Between Subsystems

Nios II
Processor

M M

Nios II
Processor

M M

PIO

S

On-Chip
Memory

S

Mutex

S

UART

S

On-Chip
Memory

S

Shared
Memory

S

UART

S

PIO

S

Arbiter Arbiter ArbiterArbiter

Top-Level System

Subsystem Subsystem

Pipeline Bridges

Shared Resources for Message Passing

In this example, two Nios II processor subsystems share resources for message passing. Bridges in each
subsystem export the Nios II data master to the top-level system that includes the mutex (mutual
exclusion component) and shared memory component (which could be another on-chip RAM, or a
controller for an off-chip RAM device).

QPS5V1
2015.11.02 Using Hierarchy in Systems 8-5

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-3: Multi Channel System

Channel 1 SystemInput Data Stream Output Data Stream

Channel 2 SystemInput Data Stream Output Data Stream

Channel N SystemInput Data Stream Output Data Stream

Nios II
Processor

M M

Input Data
Stream

S

On-Chip
Memory

S

Input Data
Stream

S

Arbiter

You can also design systems that process multiple data channels by instantiating the same subsystem for
each channel. This approach is easier to maintain than a larger, non-hierarchical system. Additionally,
such systems are easier to scale mwh1409959480842 because you can mwh1409959275749 calculate the
required resources as a multiple of the subsystem requirements.

Related Information
Avalon-MM Pipeline Bridge

8-6 Using Hierarchy in Systems
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

https://documentation.altera.com/#/link/mwh1409959480842.xml/mwh1409959275749.xml/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using Concurrency in Memory-Mapped Systems
Qsys interconnect uses parallel hardware in FPGAs, which allows you to design concurrency into your
system and process transactions simultaneously.

Implementing Concurrency With Multiple Masters
Implementing concurrency requires multiple masters in a Qsys system. Systems that include a processor
contain at least two master interfaces because the processors include separate instruction and data
masters. You can catagorize master components as follows:

• General purpose processors, such as Nios II processors
• DMA (direct memory access) engines
• Communication interfaces, such as PCI Express

Because Qsys generates an interconnect with slave-side arbitration, every master interface in a system can
issue transfers concurrently, as long as they are not posting transfers to the same slave. Concurrency is
limited by the number of master interfaces sharing any particular slave interface. If a design requires
higher data throughput, you can increase the number of master and slave interfaces to increase the
number of transfers that occur simultaneously. The example below shows a system with three master
interfaces.

QPS5V1
2015.11.02 Using Concurrency in Memory-Mapped Systems 8-7

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-4: Avalon Multiple Master Parallel Access

In this Avalon example, the DMA engine operates with Avalon-MM read and write masters. However, an
AXI DMA interface typically has only one master, because in the AXI standard, the write and read
channels on the master are independent and can process transactions simultaneously. The yellow lines
represent active simultaneously connections.

A va lon M as te r P ort

A va lon S lave P ort

M

Dual-Port On-Chip
Memory

S

External Memory
Controller

External Memory
Controller

Concurrent Access Possible

N ios II
P rocessor

AXI DMA
Engine

M MMM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

8-8 Implementing Concurrency With Multiple Masters
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-5: AXI Multiple Master Parallel Access

In this example, the DMA engine operates with a single master, because in AXI, the write and read
channels on the master are independent and can process transactions simultaneously. There is
concurrency between the read and write channels, with the yellow lines representing concurrent data
paths.

Avalon Master PortM

Dual-Port On-Chip
Memory

Avalon Slave PortS

External Memory
Controller

External Memory
Controller

Nios II
Processor

DMA
Engine

M MM

PCI Express
Interface

MS

Arbiter Arbiter

S S S S

Concurrent Access Possible

Read Write

Implementing Concurrency With Multiple Slaves
You can create multiple slave interfaces for a particular function to increase concurrency in your design.

QPS5V1
2015.11.02 Implementing Concurrency With Multiple Slaves 8-9

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-6: Single Interface Versus Multiple Interfaces

Host 2

Host 1

M

Host 3

Host 4

M

S

M

M

Arbiter

Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Single Channel Access

Multiple Channel Access

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S Compute
Engine 1

Channel Processor

Data Channel 4

Data Channel 3

Data Channel 2

Data Channel 1

Compute
Engine 2

Compute
Engine 3

Compute
Engine 4

S

S

S

Host 2

Host 1

M

Host 3

Host 4

M

M

M

In this example, there are two channel processing systems. In the first, four hosts must arbitrate for the
single slave interface of the channel processor. In the second, each host drives a dedicated slave interface,
allowing all master interfaces to simultaneously access the slave interfaces of the component. Arbitration
is not necessary when there is a single host and slave interface.

Implementing Concurrency with DMA Engines
In some systems, you can use DMA engines to increase throughput. You can use a DMA engine to
transfer blocks of data between interfaces, which then frees the CPU from doing this task. A DMA engine

8-10 Implementing Concurrency with DMA Engines
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

transfers data between a programmed start and end address without intervention, and the data
throughput is dictated by the components connected to the DMA. Factors that affect data throughput
include data width and clock frequency.

Figure 8-7: Single or Dual DMA Channels

Single DMA Channel

DMA
Engine

MM

Read
 Buffer 2

S

Read
 Buffer 1

S

Write
 Buffer 1

S

Write
 Buffer 2

S

Maximum of One Read & One Write Per Clock Cycle

DMA
Engine 1

MM

Write
 Buffer 1

S

Read
 Buffer 1

S

DMA
Engine 2

MM

Write
 Buffer 2

S

Read
 Buffer 2

S

Dual DMA Channels
Maximum of two Reads & Two Writes Per Clock Cycle

In this example, the system can sustain more concurrent read and write operations by including more
DMA engines. Accesses to the read and write buffers in the top system are split between two DMA
engines, as shown in the Dual DMA Channels at the bottom of the figure.

QPS5V1
2015.11.02 Implementing Concurrency with DMA Engines 8-11

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The DMA engine operates with Avalon-MM write and read masters. An AXI DMA typically has only one
master, because in AXI, the write and read channels on the master are independent and can process
transactions simultaneously.

Inserting Pipeline Stages to Increase System Frequency
Qsys provides the Limit interconnect pipeline stages to option on the Project Settings tab to
automatically add pipeline stages to the Qsys interconnect when you generate a system.

You can specify between 0 to 4 pipeline stages, where 0 means that the interconnect has a combinational
data path. You can specify a unique interconnect pipeline stage value for each subsystem.

Adding pipeline stages may increase the fMAX of the design by reducing the combinational logic depth, at
the cost of additional latency and logic utilization.

The insertion of pipeline stages requires certain interconnect components. For example, in a system with
a single slave interface, there is no multiplexer; therefore multiplexer pipelining does not occur. When
there is an Avalon or AXI single-master to single-slave system, no pipelining occurs, regardless of the
Limit interconnect pipeline stages to option.

Related Information
Creating a System with Qsys on page 5-1

Using Bridges
You can use bridges to increase system frequency, minimize generated Qsys logic, minimize adapter logic,
and to structure system topology when you want to control where Qsys adds pipelining. You can also use
bridges with arbiters when there is concurrency in the system.

An Avalon bridge has an Avalon-MM slave interface and an Avalon-MM master interface. You can have
many components connected to the bridge slave interface, or many components connected to the bridge
master interface. You can also have a single component connected to a single bridge slave or master
interface.

You can configure the data width of the bridge, which can affect how Qsys generates bus sizing logic in
the interconnect. Both interfaces support Avalon-MM pipelined transfers with variable latency, and can
also support configurable burst lengths.

Transfers to the bridge slave interface are propagated to the master interface, which connects to
components downstream from the bridge. When you need greater control over interconnect pipelining,
you can use bridges instead of the Limit Interconnect Pipeline Stages to option.

Note: You can use Avalon bridges between AXI interfaces, and between Avalon domains. Qsys automati‐
cally creates interconnect logic between the AXI and Avalon interfaces, so you do not have to
explicitly instantiate bridges between these domains. For more discussion about the benefits and
disadvantages of shared and separate domains, refer to the Qsys Interconnect.

Related Information

• Creating a System with Qsys on page 5-1
• Qsys Interconnect on page 7-1

8-12 Inserting Pipeline Stages to Increase System Frequency
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using Bridges to Increase System Frequency
In Qsys, you can introduce interconnect pipeline stages or pipeline bridges to increase clock frequency in
your system. Bridges control the system interconnect topology and allow you to subdivide the
interconnect, giving you more control over pipelining and clock crossing functionality.

Inserting Pipeline Bridges
You can insert an Avalon-MM pipeline bridge to insert registers in the path between the bridges and its
master and slaves. If a critical register-to-register delay occurs in the interconnect, a pipeline bridge can
help reduce this delay and improve system fMAX.

The Avalon-MM pipeline bridge component integrates into any Qsys system. The pipeline bridge options
can increase logic utilization and read latency. The change in topology may also reduce concurrency if
multiple masters arbitrate for the bridge. You can use the Avalon-MM pipeline bridge to control topology
without adding a pipeline stage. A pipeline bridge that does not add a pipeline stage is optimal in some
latency-sensitive applications. For example, a CPU may benefit from minimal latency when accessing
memory.

Figure 8-8: Avalon-MM Pipeline Bridge

D Q

Master
I/F

Wait Request
 Logic

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM
Master Interface

Connects to an
Avalon-MM

Slave Interface

Slave
I/F

D Q

D Q

Implementing Command Pipelining (Master-to-Slave)
When multiple masters share a slave device, you can use command pipelining to improve performance.

The arbitration logic for the slave interface must multiplex the address, writedata, and burstcount
signals. The multiplexer width increases proportionally with the number of masters connecting to a single
slave interface. The increased multiplexer width may become a timing critical path in the system. If a

QPS5V1
2015.11.02 Using Bridges to Increase System Frequency 8-13

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

single pipeline bridge does not provide enough pipelining, you can instantiate multiple instances of the
bridge in a tree structure to increase the pipelining and further reduce the width of the multiplexer at the
slave interface.

Figure 8-9: Tree of Bridges

Master 1

M

Master 2

M

M

S

Pipeline Bridge

Master 3

M

Master 4

M

M

S

Pipeline Bridge

arb

arb arb

Write Data &
Control Signals

Read Data

Shared
Slave

S

Implementing Response Pipelining (Slave-to-Master)
When masters connect to multiple slaves that support read transfers, you can use slave-to-master
pipelining to improve performance.

8-14 Implementing Response Pipelining (Slave-to-Master)
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The interconnect inserts a multiplexer for every read data path back to the master. As the number of
slaves supporting read transfers connecting to the master increases, the width of the read data multiplexer
also increases. If the performance increase is insufficient with one bridge, you can use multiple bridges in
a tree structure to improve fMAX.

Using Clock Crossing Bridges

The clock crossing bridge contains a pair of clock crossing FIFOs, which isolate the master and slave
interfaces in separate, asynchronous clock domains. Transfers to the slave interface are propagated to the
master interface.

When you use a FIFO clock crossing bridge for the clock domain crossing, you add data buffering.
Buffering allows pipelined read masters to post multiple reads to the bridge, even if the slaves downstream
from the bridge do not support pipelined transfers.

You can also use a clock crossing bridge to place high and low frequency components in separate clock
domains. If you limit the fast clock domain to the portion of your design that requires high performance,
you may achieve a higher fMAX for this portion of the design. For example, the majority of processor
peripherals in embedded designs do not need to operate at high frequencies, therefore, you do not need to
use a high-frequency clock for these components. When you compile a design with the Quartus Prime
software, compilation may take more time when the clock frequency requirements are difficult to meet
because the Fitter needs more time to place registers to achieve the required fMAX. To reduce the amount
of effort that the Fitter uses on low priority and low performance components, you can place these behind
a clock crossing bridge operating at a lower frequency, allowing the Fitter to increase the effort placed on
the higher priority and higher frequency data paths.

Using Bridges to Minimize Design Logic
Bridges can reduce interconnect logic by reducing the amount of arbitration and multiplexer logic that
Qsys generates. This reduction occurs because bridges limit the number of concurrent transfers that can
occur.

Avoiding Speed Optimizations That Increase Logic

You can add an additional pipeline stage with a pipeline bridge between masters and slaves to reduces the
amount of combinational logic between registers, which can increase system performance. If you can
increase the fMAX of your design logic, you may be able to turn off the Quartus Prime software optimiza‐
tion settings, such as the Perform register duplication setting. Register duplication creates duplicate
registers in two or more physical locations in the FPGA to reduce register-to-register delays. You may also
want to choose Speed for the optimization method, which typically results in higher logic utilization due
to logic duplication. By making use of the registers or FIFOs available in the bridges, you can increase the
design speed and avoid needless logic duplication or speed optimizations, thereby reducing the logic
utilization of the design.

Limiting Concurrency

The amount of logic generated for the interconnect often increases as the system becomes larger because
Qsys creates arbitration logic for every slave interface that is shared by multiple master interfaces. Qsys
inserts multiplexer logic between master interfaces that connect to multiple slave interfaces if both
support read data paths.

QPS5V1
2015.11.02 Using Clock Crossing Bridges 8-15

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Most embedded processor designs contain components that are either incapable of supporting high data
throughput, or do not need to be accessed frequently. These components can contain master or slave
interfaces. Because the interconnect supports concurrent accesses, you may want to limit concurrency by
inserting bridges into the data path to limit the amount of arbitration and multiplexer logic generated.

For example, if a system contains three master and three slave interfaces that are interconnected, Qsys
generates three arbiters and three multiplexers for the read data path. If these masters do not require a
significant amount of simultaneous throughput, you can reduce the resources that your design consumes
by connecting the three masters to a pipeline bridge. The bridge controls the three slave interfaces and
reduces the interconnect into a bus structure. Qsys creates one arbitration block between the bridge and
the three masters, and a single read data path multiplexer between the bridge and three slaves, and
prevents concurrency. This implementation is similar to a standard bus architecture.

You should not use this method for high throughput data paths to ensure that you do not limit overall
system performance.

8-16 Limiting Concurrency
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-10: Differences Between Systems With and Without a Pipeline Bridge

S S S

Arbiter Arbiter Arbiter

SSS

M

Bridge

S

Arbiter

M M M M MM M

Write Data & Control Signals
Read Data

Concurrency No Concurrency

Using Bridges to Minimize Adapter Logic
Qsys generates adapter logic for clock crossing, width adaptation, and burst support when there is a
mismatch between the clock domains, widths, or bursting capabilities of the master and slave interface
pairs.

Qsys creates burst adapters when the maximum burst length of the master is greater than the master burst
length of the slave. The adapter logic creates extra logic resources, which can be substantial when your
system contains master interfaces connected to many components that do not share the same characteris‐
tics. By placing bridges in your design, you can reduce the amount of adapter logic that Qsys generates.

QPS5V1
2015.11.02 Using Bridges to Minimize Adapter Logic 8-17

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Determining Effective Placement of Bridges

To determine the effective placement of a bridge, you should initially analyze each master in your system
to determine if the connected slave devices support different bursting capabilities or operate in a different
clock domain. The maximum burstcount of a component is visible as the burstcount signal in the HDL
file of the component. The maximum burst length is 2 (width(burstcount -1)), therefore, if the burstcount
width is four bits, the maximum burstcount is eight. If no burstcount signal is present, the component
does not support bursting or has a burst length of 1.

To determine if the system requires a clock crossing adapter between the master and slave interfaces,
check the Clock column for the master and slave interfaces. If the clock is different for the master and
slave interfaces, Qsys inserts a clock crossing adapter between them. To avoid creating multiple adapters,
you can place the components containing slave interfaces behind a bridge so that Qsys creates a single
adapter. By placing multiple components with the same burst or clock characteristics behind a bridge, you
limit concurrency and the number of adapters.

You can also use a bridge to separate AXI and Avalon domains to minimize burst adaptation logic. For
example, if there are multiple Avalon slaves that are connected to an AXI master, you can consider
inserting a bridge to access the adaptation logic once before the bridge, instead of once per slave. This
implementation results in latency, and you would also lose concurrency between reads and writes.

Changing the Response Buffer Depth

When you use automatic clock-crossing adapters, Qsys determines the required depth of FIFO buffering
based on the slave properties. If a slave has a high Maximum Pending Reads parameter, the resulting deep
response buffer FIFO that Qsys inserts between the master and slave can consume a lot of device
resources. To control the response FIFO depth, you can use a clock crossing bridge and manually adjust
its FIFO depth to trade off throughput with smaller memory utilization.

For example, if you have masters that cannot saturate the slave, you do not need response buffering. Using
a bridge reduces the FIFO memory depth and reduces the Maximum Pending Reads available from the
slave.

Considering the Effects of Using Bridges
Before you use pipeline or clock crossing bridges in a design, you should carefully consider their effects.
Bridges can have any combination of consequences on your design, which could be positive or negative.
Benchmarking your system before and after inserting bridges can help you to determine the impact to the
design.

Increased Latency

Adding a bridge to a design has an effect on the read latency between the master and the slave. Depending
on the system requirements and the type of master and slave, this latency increase may or may not be
acceptable in your design.

Acceptable Latency Increase

For a pipeline bridge, Qsys adds a cycle of latency for each pipeline option that is enabled. The buffering
in the clock crossing bridge also adds latency. If you use a pipelined or burst master that posts many read
transfers, the increase in latency does not impact performance significantly because the latency increase is
very small compared to the length of the data transfer.

8-18 Determining Effective Placement of Bridges
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, if you use a pipelined read master such as a DMA controller to read data from a component
with a fixed read latency of four clock cycles, but only perform a single word transfer, the overhead is
three clock cycles out of the total of four. This is true when there is no additional pipeline latency in the
interconnect. The read throughput is only 25%.

Figure 8-11: Low-Efficiency Read Transfer

clk

address

read

waitrequest

readdata

A0 A1

D0 D1

Overhead

Read Latency

Overhead

Read Latency

However, if 100 words of data are transferred without interruptions, the overhead is three cycles out of the
total of 103 clock cycles. This corresponds to a read efficiency of approximately 97% when there is no
additional pipeline latency in the interconnect. Adding a pipeline bridge to this read path adds two extra
clock cycles of latency. The transfer requires 105 cycles to complete, corresponding to an efficiency of
approximately 94%. Although the efficiency decreased by 3%, adding the bridge may increase the fMAX by
5%. For example, if the clock frequency can be increased, the overall throughput would improve. As the
number of words transferred increases, the efficiency increases to nearly 100%, whether or not a pipeline
bridge is present.

Figure 8-12: High Efficiency Read Transfer

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

D0 D1 D2 D3 D4 D5 D6 D7 D8

Overhead

Read Latency

Unacceptable Latency Increase

Processors are sensitive to high latency read times and typically retrieve data for use in calculations that
cannot proceed until the data arrives. Before adding a bridge to the data path of a processor instruction or
data master, determine whether the clock frequency increase justifies the added latency.

QPS5V1
2015.11.02 Unacceptable Latency Increase 8-19

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A Nios II processor instruction master has a cache memory with a read latency of four cycles, which is
eight sequential words of data return for each read. At 100 MHz, the first read takes 40 ns to complete.
Each successive word takes 10 ns so that eight reads complete in 110 ns.

Figure 8-13: Performance of a Nios II Processor and Memory Operating at 100 MHz

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

40 ns

110 ns

Adding a clock crossing bridge allows the memory to operate at 125 MHz. However, this increase in
frequency is negated by the increase in latency because if the clock crossing bridge adds six clock cycles of
latency at 100 MHz, then the memory continues to operate with a read latency of four clock cycles.
Consequently, the first read from memory takes 100 ns, and each successive word takes 10 ns because
reads arrive at the frequency of the processor, which is 100 MHz. In total, eight reads complete after 170
ns. Although the memory operates at a higher clock frequency, the frequency at which the master
operates limits the throughput.

Figure 8-14: Performance of a Nios II Processor and Eight Reads with Ten Cycles Latency

clk

address

read

waitrequest

readdatavalid

readdata

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 D4 D5 D6 D7

100 ns

170 ns

Limited Concurrency

Placing a bridge between multiple master and slave interfaces limits the number of concurrent transfers
your system can initiate. This limitation is the same when connecting multiple master interfaces to a
single slave interface. The slave interface of the bridge is shared by all the masters and, as a result, Qsys

8-20 Limited Concurrency
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

creates arbitration logic. If the components placed behind a bridge are infrequently accessed, this
concurrency limitation may be acceptable.

Bridges can have a negative impact on system performance if you use them inappropriately. For example,
if multiple memories are used by several masters, you should not place the memory components behind a
bridge. The bridge limits memory performance by preventing concurrent memory accesses. Placing
multiple memory components behind a bridge can cause the separate slave interfaces to appear as one
large memory to the masters accessing the bridge; all masters must access the same slave interface.

QPS5V1
2015.11.02 Limited Concurrency 8-21

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-15: Inappropriate Use of a Bridge in a Hierarchical System

Nios II
Processor

M M

M

DMA

M M

DDR
SDRAM

S

DDR
SDRAM

S

DDR
SDRAM

S

Bridge

S

BottleneckArbiter

DDR
SDRAM

S

Qsys Subsystem

A memory subsystem with one bridge that acts as a single slave interface for the Avalon-MM Nios II and
DMA masters, which results in a bottleneck architecture. The bridge acts as a bottleneck between the two
masters and the memories.

If the fMAX of your memory interfaces is low and you want to use a pipeline bridge between subsystems,
you can place each memory behind its own bridge, which increases the fMAX of the system without
sacrificing concurrency.

8-22 Limited Concurrency
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-16: Efficient Memory Pipelining Without a Bottleneck in a Hierarchical System

Nios II
Processor

M M

DMA

M M

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

DDR
SDRAM

S

M

Bridge

S

Arbiter

Subsystem

Subsystem

Address Space Translation

The slave interface of a pipeline or clock crossing bridge has a base address and address span. You can set
the base address, or allow Qsys to set it automatically. The address of the slave interface is the base offset
address of all the components connected to the bridge. The address of components connected to the
bridge is the sum of the base offset and the address of that component.

The master interface of the bridge drives only the address bits that represent the offset from the base
address of the bridge slave interface. Any time a master accesses a slave through a bridge, both addresses
must be added together, otherwise the transfer fails. The Address Map tab displays the addresses of the
slaves connected to each master and includes address translations caused by system bridges.

QPS5V1
2015.11.02 Address Space Translation 8-23

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-17: Bridge Address Translation

M

Nios II Processor

M

Bridge

S

Base = 0x1000

0x2C 0x2C0x102C

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0xC

Address Translation

In this example, the Nios II processor connects to a bridge located at base address 0x1000, a slave connects
to the bridge master interface at an offset of 0x20, and the processor performs a write transfer to the
fourth 32-bit or 64-bit word within the slave. Nios II drives the address 0x102C to interconnect, which is
within the address range of the bridge. The bridge master interface drives 0x2C, which is within the
address range of the slave, and the transfer completes.

Address Coherency

To simplify the system design, all masters should access slaves at the same location. In many systems, a
processor passes buffer locations to other mastering components, such as a DMA controller. If the
processor and DMA controller do not access the slave at the same location, Qsys must compensate for the
differences.

Figure 8-18: Slaves at Different Addresses and Complicating the System

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20 0x20

0x20

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

Masters Drive
Different Addresses

8-24 Address Coherency
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A Nios II processor and DMA controller access a slave interface located at address 0x20. The processor
connects directly to the slave interface. The DMA controller connects to a pipeline bridge located at
address 0x1000, which then connects to the slave interface. Because the DMA controller accesses the
pipeline bridge first, it must drive 0x1020 to access the first location of the slave interface. Because the
processor accesses the slave from a different location, you must maintain two base addresses for the slave
device.

To avoid the requirement for two addresses, you can add an additional bridge to the system, set its base
address to 0x1000, and then disable all the pipelining options in the second bridge so that the bridge has
minimal impact on system timing and resource utilization. Because this second bridge has the same base
address as the original bridge, the processor and DMA controller access the slave interface with the same
address range.

Figure 8-19: Address Translation Corrected With Bridge

M

DMA

M

Nios II Processor

0x1020
MS

Bridge

Base = 0x1000

0x20

M

Bridge

S

Base = 0x1000

0x20

0x20

0x200x1020

Address Translation

Address Translation

Address
DecoderS

Peripheral

Base = 0x20

0x0Arbiter

Increasing Transfer Throughput
Increasing the transfer efficiency of the master and slave interfaces in your system increases the
throughput of your design. Designs with strict cost or power requirements benefit from increasing the
transfer efficiency because you can then use less expensive, lower frequency devices. Designs requiring
high performance also benefit from increased transfer efficiency because increased efficiency improves the
performance of frequency–limited hardware.

Throughput is the number of symbols (such as bytes) of data that Qsys can transfer in a given clock cycle.
Read latency is the number of clock cycles between the address and data phase of a transaction. For
example, a read latency of two means that the data is valid two cycles after the address is posted. If the

QPS5V1
2015.11.02 Increasing Transfer Throughput 8-25

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

master must wait for one request to finish before the next begins, such as with a processor, then the read
latency is very important to the overall throughput.

You can measure throughput and latency in simulation by observing the waveforms, or using the verifica‐
tion IP monitors.

Related Information

• Avalon Verification IP Suite User Guide
• Mentor® Verification IP Altera Edition AMBA AXI3/4 User Guide

Using Pipelined Transfers
Pipelined transfers increase the read efficiency by allowing a master to post multiple reads before data
from an earlier read returns. Masters that support pipelined transfers post transfers continuously, relying
on the readdatavalid signal to indicate valid data. Slaves support pipelined transfers by including the
readdatavalid signal or operating with a fixed read latency.

AXI masters declare how many outstanding writes and reads it can issue with the writeIssuingCapa-
bility and readIssuingCapability parameters. In the same way, a slave can declare how many reads it
can accept with the readAcceptanceCapability parameter. AXI masters with a read issuing capability
greater than one are pipelined in the same way as Avalon masters and the readdatavalid signal.

Using the Maximum Pending Reads Parameter

If you create a custom component with a slave interface supporting variable-latency reads, you must
specify the Maximum Pending Reads parameter in the Component Editor. Qsys uses this parameter to
generate the appropriate interconnect and represent the maximum number of read transfers that your
pipelined slave component can process. If the number of reads presented to the slave interface exceeds the
Maximum Pending Reads parameter, then the slave interface must assert waitrequest.

Optimizing the value of the Maximum Pending Reads parameter requires an understanding of the
latencies of your custom components. This parameter should be based on the component’s highest read
latency for the various logic paths inside the component. For example, if your pipelined component has
two modes, one requiring two clock cycles and the other five, set the Maximum Pending Reads
parameter to 5 to allow your component to pipeline five transfers, and eliminating dead cycles after the
initial five-cycle latency.

You can also determine the correct value for the Maximum Pending Reads parameter by monitoring the
number of reads that are pending during system simulation or while running the hardware. To use this
method, set the parameter to a high value and use a master that issues read requests on every clock. You
can use a DMA for this task as long as the data is written to a location that does not frequently assert
waitrequest. If you implement this method, you can observe your component with a logic analyzer or
built-in monitoring hardware.

Choosing the correct value for the Maximum Pending Reads parameter of your custom pipelined read
component is important. If you underestimate the parameter value, you may cause a master interface to
stall with a waitrequest until the slave responds to an earlier read request and frees a FIFO position.

The Maximum Pending Reads parameter controls the depth of the response FIFO inserted into the
interconnect for each master connected to the slave. This FIFO does not use significant hardware
resources. Overestimating the Maximum Pending Reads parameter results in a slight increase in

8-26 Using Pipelined Transfers
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

http://www.altera.com/literature/ug/ug_avalon_verification_ip.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Avalon Verification Suite User Guide
http://www.altera.com/literature/ug/mentor_vip_axi34_ae_usr.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

hardware utilization. For these reasons, if you are not sure of the optimal value, you should overestimate
this value.

If your system includes a bridge, you must set the Maximum Pending Reads parameter on the bridge as
well. To allow maximum throughput, this value should be equal to or greater than the Maximum
Pending Reads value for the connected slave that has the highest value. You can limit the maximum
pending reads of a slave and reduce the buffer depth by reducing the parameter value on the bridge if the
high throughput is not required. If you do not know the Maximum Pending Reads value for all the slave
components, you can monitor the number of reads that are pending during system simulation while
running the hardware. To use this method, set the Maximum Pending Reads parameter to a high value
and use a master that issues read requests on every clock, such as a DMA. Then, reduce the number of
maximum pending reads of the bridge until the bridge reduces the performance of any masters accessing
the bridge.

Arbitration Shares and Bursts
Arbitration shares provide control over the arbitration process. By default, the arbitration algorithm
allocates evenly, with all masters receiving one share.

You can adjust the arbitration process by assigning a larger number of shares to the masters that need
greater throughput. The larger the arbitration share, the more transfers are allocated to the master to
access a slave. The masters gets uninterrupted access to the slave for its number of shares, as long as the
master is reading or writing.

If a master cannot post a transfer and other masters are waiting to gain access to a particular slave, the
arbiter grants another master access. This mechanism prevents a master from wasting arbitration cycles if
it cannot post back-to-back transfers. A bursting transaction contains multiple beats (or words) of data,
starting from a single address. Bursts allow a master to maintain access to a slave for more than a single
word transfer. If a bursting master posts a write transfer with a burst length of eight, it is guaranteed
arbitration for eight write cycles.

You can assign arbitration shares to an Avalon-MM bursting master and AXI masters (which are always
considered a bursting master). Each share consists of one burst transaction (such as multi-cycle write),
and allows a master to complete a number of bursts before arbitration switches to the next master.

Related Information

• Avalon Interface Specifications
• AMBA Protocol Specification

Differences Between Arbitration Shares and Bursts

The following three key characteristics distinguish arbitration shares and bursts:

• Arbitration Lock
• Sequential Addressing
• Burst Adapters

Arbitration Lock

When a master posts a burst transfer, the arbitration is locked for that master; consequently, the bursting
master should be capable of sustaining transfers for the duration of the locked period. If, after the fourth

QPS5V1
2015.11.02 Arbitration Shares and Bursts 8-27

Optimizing Qsys System Performance Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

write, the master deasserts the write signal (Avalon-MM write or AXI wvalid) for fifty cycles, all other
masters continue to wait for access during this stalled period.

To avoid wasted bandwidth, your master designs should wait until a full burst transfer is ready before
requesting access to a slave device. Alternatively, you can avoid wasted bandwidth by posting
burstcounts equal to the amount of data that is ready. For example, if you create a custom bursting write
master with a maximum burstcount of eight, but only three words of data are ready, you can present a
burstcount of three. This strategy does not result in optimal use of the system band width if the slave is
capable of handling a larger burst; however, this strategy prevents stalling and allows access for other
masters in the system.

Sequential Addressing

An Avalon-MM burst transfer includes a base address and a burstcount, which represents the number of
words of data that are transferred, starting from the base address and incrementing sequentially. Burst
transfers are common for processors, DMAs, and buffer processing accelerators; however, sometimes a
master must access non-sequential addresses. Consequently, a bursting master must set the burstcount
to the number of sequential addresses, and then reset the burstcount for the next location.

The arbitration share algorithm has no restrictions on addresses; therefore, your custom master can
update the address it presents to the interconnect for every read or write transaction.

Burst Adapters

Qsys allows you to create systems that mix bursting and non-bursting master and slave interfaces. This
design strategy allows you to connect bursting master and slave interfaces that support different
maximum burst lengths, with Qsys generating burst adapters when appropriate.

Qsys inserts a burst adapter whenever a master interface burst length exceeds the burst length of the slave
interface, or if the master issues a burst type that the slave cannot support. For example, if you connect an
AXI master to an Avalon slave, a burst adapter is inserted. Qsys assigns non-bursting masters and slave
interfaces a burst length of one. The burst adapter divides long bursts into shorter bursts. As a result, the
burst adapter adds logic to the address and burstcount paths between the master and slave interfaces.

Related Information

• Qsys Interconnect on page 7-1
• AMBA Protocol Specification

Choosing Avalon-MM Interface Types

To avoid inefficient Avalon-MM transfers, custom master or slave interfaces must use the appropriate
simple, pipelined, or burst interfaces.

Simple Avalon-MM Interfaces

Simple interface transfers do not support pipelining or bursting for reads or writes; consequently, their
performance is limited. Simple interfaces are appropriate for transfers between masters and infrequently
used slave interfaces. In Qsys, the PIO, UART, and Timer include slave interfaces that use simple
transfers.

Pipelined Avalon-MM Interfaces

Pipelined read transfers allow a pipelined master interface to start multiple read transfers in succession
without waiting for prior transfers to complete. Pipelined transfers allow master-slave pairs to achieve

8-28 Choosing Avalon-MM Interface Types
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

higher throughput, even though the slave port may require one or more cycles of latency to return data
for each transfer.

In many systems, read throughput becomes inadequate if simple reads are used and pipelined transfers
can increase throughput. If you define a component with a fixed read latency, Qsys automatically provides
the pipelining logic necessary to support pipelined reads. You can use fixed latency pipelining as the
default design starting point for slave interfaces. If your slave interface has a variable latency response
time, use the readdatavalid signal to indicate when valid data is available. The interconnect implements
read response FIFO buffering to handle the maximum number of pending read requests.

To use components that support pipelined read transfers, and to use a pipelined system interconnect
efficiently, your system must contain pipelined masters. You can use pipelined masters as the default
starting point for new master components. Use the readdatavalid signal for these master interfaces.

Because master and slaves sometimes have mismatched pipeline latency, interconnect contains logic to
reconcile the differences.

Table 8-1: Pipeline Latency in a Master-Slave Pair

Master Slave Pipeline Management Logic Structure

No pipeline No Pipeline Qsys interconnect does not instantiate logic to handle pipeline
latency.

No pipeline Pipelined with
fixed or
variable latency

Qsys interconnect forces the master to wait through any slave-
side latency cycles. This master-slave pair gains no benefits from
pipelining, because the master waits for each transfer to complete
before beginning a new transfer. However, while the master is
waiting, the slave can accept transfers from a different master.

Pipelined No pipeline Qsys interconnect carries out the transfer as if neither master nor
slave were pipelined, causing the master to wait until the slave
returns data. An example of a non-pipeline slave is an asynchro‐
nous off-chip interface.

Pipelined Pipelined with
fixed latency

Qsys interconnect allows the master to capture data at the exact
clock cycle when data from the slave is valid, to enable maximum
throughput. An example of a fixed latency slave is an on-chip
memory.

Pipelined Pipelined with
variable latency

The slave asserts a signal when its readdata is valid, and the
master captures the data. The master-slave pair can achieve
maximum throughput if the slave has variable latency. Examples
of variable latency slaves include SDRAM and FIFO memories.

Burst Avalon-MM Interfaces

Burst transfers are commonly used for latent memories such as SDRAM and off-chip communication
interfaces, such as PCI Express. To use a burst-capable slave interface efficiently, you must connect to a
bursting master. Components that require bursting to operate efficiently typically have an overhead
penalty associated with short bursts or non-bursting transfers.

QPS5V1
2015.11.02 Burst Avalon-MM Interfaces 8-29

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use a burst-capable slave interface if you know that your component requires sequential transfers
to operate efficiently. Because SDRAM memories incur a penalty when switching banks or rows, perform‐
ance improves when SDRAM memories are accessed sequentially with bursts.

Architectures that use the same signals to transfer address and data also benefit from bursting. Whenever
an address is transferred over shared address and data signals, the throughput of the data transfer is
reduced. Because the address phase adds overhead, using large bursts increases the throughput of the
connection.

Avalon-MM Burst Master Example

Figure 8-20: Avalon Bursting Write Master

This example shows the architecture of a bursting write master that receives data from a FIFO and writes
the contents to memory. You can use a bursting master as a starting point for your own bursting
components, such as custom DMAs, hardware accelerators, or off-chip communication interfaces.

d

count enable

load

d

count enable

load

q

read acknowledge

d

write

full

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_full

user_data_write

length[31:0]

fifo_used[]

used[]

writedata[31:0]

increment_address

Look-Ahead FIFO

master_burstcount[2:0]

burst_begin

burst_count[2:0]

write

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

burst_begin
EN

D Q

s

1

0

Tracking Logic/
State Machine

The master performs word accesses and writes to sequential memory locations. When go is asserted, the
start_address and transfer_length are registered. On the next clock cycle, the control logic asserts
burst_begin, which synchronizes the internal control signals in addition to the master_address and

8-30 Avalon-MM Burst Master Example
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

master_burstcount presented to the interconnect. The timing of these two signals is important because
during bursting write transfers, byteenable, and burstcount must be held constant for the entire burst.

To avoid inefficient writes, the master posts a burst when enough data is buffered in the FIFO. To
maximize the burst efficiency, the master should stall only when a slave asserts waitrequest. In this
example, the FIFO’s used signal tracks the number of words of data that are stored in the FIFO and
determines when enough data has been buffered.

The address register increments after every word transfer, and the length register decrements after every
word transfer. The address remains constant throughout the burst. Because a transfer is not guaranteed to
complete on burst boundaries, additional logic is necessary to recognize the completion of short bursts
and complete the transfer.

Related Information
Avalon Memory-Mapped Master Templates

Reducing Logic Utilization
You can minimize logic size of Qsys systems. Typically, there is a trade-off between logic utilization and
performance. Reducing logic utilization applies to both Avalon and AXI interfaces.

Minimizing Interconnect Logic to Reduce Logic Unitization
In Qsys, changes to the connections between master and slave reduce the amount of interconnect logic
required in the system.

Related Information
Limited Concurrency on page 8-20

Creating Dedicated Master and Slave Connections to Minimize Interconnect Logic

You can create a system where a master interface connects to a single slave interface. This configuration
eliminates address decoding, arbitration, and return data multiplexing, which simplifies the interconnect.
Dedicated master-to-slave connections attain the same clock frequencies as Avalon-ST connections.

Typically, these one-to-one connections include an Avalon memory-mapped bridge or hardware acceler‐
ator. For example, if you insert a pipeline bridge between a slave and all other master interfaces, the logic
between the bridge master and slave interface is reduced to wires. If a hardware accelerator connects only
to a dedicated memory, no system interconnect logic is generated between the master and slave pair.

Removing Unnecessary Connections to Minimize Interconnect Logic

The number of connections between master and slave interfaces affects the fMAX of your system. Every
master interface that you connect to a slave interface increases the width of the multiplexer width. As a
multiplexer width increases, so does the logic depth and width that implements the multiplexer in the
FPGA. To improve system performance, connect masters and slaves only when necessary.

When you connect a master interface to many slave interfaces, the multiplexer for the read data signal
grows. Avalon typically uses a readdata signal. AXI read data signals add a response status and last
indicator to the read response channel using rdata, rresp, and rlast. Additionally, bridges help control
the depth of multiplexers.

QPS5V1
2015.11.02 Reducing Logic Utilization 8-31

Optimizing Qsys System Performance Altera Corporation

Send Feedback

http://www.altera.com/support/examples/nios2/exm-avalon-mm.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Implementing Command Pipelining (Master-to-Slave) on page 8-13

Simplifying Address Decode Logic

If address code logic is in the critical path, you may be able to change the address map to simplify the
decode logic. Experiment with different address maps, including a one-hot encoding, to see if results
improve.

Minimizing Arbitration Logic by Consolidating Multiple Interfaces
As the number of components in a design increases, the amount of logic required to implement the
interconnect also increases. The number of arbitration blocks increases for every slave interface that is
shared by multiple master interfaces. The width of the read data multiplexer increases as the number of
slave interfaces supporting read transfers increases on a per master interface basis. For these reasons,
consider implementing multiple blocks of logic as a single interface to reduce interconnect logic utiliza‐
tion.

Logic Consolidation Trade-Offs

You should consider the following trade-offs before making modifications to your system or interfaces:

• Consider the impact on concurrency that results when you consolidate components. When a system
has four master components and four slave interfaces, it can initiate four concurrent accesses. If you
consolidate the four slave interfaces into a single interface, then the four masters must compete for
access. Consequently, you should only combine low priority interfaces such as low speed parallel I/O
devices if the combination does not impact the performance.

• Determine whether consolidation introduces new decode and multiplexing logic for the slave interface
that the interconnect previously included. If an interface contains multiple read and write address
locations, the interface already contains the necessary decode and multiplexing logic. When you
consolidate interfaces, you typically reuse the decoder and multiplexer blocks already present in one of
the original interfaces; however, combining interfaces may simply move the decode and multiplexer
logic, rather than eliminate duplication.

• Consider whether consolidating interfaces makes the design complicated. If so, you should not
consolidate interfaces.

Related Information
Using Concurrency in Memory-Mapped Systems on page 8-7

Consolidating Interfaces

In this example, we have a system with a mix of components, each having different burst capabilities: a
Nios II/e core, a Nios II/f core, and an external processor, which off-loads some processing tasks to the
Nios II/f core.

The Nios II/f core supports a maximum burst size of eight. The external processor interface supports a
maximum burst length of 64. The Nios II/e core does not support bursting. The memory in the system is
SDRAM with an Avalon maximum burst length of two.

8-32 Simplifying Address Decode Logic
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-21: Mixed Bursting System

Nios II/e Core

M M

Nios II/f Core

M

Host Processor
Interface

MM

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

1

8

B

B

1

8

8

B

1

8

B

1

8

B

1

64

B

2

8

B

2

8

B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

Qsys automatically inserts burst adapters to compensate for burst length mismatches. The adapters reduce
bursts to a single transfer, or the length of two transfers. For the external processor interface connecting to
DDR SDRAM, a burst of 64 words is divided into 32 burst transfers, each with a burst length of two.
When you generate a system, Qsys inserts burst adapters based on maximum burstcount values;
consequently, the interconnect logic includes burst adapters between masters and slave pairs that do not
require bursting, if the master is capable of bursts.

In this example, Qsys inserts a burst adapter between the Nios II processors and the timer, system ID, and
PIO peripherals. These components do not support bursting and the Nios II processor performs a single
word read and write accesses to these components.

QPS5V1
2015.11.02 Consolidating Interfaces 8-33

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-22: Mixed Bursting System with Bridges

To reduce the number of adapters, you can add pipeline bridges. The pipeline bridge, between the Nios
II/f core and the peripherals that do not support bursts, eliminates three burst adapters from the previous
example. A second pipeline bridge between the Nios II/f core and the DDR SDRAM, with its maximum
burst size set to eight, eliminates another burst adapter, as shown below.

Nios II/e Core

M M M

Nios II/f Core

M

Host Processor
Interface

M

PIO

S

System ID

S

Mutex

S

Timer

S

DDR
SDRAM

S

Arbiter Arbiter Arbiter ArbiterArbiter

B

8

B

1

64

8 8
B

2

2

64

8 8 64

Burst Adapter

Maximum Burst Count

B

1

8

B

2

8

M

Bridge

S

M

Bridge

S

Reducing Logic Utilization With Multiple Clock Domains
You specify clock domains in Qsys on the System Contents tab. Clock sources can be driven by external
input signals to Qsys, or by PLLs inside Qsys. Clock domains are differentiated based on the name of the
clock. You can create multiple asynchronous clocks with the same frequency.

8-34 Reducing Logic Utilization With Multiple Clock Domains
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys generates Clock Domain Crossing Logic (CDC) that hides the details of interfacing components
operating in different clock domains. The interconnect supports the memory-mapped protocol with each
port independently, and therefore masters do not need to incorporate clock adapters in order to interface
to slaves on a different domain. Qsys interconnect logic propagates transfers across clock domain
boundaries automatically.

Clock-domain adapters provide the following benefits:

• Allows component interfaces to operate at different clock frequencies.
• Eliminates the need to design CDC hardware.
• Allows each memory-mapped port to operate in only one clock domain, which reduces design

complexity of components.
• Enables masters to access any slave without communication with the slave clock domain.
• Allows you to focus performance optimization efforts on components that require fast clock speed.

A clock domain adapter consists of two finite state machines (FSM), one in each clock domain, that use a
hand-shaking protocol to propagate transfer control signals (read_request, write_request, and the
master waitrequest signals) across the clock boundary.

Figure 8-23: Clock Crossing Adapter

waitrequest

control

Receiver
Handshake

FSM

transfer
request

acknowledge

readdata

control

Sender
Handshake

FSM

waitrequest

Synchro-
nizer

Receiver
Port

Sender
Port

Receiver Clock Domain Sender Clock Domain

Synchro-
nizer

readdata

CDC Logic

writedata & byte enable

address

This example illustrates a clock domain adapter between one master and one slave. The synchronizer
blocks use multiple stages of flip flops to eliminate the propagation of meta-stable events on the control
signals that enter the handshake FSMs. The CDC logic works with any clock ratio.

QPS5V1
2015.11.02 Reducing Logic Utilization With Multiple Clock Domains 8-35

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The typical sequence of events for a transfer across the CDC logic is as follows:

• The master asserts address, data, and control signals.
• The master handshake FSM captures the control signals and immediately forces the master to wait.

The FSM uses only the control signals, not address and data. For example, the master simply holds the
address signal constant until the slave side has safely captured it.

• The master handshake FSM initiates a transfer request to the slave handshake FSM.
• The transfer request is synchronized to the slave clock domain.
• The slave handshake FSM processes the request, performing the requested transfer with the slave.
• When the slave transfer completes, the slave handshake FSM sends an acknowledge back to the master

handshake FSM. The acknowledge is synchronized back to the master clock domain.
• The master handshake FSM completes the transaction by releasing the master from the wait condition.

Transfers proceed as normal on the slave and the master side, without a special protocol to handle
crossing clock domains. From the perspective of a slave, there is nothing different about a transfer
initiated by a master in a different clock domain. From the perspective of a master, a transfer across clock
domains simply requires extra clock cycles. Similar to other transfer delay cases (for example, arbitration
delay or wait states on the slave side), the Qsys forces the master to wait until the transfer terminates. As a
result, pipeline master ports do not benefit from pipelining when performing transfers to a different clock
domain.

Qsys automatically determines where to insert CDC logic based on the system and the connections
between components, and places CDC logic to maintain the highest transfer rate for all components. Qsys
evaluates the need for CDC logic for each master and slave pair independently, and generates CDC logic
wherever necessary.

Related Information
Avalon Memory-Mapped Design Optimizations

Duration of Transfers Crossing Clock Domains
CDC logic extends the duration of master transfers across clock domain boundaries. In the worst case,
which is for reads, each transfer is extended by five master clock cycles and five slave clock cycles.
Assuming the default value of 2 for the master domain synchronizer length and the slave domain
synchronizer length, the components of this delay are the following:

• Four additional master clock cycles, due to the master-side clock synchronizer.
• Four additional slave clock cycles, due to the slave-side clock synchronizer.
• One additional clock in each direction, due to potential metastable events as the control signals cross

clock domains.

Note: Systems that require a higher performance clock should use the Avalon-MM clock crossing bridge
instead of the automatically inserted CDC logic. The clock crossing bridge includes a buffering
mechanism so that multiple reads and writes can be pipelined. After paying the initial penalty for
the first read or write, there is no additional latency penalty for pending reads and writes,
increasing throughput by up to four times, at the expense of added logic resources.

8-36 Duration of Transfers Crossing Clock Domains
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reducing Power Consumption
Qsys provides various low power design changes that enable you to reduce the power consumption of the
interconnect and custom components.

Reducing Power Consumption With Multiple Clock Domains
When you use multiple clock domains, you should put non-critical logic in the slower clock domain. Qsys
automatically reconciles data crossing over asynchronous clock domains by inserting clock crossing logic
(handshake or FIFO).

You can use clock crossing in Qsys to reduce the clock frequency of the logic that does not require a high
frequency clock, which allows you to reduce power consumption. You can use either handshaking clock
crossing bridges or handshaking clock crossing adapters to separate clock domains.

You can use the clock crossing bridge to connect master interfaces operating at a higher frequency to slave
interfaces running at a lower frequency. Only connect low throughput or low priority components to a
clock crossing bridge that operates at a reduced clock frequency. The following are examples of low
throughput or low priority components:

• PIOs
• UARTs (JTAG or RS-232)
• System identification (SysID)
• Timers
• PLL (instantiated within Qsys)
• Serial peripheral interface (SPI)
• EPCS controller
• Tristate bridge and the components connected to the bridge

By reducing the clock frequency of the components connected to the bridge, you reduce the dynamic
power consumption of the design. Dynamic power is a function of toggle rates and decreasing the clock
frequency decreases the toggle rate.

QPS5V1
2015.11.02 Reducing Power Consumption 8-37

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-24: Reducing Power Utilization Using a Bridge to Separate Clock Domains

Nios II
Processor

M M

Arbiter

DDR
SDRAM

S

On-Chip
Memory

S

Arbiter

PIO

S

UART

S

Timer

S

System ID

S

PLL

S

SPI

S

EPCS
Controller

S

M

Tristate
Conduit

S

M

Clock
Crossing
Bridge

S

Arbiter

200 MHz

5 MHz

Flash

S
Low-Frequency Components

Qsys automatically inserts clock crossing adapters between master and slave interfaces that operate at
different clock frequencies. You can choose the type of clock crossing adapter in the Qsys Project Settings

8-38 Reducing Power Consumption With Multiple Clock Domains
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

tab. Adapters do not appear in the Connections column because you do not insert them. The following
clock crossing adapter types are available in Qsys:

• Handshake—Uses a simple handshaking protocol to propagate transfer control signals and responses
across the clock boundary. This adapter uses fewer hardware resources because each transfer is safely
propagated to the target domain before the next transfer begins. The Handshake adapter is appropriate
for systems with low throughput requirements.

• FIFO—Uses dual-clock FIFOs for synchronization. The latency of the FIFO adapter is approximately
two clock cycles more than the handshake clock crossing component, but the FIFO-based adapter can
sustain higher throughput because it supports multiple transactions simultaneously. The FIFO adapter
requires more resources, and is appropriate for memory-mapped transfers requiring high throughput
across clock domains.

• Auto—Qsys specifies the appropriate FIFO adapter for bursting links and the Handshake adapter for
all other links.

Because the clock crossing bridge uses FIFOs to implement the clock crossing logic, it buffers transfers
and data. Clock crossing adapters are not pipelined, so that each transaction is blocking until the transac‐
tion completes. Blocking transactions may lower the throughput substantially; consequently, if you want
to reduce power consumption without limiting the throughput significantly, you should use the clock
crossing bridge or the FIFO clock crossing adapter. However, if the design requires single read transfers, a
clock crossing adapter is preferable because the latency is lower.

The clock crossing bridge requires few logic resources other than on-chip memory. The number of on-
chip memory blocks used is proportional to the address span, data width, buffering depth, and bursting
capabilities of the bridge. The clock crossing adapter does not use on-chip memory and requires a
moderate number of logic resources. The address span, data width, and the bursting capabilities of the
clock crossing adapter determine the resource utilization of the device.

When you decide to use a clock crossing bridge or clock crossing adapter, you must consider the effects of
throughput and memory utilization in the design. If on-chip memory resources are limited, you may be
forced to choose the clock crossing adapter. Using the clock crossing bridge to reduce the power of a
single component may not justify using more resources. However, if you can place all of the low priority
components behind a single clock crossing bridge, you may reduce power consumption in the design.

Related Information
Power Optimization

Reducing Power Consumption by Minimizing Toggle Rates
A Qsys system consumes power whenever logic transitions between on and off states. When the state is
held constant between clock edges, no charging or discharging occurs. You can use the following design
methodologies to reduce the toggle rates of your design:

• Registering component boundaries
• Using clock enable signals
• Inserting bridges

Qsys interconnect is uniquely combinational when no adapters or bridges are present and there is no
interconnect pipelining. When a slave interface is not selected by a master, various signals may toggle and
propagate into the component. By registering the boundary of your component at the master or slave
interface, you can minimize the toggling of the interconnect and your component. In addition, registering

QPS5V1
2015.11.02 Reducing Power Consumption by Minimizing Toggle Rates 8-39

Optimizing Qsys System Performance Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471266057/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

boundaries can improve operating frequency. When you register the signals at the interface level, you
must ensure that the component continues to operate within the interface standard specification.

Avalon-MM waitrequest is a difficult signal to synchronize when you add registers to your component.
The waitrequest signal must be asserted during the same clock cycle that a master asserts read or write
to in order to prolong the transfer. A master interface can read the waitrequest signal too early and post
more reads and writes prematurely.

Note: There is no direct AXI equivalent for waitrequest and burstcount, though the AMBA Protocol
Specification implies that the AXI ready signal cannot depend combinatorially on the AXI valid
signal. Therefore, Qsys typically buffers AXI component boundaries for the ready signal.

For slave interfaces, the interconnect manages the begintransfer signal, which is asserted during the
first clock cycle of any read or write transfer. If the waitrequest is one clock cycle late, you can logically
OR the waitrequest and the begintransfer signals to form a new waitrequest signal that is properly
synchronized. Alternatively, the component can assert waitrequest before it is selected, guaranteeing
that the waitrequest is already asserted during the first clock cycle of a transfer.

Figure 8-25: Variable Latency

waitrequest

begintransfer

readdata

read

write

writedata

Avalon-MM
Slave Port

Remaining
Component

Logic

ready
(synchronous)

Using Clock Enables

You can use clock enables to hold the logic in a steady state, and the write and read signals as clock
enables for slave components. Even if you add registers to your component boundaries, the interface can
potentially toggle without the use of clock enables. You can also use the clock enable to disable combina‐
tional portions of the component.

For example, you can use an active high clock enable to mask the inputs into the combinational logic to
prevent it from toggling when the component is inactive. Before preventing inactive logic from toggling,

8-40 Reducing Power Consumption by Minimizing Toggle Rates
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

you must determine if the masking causes the circuit to function differently. If masking causes a
functional failure, it may be possible to use a register stage to hold the combinational logic constant
between clock cycles.

Inserting Bridges

You can use bridges to reduce toggle rates, if you do not want to modify the component by using
boundary registers or clock enables. A bridge acts as a repeater where transfers to the slave interface are
repeated on the master interface. If the bridge is not accessed, the components connected to its master
interface are also not accessed. The master interface of the bridge remains idle until a master accesses the
bridge slave interface.

Bridges can also reduce the toggle rates of signals that are inputs to other master interfaces. These signals
are typically readdata, readdatavalid, and waitrequest. Slave interfaces that support read accesses
drive the readdata, readdatavalid, and waitrequest signals. A bridge inserts either a register or clock
crossing FIFO between the slave interface and the master to reduce the toggle rate of the master input
signals.

Related Information

• AMBA Protocol Specification
• Power Optimization

Reducing Power Consumption by Disabling Logic
There are typically two types of low power modes: volatile and non-volatile. A volatile low power mode
holds the component in a reset state. When the logic is reactivated, the previous operational state is lost. A
non-volatile low power mode restores the previous operational state. You can use either software-
controlled or hardware-controlled sleep modes to disable a component in order to reduce power
consumption.

Software-Controlled Sleep Mode

To design a component that supports software-controlled sleep mode, create a single memory-mapped
location that enables and disables logic by writing a zero or one. You can use the register’s output as a
clock enable or reset, depending on whether the component has non-volatile requirements. The slave
interface must remain active during sleep mode so that the enable bit is set when the component needs to
be activated.

If multiple masters can access a component that supports sleep mode, you can use the mutex core to
provide mutually exclusive accesses to your component. You can also build in the logic to re-enable the
component on the very first access by any master in your system. If the component requires multiple
clock cycles to re-activate, then it must assert a wait request to prolong the transfer as it exits sleep mode.

Hardware-Controlled Sleep Mode

Alternatively, you can implement a timer in your component that automatically causes the component to
enter a sleep mode based on a timeout value specified in clock cycles between read or write accesses. Each
access resets the timer to the timeout value. Each cycle with no accesses decrements the timeout value by
one. If the counter reaches zero, the hardware enters sleep mode until the next access.

QPS5V1
2015.11.02 Reducing Power Consumption by Disabling Logic 8-41

Optimizing Qsys System Performance Altera Corporation

Send Feedback

http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471266057/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-26: Hardware-Controlled Sleep Components

q

wakeread
write

d count

count enableload

Down
Counter

waitrequest sleep_n

= 0?Timeout Value reset

busy

This example provides a schematic for the hardware-controlled sleep mode. If restoring the component to
an active state takes a long time, use a long timeout value so that the component is not continuously
entering and exiting sleep mode. The slave interface must remain functional while the rest of the
component is in sleep mode. When the component exits sleep mode, the component must assert the
waitrequest signal until it is ready for read or write accesses.

Related Information

• Mutex Core
• Power Optimization

Reset Polarity and Synchronization in Qsys
When you add a component interface with a reset signal, Qsys defines its polarity as reset(active-high) or
reset_n (active-low).

You can view the polarity status of a reset signal by selecting the signal in the Hierarchy tab, and then
view its expanded definition in the open Parameters and Block Symbol tabs. When you generate your
component, Qsys interconnect automatically inverts ploarities as needed.

8-42 Reset Polarity and Synchronization in Qsys
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471266057/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-27: Reset Signal (Active-High)

QPS5V1
2015.11.02 Reset Polarity and Synchronization in Qsys 8-43

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-28: Reset Signal Active-Low

Each Qsys component has its own requirements for reset synchronization. Some blocks have internal
synchronization and have no requirements, whereas other blocks require an externally synchronized
reset. You can define how resets are synchronized in your Qsys system with the Synchronous edges
parameter. In the clock source or reset bridge component, set the value of the Synchronous edges
parameter to one of the following, depending on how the reset is externally synchronized:

• None—There is no synchronization on this reset.
• Both—The reset is synchronously asserted and deasserted with respect to the input clock.
• Deassert—The reset is synchronously asserted with respect to the input clock, and asynchronously

deasserted.

8-44 Reset Polarity and Synchronization in Qsys
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-29: Synchronous Edges Parameter

You can combine multiple reset sources to reset a particular component.

Figure 8-30: Combine Multiple Reset Sources

When you generate your component, Qsys inserts adapters to synchronize or invert resets if there are
mismatches in polarity or synchronization between the source and destination. You can view inserted

QPS5V1
2015.11.02 Reset Polarity and Synchronization in Qsys 8-45

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

adapters on the Memory-Mapped Interconnect tab with the System > System Show System with Qsys
Interconnect command.

Figure 8-31: Qsys Interconnect

Optimizing Qsys System Performance Design Examples

Avalon Pipelined Read Master Example on page 8-46

Multiplexer Examples on page 8-49

Related Information
Avalon Interface Specifications

Avalon Pipelined Read Master Example
For a high throughput system using the Avalon-MM standard, you can design a pipelined read master
that allows a system to issue multiple read requests before data returns. Pipelined read masters hide the
latency of read operations by posting reads as frequently as every clock cycle. You can use this type of
master when the address logic is not dependent on the data returning.

8-46 Optimizing Qsys System Performance Design Examples
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Pipelined Read Master Example Design Requirements

You must carefully design the logic for the control and data paths of pipelined read masters. The control
logic must extend a read cycle whenever the waitrequest signal is asserted. This logic must also control
the master address, byteenable, and read signals. To achieve maximum throughput, pipelined read
masters should post reads continuously as long as waitrequest is de-asserted. While read is asserted, the
address presented to the interconnect is stored.

The data path logic includes the readdata and readdatavalid signals. If your master can accept data on
every clock cycle, you can register the data with the readdatavalid as an enable bit. If your master
cannot process a continuous stream of read data, it must buffer the data in a FIFO. The control logic must
stop issuing reads when the FIFO reaches a predetermined fill level to prevent FIFO overflow.

Expected Throughput Improvement

The throughput improvement that you can achieve with a pipelined read master is typically directly
proportional to the pipeline depth of the interconnect and the slave interface. For example, if the total
latency is two cycles, you can double the throughput by inserting a pipelined read master, assuming the
slave interface also supports pipeline transfers. If either the master or slave does not support pipelined
read transfers, then the interconnect asserts waitrequest until the transfer completes. You can also gain
throughput when there are some cycles of overhead before a read response.

Where reads are not pipelined, the throughput is reduced. When both the master and slave interfaces
support pipelined read transfers, data flows in a continuous stream after the initial latency. You can use a
pipelined read master that stores data in a FIFO to implement a custom DMA, hardware accelerator, or
off-chip communication interface.

QPS5V1
2015.11.02 Avalon Pipelined Read Master Example Design Requirements 8-47

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-32: Pipelined Read Master

d

count enable

load

d

count enable

load

d

write

q

read acknowledge

empty

q

q

waitrequest

done

go

start_address[31:0]

increment_address

go

increment_address

transfer_length[31:0]

user_data[31:0]

user_data_empty

user_data_read

length[31:0]

fifo_used[]

used[]

writedata[31:0]

readdatavalid

Look-Ahead FIFO

read

increment_address

master_address[31:0]

VCC

byteenable[3:0]

Down
Counter

Up
Counter

Tracking Logic/
State Machine

readdatavalid

This example shows a pipelined read master that stores data in a FIFO. The master performs word
accesses that are word-aligned and reads from sequential memory addresses. The transfer length is a
multiple of the word size.

When the go bit is asserted, the master registers the start_address and transfer_length signals. The
master begins issuing reads continuously on the next clock cycle until the length register reaches zero. In
this example, the word size is four bytes so that the address always increments by four, and the length
decrements by four. The read signal remains asserted unless the FIFO fills to a predetermined level. The
address register increments and the length register decrements if the length has not reached 0 and a read
is posted.

The master posts a read transfer every time the read signal is asserted and the waitrequest is deasserted.
The master issues reads until the entire buffer has been read or waitrequest is asserted. An optional
tracking block monitors the done bit. When the length register reaches zero, some reads are outstanding.
The tracking logic prevents assertion of done until the last read completes, and monitors the number of

8-48 Expected Throughput Improvement
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

reads posted to the interconnect so that it does not exceed the space remaining in the readdata FIFO.
This example includes a counter that verifies that the following conditions are met:

• If a read is posted and readdatavalid is deasserted, the counter increments.
• If a read is not posted and readdatavalid is asserted, the counter decrements.

When the length register and the tracking logic counter reach zero, all the reads have completed and the
done bit is asserted. The done bit is important if a second master overwrites the memory locations that the
pipelined read master accesses. This bit guarantees that the reads have completed before the original data
is overwritten.

Multiplexer Examples
You can combine adapters with streaming components to create data paths whose input and output
streams have different properties. The following examples demonstrate datapaths in which the output
stream exhibits higher performance than the input stream.

The diagram below illustrates a data path that uses the dual clock version of the on-chip FIFO memory to
boost the frequency of input data from 100 MHz to 110 MHz by sampling two input streams at differen‐
tial rates. The on-chip FIFO memory has an input clock frequency of 100 MHz, and an output clock
frequency of 110 MHz. The channel multiplexer runs at 110 MHz and samples one input stream 27.3
percent of the time, and the second 72.7 percent of the time. You definitely need to know what the typical
and maximum input channel utilizations are before for this type of design. For example, if the first
channel hits 50% utilization, the output stream exceeds 100% utilization.

Figure 8-33: Data Path that Doubles the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

30% Channel Utilization
8 Bits at 100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src

80% Channel Utilization
8 Bits at 100 MHz

Input

Input

sink

sink

src

27.3% Sample Rate
110 MHz

72.7% Sample Rate
110 MHz

100% Channel Utilization
Output 110 MHz

The diagram below illustrates a data path that uses a data format adapter and Avalon-ST channel
multiplexer to merge the 8-bit 100 MHz input from two streaming data sources into a single 16-bit
100MHz streaming output. This example shows an output with double the throughput of each interface
with a corresponding doubling of the data width.

QPS5V1
2015.11.02 Multiplexer Examples 8-49

Optimizing Qsys System Performance Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-34: Data Path to Double Data Width and Maintain Original Frequency

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

sink src

Data Format
Adapter

Data Source

src
8 Bits at 100 MHz

Input

Input

sink

sink

src

16 Bits at 100 MHz

16 Bits at 100 MHz

16 Bits
at 100 MHz

The diagram below illustrates a data path that uses the dual clock version of the on-chip FIFO memory
and Avalon-ST channel multiplexer to merge the 100 MHz input from two streaming data sources into a
single 200 MHz streaming output. This example shows an output with double the throughput of each
interface with a corresponding doubling of the clock frequency.

Figure 8-35: Data Path to Boost the Clock Frequency

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

sink src

On-Chip FIFO Memory
Dual Clock

Data Source

src
100 MHz

Input

Input

sink

sink

src

200 MHz

200 MHz

Output
200 MHz

Document Revision History
The table below indicates edits made to the Optimizing Qsys System Performance content since its
creation.

Table 8-2: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Added:Reset Polarity and
Synchronization in Qsys.

• Changed instances of
Quartus II to Quartus Prime.

8-50 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Optimizing Qsys System Performance

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

2015.05.04 15.0.0 Multiplexer Examples,
rearranged description text for
the figures.

May 2013 13.0.0 AMBA APB support.

November 2012 12.1.0 AMBA AXI4 support.

June 2012 12.0.0 AMBA AXI3 support.

November 2011 11.1.0 New document release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 8-51

Optimizing Qsys System Performance Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20Qsys%20System%20Performance%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Component Interface Tcl Reference 9
2015.11.02

QPS5V1 Subscribe Send Feedback

Tcl commands allow you to perform a wide range of functions in Qsys. Command descriptions contain
the Qsys phases where you can use the command, for example, main program, elaboration, composition,
or fileset callback.

Qsys supports Avalon, AMBA AXI3 (version 1.0), AMBA AXI4 (version 2.0), AMBA AXI4-Lite (version
2.0), AMBA AXI4-Stream (version 1.0), and AMBA APB3 (version 1.0) interface specifications.

For more information about procedures for creating IP component _hw.tcl files in the Qsys Component
Editor, and supported interface standards, refer to Creating Qsys Components and Qsys Interconnect in
volume 1 of the Quartus Prime Handbook.

If you are developing an IP component to work with the Nios II processor, refer to Publishing Component
Information to Embedded Software in section 3 of the Nios II Software Developer's Handbook, which
describes how to publish hardware IP component information for embedded software tools, such as a C
compiler and a Board Support Package (BSP) generator.

Related Information

• Avalon Interface Specifications
• AMBA Protocol Specifications
• Creating Qsys Components on page 6-1
• Qsys Interconnect on page 7-1
• Publishing Component Information to Embedded Software

Qsys _hw.tcl Command Reference
To use the current version of the Tcl commands, include the following command at the top of your script:

package require -exact qsys <version>

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Component%20Interface%20Tcl%20Reference&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Interfaces and Ports

add_interface on page 9-3

add_interface_port on page 9-5

get_interfaces on page 9-7

get_interface_assignment on page 9-8

get_interface_assignments on page 9-9

get_interface_ports on page 9-10

get_interface_properties on page 9-11

get_interface_property on page 9-12

get_port_properties on page 9-13

get_port_property on page 9-14

set_interface_assignment on page 9-15

set_interface_property on page 9-17

set_port_property on page 9-18

set_interface_upgrade_map on page 9-19

9-2 Interfaces and Ports
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_interface

Description

Adds an interface to your module. An interface represents a collection of related signals that are managed
together in the parent system. These signals are implemented in the IP component's HDL, or exported
from an interface from a child instance. As the IP component author, you choose the name of the
interface.

Availability

Discovery, Main Program, Elaboration, Composition

Usage

add_interface <name> <type> <direction> [<associated_clock>]

Returns

No returns value.

Arguments

name
A name you choose to identify an interface.

type
The type of interface.

direction
The interface direction.

associated_clock (optional)
(deprecated) For interfaces requiring associated clocks, use: set_interface_property
<interface> associatedClock <clockInterface> For interfaces requiring associated
resets, use: set_interface_property <interface> associatedReset
<resetInterface>

Example

add_interface mm_slave avalon slave

add_interface my_export conduit end
set_interface_property my_export EXPORT_OF uart_0.external_connection

Notes

By default, interfaces are enabled. You can set the interface property ENABLED to false to disable an
interface. If an interface is disabled, it is hidden and its ports are automatically terminated to their default
values. Active high signals are terminated to 0. Active low signals are terminated to 1.

If the IP component is composed of child instances, the top-level interface is associated with a child
instance's interface with set_interface_property interface EXPORT_OF
child_instance.interface.

The following direction rules apply to Qsys-supported interfaces.

QPS5V1
2015.11.02 add_interface 9-3

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Type Direction

avalon master, slave
axi master, slave
tristate_conduit master, slave
avalon_streaming source, sink
interrupt sender, receiver
conduit end
clock source, sink
reset source, sink
nios_custom_instruction slave

Related Information

• add_interface_port on page 9-5
• get_interface_assignments on page 9-9
• get_interface_properties on page 9-11
• get_interfaces on page 9-7

9-4 add_interface
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_interface_port

Description

Adds a port to an interface on your module. The name must match the name of a signal on the top-level
module in the HDL of your IP component. The port width and direction must be set before the end of the
elaboration phase. You can set the port width as follows:

• In the Main program, you can set the port width to a fixed value or a width expression.
• If the port width is set to a fixed value in the Main program, you can update the width in the elabora‐

tion callback.

Availability

Main Program, Elaboration

Usage

add_interface_port <interface> <port> [<signal_type> <direction> <width_expression>]

Returns

Arguments

interface
The name of the interface to which this port belongs.

port
The name of the port. This name must match a signal in your top-level HDL for this IP
component.

signal_type (optional)
The type of signal for this port, which must be unique. Refer to the Avalon Interface
Specifications for the signal types available for each interface type.

direction (optional)
The direction of the signal. Refer to Direction Properties.

width_expression (optional)
The width of the port, in bits. The width may be a fixed value, or a simple arithmetic
expression of parameter values.

Example

fixed width:
add_interface_port mm_slave s0_rdata readdata output 32

width expression:
add_parameter DATA_WIDTH INTEGER 32
add_interface_port s0 rdata readdata output "DATA_WIDTH/2"

Related Information

• add_interface on page 9-3
• get_port_properties on page 9-13
• get_port_property on page 9-14

QPS5V1
2015.11.02 add_interface_port 9-5

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• get_port_property on page 9-14
• Direction Properties on page 9-99
• Avalon Interface Specifications

9-6 add_interface_port
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interfaces

Description

Returns a list of top-level interfaces.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_interfaces

Returns

A list of the top-level interfaces exported from the system.

Arguments

No arguments.

Example

get_interfaces

Related Information
add_interface on page 9-3

QPS5V1
2015.11.02 get_interfaces 9-7

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_assignment

Description

Returns the value of the specified assignment for the specified interface

Availability

Main Program, Elaboration, Validation, Composition

Usage

get_interface_assignment <interface> <assignment>

Returns

The value of the assignment.

Arguments

interface
The name of a top-level interface.

assignment
The name of an assignment.

Example

get_interface_assignment s1 embeddedsw.configuration.isFlash

Related Information

• add_interface on page 9-3
• get_interface_assignments on page 9-9
• get_interfaces on page 9-7

9-8 get_interface_assignment
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_assignments

Description

Returns the value of all interface assignments for the specified interface.

Availability

Main Program, Elaboration, Validation, Composition

Usage

get_interface_assignments <interface>

Returns

A list of assignment keys.

Arguments

interface
The name of the top-level interface whose assignment is being retrieved.

Example

get_interface_assignments s1

Related Information

• add_interface on page 9-3
• get_interface_assignment on page 9-8
• get_interfaces on page 9-7

QPS5V1
2015.11.02 get_interface_assignments 9-9

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_ports

Description

Returns the names of all of the ports that have been added to a given interface. If the interface name is
omitted, all ports for all interfaces are returned.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_interface_ports [<interface>]

Returns

A list of port names.

Arguments

interface (optional)
The name of a top-level interface.

Example

get_interface_ports mm_slave

Related Information

• add_interface_port on page 9-5
• get_port_property on page 9-14
• set_port_property on page 9-18

9-10 get_interface_ports
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_properties

Description

Returns the names of all the interface properties for the specified interface as a space separated list

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_interface_properties <interface>

Returns

A list of properties for the interface.

Arguments

interface
The name of an interface.

Example

get_interface_properties interface

Notes

The properties for each interface type are different. Refer to the Avalon Interface Specifications for more
information about interface properties.

Related Information

• get_interface_property on page 9-12
• set_interface_property on page 9-17
• Avalon Interface Specifications

QPS5V1
2015.11.02 get_interface_properties 9-11

Component Interface Tcl Reference Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_interface_property

Description

Returns the value of a single interface property from the specified interface.

Availability

Discovery, Main Program, Elaboration, Composition, Fileset Generation

Usage

get_interface_property <interface> <property>

Returns

Arguments

interface
The name of an interface.

property
The name of the property whose value you want to retrieve. Refer to Interface Properties.

Example

get_interface_property mm_slave linewrapBursts

Notes

The properties for each interface type are different. Refer to the Avalon Interface Specifications for more
information about interface properties.

Related Information

• get_interface_properties on page 9-11
• set_interface_property on page 9-17
• Avalon Interface Specifications

9-12 get_interface_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_port_properties

Description

Returns a list of port properties.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_port_properties

Returns

A list of port properties. Refer to Port Properties.

Arguments

No arguments.

Example

get_port_properties

Related Information

• add_interface_port on page 9-5
• get_port_property on page 9-14
• set_port_property on page 9-18
• Port Properties on page 9-97

QPS5V1
2015.11.02 get_port_properties 9-13

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_port_property

Description

Returns the value of a property for the specified port.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_port_property <port> <property>

Returns

The value of the property.

Arguments

port
The name of the port.

property
The name of a port property. Refer to Port Properties.

Example

get_port_property rdata WIDTH_VALUE

Related Information

• add_interface_port on page 9-5
• get_port_properties on page 9-13
• set_port_property on page 9-18
• Port Properties on page 9-97

9-14 get_port_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_interface_assignment

Description

Sets the value of the specified assignment for the specified interface.

Availability

Main Program, Elaboration, Validation, Composition

Usage

set_interface_assignment <interface> <assignment> [<value>]

Returns

No return value.

Arguments

interface
The name of the top-level interface whose assignment is being set.

assignment
The assignment whose value is being set.

value (optional)
The new assignment value.

Example

set_interface_assignment s1 embeddedsw.configuration.isFlash 1

Notes

Assignments for Nios II Software Build Tools
Interface assignments provide extra data for the Nios II Software Build Tools working with the generated
system.

Assignments for Qsys Tools
There are several assignments that guide behavior in the Qsys tools.

qsys.ui.export_name: If present, this interface should always be exported when an instance is
added to a Qsys system. The value is the requested name of the exported
interface in the parent system.

qsys.ui.connect: If present, this interface should be auto-connected when an instance is
added to a Qsys system. The value is a comma-separated list of other
interfaces on the same instance that should be connected with this
interface.

ui.blockdia-

gram.direction:
If present, the direction of this interface in the block diagram is set by the
user. The value is either "output" or "input".

QPS5V1
2015.11.02 set_interface_assignment 9-15

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• add_interface on page 9-3
• get_interface_assignment on page 9-8
• get_interface_assignments on page 9-9

9-16 set_interface_assignment
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_interface_property

Description

Sets the value of a property on an exported top-level interface. You can use this command to set the
EXPORT_OF property to specify which interface of a child instance is exported via this top-level interface.

Availability

Main Program, Elaboration, Composition

Usage

set_interface_property <interface> <property> <value>

Returns

No return value.

Arguments

interface
The name of an exported top-level interface.

property
The name of the property Refer to Interface Properties.

value
The new property value.

Example

set_interface_property clk_out EXPORT_OF clk.clk_out
set_interface_property mm_slave linewrapBursts false

Notes

The properties for each interface type are different. Refer to the Avalon Interface Specifications for more
information about interface properties.

Related Information

• get_interface_properties on page 9-11
• get_interface_property on page 9-12
• Interface Properties on page 9-90
• Avalon Interface Specifications

QPS5V1
2015.11.02 set_interface_property 9-17

Component Interface Tcl Reference Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_port_property

Description

Sets a port property.

Availability

Main Program, Elaboration

Usage

set_port_property <port> <property> [<value>]

Returns

The new value.

Arguments

port
The name of the port.

property
One of the supported properties. Refer to Port Properties.

value (optional)
The value to set.

Example

set_port_property rdata WIDTH 32

Related Information

• add_interface_port on page 9-5
• get_port_properties on page 9-13
• set_port_property on page 9-18

9-18 set_port_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_interface_upgrade_map

Description

Maps the interface name of an older version of an IP core to the interface name of the current IP core. The
interface type must be the same between the older and newer versions of the IP cores. This allows system
connections and properties to maintain proper functionality. By default, if the older and newer versions of
IP core have the same name and type, then Qsys maintains all properties and connections automatically.

Availability

Parameter Upgrade

Usage

set_interface_upgrade_map { <old_interface_name> <new_interface_name>
<old_interface_name_2> <new_interface_name_2> … }

Returns

No return value.

Arguments

{ <old_interface_name> <new_interface_name>}
List of mappings between between names of older and newer interfaces.

Example

set_interface_upgrade_map { avalon_master_interface new_avalon_master_interface }

QPS5V1
2015.11.02 set_interface_upgrade_map 9-19

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameters

add_parameter on page 9-21

get_parameters on page 9-22

get_parameter_properties on page 9-23

get_parameter_property on page 9-24

get_parameter_value on page 9-25

get_string on page 9-26

load_strings on page 9-28

set_parameter_property on page 9-29

set_parameter_value on page 9-30

decode_address_map on page 9-31

9-20 Parameters
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_parameter

Description

Adds a parameter to your IP component.

Availability

Main Program

Usage

add_parameter <name> <type> [<default_value> <description>]

Returns

Arguments

name
The name of the parameter.

type
The data type of the parameter Refer to Parameter Type Properties.

default_value (optional)
The initial value of the parameter in a new instance of the IP component.

description (optional)
Explains the use of the parameter.

Example

add_parameter seed INTEGER 17 "The seed to use for data generation."

Notes

Most parameter types have a single GUI element for editing the parameter value. string_list and
integer_list parameters are different, because they are edited as tables. A multi-column table can be
created by grouping multiple into a single table. To edit multiple list parameters in a single table, the
display items for the parameters must be added to a group with a TABLE hint:

add_parameter coefficients INTEGER_LIST add_parameter positions INTEGER_LIST

add_display_item "" "Table Group" GROUP TABLE add_display_item "Table Group"

coefficients PARAMETER add_display_item "Table Group" positions PARAMETER

Related Information

• get_parameter_properties on page 9-23
• get_parameter_property on page 9-24
• get_parameter_value on page 9-25
• set_parameter_property on page 9-29
• set_parameter_value on page 9-30
• Parameter Type Properties on page 9-95

QPS5V1
2015.11.02 add_parameter 9-21

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_parameters

Description

Returns the names of all the parameters in the IP component.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_parameters

Returns

A list of parameter names

Arguments

No arguments.

Example

get_parameters

Related Information

• add_parameter on page 9-21
• get_parameter_property on page 9-24
• get_parameter_value on page 9-25
• get_parameters on page 9-22
• set_parameter_property on page 9-29

9-22 get_parameters
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_parameter_properties

Description

Returns a list of all the parameter properties as a list of strings. The get_parameter_property and
set_parameter_property commands are used to get and set the values of these properties, respectively.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_parameter_properties

Returns

A list of parameter property names. Refer to Parameter Properties.

Arguments

No arguments.

Example

set property_summary [get_parameter_properties]

Related Information

• add_parameter on page 9-21
• get_parameter_property on page 9-24
• get_parameter_value on page 9-25
• get_parameters on page 9-22
• set_parameter_property on page 9-29
• Parameter Properties on page 9-92

QPS5V1
2015.11.02 get_parameter_properties 9-23

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_parameter_property

Description

Returns the value of a property of a parameter.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_parameter_property <parameter> <property>

Returns

The value of the property.

Arguments

parameter
The name of the parameter whose property value is being retrieved.

property
The name of the property. Refer to Parameter Properties.

Example

set enabled [get_parameter_property parameter1 ENABLED]

Related Information

• add_parameter on page 9-21
• get_parameter_properties on page 9-23
• get_parameter_value on page 9-25
• get_parameters on page 9-22
• set_parameter_property on page 9-29
• set_parameter_value on page 9-30
• Parameter Properties on page 9-92

9-24 get_parameter_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_parameter_value

Description

Returns the current value of a parameter defined previously with the add_parameter command.

Availability

Discovery, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation, Parameter
Upgrade

Usage

get_parameter_value <parameter>

Returns

The value of the parameter.

Arguments

parameter
The name of the parameter whose value is being retrieved.

Example

set width [get_parameter_value fifo_width]

Notes

If AFFECTS_ELABORATION is false for a given parameter, get_parameter_value is not available for that
parameter from the elaboration callback. If AFFECTS_GENERATION is false then it is not available from the
generation callback.

Related Information

• add_parameter on page 9-21
• get_parameter_property on page 9-24
• get_parameters on page 9-22
• set_parameter_property on page 9-29
• set_parameter_value on page 9-30

QPS5V1
2015.11.02 get_parameter_value 9-25

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_string

Description

Returns the value of an externalized string previously loaded by the load_strings command.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_string <identifier>

Returns

The externalized string.

Arguments

identifier
The string identifer.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Use uppercase words separated with underscores to name string identifiers. If you are externalizing
module properties, use the module property name for the string identifier:

set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]

If you are externalizing a parameter property, qualify the parameter property with the parameter name,
with uppercase format, if needed:

set_parameter_property my_param DISPLAY_NAME [get_string MY_PARAM_DISPLAY_NAME]

9-26 get_string
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you use a string to describe a string format, end the identifier with _FORMAT.

set formatted_string [format [get_string TWO_ARGUMENT_MESSAGE_FORMAT] "arg1"
"arg2"]

Related Information
load_strings on page 9-28

QPS5V1
2015.11.02 get_string 9-27

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

load_strings

Description

Loads strings from an external .properties file.

Availability

Discovery, Main Program

Usage

load_strings <path>

Returns

No return value.

Arguments

path
The path to the properties file.

Example

hw.tcl:
load_strings test.properties
set_module_property NAME test
set_module_property VERSION [get_string VERSION]
set_module_property DISPLAY_NAME [get_string DISPLAY_NAME]
add_parameter firepower INTEGER 0 ""
set_parameter_property firepower DISPLAY_NAME [get_string PARAM_DISPLAY_NAME]
set_parameter_property firepower TYPE INTEGER
set_parameter_property firepower DESCRIPTION [get_string PARAM_DESCRIPTION]

test.properties:
DISPLAY_NAME = Trogdor!
VERSION = 1.0
PARAM_DISPLAY_NAME = Firepower
PARAM_DESCRIPTION = The amount of force to use when breathing fire.

Notes

Refer to the Java Properties File for properties file format. A .properties file is a text file with KEY=value
pairs. For externalized strings, the KEY is a string identifier and the value is the externalized string.

For example:

TROGDOR = A dragon with a big beefy arm

Related Information

• get_string on page 9-26
• Java Properties File

9-28 load_strings
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_parameter_property

Description

Sets a single parameter property.

Availability

Main Program, Edit, Elaboration, Validation, Composition

Usage

set_parameter_property <parameter> <property> <value>

Returns

Arguments

parameter
The name of the parameter that is being set.

property
The name of the property. Refer to Parameter Properties.

value
The new value for the property.

Example

set_parameter_property BAUD_RATE ALLOWED_RANGES {9600 19200 38400}

Related Information

• add_parameter on page 9-21
• get_parameter_properties on page 9-23
• set_parameter_property on page 9-29
• Parameter Properties on page 9-92

QPS5V1
2015.11.02 set_parameter_property 9-29

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_parameter_value

Description

Sets a parameter value. The value of a derived parameter can be updated by the IP component in the
elaboration callback or the edit callback. Any changes to the value of a derived parameter in the edit
callback will not be preserved.

Availability

Edit, Elaboration, Validation, Composition, Parameter Upgrade

Usage

set_parameter_value <parameter> <value>

Returns

No return value.

Arguments

parameter
The name of the parameter that is being set.

value
Specifies the new parameter value.

Example

set_parameter_value half_clock_rate [expr { [get_parameter_value clock_rate] /
2 }]

9-30 set_parameter_value
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

decode_address_map

Description

Converts an XML–formatted address map into a list of Tcl lists. Each inner list is in the correct format for
conversion to an array. The XML code that describes each slave includes: its name, start address, and end
address.

Availability

Elaboration, Generation, Composition

Usage

decode_address_map <address_map_XML_string>

Returns

No return value.

Arguments

address_mapXML_string
An XML string that describes the address map of a master.

Example

In this example, the code describes the address map for the master that accesses the ext_ssram,
sys_clk_timer and sysid slaves. The format of the string may differ from the example below; it may
have different white space between the elements and include additional attributes or elements. Use the
decode_address_map command to decode the code that represents a master’s address map to ensure that
your code works with future versions of the address map.

<address-map>
 <slave name='ext_ssram' start='0x01000000' end='0x01200000' />
 <slave name='sys_clk_timer' start='0x02120800' end='0x02120820' />
 <slave name='sysid' start='0x021208B8' end='0x021208C0' />
</address-map>

Note: Altera recommends that you use the code provided below to enumerate over the IP components
within an address map, rather than writing your own parser.

set address_map_xml [get_parameter_value my_map_param]
set address_map_dec [decode_address_map $address_map_xml]
foreach i $address_map_dec {
 array set info $i
 send_message info "Connected to slave $info(name)"
}

QPS5V1
2015.11.02 decode_address_map 9-31

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Display Items

add_display_item on page 9-33

get_display_items on page 9-35

get_display_item_properties on page 9-36

get_display_item_property on page 9-37

set_display_item_property on page 9-38

9-32 Display Items
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_display_item

Description

Specifies the following aspects of the IP component display:

• Creates logical groups for a IP component's parameters. For example, to create separate groups for the
IP component's timing, size, and simulation parameters. An IP component displays the groups and
parameters in the order that you specify the display items in the _hw.tcl file.

• Groups a list of parameters to create multi-column tables.
• Specifies an image to provide representation of a parameter or parameter group.
• Creates a button by adding a display item of type action. The display item includes the name of the

callback to run.

Availability

Main Program

Usage

add_display_item <parent_group> <id> <type> [<args>]

Returns

Arguments

parent_group
Specifies the group to which a display item belongs

id
The identifier for the display item. If the item being added is a parameter, this is the
parameter name. If the item is a group, this is the group name.

type
The type of the display item. Refer to Display Item Kind Properties.

args (optional)
Provides extra information required for display items.

Example

add_display_item "Timing" read_latency PARAMETER
add_display_item "Sounds" speaker_image_id ICON speaker.jpg

QPS5V1
2015.11.02 add_display_item 9-33

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Notes

The following examples illustrate further illustrate the use of arguments:

• add_display_item groupName id icon path-to-image-file

• add_display_item groupName parameterName parameter

• add_display_item groupName id text "your-text"

The your-text argument is a block of text that is displayed in the GUI. Some simple HTML formatting
is allowed, such as and <i>, if the text starts with <html>.

• add_display_item parentGroupName childGroupName group [tab]

The tab is an optional parameter. If present, the group appears in separate tab in the GUI for the
instance.

• add_display_item parentGroupName actionName action buttonClickCallbackProc

Related Information

• get_display_item_properties on page 9-36
• get_display_item_property on page 9-37
• get_display_items on page 9-35
• set_display_item_property on page 9-38
• Display Item Kind Properties on page 9-101

9-34 add_display_item
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_display_items

Description

Returns a list of all items to be displayed as part of the parameterization GUI.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_display_items

Returns

List of display item IDs.

Arguments

No arguments.

Example

get_display_items

Related Information

• add_display_item on page 9-33
• get_display_item_properties on page 9-36
• get_display_item_property on page 9-37
• set_display_item_property on page 9-38

QPS5V1
2015.11.02 get_display_items 9-35

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_display_item_properties

Description

Returns a list of names of the properties of display items that are part of the parameterization GUI.

Availability

Main Program

Usage

get_display_item_properties

Returns

A list of display item property names. Refer to Display Item Properties.

Arguments

No arguments.

Example

get_display_item_properties

Related Information

• add_display_item on page 9-33
• get_display_item_property on page 9-37
• set_display_item_property on page 9-38
• Display Item Properties on page 9-100

9-36 get_display_item_properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_display_item_property

Description

Returns the value of a specific property of a display item that is part of the parameterization GUI.

Availability

Main Program, Elaboration, Validation, Composition

Usage

get_display_item_property <display_item> <property>

Returns

The value of a display item property.

Arguments

display_item
The id of the display item.

property
The name of the property. Refer to Display Item Properties.

Example

set my_label [get_display_item_property my_action DISPLAY_NAME]

Related Information

• add_display_item on page 9-33
• get_display_item_properties on page 9-36
• get_display_items on page 9-35
• set_display_item_property on page 9-38
• Display Item Properties on page 9-100

QPS5V1
2015.11.02 get_display_item_property 9-37

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_display_item_property

Description

Sets the value of specific property of a display item that is part of the parameterization GUI.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Composition

Usage

set_display_item_property <display_item> <property> <value>

Returns

No return value.

Arguments

display_item
The name of the display item whose property value is being set.

property
The property that is being set. Refer to Display Item Properties.

value
The value to set.

Example

set_display_item_property my_action DISPLAY_NAME "Click Me"
set_display_item_property my_action DESCRIPTION "clicking this button runs the
click_me_callback proc in the hw.tcl file"

Related Information

• add_display_item on page 9-33
• get_display_item_properties on page 9-36
• get_display_item_property on page 9-37
• Display Item Properties on page 9-100

9-38 set_display_item_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Module Definition

add_documentation_link on page 9-40

get_module_assignment on page 9-41

get_module_assignments on page 9-42

get_module_ports on page 9-43

get_module_properties on page 9-44

get_module_property on page 9-45

send_message on page 9-46

set_module_assignment on page 9-47

set_module_property on page 9-48

add_hdl_instance on page 9-49

package on page 9-50

QPS5V1
2015.11.02 Module Definition 9-39

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_documentation_link

Description

Allows you to link to documentation for your IP component.

Availability

Discovery, Main Program

Usage

add_documentation_link <title> <path>

Returns

No return value.

Arguments

title
The title of the document for use on menus and buttons.

path
A path to the IP component documentation, using a syntax that provides the entire URL,
not a relative path. For example: http://www.mydomain.com/
my_memory_controller.html or file:///datasheet.txt

Example

add_documentation_link "Avalon Verification IP Suite User Guide" http://
www.altera.com/literature/ug/ug_avalon_verification_ip.pdf

9-40 add_documentation_link
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_assignment

Description

This command returns the value of an assignment. You can use the get_module_assignment and
set_module_assignment and the get_interface_assignment and set_interface_assignment
commands to provide information about the IP component to embedded software tools and applications.

Availability

Main Program, Elaboration, Validation, Composition

Usage

get_module_assignment <assignment>

Returns

The value of the assignment

Arguments

assignment
The name of the assignment whose value is being retrieved

Example

get_module_assignment embeddedsw.CMacro.colorSpace

Related Information

• get_module_assignments on page 9-42
• set_module_assignment on page 9-47

QPS5V1
2015.11.02 get_module_assignment 9-41

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_assignments

Description

Returns the names of the module assignments.

Availability

Main Program, Elaboration, Validation, Composition

Usage

get_module_assignments

Returns

A list of assignment names.

Arguments

No arguments.

Example

get_module_assignments

Related Information

• get_module_assignment on page 9-41
• set_module_assignment on page 9-47

9-42 get_module_assignments
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_ports

Description

Returns a list of the names of all the ports which are currently defined.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_module_ports

Returns

A list of port names.

Arguments

No arguments.

Example

get_module_ports

Related Information

• add_interface on page 9-3
• add_interface_port on page 9-5

QPS5V1
2015.11.02 get_module_ports 9-43

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_properties

Description

Returns the names of all the module properties as a list of strings. You can use the get_module_property
and set_module_property commands to get and set values of individual properties. The value returned
by this command is always the same for a particular version of Qsys

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_module_properties

Returns

List of strings. Refer to Module Properties.

Arguments

No arguments.

Example

get_module_properties

Related Information

• get_module_property on page 9-45
• set_module_property on page 9-48
• Module Properties on page 9-103

9-44 get_module_properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_module_property

Description

Returns the value of a single module property.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_module_property <property>

Returns

Various.

Arguments

property
The name of the property, Refer to Module Properties.

Example

set my_name [get_module_property NAME]

Related Information

• get_module_properties on page 9-44
• set_module_property on page 9-48
• Module Properties on page 9-103

QPS5V1
2015.11.02 get_module_property 9-45

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

send_message

Description

Sends a message to the user of the IP component. The message text is normally interpreted as HTML. You
can use the element to provide emphasis. If you do not want the message text to be interpreted as
HTML, then pass a list as the message level, for example, { Info Text }.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

send_message <level> <message>

Returns

No return value .

Arguments

level
The following message levels are supported:

• ERROR--Provides an error message. The Qsys system cannot be generated with existing
error messages.

• WARNING--Provides a warning message.
• INFO--Provides an informational message.
• PROGRESS--Reports progress during generation.
• DEBUG--Provides a debug message when debug mode is enabled.

message
The text of the message.

Example

send_message ERROR "The system is down!"
send_message { Info Text } "The system is up!"

9-46 send_message
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_module_assignment

Description

Sets the value of the specified assignment.

Availability

Main Program, Elaboration, Validation, Composition

Usage

set_module_assignment <assignment> [<value>]

Returns

No return value.

Arguments

assignment
The assignment whose value is being set

value (optional)
The value of the assignment

Example

set_module_assignment embeddedsw.CMacro.colorSpace CMYK

Related Information

• get_module_assignment on page 9-41
• get_module_assignments on page 9-42

QPS5V1
2015.11.02 set_module_assignment 9-47

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_module_property

Description

Allows you to set the values for module properties.

Availability

Discovery, Main Program

Usage

set_module_property <property> <value>

Returns

No return value.

Arguments

property
The name of the property. Refer to Module Properties.

value
The new value of the property.

Example

set_module_property VERSION 10.0

Related Information

• get_module_properties on page 9-44
• get_module_property on page 9-45
• Module Properties on page 9-103

9-48 set_module_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_hdl_instance

Description

Adds an instance of a predefined module, referred to as a child or child instance. The HDL entity
generated from this instance can be instantiated and connected within this IP component's HDL.

Availability

Main Program, Elaboration, Composition

Usage

add_hdl_instance <entity_name> <ip_core_type> [<version>]

Returns

The entity name of the added instance.

Arguments

entity_name
Specifies a unique local name that you can use to manipulate the instance. This name is used
in the generated HDL to identify the instance.

ip_core_type
The type refers to a kind of instance available in the IP Catalog, for example
altera_avalon_uart.

version (optional)
The required version of the specified instance type. If no version is specified, the latest
version is used.

Example

add_hdl_instance my_uart altera_avalon_uart

Related Information

• get_instance_parameter_value on page 9-67
• get_instance_parameters on page 9-65
• get_instances on page 9-57
• set_instance_parameter_value on page 9-70

QPS5V1
2015.11.02 add_hdl_instance 9-49

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

package

Description

Allows you to specify a particular version of the Qsys software to avoid software compatibility issues, and
to determine which version of the _hw.tcl API to use for the IP component. You must use the package
command at the beginning of your _hw.tcl file.

Availability

Main Program

Usage

package require -exact qsys <version>

Returns

No return value

Arguments

version
The version of Qsys that you require, such as 14.1.

Example

package require -exact qsys 14.1

9-50 package
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Composition

add_instance on page 9-52

add_connection on page 9-52

get_connections on page 9-54

get_connection_parameters on page 9-55

get_connection_parameter_value on page 9-56

get_instances on page 9-57

get_instance_interfaces on page 9-58

get_instance_interface_ports on page 9-59

get_instance_interface_properties on page 9-60

get_instance_property on page 9-61

set_instance_property on page 9-62

get_instance_properties on page 9-63

get_instance_interface_property on page 9-64

get_instance_parameters on page 9-65

get_instance_parameter_property on page 9-66

get_instance_parameter_value on page 9-67

get_instance_port_property on page 9-68

set_connection_parameter_value on page 9-69

set_instance_parameter_value on page 9-70

QPS5V1
2015.11.02 Composition 9-51

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_instance

Description

Adds an instance of an IP component, referred to as a child or child instance to the subsystem. You can
use this command to create IP components that are composed of other IP component instances. The HDL
for this subsystem will be generated; no custom HDL will need to be written for the IP component.

Availability

Main Program, Composition

Usage

add_instance <name> <type> [<version>]

Returns

No return value.

Arguments

name
Specifies a unique local name that you can use to manipulate the instance. This name is used
in the generated HDL to identify the instance.

type
The type refers to a type available in the IP Catalog, for example altera_avalon_uart.

version (optional)
The required version of the specified type. If no version is specified, the highest available
version is used.

Example

add_instance my_uart altera_avalon_uart
add_instance my_uart altera_avalon_uart 14.1

Related Information

• add_connection on page 9-52
• get_instance_interface_property on page 9-64
• get_instance_parameter_value on page 9-67
• get_instance_parameters on page 9-65
• get_instance_property on page 9-61
• get_instances on page 9-57
• set_instance_parameter_value on page 9-70

add_connection

Description

Connects the named interfaces on child instances together using an appropriate connection type. Both
interface names consist of a child instance name, followed by the name of an interface provided by that

9-52 add_instance
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

module. For example, mux0.out is the interface named out on the instance named mux0. Be careful to
connect the start to the end, and not the other way around.

Availability

Main Program, Composition

Usage

add_connection <start> [<end> <kind> <name>]

Returns

The name of the newly added connection in start.point/end.point format.

Arguments

start
The start interface to be connected, in <instance_name>.<interface_name> format.

end (optional)
The end interface to be connected, <instance_name>.<interface_name>.

kind (optional)
The type of connection, such as avalon or clock.

name (optional)
A custom name for the connection. If unspecified, the name will be
<start_instance>.<interface>.<end_instance><interface>

Example

add_connection dma.read_master sdram.s1 avalon

Related Information

• add_instance on page 9-52
• get_instance_interfaces on page 9-58

QPS5V1
2015.11.02 add_connection 9-53

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connections

Description

Returns a list of all connections in the composed subsystem.

Availability

Main Program, Composition

Usage

get_connections

Returns

A list of connections.

Arguments

No arguments.

Example

set all_connections [get_connections]

Related Information
add_connection on page 9-52

9-54 get_connections
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_parameters

Description

Returns a list of parameters found on a connection.

Availability

Main Program, Composition

Usage

get_connection_parameters <connection>

Returns

A list of parameter names

Arguments

connection
The connection to query.

Example

get_connection_parameters cpu.data_master/dma0.csr

Related Information

• add_connection on page 9-52
• get_connection_parameter_value on page 9-56

QPS5V1
2015.11.02 get_connection_parameters 9-55

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_connection_parameter_value

Description

Returns the value of a parameter on the connection. Parameters represent aspects of the connection that
can be modified once the connection is created, such as the base address for an Avalon Memory Mapped
connection.

Availability

Composition

Usage

get_connection_parameter_value <connection> <parameter>

Returns

The value of the parameter.

Arguments

connection
The connection to query.

parameter
The name of the parameter.

Example

get_connection_parameter_value cpu.data_master/dma0.csr baseAddress

Related Information

• add_connection on page 9-52
• get_connection_parameters on page 9-55

9-56 get_connection_parameter_value
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instances

Description

Returns a list of the instance names for all child instances in the system.

Availability

Main Program, Elaboration, Validation, Composition

Usage

get_instances

Returns

A list of child instance names.

Arguments

No arguments.

Example

get_instances

Notes

This command can be used with instances created by either add_instance or add_hdl_instance.

Related Information

• add_hdl_instance on page 9-49
• add_instance on page 9-52
• get_instance_parameter_value on page 9-67
• get_instance_parameters on page 9-65
• set_instance_parameter_value on page 9-70

QPS5V1
2015.11.02 get_instances 9-57

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interfaces

Description

Returns a list of interfaces found in a child instance. The list of interfaces can change if the
parameterization of the instance changes.

Availability

Validation, Composition

Usage

get_instance_interfaces <instance>

Returns

A list of interface names.

Arguments

instance
The name of the child instance.

Example

get_instance_interfaces pixel_converter

Related Information

• add_instance on page 9-52
• get_instance_interface_ports on page 9-59
• get_instance_interfaces on page 9-58

9-58 get_instance_interfaces
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_ports

Description

Returns a list of ports found in an interface of a child instance.

Availability

Validation, Composition, Fileset Generation

Usage

get_instance_interface_ports <instance> <interface>

Returns

A list of port names found in the interface.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

Example

set port_names [get_instance_interface_ports cpu data_master]

Related Information

• add_instance on page 9-52
• get_instance_interfaces on page 9-58
• get_instance_port_property on page 9-68

QPS5V1
2015.11.02 get_instance_interface_ports 9-59

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_properties

Description

Returns the names of all of the properties of the specified interface

Availability

Validation, Composition

Usage

get_instance_interface_properties <instance> <interface>

Returns

List of property names.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the instance.

Example

set properties [get_instance_interface_properties cpu data_master]

Related Information

• add_instance on page 9-52
• get_instance_interface_property on page 9-64
• get_instance_interfaces on page 9-58

9-60 get_instance_interface_properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_property

Description

Returns the value of a single instance property.

Availability

Main Program, Elaboration, Validation, Composition, Fileset Generation

Usage

get_instance_property <instance> <property>

Returns

Various.

Arguments

instance
The name of the instance.

property
The name of the property. Refer to Instance Properties.

Example

set my_name [get_instance_property myinstance NAME]

Related Information

• add_instance on page 9-52
• get_instance_properties on page 9-63
• set_instance_property on page 9-62
• Instance Properties on page 9-91

QPS5V1
2015.11.02 get_instance_property 9-61

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_property

Description

Allows a user to set the properties of a child instance.

Availability

Main Program, Elaboration, Validation, Composition

Usage

set_instance_property <instance> <property> <value>

Returns

Arguments

instance
The name of the instance.

property
The name of the property to set. Refer to Instance Properties.

value
The new property value.

Example

set_instance_property myinstance SUPRESS_ALL_WARNINGS true

Related Information

• add_instance on page 9-52
• get_instance_properties on page 9-63
• get_instance_property on page 9-61
• Instance Properties on page 9-91

9-62 set_instance_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_properties

Description

Returns the names of all the instance properties as a list of strings. You can use the
get_instance_property and set_instance_property commands to get and set values of individual
properties. The value returned by this command is always the same for a particular version of Qsys

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_instance_properties

Returns

List of strings. Refer to Instance Properties.

Arguments

No arguments.

Example

get_instance_properties

Related Information

• add_instance on page 9-52
• get_instance_property on page 9-61
• set_instance_property on page 9-62
• Instance Properties on page 9-91

QPS5V1
2015.11.02 get_instance_properties 9-63

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_interface_property

Description

Returns the value of a property for an interface in a child instance.

Availability

Validation, Composition

Usage

get_instance_interface_property <instance> <interface> <property>

Returns

The value of the property.

Arguments

instance
The name of the child instance.

interface
The name of an interface on the child instance.

property
The name of the property of the interface.

Example

set value [get_instance_interface_property cpu data_master setupTime]

Related Information

• add_instance on page 9-52
• get_instance_interfaces on page 9-58

9-64 get_instance_interface_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameters

Description

Returns a list of names of the parameters on a child instance that can be set using
set_instance_parameter_value. It omits parameters that are derived and those that have the
SYSTEM_INFO parameter property set.

Availability

Main Program, Elaboration, Validation, Composition

Usage

get_instance_parameters <instance>

Returns

A list of parameters in the instance.

Arguments

instance
The name of the child instance.

Example

set parameters [get_instance_parameters instance]

Notes

You can use this command with instances created by either add_instance or add_hdl_instance.

Related Information

• add_hdl_instance on page 9-49
• add_instance on page 9-52
• get_instance_parameter_value on page 9-67
• get_instances on page 9-57
• set_instance_parameter_value on page 9-70

QPS5V1
2015.11.02 get_instance_parameters 9-65

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameter_property

Description

Returns the value of a property on a parameter in a child instance. Parameter properties are metadata
about how the parameter will be used by the Qsys tools.

Availability

Validation, Composition

Usage

get_instance_parameter_property <instance> <parameter> <property>

Returns

The value of the parameter property.

Arguments

instance
The name of the child instance.

parameter
The name of the parameter in the instance.

property
The name of the property of the parameter. Refer to Parameter Properties.

Example

get_instance_parameter_property instance parameter property

Related Information

• add_instance on page 9-52
• Parameter Properties on page 9-92

9-66 get_instance_parameter_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_parameter_value

Description

Returns the value of a parameter in a child instance. You cannot use this command to get the value of
parameters whose values are derived or those that are defined using the SYSTEM_INFO parameter property.

Availability

Elaboration, Validation, Composition

Usage

get_instance_parameter_value <instance> <parameter>

Returns

The value of the parameter.

Arguments

instance
The name of the child instance.

parameter
Specifies the parameter whose value is being retrieved.

Example

set dpi [get_instance_parameter_value pixel_converter input_DPI]

Notes

You can use this command with instances created by either add_instance or add_hdl_instance.

Related Information

• add_hdl_instance on page 9-49
• add_instance on page 9-52
• get_instance_parameters on page 9-65
• get_instances on page 9-57
• set_instance_parameter_value on page 9-70

QPS5V1
2015.11.02 get_instance_parameter_value 9-67

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_instance_port_property

Description

Returns the value of a property of a port contained by an interface in a child instance.

Availability

Validation, Composition, Fileset Generation

Usage

get_instance_port_property <instance> <port> <property>

Returns

The value of the property for the port.

Arguments

instance
The name of the child instance.

port
The name of a port in one of the interfaces on the child instance.

property
The property whose value is being retrieved. Only the following port properties can be
queried on ports of child instances: ROLE, DIRECTION, WIDTH, WIDTH_EXPR and VHDL_TYPE.
Refer to Port Properties.

Example

get_instance_port_property instance port property

Related Information

• add_instance on page 9-52
• get_instance_interface_ports on page 9-59
• Port Properties on page 9-97

9-68 get_instance_port_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_connection_parameter_value

Description

Sets the value of a parameter of the connection. The start and end are each interface names of the format
<instance>.<interface>. Connection parameters depend on the type of connection, for Avalon-MM
they include base addresses and arbitration priorities.

Availability

Main Program, Composition

Usage

set_connection_parameter_value <connection> <parameter> <value>

Returns

No return value.

Arguments

connection
Specifies the name of the connection as returned by the add_conectioncommand. It is of
the form start.point/end.point.

parameter
The name of the parameter.

value
The new parameter value.

Example

set_connection_parameter_value cpu.data_master/dma0.csr baseAddress "0x000a0000"

Related Information

• add_connection on page 9-52
• get_connection_parameter_value on page 9-56

QPS5V1
2015.11.02 set_connection_parameter_value 9-69

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_parameter_value

Description

Sets the value of a parameter for a child instance. Derived parameters and SYSTEM_INFO parameters for
the child instance can not be set with this command.

Availability

Main Program, Elaboration, Composition

Usage

set_instance_parameter_value <instance> <parameter> <value>

Returns

Vo return value.

Arguments

instance
Specifies the name of the child instance.

parameter
Specifies the parameter that is being set.

value
Specifies the new parameter value.

Example

set_instance_parameter_value uart_0 baudRate 9600

Notes

You can use this command with instances created by either add_instance or add_hdl_instance.

Related Information

• add_hdl_instance on page 9-49
• add_instance on page 9-52
• get_instance_parameter_value on page 9-67
• get_instances on page 9-57

9-70 set_instance_parameter_value
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Fileset Generation

add_fileset on page 9-72

add_fileset_file on page 9-73

set_fileset_property on page 9-74

get_fileset_file_attribute on page 9-75

set_fileset_file_attribute on page 9-76

get_fileset_properties on page 9-77

get_fileset_property on page 9-78

get_fileset_sim_properties on page 9-79

set_fileset_sim_properties on page 9-80

create_temp_file on page 9-81

QPS5V1
2015.11.02 Fileset Generation 9-71

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_fileset

Description

Adds a generation fileset for a particular target as specified by the kind. Qsys calls the target (SIM_VHDL,
SIM_VERILOG, QUARTUS_SYNTH, or EXAMPLE_DESIGN) when the specified generation target is requested.
You can define multiple filesets for each kind of fileset. Qsys passes a single argument to the specified
callback procedure. The value of the argument is a generated name, which you must use in the top-level
module or entity declaration of your IP component. To override this generated name, you can set the
fileset property TOP_LEVEL.

Availability

Main Program

Usage

add_fileset <name> <kind> [<callback_proc> <display_name>]

Returns

No return value.

Arguments

name
The name of the fileset.

kind
The kind of fileset. Refer to Fileset Properties.

callback_proc (optional)
A string identifying the name of the callback procedure. If you add files in the global section,
you can then specify a blank callback procedure.

display_name (optional)
A display string to identify the fileset.

Example

add_fileset my_synthesis_fileset QUARTUS_SYNTH mySynthCallbackProc "My Synthesis"
proc mySynthCallbackProc { topLevelName } { ... }

Notes

If using the TOP_LEVEL fileset property, all parameterizations of the component must use identical HDL.

Related Information

• add_fileset_file on page 9-73
• get_fileset_property on page 9-78
• Fileset Properties on page 9-105

9-72 add_fileset
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

add_fileset_file

Description

Adds a file to the generation directory. You can specify source file locations with either an absolute path,
or a path relative to the IP component's _hw.tcl file. When you use the add_fileset_file command in
a fileset callback, the Quartus Prime software compiles the files in the order that they are added.

Availability

Main Program, Fileset Generation

Usage

add_fileset_file <output_file> <file_type> <file_source> <path_or_contents> [<attributes>]

Returns

No return value.

Arguments

output_file
Specifies the location to store the file after Qsys generation

file_type
The kind of file. Refer to File Kind Properties.

file_source
Specifies whether the file is being added by path, or by file contents. Refer to File Source
Properties.

path_or_contents
When the file_source is PATH, specifies the file to be copied to output_file. When the
file_source is TEXT, specifies the text contents to be stored in the file.

attributes (optional)
An optional list of file attributes. Typically used to specify that a file is intended for use only
in a particular simulator. Refer to File Attribute Properties.

Example

add_fileset_file "./implementation/rx_pma.sv" SYSTEM_VERILOG PATH synth_rx_pma.sv
add_fileset_file gui.sv SYSTEM_VERILOG TEXT "Customize your IP core"

Related Information

• add_fileset on page 9-72
• get_fileset_file_attribute on page 9-75
• File Kind Properties on page 9-109
• File Source Properties on page 9-110
• File Attribute Properties on page 9-108

QPS5V1
2015.11.02 add_fileset_file 9-73

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_fileset_property

Description

Allows you to set the properties of a fileset.

Availability

Main Program, Elaboration, Fileset Generation

Usage

set_fileset_property <fileset> <property> <value>

Returns

No return value.

Arguments

fileset
The name of the fileset.

property
The name of the property to set. Refer to Fileset Properties.

value
The new property value.

Example

set_fileset_property mySynthFileset TOP_LEVEL simple_uart

Notes

When a fileset callback is called, the callback procedure will be passed a single argument. The value of this
argument is a generated name which must be used in the top-level module or entity declaration of your IP
component. If set, the TOP_LEVEL specifies a fixed name for the top-level name of your IP component.

The TOP_LEVEL property must be set in the global section. It cannot be set in a fileset callback.

If using the TOP_LEVEL fileset property, all parameterizations of the IP component must use identical
HDL.

Related Information

• add_fileset on page 9-72
• Fileset Properties on page 9-105

9-74 set_fileset_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_fileset_file_attribute

Description

Returns the attribute of a fileset file.

Availability

Main Program, Fileset Generation

Usage

get_fileset_file_attribute <output_file> <attribute>

Returns

Value of the fileset File attribute.

Arguments

output_file
Location of the output file.

attribute
Specifies the name of the attribute Refer to File Attribute Properties.

Example

get_fileset_file_attribute my_file.sv ALDEC_SPECIFIC

Related Information

• add_fileset on page 9-72
• add_fileset_file on page 9-73
• get_fileset_file_attribute on page 9-75
• File Attribute Properties on page 9-108
• add_fileset on page 9-72
• add_fileset_file on page 9-73
• get_fileset_file_attribute on page 9-75
• File Attribute Properties on page 9-108

QPS5V1
2015.11.02 get_fileset_file_attribute 9-75

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_fileset_file_attribute

Description

Sets the attribute of a fileset file.

Availability

Main Program, Fileset Generation

Usage

set_fileset_file_attribute <output_file> <attribute> <value>

Returns

The attribute value if it was set.

Arguments

output_file
Location of the output file.

attribute
Specifies the name of the attribute Refer to File Attribute Properties.

value
Value to set the attribute to.

Example

set_fileset_file_attribute my_file_pkg.sv COMMON_SYSTEMVERILOG_PACKAGE
my_file_package

9-76 set_fileset_file_attribute
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_fileset_properties

Description

Returns a list of properties that can be set on a fileset.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Generation, Composition, Fileset Generation,
Parameter Upgrade

Usage

get_fileset_properties

Returns

A list of property names. Refer to Fileset Properties.

Arguments

No arguments.

Example

get_fileset_properties

Related Information

• add_fileset on page 9-72
• get_fileset_properties on page 9-77
• set_fileset_property on page 9-74
• Fileset Properties on page 9-105

QPS5V1
2015.11.02 get_fileset_properties 9-77

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_fileset_property

Description

Returns the value of a fileset property for a fileset.

Availability

Main Program, Elaboration, Fileset Generation

Usage

get_fileset_property <fileset> <property>

Returns

The value of the property.

Arguments

fileset
The name of the fileset.

property
The name of the property to query. Refer to Fileset Properties.

Example

get_fileset_property fileset property

Related Information
Fileset Properties on page 9-105

9-78 get_fileset_property
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_fileset_sim_properties

Description

Returns simulator properties for a fileset.

Availability

Main Program, Fileset Generation

Usage

get_fileset_sim_properties <fileset> <platform> <property>

Returns

The fileset simulator properties.

Arguments

fileset
The name of the fileset.

platform
The operating system for that applies to the property. Refer to Operating System Properties.

property
Specifies the name of the property to set. Refer to Simulator Properties.

Example

get_fileset_sim_properties my_fileset LINUX64 OPT_CADENCE_64BIT

Related Information

• add_fileset on page 9-72
• set_fileset_sim_properties on page 9-80
• Operating System Properties on page 9-117
• Simulator Properties on page 9-111

QPS5V1
2015.11.02 get_fileset_sim_properties 9-79

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_fileset_sim_properties

Description

Sets simulator properties for a given fileset

Availability

Main Program, Fileset Generation

Usage

set_fileset_sim_properties <fileset> <platform> <property> <value>

Returns

The fileset simulator properties if they were set.

Arguments

fileset
The name of the fileset.

platform
The operating system that applies to the property. Refer to Operating System Properties.

property
Specifies the name of the property to set. Refer to Simulator Properties.

value
Specifies the value of the property.

Example

set_fileset_sim_properties my_fileset LINUX64 OPT_MENTOR_PLI "{libA} {libB}"

Related Information

• get_fileset_sim_properties on page 9-79
• Operating System Properties on page 9-117
• Simulator Properties on page 9-111

9-80 set_fileset_sim_properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

create_temp_file

Description

Creates a temporary file, which you can use inside the fileset callbacks of a _hw.tcl file. This temporary file
is included in the generation output if it is added using the add_fileset_file command.

Availability

Fileset Generation

Usage

create_temp_file <path>

Returns

The path to the temporary file.

Arguments

path
The name of the temporary file.

Example

set filelocation [create_temp_file "./hdl/compute_frequency.v"]
add_fileset_file compute_frequency.v VERILOG PATH ${filelocation}

Related Information

• add_fileset on page 9-72
• add_fileset_file on page 9-73

QPS5V1
2015.11.02 create_temp_file 9-81

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Miscellaneous

check_device_family_equivalence on page 9-83

get_device_family_displayname on page 9-84

get_qip_strings on page 9-85

set_qip_strings on page 9-86

set_interconnect_requirement on page 9-87

9-82 Miscellaneous
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

check_device_family_equivalence

Description

Returns 1 if the device family is equivalent to one of the families in the device families lis., Returns 0 if the
device family is not equivalent to any families. This command ignores differences in capitalization and
spaces.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset Generation, Parameter
Upgrade

Usage

check_device_family_equivalence <device_family> <device_family_list>

Returns

1 if equivalent, 0 if not equivalent.

Arguments

device_family
The device family name that is being checked.

device_family_list
The list of device family names to check against.

Example

check_device_family_equivalence "CYLCONE III LS" { "stratixv" "Cyclone IV"
"cycloneiiils" }

Related Information
get_device_family_displayname on page 9-84

QPS5V1
2015.11.02 check_device_family_equivalence 9-83

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_device_family_displayname

Description

Returns the display name of a given device family.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Composition, Fileset Generation, Parameter
Upgrade

Usage

get_device_family_displayname <device_family>

Returns

The preferred display name for the device family.

Arguments

device_family
A device family name.

Example

get_device_family_displayname cycloneiiils (returns: "Cyclone IV LS")

Related Information
check_device_family_equivalence on page 9-83

9-84 get_device_family_displayname
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_qip_strings

Description

Returns a Tcl list of QIP strings for the IP component.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter Upgrade

Usage

get_qip_strings

Returns

A Tcl list of qip strings set by this IP component.

Arguments

No arguments.

Example

set strings [get_qip_strings]

Related Information
set_qip_strings on page 9-86

QPS5V1
2015.11.02 get_qip_strings 9-85

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_qip_strings

Description

Places strings in the Quartus Prime IP File (.qip) file, which Qsys passes to the command as a Tcl list. You
add the .qip file to your Quartus Prime project on the Files page, in the Settings dialog box. Successive
calls to set_qip_strings are not additive and replace the previously declared value.

Availability

Discovery, Main Program, Edit, Elaboration, Validation, Composition, Parameter Upgrade

Usage

set_qip_strings <qip_strings>

Returns

The Tcl list which was set.

Arguments

qip_strings
A space-delimited Tcl list.

Example

set_qip_strings {"QIP Entry 1" "QIP Entry 2"}

Notes

You can use the following macros in your QIP strings entry:

%entityName% The generated name of the entity replaces this macro when the string is written to
the .qip file.

%libraryName% The compilation library this IP component was compiled into is inserted in place of
this macro inside the .qip file.

%instanceName% The name of the instance is inserted in place of this macro inside the .qip file.

Related Information
get_qip_strings on page 9-85

9-86 set_qip_strings
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_interconnect_requirement

Description

Sets the value of an interconnect requirement for a system or an interface on a child instance.

Availability

Composition

Usage

set_interconnect_requirement <element_id> <name> <value>

Returns

No return value

Arguments

element_id
{$system} for system requirements, or qualified name of the interface of an instance, in
<instance>.<interface> format. Note that the system identifier has to be escaped in TCL.

name
The name of the requirement.

value
The new requirement value.

Example

set_interconnect_requirement {$system} qsys_mm.maxAdditionalLatency 2

QPS5V1
2015.11.02 set_interconnect_requirement 9-87

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys _hw.tcl Property Reference

Script Language Properties on page 9-89

Interface Properties on page 9-90

Instance Properties on page 9-91

Parameter Properties on page 9-92

Parameter Type Properties on page 9-95

Parameter Status Properties on page 9-96

Port Properties on page 9-97

Direction Properties on page 9-99

Display Item Properties on page 9-100

Display Item Kind Properties on page 9-101

Display Hint Properties on page 9-102

Module Properties on page 9-103

Fileset Properties on page 9-105

Fileset Kind Properties on page 9-106

Callback Properties on page 9-107

File Attribute Properties on page 9-108

File Kind Properties on page 9-109

File Source Properties on page 9-110

Simulator Properties on page 9-111

Port VHDL Type Properties on page 9-112

System Info Type Properties on page 9-113

Design Environment Type Properties on page 9-115

Units Properties on page 9-116

Operating System Properties on page 9-117

Quartus.ini Type Properties on page 9-118

9-88 Qsys _hw.tcl Property Reference
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Script Language Properties

Name Description

TCL Implements the script in Tcl.

QPS5V1
2015.11.02 Script Language Properties 9-89

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interface Properties

Name Description

CMSIS_SVD_FILE Specifies the connection point's associated CMSIS file.

CMSIS_SVD_VARIABLES Defines the variables inside a .svd file.

ENABLED Specifies whether or not interface is enabled.

EXPORT_OF For composed _hwl.tcl files, the EXPORT_OF property indicates which interface
of a child instance is to be exported through this interface. Before using this
command, you must have created the border interface using add_interface.
The interface to be exported is of the form <instanceName.interfaceName>.

Example: set_interface_property CSC_input EXPORT_OF my_colorSpace-
Converter.input_port

PORT_NAME_MAP A map of external port names to internal port names, formatted as a Tcl list.
Example: set_interface_property <interface name> PORT_NAME_MAP
"<new port name> <old port name> <new port name 2> <old port name

2>"

SVD_ADDRESS_GROUP Generates a CMSIS SVD file. Masters in the same SVD address group will write
register data of their connected slaves into the same SVD file

SVD_ADDRESS_OFFSET Generates a CMSIS SVD file. Slaves connected to this master will have their
base address offset by this amount in the SVD file.

9-90 Interface Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instance Properties

Name Description

HDLINSTANCE_GET_GENERATED_NAME Qsys uses this property to get the auto-generated fixed name when
the instance property HDLINSTANCE_USE_GENERATED_NAME is set to
true, and only applies to fileSet callbacks.

HDLINSTANCE_USE_GENERATED_NAME If true, instances added with the add_hdl_instance command are
instructed to use unique auto-generated fixed names based on the
parameterization.

SUPPRESS_ALL_INFO_MESSAGES If true, allows you to suppress all Info messages that originate
from a child instance.

SUPPRESS_ALL_WARNINGS If true, allows you to suppress alL warnings that originate from a
child instance

QPS5V1
2015.11.02 Instance Properties 9-91

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Properties

Type Name Description

Boolean AFFECTS_ELABORATION Set AFFECTS_ELABORATION to false for parameters that do not affect
the external interface of the module. An example of a parameter that
does not affect the external interface is isNonVolatileStorage. An
example of a parameter that does affect the external interface is
width. When the value of a parameter changes, if that parameter has
set AFFECTS_ELABORATION=false, the elaboration phase (calling the
callback or hardware analysis) is not repeated, improving
performance. Because the default value of AFFECTS_ELABORATION is
true, the provided HDL file is normally re-analyzed to determine the
new port widths and configuration every time a parameter changes.

Boolean AFFECTS_GENERATION The default value of AFFECTS_GENERATION is false if you provide a
top-level HDL module; it is true if you provide a fileset callback. Set
AFFECTS_GENERATION to false if the value of a parameter does not
change the results of fileset generation.

Boolean AFFECTS_VALIDATION The AFFECTS_VALIDATION property marks whether a parameter's
value is used to set derived parameters, and whether the value affects
validation messages. When set to false, this may improve response
time in the parameter editor UI when the value is changed.

String[] ALLOWED_RANGES Indicates the range or ranges that the parameter value can have. For
integers, The ALLOWED_RANGES property is a list of ranges that the
parameter can take on, where each range is a single value, or a range
of values defined by a start and end value separated by a colon, such
as 11:15. This property can also specify legal values and display
strings for integers, such as {0:None 1:Monophonic 2:Stereo
4:Quadrophonic} meaning 0, 1, 2, and 4 are the legal values. You can
also assign display strings to be displayed in the parameter editor for
string variables. For example, ALLOWED_RANGES {"dev1:Cyclone IV
GX""dev2:Stratix V GT"}.

String DEFAULT_VALUE The default value.

Boolean DERIVED When true, indicates that the parameter value can only be set by the
IP component, and cannot be set by the user. Derived parameters are
not saved as part of an instance's parameter values. The default value
is false.

String DESCRIPTION A short user-visible description of the parameter, suitable for a
tooltip description in the parameter editor.

String[] DISPLAY_HINT Provides a hint about how to display a property. The following values
are possible:

9-92 Parameter Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

• boolean--for integer parameters whose value can be 0 or 1. The
parameter displays as an option that you can turn on or off.

• radio--displays a parameter with a list of values as radio buttons
instead of a drop-down list.

• hexadecimal--for integer parameters, display and interpret the
value as a hexadecimal number, for example: 0x00000010 instead
of 16.

• fixed_size--for string_list and integer_list parameters,
the fixed_size DISPLAY_HINT eliminates the add and remove
buttons from tables.

String DISPLAY_NAME This is the GUI label that appears to the left of this parameter.

String DISPLAY_UNITS This is the GUI label that appears to the right of the parameter.

Boolean ENABLED When false, the parameter is disabled, meaning that it is displayed,
but greyed out, indicating that it is not editable on the parameter
editor.

String GROUP Controls the layout of parameters in GUI

Boolean HDL_PARAMETER When true, the parameter must be passed to the HDL IP component
description. The default value is false.

String LONG_DESCRIPTION A user-visible description of the parameter. Similar to DESCRIPTION,
but allows for a more detailed explanation.

String NEW_INSTANCE_VALUE This property allows you to change the default value of a parameter
without affecting older IP components that have did not explicitly set
a parameter value, and use the DEFAULT_VALUE property. The
practical result is that older instances will continue to use
DEFAULT_VALUE for the parameter and new instances will use the
value assigned by NEW_INSTANCE_VALUE.

String[] SYSTEM_INFO Allows you to assign information about the instantiating system to a
parameter that you define. SYSTEM_INFO requires an argument
specifying the type of information requested, <info-type>.

String SYSTEM_INFO_ARG Defines an argument to be passed to a particular SYSTEM_INFO
function, such as the name of a reset interface.

(various) SYSTEM_INFO_TYPE Specifies one of the types of system information that can be queried.
Refer to System Info Type Properties.

(various) TYPE Specifies the type of the parameter. Refer to Parameter Type
Properties.

(various) UNITS Sets the units of the parameter. Refer to Units Properties.

Boolean VISIBLE Indicates whether or not to display the parameter in the
parameterization GUI.

String WIDTH For a STD_LOGIC_VECTOR parameter, this indicates the width of the
logic vector.

QPS5V1
2015.11.02 Parameter Properties 9-93

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• System Info Type Properties on page 9-113
• Parameter Type Properties on page 9-95
• Units Properties on page 9-116

9-94 Parameter Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Type Properties

Name Description

BOOLEAN A boolean parameter whose value is true or false.

FLOAT A signed 32-bit floating point parameter. Not supported for HDL parameters.

INTEGER A signed 32-bit integer parameter.

INTEGER_LIST A parameter that contains a list of 32-bit integers. Not supported for HDL
parameters.

LONG A signed 64-bit integer parameter. Not supported for HDL parameters.

NATURAL A 32-bit number that contain values 0 to 2147483647 (0x7fffffff).

POSITIVE A 32-bit number that contains values 1 to 2147483647 (0x7fffffff).

STD_LOGIC A single bit parameter whose value can be 1 or 0;

STD_LOGIC_VECTOR An arbitrary-width number. The parameter property WIDTH determines the size of
the logic vector.

STRING A string parameter.

STRING_LIST A parameter that contains a list of strings. Not supported for HDL parameters.

QPS5V1
2015.11.02 Parameter Type Properties 9-95

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Status Properties

Type Name Description

Boolean ACTIVE Indicates the parameter is a regular parameter.

Boolean DEPRECATED Indicates the parameter exists only for backwards compatibility, and may not
have any effect.

Boolean EXPERIMENTAL Indicates the parameter is experimental, and not exposed in the design flow.

9-96 Parameter Status Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port Properties

Type Name Description

(various) DIRECTION The direction of the port from the IP component's perspective. Refer
to Direction Properties.

String DRIVEN_BY Indicates that this output port is always driven to a constant value or
by an input port. If all outputs on an IP component specify a
driven_by property, the HDL for the IP component will be generated
automatically.

String[] FRAGMENT_LIST This property can be used in 2 ways: First you can take a single RTL
signal and split it into multiple Qsys signals add_interface_port
<interface> foo <role> <direction> <width>

add_interface_port <interface> bar <role> <direction>

<width> set_port_property foo fragment_list

"my_rtl_signal(3:0)" set_port_property bar fragment_list

"my_rtl_signal(6:4)" Second you can take multiple RTL signals
and combine them into a single Qsys signal add_interface_port
<interface> baz <role> <direction> <width>

set_port_property baz fragment_list "rtl_signal_1(3:0)

rtl_signal_2(3:0)" Note: The listed bits in a port fragment must
match the declared width of the Qsys signal.

String ROLE Specifies an Avalon signal type such as waitrequest, readdata, or
read. For a complete list of signal types, refer to the Avalon Interface
Specifications.

Boolean TERMINATION When true, instead of connecting the port to the Qsys system, it is left
unconnected for output and bidir or set to a fixed value for input.
Has no effect for IP components that implement a generation callback
instead of using the default wrapper generation.

BigInteger TERMINATION_VALUE The constant value to drive an input port.

(various) VHDL_TYPE Indicates the type of a VHDL port. The default value, auto, selects
std_logic if the width is fixed at 1, and std_logic_vector
otherwise. Refer to Port VHDL Type Properties.

String WIDTH The width of the port in bits. Cannot be set directly. Any changes must
be set through the WIDTH_EXPR property.

String WIDTH_EXPR The width expression of a port. The width_value_expr property can
be set directly to a numeric value if desired. When
get_port_property is used width always returns the current integer
width of the port while width_expr always returns the unevaluated
width expression.

Integer WIDTH_VALUE The width of the port in bits. Cannot be set directly. Any changes must
be set through the WIDTH_EXPR property.

Related Information

• Direction Properties on page 9-99

QPS5V1
2015.11.02 Port Properties 9-97

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Port VHDL Type Properties on page 9-112
• Avalon Interface Specifications

9-98 Port Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Direction Properties

Name Description

Bidir Direction for a bidirectional signal.

Input Direction for an input signal.

Output Direction for an output signal.

QPS5V1
2015.11.02 Direction Properties 9-99

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Display Item Properties

Type Name Description

String DESCRIPTION A description of the display item, which you can use as a tooltip.

String[] DISPLAY_HINT A hint that affects how the display item displays in the parameter editor.

String DISPLAY_NAME The label for the display item in a the parameter editor.

Boolean ENABLED Indicates whether the display item is enabled or disabled.

String PATH The path to a file. Only applies to display items of type ICON.

String TEXT Text associated with a display item. Only applies to display items of type TEXT.

Boolean VISIBLE Indicates whether this display item is visible or not.

9-100 Display Item Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Display Item Kind Properties

Name Description

ACTION An action displays as a button in the GUI. When the button is clicked, it calls the callback
procedure. The button label is the display item id.

GROUP A group that is a child of the parent_group group. If the parent_group is an empty string,
this is a top-level group.

ICON A .gif, .jpg, or .png file.

PARAMETER A parameter in the instance.

TEXT A block of text.

QPS5V1
2015.11.02 Display Item Kind Properties 9-101

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Display Hint Properties

Name Description

BIT_WIDTH Bit width of a number

BOOLEAN Integer value either 0 or 1.

COLLAPSED Indicates whether a group is collapsed when initially displayed.

COLUMNS Number of columns in text field, for example, "columns:N".

EDITABLE Indicates whether a list of strings allows free-form text entry (editable combo box).

FILE Indicates that the string is an optional file path, for example, "file:jpg,png,gif".

FIXED_SIZE Indicates a fixed size for a table or list.

GROW if set, the widget can grow when the IP component is resized.

HEXADECIMAL Indicates that the long integer is hexadecimal.

RADIO Indicates that the range displays as radio buttons.

ROWS Number of rows in text field, or visible rows in a table, for example, "rows:N".

SLIDER Range displays as slider.

TAB if present for a group, the group displays in a tab

TABLE if present for a group, the group must contain all list-type parameters, which display
collectively in a single table.

TEXT String is a text field with a limited character set, for example, "text:A-Za-z0-9_".

WIDTH width of a table column

9-102 Display Hint Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Module Properties

Name Description

ANALYZE_HDL When set to false, prevents a call to the Quartus Prime mapper to
verify port widths and directions, speeding up generation time at
the expense of fewer validation checks. If this property is set to
false, invalid port widths and directions are discovered during
the Quartus Prime software compilation. This does not affect IP
components using filesets to manage synthesis files.

AUTHOR The IP component author.

COMPOSITION_CALLBACK The name of the composition callback. If you define a
composition callback, you cannot not define the generation or
elaboration callbacks.

DATASHEET_URL Deprecated. Use add_documentation_link to provide
documentation links.

DESCRIPTION The description of the IP component, such as "This IP
component puts the shizzle in the frobnitz."

DISPLAY_NAME The name to display when referencing the IP component, such as
"My Qsys IP Component".

EDITABLE Indicates whether you can edit the IP component in the
Component Editor.

ELABORATION_CALLBACK The name of the elaboration callback. When set, the IP
component's elaboration callback is called to validate and
elaborate interfaces for instances of the IP component.

GENERATION_CALLBACK The name for a custom generation callback.

GROUP The group in the IP Catalog that includes this IP component.

ICON_PATH A path to an icon to display in the IP component's parameter
editor.

INSTANTIATE_IN_SYSTEM_MODULE If true, this IP component is implemented by HDL provided by
the IP component. If false, the IP component will create exported
interfaces allowing the implementation to be connected in the
parent.

INTERNAL An IP component which is marked as internal does not appear in
the IP Catalog. This feature allows you to hide the sub-IP-
components of a larger composed IP component.

MODULE_DIRECTORY The directory in which the hw.tcl file exists.

MODULE_TCL_FILE The path to the hw.tcl file.

NAME The name of the IP component, such as my_qsys_component.

OPAQUE_ADDRESS_MAP For composed IP components created using a _hw.tcl file that
include children that are memory-mapped slaves, specifies
whether the children's addresses are visible to downstream

QPS5V1
2015.11.02 Module Properties 9-103

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Description

software tools. When true, the children's address are not visible.
When false, the children's addresses are visible.

PREFERRED_SIMULATION_LANGUAGE The preferred language to use for selecting the fileset for
simulation model generation.

REPORT_HIERARCHY null

STATIC_TOP_LEVEL_MODULE_NAME Deprecated.

STRUCTURAL_COMPOSITION_CALLBACK The name of the structural composition callback. This callback is
used to represent the structural hierarchical model of the IP
component and the RTL can be generated either with module
property COMPOSITION_CALLBACK or by ADD_FILESET with target
QUARTUS_SYNTH

SUPPORTED_DEVICE_FAMILIES A list of device family supported by this IP component.

TOP_LEVEL_HDL_FILE Deprecated.

TOP_LEVEL_HDL_MODULE Deprecated.

UPGRADEABLE_FROM null

VALIDATION_CALLBACK The name of the validation callback procedure.

VERSION The IP component's version, such as 10.0.

9-104 Module Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Fileset Properties

Name Description

ENABLE_FILE_OVERWRITE_MODE null

ENABLE_RELATIVE_INCLUDE_PATHS If true, HDL files can include other files using relative paths in the
fileset.

TOP_LEVEL The name of the top-level HDL module that the fileset generates. If
set, the HDL top level must match the TOP_LEVEL name, and the
HDL must not be parameterized. Qsys runs the generate callback
one time, regardless of the number of instances in the system.

QPS5V1
2015.11.02 Fileset Properties 9-105

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Fileset Kind Properties

Name Description

EXAMPLE_DESIGN Contains example design files.

QUARTUS_SYNTH Contains files that Qsys uses for the Quartus Prime software synthesis.

SIM_VERILOG Contains files that Qsys uses for Verilog HDL simulation.

SIM_VHDL Contains files that Qsys uses for VHDL simulation.

9-106 Fileset Kind Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Callback Properties

Description

This list describes each type of callback. Each command may only be available in some callback contexts.

Name Description

ACTION Called when an ACTION display item's action is performed.

COMPOSITION Called during instance elaboration when the IP component contains a
subsystem.

EDITOR Called when the IP component is controlling the parameterization
editor.

ELABORATION Called to elaborate interfaces and signals after a parameter change. In
API 9.1 and later, validation is called before elaboration. In API 9.0
and earlier, elaboration is called before validation.

GENERATE_VERILOG_SIMULATION Called when the IP component uses a custom generator to generates
the Verilog simulation model for an instance.

GENERATE_VHDL_SIMULATION Called when the IP component uses a custom generator to generates
the VHDL simulation model for an instance.

GENERATION Called when the IP component uses a custom generator to generates
the synthesis HDL for an instance.

PARAMETER_UPGRADE Called when attempting to instantiate an IP component with a newer
version than the saved version. This allows the IP component to
upgrade parameters between released versions of the component.

STRUCTURAL_COMPOSITION Called during instance elaboration when an IP component is
represented by a structural hierarchical model which may be different
from the generated RTL.

VALIDATION Called to validate parameter ranges and report problems with the
parameter values. In API 9.1 and later, validation is called before
elaboration. In API 9.0 and earlier, elaboration is called before
validation.

QPS5V1
2015.11.02 Callback Properties 9-107

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Attribute Properties

Name Description

ALDEC_SPECIFIC Applies to Aldec simulation tools and for simulation filesets only.

CADENCE_SPECIFIC Applies to Cadence simulation tools and for simulation filesets only.

COMMON_SYSTEMVERILOG_PACKAGE The name of the common SystemVerilog package. Applies to
simulation filesets only.

MENTOR_SPECIFIC Applies to Mentor simulation tools and for simulation filesets only.

SYNOPSYS_SPECIFIC Applies to Synopsys simulation tools and for simulation filesets only.

TOP_LEVEL_FILE Contains the top-level module for the fileset and applies to synthesis
filesets only.

9-108 File Attribute Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Kind Properties

Name Description

DAT DAT Data

FLI_LIBRARY FLI Library

HEX HEX Data

MIF MIF Data

OTHER Other

PLI_LIBRARY PLI Library

QXP QXP File

SDC Timing Constraints

SYSTEM_VERILOG System Verilog HDL

SYSTEM_VERILOG_ENCRYPT Encrypted System Verilog HDL

SYSTEM_VERILOG_INCLUDE System Verilog Include

VERILOG Verilog HDL

VERILOG_ENCRYPT Encrypted Verilog HDL

VERILOG_INCLUDE Verilog Include

VHDL VHDL

VHDL_ENCRYPT Encrypted VHDL

VPI_LIBRARY VPI Library

QPS5V1
2015.11.02 File Kind Properties 9-109

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Source Properties

Name Description

PATH Specifies the original source file and copies to output_file.

TEXT Specifies an arbitrary text string for the contents of output_file.

9-110 File Source Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulator Properties

Name Description

ENV_ALDEC_LD_LIBRARY_PATH LD_LIBRARY_PATH when running riviera-pro

ENV_CADENCE_LD_LIBRARY_PATH LD_LIBRARY_PATH when running ncsim

ENV_MENTOR_LD_LIBRARY_PATH LD_LIBRARY_PATH when running modelsim

ENV_SYNOPSYS_LD_LIBRARY_PATH LD_LIBRARY_PATH when running vcs

OPT_ALDEC_PLI -pli option for riviera-pro

OPT_CADENCE_64BIT -64bit option for ncsim

OPT_CADENCE_PLI -loadpli1 option for ncsim

OPT_CADENCE_SVLIB -sv_lib option for ncsim

OPT_CADENCE_SVROOT -sv_root option for ncsim

OPT_MENTOR_64 -64 option for modelsim

OPT_MENTOR_CPPPATH -cpppath option for modelsim

OPT_MENTOR_LDFLAGS -ldflags option for modelsim

OPT_MENTOR_PLI -pli option for modelsim

OPT_SYNOPSYS_ACC +acc option for vcs

OPT_SYNOPSYS_CPP -cpp option for vcs

OPT_SYNOPSYS_FULL64 -full64 option for vcs

OPT_SYNOPSYS_LDFLAGS -LDFLAGS option for vcs

OPT_SYNOPSYS_LLIB -l option for vcs

OPT_SYNOPSYS_VPI +vpi option for vcs

QPS5V1
2015.11.02 Simulator Properties 9-111

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Port VHDL Type Properties

Name Description

AUTO The VHDL type of this signal is automatically determined. Single-bit signals are
STD_LOGIC; signals wider than one bit will be STD_LOGIC_VECTOR.

STD_LOGIC Indicates that the signal in not rendered in VHDL as a STD_LOGIC signal.

STD_LOGIC_VECTOR Indicates that the signal is rendered in VHDL as a STD_LOGIC_VECTOR signal.

9-112 Port VHDL Type Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Info Type Properties

Type Name Description

String ADDRESS_MAP An XML-formatted string describing the address map
for the interface specified in the system info argument.

Integer ADDRESS_WIDTH The number of address bits required to address all
memory-mapped slaves connected to the specified
memory-mapped master in this instance, using byte
addresses.

String AVALON_SPEC The version of the interconnect. SOPC Builder
interconnect uses Avalon Specification 1.0. Qsys
interconnect uses Avalon Specification 2.0.

Integer CLOCK_DOMAIN An integer that represents the clock domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple clock domains, this
can be used to determine which interfaces are on each
clock domain. The absolute value of the integer is
arbitrary.

Long, Integer CLOCK_RATE The rate of the clock connected to the clock input
specified in the system info argument. If 0, the clock rate
is currently unknown.

String CLOCK_RESET_INFO The name of this instance's primary clock or reset sink
interface. This is used to determine the reset sink to use
for global reset when using SOPC interconnect.

String CUSTOM_INSTRUCTION_SLAVES Provides custom instruction slave information, including
the name, base address, address span, and clock cycle
type.

(various) DESIGN_ENVIRONMENT A string that identifies the current design environment.
Refer to Design Environment Type Properties.

String DEVICE The device part number of the currently selected device.

String DEVICE_FAMILY The family name of the currently selected device.

String DEVICE_FEATURES A list of key/value pairs delineated by spaces indicating
whether a particular device feature is available in the
currently selected device family. The format of the list is
suitable for passing to the Tcl array set command. The
keys are device features; the values will be 1 if the feature
is present, and 0 if the feature is absent.

String DEVICE_SPEEDGRADE The speed grade of the currently selected device.

Integer GENERATION_ID A integer that stores a hash of the generation time to be
used as a unique ID for a generation run.

QPS5V1
2015.11.02 System Info Type Properties 9-113

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type Name Description

BigInteger,
Long

INTERRUPTS_USED A mask indicating which bits of an interrupt receiver are
connected to interrupt senders. The interrupt receiver is
specified in the system info argument.

Integer MAX_SLAVE_DATA_WIDTH The data width of the widest slave connected to the
specified memory-mapped master.

String,
Boolean,
Integer

QUARTUS_INI The value of the quartus.ini setting specified in the
system info argument.

Integer RESET_DOMAIN An integer that represents the reset domain for the
interface specified in the system info argument. If this
instance has interfaces on multiple reset domains, this
can be used to determine which interfaces are on each
reset domain. The absolute value of the integer is
arbitrary.

String TRISTATECONDUIT_INFO An XML description of the Avalon Tri-state Conduit
masters connected to an Avalon Tri-state Conduit slave.
The slave is specified as the system info argument. The
value will contain information about the slave,
connected master instance and interface names, and
signal names, directions and widths.

String TRISTATECONDUIT_MASTERS The names of the instance's interfaces that are tri-state
conduit slaves.

String UNIQUE_ID A string guaranteed to be unique to this instance.

Related Information
Design Environment Type Properties on page 9-115

9-114 System Info Type Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Environment Type Properties

Description

A design environment is used by IP to tell what sort of interfaces are most appropriate to connect in the
parent system.

Name Description

NATIVE Design environment prefers native IP interfaces.

QSYS Design environment prefers standard Qsys interfaces.

QPS5V1
2015.11.02 Design Environment Type Properties 9-115

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Units Properties

Name Description

Address A memory-mapped address.

Bits Memory size, in bits.

BitsPerSecond Rate, in bits per second.

Bytes Memory size, in bytes.

Cycles A latency or count, in clock cycles.

GigabitsPerSecond Rate, in gigabits per second.

Gigabytes Memory size, in gigabytes.

Gigahertz Frequency, in GHz.

Hertz Frequency, in Hz.

KilobitsPerSecond Rate, in kilobits per second.

Kilobytes Memory size, in kilobytes.

Kilohertz Frequency, in kHz.

MegabitsPerSecond Rate, in megabits per second.

Megabytes Memory size, in megabytes.

Megahertz Frequency, in MHz.

Microseconds Time, in micros.

Milliseconds Time, in ms.

Nanoseconds Time, in ns.

None Unspecified units.

Percent A percentage.

Picoseconds Time, in ps.

Seconds Time, in s.

9-116 Units Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operating System Properties

Name Description

ALL All operating systems

LINUX32 Linux 32-bit

LINUX64 Linux 64-bit

WINDOWS32 Windows 32-bit

WINDOWS64 Windows 64-bit

QPS5V1
2015.11.02 Operating System Properties 9-117

Component Interface Tcl Reference Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus.ini Type Properties

Name Description

ENABLED Returns 1 if the setting is turned on, otherwise returns 0.

STRING Returns the string value of the .ini setting.

9-118 Quartus.ini Type Properties
QPS5V1

2015.11.02

Altera Corporation Component Interface Tcl Reference

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History
The table below indicates edits made to the Component Interface Tcl Reference content since its creation.

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Edit to add_fileset_file command.

December 2014 14.1.0 • set_interface_upgrade_map
• Moved Port Roles (Interface Signal Types) section to Qsys

Interconnect.

November 2013 13.1.0 • add_hdl_instance

May 2013 13.0.0 • Consolidated content from other Qsys chapters.
• Added AMBA APB support.

November 2012 12.1.0 • Added the demo_axi_memory example with screen shots and
example _hw.tcl code.

June 2012 12.0.0 • Added AMBA AXI3 support.
• Added: set_display_item_property, set_parameter_

property,LONG_DESCRIPTION, and static filesets.

November 2011 11.1.0 • Template update.
• Added: set_qip_strings, get_qip_strings, get_device_

family_displayname, check_device_family_equivalence.

May 2011 11.0.0 • Revised section describing HDL and composed component
implementations.

• Separated reset and clock interfaces in example.
• Added: TRISTATECONDUIT_INFO, GENERATION_ID, UNIQUE_ID

SYSTEM_INFO.
• Added: WIDTH and SYSTEM_INFO_ARG parameter properties.
• Removed the doc_type argument from the add_documentation_

link command.
• Removed: get_instance_parameter_properties
• Added: add_fileset, add_fileset_file, create_temp_file.
• Updated Tcl examples to show separate clock and reset interfaces.

December 2010 10.1.0 • Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 9-119

Component Interface Tcl Reference Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Component%20Interface%20Tcl%20Reference%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qsys System Design Components 10
2015.11.02

QPS5V1 Subscribe Send Feedback

You can use Qsys IP components to create Qsys systems. Qsys interfaces include components appropriate
for streaming high-speed data, reading and writing registers and memory, controlling off-chip devices,
and transporting data between components.

Qsys supports Avalon, AMBA AXI3 (version 1.0), AMBA AXI4 (version 2.0), AMBA AXI4-Lite (version
2.0), AMBA AXI4-Stream (version 1.0), and AMBA APB3 (version 1.0) interface specifications.

Related Information

• Avalon Interface Specifications
• AMBA Protocol Specifications
• Creating a System with Qsys on page 5-1
• Qsys Interconnect on page 7-1
• Embedded Peripherals IP User Guide

Bridges
Bridges affect the way Qsys transports data between components. You can insert bridges between master
and slave interfaces to control the topology of a Qsys system, which affects the interconnect that Qsys
generates. You can also use bridges to separate components into different clock domains to isolate clock
domain crossing logic.

A bridge has one slave interface and one master interface. In Qsys, one or more master interfaces from
other components connect to the bridge slave. The bridge master connects to one or more slave interfaces
on other components.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Qsys%20System%20Design%20Components&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://infocenter.arm.com/help/topic/com.arm.doc.set.amba/index.html
http://www.altera.com.cn/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 10-1: Using a Bridge in a Qsys System

In this example, three masters have logical connections to three slaves, although physically each master
connects only to the bridge. Transfers initiated to the slave propagate to the master in the same order in
which the transfers are initiated on the slave.

 Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Master

 Slave

S3

S

Arbiter & Write Data Control
Signal Multiplexing

ChipSelect & Read Data
Multiplexing

10-2 Bridges
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Clock Bridge
The Clock Bridge connects a clock source to multiple clock input interfaces. You can use the clock bridge
to connect a clock source that is outside the Qsys system. Create the connection through an exported
interface, and then connect to multiple clock input interfaces.

Clock outputs match fan-out performance without the use of a bridge. You require a bridge only when
you want a clock from an exported source to connect internally to more than one source.

Figure 10-2: Clock Bridge

 PIO

S

 DMA

M MS

Qsys System

Clock Bridge

External Clock from PCB

CIn

Export

COut

CIn CIn

Avalon-MM Clock Crossing Bridge
The Avalon-MM Clock Crossing Bridge transfers Avalon-MM commands and responses between
different clock domains. You can also use the Avalon-MM Clock Crossing Bridge between AXI masters
and slaves of different clock domains.

The Avalon-MM Clock Crossing Bridge uses asynchronous FIFOs to implement clock crossing logic. The
bridge parameters control the depth of the command and response FIFOs in both the master and slave
clock domains. If the number of active reads exceeds the depth of the response FIFO, the Clock Crossing
Bridge stops sending reads.

To maintain throughput for high-performance applications, increase the response FIFO depth from the
default minimum depth, which is twice the maximum burst size.

Note: When you use the FIFO-based clock crossing a Qsys system, the DC FIFO is automatically inserted
in the Qsys system. The reset inputs for the DC FIFO connect to the reset sources for the connected
master and slave components on either side of the DC FIFO. For this configuration, you must
assert both the resets on the master and the slave sides at the same time to ensure the DC FIFO

QPS5V1
2015.11.02 Clock Bridge 10-3

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

resets properly. Alternatively, you can drive both resets from the same reset source to guarantee
that the DC FIFO resets properly.

Note: The clock crossing bridge includes appropriate SDC constraints for its internal asynchronous
FIFOs. For these SDC constraints to work correctly, do not set false paths on the pointer crossings
in the FIFOs. You should also not split the bridge’s clocks into separate clock groups when you
declare SDC constraints; the split has the same effect as setting false paths.

Related Information
Creating a System with Qsys on page 5-1

Avalon-MM Clock Crossing Bridge Example

In the example shown below, the Avalon-MM Clock Crossing bridges separate slave components into two
groups. The Avalon-MM Clock Crossing Bridge places the low performance slave components behind a
single bridge and clocks the components at a lower speed. The bridge places the high performance
components behind a second bridge and clocks it at a higher speed.

By inserting clock-crossing bridges, you simplify the Qsys interconnect and allow the Quartus Prime
Fitter to optimize paths that require minimal propagation delay.

10-4 Avalon-MM Clock Crossing Bridge Example
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-3: Avalon-MM Clock Crossing Bridge

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon-MM
Clock-Crossing

Bridge

S

M

S

DDR
SDRAM

S

Flash
Memory

S

External
SRAM

JTAG Debug
Module

S

UART

S S

System ID

S

Seven Segment
PIO

S

LCD
Display

CPU

M

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon
Tristate
Bridge

S

M

QPS5V1
2015.11.02 Avalon-MM Clock Crossing Bridge Example 10-5

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-MM Clock Crossing Bridge Parameters

Table 10-1: Avalon-MM Clock Crossing Bridge Parameters

Parameters Values Description

Data width 8, 16, 32, 64,
128, 256,512,
1024 bits

Determines the data width of the
interfaces on the bridge, and affects
the size of both FIFOs. For the
highest bandwidth, set Data width to
be as wide as the widest master that
connects to the bridge.

Symbol width 1, 2, 4, 8, 16,
32, 64 (bits)

Number of bits per symbol. For
example, byte-oriented interfaces
have 8-bit symbols.

Address width 1-32 bits The address bits needed to address
the downstream slaves.

Use automatically-determined address width - The minimum bridge address width
that is required to address the
downstream slaves.

Maximum burst size 1, 2, 4, 8, 16,
32, 64, 128,
256, 512, 1024
bits

Determines the maximum length of
bursts that the bridge supports.

Command FIFO depth 2, 4, 8, 16, 32,
64, 128, 256,
512, 1024 2048,
4096, 8192,
16384 bits

Command (master-to-slave) FIFO
depth.

Respond FIFO depth 2, 4, 8,16, 32,
64, 128, 256,
512, 1024 2048,
4096,
8192,16384 bits

Slave-to-master FIFO depth.

Master clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the
clock crossing logic in the issuing
master to target slave direction.
Increasing this value leads to a larger
mean time between failures (MTBF).
You can determine the MTBF for a
design by running a TimeQuest
timing analysis.

10-6 Avalon-MM Clock Crossing Bridge Parameters
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameters Values Description

Slave clock domain synchronizer depth 2, 3, 4, 5 bits The number of pipeline stages in the
clock crossing logic in the target slave
to master direction. Increasing this
value leads to a larger meantime
between failures (MTBF). You can
determine the MTBF for a design by
running a TimeQuest timing analysis.

Avalon-MM Pipeline Bridge
The Avalon-MM Pipeline Bridge inserts a register stage in the Avalon--MM command and response
paths. The bridge accepts commands on its slave port and propagates the commands to its master port.
The pipeline bridge provides separate parameters to turn on pipelining for command and response
signals.

The Maximum pending read transactions parameter is the maximum number of pending reads that the
Avalon-MM bridge can queue up. To determine the best value for this parameter, review this same option
for the bridge's connected slaves and identify the highest value of the parameter, and then add the internal
buffering requirements of the Avalon-MM bridge. In general, the value should be between 4 and 32. The
limit for maximum queued transactions is 64.

You can use the Avalon-MM bridge to export a single Avalon-MM slave interface to control multiple
Avalon-MM slave devices. The pipelining feature is optional. You can optionally turn off the pipelining
feature of this bridge.

QPS5V1
2015.11.02 Avalon-MM Pipeline Bridge 10-7

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-4: Avalon-MM Pipeline Bridge in a XAUI PHY Transceiver IP Core

In this example, the bridge transfers commands received on its slave interface to its master port.

Interconnect

Exported to Embedded
Processor on PCB

 Interleave

 PCSS

Alt_PMA

SS

Low Latency
Controller

S

Transceiver
Reconfiguration

Controller

Xcvr
XAUI PHY

M

Avalon-MM
Pipeline

Bridge (Qsys)

S

PMA
Ch

Cntl

Because the slave interface is exported to the pins of the device, having a single slave port, rather than
separate ports for each slave device, reduces the pin count of the FPGA.

Avalon-MM Unaligned Burst Expansion Bridge
The Avalon-MM Unaligned Burst Expansion Bridge aligns read burst transactions from masters
connected to its slave interface, to the address space of slaves connected to its master interface. This
alignment ensures that all read burst transactions are delivered to the slave as a single transaction.

10-8 Avalon-MM Unaligned Burst Expansion Bridge
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-5: Avalon-MM Unaligned Burst Expansion Bridge

Slave Master

32 bit A valon-MM
Master

Slave

Master

SlaveUnaligned Burst
 Expansion Bridge

64 bit A valon-MM
Slave

64 bit A valon-MM
Slave

You can use the Avalon Unaligned Burst Expansion Bridge to align read burst transactions from masters
that have narrower data widths than the target slaves. Using the bridge for this purpose improves
bandwidth utilization for the master-slave pair, and ensures that unaligned bursts are processed as single
transactions rather than multiple transactions.

Note: Do not use the Avalon-MM Unaligned Burst Expansion Bridge if any connected slave has read side
effects from reading addresses that are exposed to any connected master's address map. This bridge
can cause read side effects due to alignment modification to read burst transaction addresses.

Note: The Avalon-MM Unaligned Burst Expansion Bridge does not support VHDL simulation.

Related Information
Qsys Interconnect on page 7-1

Using the Avalon-MM Unaligned Burst Expansion Bridge
When a master sends a read burst transaction to a slave, the Avalon-MM Unaligned Burst Expansion
Bridge initially determines whether the start address of the read burst transaction is aligned to the slave's
memory address space. If the base address is aligned, the bridge does not change the base address. If the
base address is not aligned, the bridge aligns the base address to the nearest aligned address that is less
than the requested base address.

The Avalon-MM Unaligned Burst Expansion Bridge then determines whether the final word requested by
the master is the last word at the slave read burst address. If a single slave address contains multiple
words, all of those words must be requested in order for a single read burst transaction to occur.

• If the final word requested by the master is the last word at the slave read burst address, the bridge does
not modify the burst length of the read burst command to the slave.

• If the final word requested by the master is not the last word at the slave read burst address, the bridge
increases the burst length of the read burst command to the slave. The final word requested by the
modified read burst command is then the last word at the slave read burst address.

QPS5V1
2015.11.02 Using the Avalon-MM Unaligned Burst Expansion Bridge 10-9

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The bridge stores information about each aligned read burst command that it sends to slaves connected to
a master interface. When a read response is received on the master interface, the bridge determines if the
base address or burst length of the issued read burst command was altered.

If the bridge alters either the base address or the burst length of the issued read burst command, it receives
response words that the master did not request. The bridge suppresses words that it receives from the
aligned burst response that are not part of the original read burst command from the master.

Avalon-MM Unaligned Burst Expansion Bridge Parameters

Figure 10-6: Avalon-MM Unaligned Burst Expansion Bridge Parameter Editor

Table 10-2: Avalon-MM Unaligned Burst Expansion Bridge Parameters

Parameter Description

Data width Data width of the master connected to the bridge.

Address width (in WORDS) The address width of the master connected to the bridge.

Burstcount width The burstcount signal width of the master connected to the
bridge.

10-10 Avalon-MM Unaligned Burst Expansion Bridge Parameters
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Maximum pending read transactions The Maximum pending read transactions parameter is the
maximum number of pending reads that the Avalon-MM
bridge can queue up. To determine the best value for this
parameter, review this same option for the bridge's
connected slaves and identify the highest value of the
parameter, and then add the internal buffering requirements
of the Avalon-MM bridge. In general, the value should be
between 4 and 32. The limit for maximum queued transac‐
tions is 64.

Width of slave to optimize for The data width of the connected slave. Supported values are:
16, 32, 64, 128, 256, 512, 1024, 2048, and 4096 bits.

Note: If you connect multiple slaves, all slaves must
have the same data width.

Pipeline command signals When turned on, the command path is pipelined,
minimizing the bridge's critical path at the expense of
increased logic usage and latency.

Avalon-MM Unaligned Burst Expansion Bridge Example

Figure 10-7: Unaligned Burst Expansion Bridge

The example below shows an unaligned read burst command from a master that the Avalon-MM
Unaligned Burst Expansion Bridge converts to an aligned request for a connected slave, and the
suppression of words due to the aligned read burst command. In this example, a 32-bit master requests an
8-beat burst of 32-bit words from a 64-bit slave with a start address that is not 64-bit aligned.

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

A

B

C

0

X

X

X

X

2, 3

4, 5

6, 7

8, 9

A, B

C, D

E, F

0, 1 X

X

X

X

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Transaction 5
Transaction 1

X

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

A

B

C

0

X

X

X

X

2, 3

4, 5

6, 7

8, 9

A, B

C, D

E, F

0, 1 X

X

X

X

Transaction 1

With Avalon-MM Unaligned Burst Expansion Bridge

Bridge
Alignment

X*

X*

Note: the bridge suppresses
X* response words

Transaction 1

Without Avalon-MM Unaligned Burst Expansion Bridge

Because the target slave has a 64-bit data width, address 1 is unaligned in the slave's address space. As a
result, several smaller burst transactions are needed to request the data associated with the master's read
burst command.

QPS5V1
2015.11.02 Avalon-MM Unaligned Burst Expansion Bridge Example 10-11

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With an Avalon-MM Unaligned Burst Expansion Bridge in place, the bridge issues a new read burst
command to the target slave beginning at address 0 with burst length 10, which requests data up to the
word stored at address 9.

When the bridge receives the word corresponding to address 0, it suppresses it from the master, and then
delivers the words corresponding to addresses 1 through 8 to the master. When the bridge receives the
word corresponding to address 9, it suppresses that word from the master.

Bridges Between Avalon and AXI Interfaces
When designing a Qsys system, you can make connections between AXI and Avalon interfaces without
the use of explicitly-instantiated bridges; the interconnect provides all necessary bridging logic. However,
this does not prevent the use of explicit bridges to separate the AXI and Avalon domains.

Figure 10-8: Avalon-MM Pipeline Bridge Between Avalon-MM and AXI Domains

Using an explicit Avalon-MM bridge to separate the AXI and Avalon domains reduces the amount of
bridging logic in the interconnect at the expense of concurrency.

Network

Avalon-MM

Avalon-MM

AXI

AXI

AXI

Avalon-MM

Shared Avalon & AXI Domain

Network

Avalon-MM
Pipeline Bridge

Avalon-MM

AXI

AXI

AXI

Network

Avalon-MM

Avalon-MM

Avalon-MMAXI

Shared Avalon & AXI Domains

AXI Bridge
With an AXI bridge, you can influence the placement of resource-intensive components, such as the
width and burst adapters. Depending on its use, an AXI bridge may reduce throughput and concurrency,
in return for higher fMax and less logic.

You can use an AXI bridge to group different parts of your Qsys system. Then, other parts of the system
connect to the bridge interface instead of to multiple separate master or slave interfaces. You can also use
an AXI bridge to export AXI interfaces from Qsys systems.

The example below shows a system with a single AXI master and three AXI slaves. It also has various
interconnect components, such as routers, demultiplexers and multiplexer. Two of the slaves have a
narrower data width than the master; 16-bit slaves versus a 32-bit master. In this system, Qsys intercon‐
nect creates four width adapters and four burst adapters to access the two slaves. You could improve

10-12 Bridges Between Avalon and AXI Interfaces
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

resource usage by adding an AXI bridge. Then, Qsys needs to add only two width adapters and two burst
adapters; one pair for the read channels, and another pair for the write channel.

Figure 10-9: AXI Example Without a Bridge: Adding a Bridge Can Reduce the Number of Adapters

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_2

Command
Mux_0

Command
Mux_4

Command
Mux_5

Command
Mux_1

Command
Mux_3

Width
Adapter_1

Width
Adapter_0

Width
Adapter_2

Burst
Adapter_1

Burst
Adapter_0

Burst
Adapter_2

AXI Slave
Agent_0

AXI
Slave_0

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_2

AXI
Slave_2

AXI Slave
Agent_1

AXI
Slave_1

Four width adapters (0 - 3) and four burst adapters (0 - 3) are
inserted between the master and slaves for transaction
adaptation for the example system.

The example below shows the same system with an AXI bridge component, and the decrease in the
number of width and burst adapters. Qsys creates only two width adapters and two burst adapters, as
compared to the four width adapters and four burst adapters in the previous example. The system
includes more components, but the overall system performance improves because there are fewer
resource-intensive width and burst adapters.

QPS5V1
2015.11.02 AXI Bridge 10-13

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-10: Width and Burst Adapters Added to a System With a Bridge

AXI Master AXI Master
Agent

Router_0 Command
Demux_0

Router_1 Command
Demux_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

Width
Adapter_0

AXI Slave
Agent_1

Burst
Adapter_0

AXI
Slave_2

Width
Adapter_3

Burst
Adapter_3

AXI Slave
Agent_0

AXI
Bridge

By inserting an AXI bridge, the
interconnect Is divided into two
domains (interconnect_0 and
interconnect_1). Notice the
reduction in the number of width
adapters from 4 to 2 after the
bridge insertion. The same
process applies for burst adapters.

Interconnect_0

AXI
Bridge

AXI Master
Agent

Router_0 Limiter_0

Router_1 Limiter_1

Command
Mux_0

Command
Mux_2

Command
Mux_1

Command
Mux_3

AXI Slave
Agent_0

AXI
Slave_0

Width and burst adapters are not
required in Interconnect_1
because the adaptations are
performed in Interconnect_0.

Interconnect_1

Command
Demux_0

Command
Demux_1

AXI Slave
Agent_1

AXI
Slave_1

10-14 AXI Bridge
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI Bridge Signal Types

Based on parameter selections that you make for the AXI Bridge component, Qsys instantiates either the
AXI3 or AXI4 master and slave interfaces into the component.

Note: In AXI3, aw/aruser accommodates sideband signal usage by hard processor systems (HPS).

Table 10-3: Sets of Signals for the AXI Bridge Based on the Protocol

Signal Name AXI3 AXI4

awid / arid yes yes

awaddr /araddr yes yes

awlen / arlen yes (4-bit) yes (8-bit)

awsize/ arsize yes yes

awburst /arburst yes yes

awlock /arlock yes yes (1-bit optional)

awcache / arcache yes (2-bit) yes (optional)

awprot / arprot yes yes

awuser /aruser yes yes

awvalid / arvalid yes yes

awready /arready yes yes

awqos /arqos no yes

awregion /arregion no yes

wid yes no (optional)

wdata / rdata yes yes

wstrb yes yes

wlast /rvalid yes yes

wvalid /rlast yes yes

wready /rready yes yes

wuser / ruser no yes

bid / rid yes yes

bresp / rresp yes yes (optional)

bvalid yes yes

bready yes yes

QPS5V1
2015.11.02 AXI Bridge Signal Types 10-15

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI Bridge Parameters

In the parameter editor, you can customize the parameters for the AXI bridge according to the require‐
ments of your design.

Figure 10-11: AXI Bridge Parameter Editor

Table 10-4: AXI Bridge Parameters

Parameter Type Range Description

AXI Version string AXI3/
AXI4

Specifies the AXI version and signals
that Qsys generates for the slave and
master interfaces of the bridge.

Data Width integer 8:1024 Controls the width of the data for the
master and slave interfaces.

Address Width integer 1-64 bits Controls the width of the address for the
master and slave interfaces.

10-16 AXI Bridge Parameters
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Type Range Description

AWUSER Width integer 1-64 bits Controls the width of the write address
channel sideband signals of the master
and slave interfaces.

ARUSER Width integer 1-64 bits Controls the width of the read address
channel sideband signals of the master
and slave interfaces.

WUSER Width integer 1-64 bits Controls the width of the write data
channel sideband signals of the master
and slave interfaces.

RUSER Width integer 1-16 bits Controls the width of the read data
channel sideband signals of the master
and slave interfaces.

BUSER Width integer 1-16 bits Controls the width of the write response
channel sideband signals of the master
and slave interfaces.

AXI Bridge Slave and Master Interface Parameters

Table 10-5: AXI Bridge Slave and Master Interface Parameters

Parameter Description

ID Width Controls the width of the thread ID of the master
and slave interfaces.

Write/Read/Combined Acceptance Capability Controls the depth of the FIFO that Qsys needs in
the interconnect agents based on the maximum
pending commands that the slave interface accepts.

Write/Read/Combined Issuing Capability Controls the depth of the FIFO that Qsys needs in
the interconnect agents based on the maximum
pending commands that the master interface issues.
Issuing capability must follow acceptance capability
to avoid unnecessary creation of FIFOs in the
bridge.

Note: Maximum acceptance/issuing capability is a model-only parameter and does not influence the
bridge HDL. The bridge does not backpressure when this limit is reached. Downstream
components and/or the interconnect must apply backpreasure.

QPS5V1
2015.11.02 AXI Bridge Slave and Master Interface Parameters 10-17

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI Timeout Bridge
You can place an AXI Timeout Bridge between a single master and a single slave if you know that the
slave may time out and cause your system to hang. If a slave does not accept a command or respond to a
command it accepted, its master can wait indefinitely. The AXI Timeout Bridge allows your system to
recover when it hangs, and also facilitates debugging.

Figure 10-12: AXI Timeout Bridge

For a domain with multiple masters and slaves, placement of an AXI Timeout Bridge in your design may
be beneficial in the following scenarios:

• To recover from a hang, place the bridge near the slave. If the master attempts to communicate with a
slave that hangs, the AXI Timeout Bridge frees the master by generating error responses. The master is
then able to communicate with another slave.

• When debugging your system, place the AXI Timeout Bridge near the master. This placement enables
you to identify the origin of the burst and to obtain the full address from the master. Additionally,
placing an AXI Timeout Bridge near the master enables you to identify the target slave for the burst.

Note: If you put the bridge at the slave's side and you have multiple slaves connected to the same
master, you do not get the full address.

10-18 AXI Timeout Bridge
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-13: AXI Timeout Bridge Placement

Interconnect

M 0

M 1

S 0

S 1

Possible bridge placement when used with Interconnect

Near Master
or at Master’s Side

Near Slave
or at Slave’s Side

Master Slave

Simplest Form

Bridge

AXI Timeout Bridge Stages
A timeout occurs when the internal timer in the bridge exceeds the specified number of cycles within
which a burst must complete from start to end.

QPS5V1
2015.11.02 AXI Timeout Bridge Stages 10-19

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-14: AXI Bridge Timeout Bridge Stages

A

BC

A read/write
times out

No more
outstanding
commands

The AXI Timeout Bridge is notified
that the slave is reset.

 A Slave is functional - The bridge passes through all bursts.

 B Slave is unresponsive - The bridge accepts commands and
 responds (with errors) to commands for the unresponsive slave.
 Commands are not passed through to the slave at this stage.

 C Slave is reset - The bridge does not accept new commands,
 and responds only to commands that are outstanding.

10-20 AXI Timeout Bridge Stages
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When a timeout occurs, the AXI Timeout Bridge asserts an interrupt and reports the burst that caused
the timeout to the Configuration and Status Register (CSR).

• The bridge then generates error responses back to the master on behalf of the unresponsive slave. This
stage frees the master and certifies the unresponsive slave as dysfunctional.

• The AXI Timeout Bridge accepts subsequent write addresses, write data and read addresses to the
dysfunctional slave. The bridge does not accept outstanding write responses, and read data from the
dysfunctional slave are not passed through to the master.

• The awvalid, wvalid, bready, arvalid, and rready ports are held low at the master interface of the
bridge.

Note: After a timeout, awvalid, wvalid and arvalid may be dropped before they are accepted by
awready at the master interface. While the behavior violates the AXI specification, it occurs only
on an interface connected to the slave which has been certified dysfunctional by the AXI Timeout
Bridge.

Write channel refers to the AXI write address, data and response channels. Similarly, read channel refers
to the AXI read address and data channels. AXI write and read channels are independent of each other.
However, when a timeout occurs on either channel, the bridge generates error responses on both
channels.

Table 10-6: Burst Start and End Definitions for the AXI Timeout Bridge

Channel Start End

Write When an address is issued. First cycle of
awvalid, even if data of the same burst is
issued before the address (first cycle of
wvalid).

When the response is issued. First cycle
of bvalid.

Read When an address is issued. First cycle of
arvalid.

When the last data is issued. First cycle
of rvalid and rlast.

The AXI Timeout Bridge has four required interfaces: Master, Slave, Configuration and Status Register
(CSR) (AXI4-Lite), and Interrupt. Qsys allows the AXI Timeout bridge to connect to any AXI3, AXI4, or
Avalon master or slave interface. Avalon masters must utilize the bridge’s interrupt output to detect a
timeout.

The bridge slave interface accepts write addresses, write data, and read addresses, and then generates the
SLVERR response at the write response and read data channels. You should not expect to use buser, rdata
and ruser at this stage of processing.

To resume normal operation, the dysfunctional slave must be reset and the bridge notified of the change
in status via the CSR. Once the CSR notifies the bridge that the slave is ready, the bridge does not accept
new commands until all outstanding bursts are responded to with an error response.

The CSR has a 4-bit address width, and a 32-bit data width. The CSR reports status and address informa‐
tion when the bridge asserts an interrupt.

QPS5V1
2015.11.02 AXI Timeout Bridge Stages 10-21

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-7: CSR Interrupt Status Information for the AXI Timeout Bridge

Address Attribute Name Description

0x0 write-only Slave is reset Write a 1 to notify the AXI Timeout Bridge
that the slave is reset and ready. Clears the
interrupt.

0x4 read-only Timed out operation The operation of the burst that caused the
timeout. 1 for a write; 0 for a read.

0x8 through 0xf read-only Timed out address The address of the burst that caused the
timeout. For an address width greater than
32-bits, CSR reads addresses 0x8 and 0xc to
obtain the complete address.

AXI Timeout Bridge Parameters

Table 10-8: AXI Timeout Bridge Parameters

Parameter Description

ID width The width of awid, bid, arid, or rid.

Address width The width of awaddr or araddr.

Data width The width of wdata or rdata.

User width The width of awuser, wuser, buser, aruser, or ruser.

Maximum number of
outstanding writes

The expected maximum number of outstanding writes.

Maximum number of
outstanding reads

The expected maximum number of outstanding reads.

Maximum number of cycles The number of cycles within which a burst must complete.

Address Span Extender
The Address Span Extender creates a windowed bridge and allows memory-mapped master interfaces to
access a larger or smaller address map than the width of their address signals allow. With an address span
extender, a restricted master can access a broader address range. The address span extender splits the
addressable space into multiple separate windows so that the master can access the appropriate part of the
memory through the window.

The address span extender does not limit master and slave widths to a 32-bit and 64-bit configuration.
You can use the address span extender for other width configurations. The address span extender
supports 1-64 bit address windows.

10-22 AXI Timeout Bridge Parameters
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If a processor can address only 2GB of an address span, and your system contains 4GB of memory, the
address span extender can provide two 2GB windows in the 4GB memory address space. This issue
sometimes occurs with Altera SoC devices. For example, an HPS subsystem in an SoC device can address
only 1GB of an address span within the FPGA using the HPS-to-FPGA bridge. The address span extender
enables the SoC device to address all of the address space in the FPGA using multiple 1GB windows.

CTRL Register Layout

The control registers consist of a 64-bit register for each window. You write the base address that you
want for each window to its corresponding control register. For example, if CTRL_BASE is the base address
of the address span extender's control register, and there are two windows (0 and 1), then window 0’s
control register starts at CTRL_BASE, and window 1’s control register starts at CTRL_BASE + 8 (using byte
addresses).

Calculating the Address Span Extender Slave Address

The diagram below describes how Qsys calculates the slave address. In this example the address span
extender is configured with a 28-bit address space for slaves. The lower 26 bits (bits 0 to 25 or [25:0]) is
the offset into a particular window. The lower 26 bits originate from the address span extender's data port.
The upper 2 bits [27:26] originate from the control registers.

QPS5V1
2015.11.02 CTRL Register Layout 10-23

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-15: Address Span Extender

0x00000000_04000000

0x00000000_08000000

0x00000000_0C000000

0x00000000_00000000

0

1

2

3

Extended addr_regs[63:0]
addr[27:6]

Mapping Table (Sub-Windows)

(”Extended addr regs”[27:2] | “Slave addr”[25:0]) 00

[37:2] [1:0]

[27:26] [25:0]

28-bit Slave
Word Address

38-bit Master
Byte Address

Control
Port

Using the Address Span Extender
When you implement the address span extender in Qsys, you must know the amount of address space the
master uses (the size of the window), the total size of the addressable space (the number of windows), and
how much address space (the size of the window) you want a particular slave to occupy in a master’s
address map.

This component supports 1 to 64 address windows. Qsys requires an assigned number of registers to hold
the upper address bits for each window. In the parameter editor, you must select the number of bits in the
expanded address map you want to access (Expanded Master Byte Address Width), the number of bits
you want the master to see (Slave Word Address Width), and the number of sub-windows.

Each sub-window has a 64-bit register set that defines the sub window's upper address, and use only the
bits greater than the slave byte address.

10-24 Using the Address Span Extender
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• window 0—expanded address [63:0]
• window 1—expanded address [63:0]

Qsys uses the upper bits of the slave address to pick which window to use. For example, if you specify 4
windows, then Qsys uses the top 2 bits of the slave address to specify window [0,1,2,3]. Therefore
having more windows does require the windows to be smaller, for example having 4 windows requires the
windows themselves to be 1/4 the size of the slave address space. The total windowed address space is still
equal to the original slave address space, but the windows allow access to memory regions in a larger
overall address space.

In the parameter editor for the address span extender, you can click Documentation to obtain more
information about the component.

Figure 10-16: Address Span Extender Parameter Editor

Alternate Options for the Address Span Extender
You can set parameters for the address span extender with an initial fixed address value. Enter an address
for the Reset Default for Master Window option, and select True for the Disable Slave Control Port
option. This allows the address span extender to function as a fixed, non-programmable component.

QPS5V1
2015.11.02 Alternate Options for the Address Span Extender 10-25

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Each sub-window is equal in size and stacks sequentially in the windowed slave interface's address space.
To control the fixed address bits of a particular sub-window, you can write to the sub-window’s register in
the register control slave interface. Qsys structures the logic so that Qsys can optimize and remove bits
that are not needed.

If Burstcount Width is greater than 1, Qsys processes the read burst in a single cycle, and assumes all
byteenables are asserted on every cycle.

NIOS II Support
If the address span extender window is fixed, for example, the Disable Slave Control Port option is
turned on, then the address span extender performs as a bridge. Components on the slave side of the
address span extender that are within the window are visible to the NIOS II processor. Components
partially within a window appear to NIOS II as if they have a reduced span. For example, a memory
partially within a window appears as having a smaller size.

You can also use the address span extender to provide a window for the Nios II processor so that the HPS
memory map is visible to NIOS II. In this way it is possible for the Nios II to communicate with HPS
peripherals.

In the example below, a NIOS II processor has an address span extender from address 0x40000 to
0x80000. There is a window within the address span extender starting at 0x100000. Within the address
span extender's address space there is a slave at base address 0x1100000. The slave appears to NIOS II as
being at address:

0x110000 - 0x100000 + 0x40000 = 0x050000

Figure 10-17: NIOS II Support and the Address Span Extender

0x80000

0x40000

Nios II
Address Span

Extender
Avalon-MM

Slave

0x140000

0x120000

0x110000

0x100000

Effective Slave Base Address =
0x110000 - 0x100000 + 0x040000
= 0x050000

If the address span extender window is dynamic. For example, when the Disable Slave Control Port
option is turned off, the NIOS II processor is unable to see components on the slave side of the address
span extender.

10-26 NIOS II Support
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI Default Slave
An AXI Default Slave provides a predictable error response service for master interfaces that send
transactions that attempt to access an undefined memory region. This service guarantees an error
response, should a master access a memory region that is not decoded to an instantiated slave. The error
response service also helps to avoid unpredictable behavior in your system.

The default slave is an AXI3 component and displays in the IP Catalog as either AXI Default Slave or
Error Response Slave.

AXI protocol requires that if the interconnect cannot successfully decode slave access, it must return the
DECERR error response. Therefore, the default slave is required in AXI systems where the address space is
not fully decoded to slave interfaces.

The default slave behaves like any other component in the system and is bound by translation and
adaptation interconnect logic. An increase in resource usage may occur when a default slave connects to
masters of different data widths, including Avalon or AXI-Lite masters.

You can connect clock, reset, and IRQ signals to a default slave, as well as AXI3 and AXI4 master
interfaces without also instantiating a bridge. When you connect a default slave to a master, the default
slave accepts cycles sent from the master, and returns the DECERR error response. On the AXI interface,
the default slave supports only a read and write acceptance of 1, and does not support write data
interleaving. The read and write channels are independent, and responses are returned when simultane‐
ously targeted by a read and write cycle.

There is an optional interface on the default slave that supports CSR accesses for debug. CSR registers log
the required information when returning an error response. When turned on, this channel acts as an
Avalon interface with read and write channels with a fixed latency of 1.

To enable a slave interface as a default slave for a master interface in your system, you must connect the
slave to the master in your Qsys system. You specify a default slave for a master it by turning on the
Default Slave column option in the System Contents tab. A system can contain more than one default
slave. Altera recommends instantiating a separate default slave for each AXI master in your system.

For information about creating secure systems and accessing undefined memory regions, refer to Creating
a System with Qsys in volume 1 of the Quartus Prime Handbook.

Related Information
Creating a System with Qsys on page 5-1

QPS5V1
2015.11.02 AXI Default Slave 10-27

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AXI Default Slave Parameters
Figure 10-18: AXI Default Slave Parameter Editor

Table 10-9: AXI Default Slave Parameters

Parameter Value Description

AXI master ID width 1-8 bits Determines the master ID width for error
logging.

AXI address width 8-64 bits Determines the address width for error logging.

This value also affects the overall address width
of the system, and should not exceed the
maximum address width required in the system.

AXI data width 32, 64,
or128 bits

Determines the data width for error logging.

Enable CSR Support (for error logging) On or Off When turned on, instantiates an Avalon CSR
interface for error logging.

10-28 AXI Default Slave Parameters
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Value Description

CSR Error Log Depth 1-16 bits Depth of the transaction log, for example, the
number of transactions the CSR logs for cycles
with errors.

Register Avalon CSR inputs On or Off When turned on, controls debug access to the
CSR interface.

CSR Registers
When an access violation occurs, and the CSR port is enabled, the AXI Default Slave generates an
interrupt and transfers the transaction information into the error log FIFO.

The error log count continues until the nth log, where n is the log depth. When Qsys responds to the
interrupt bit, it reads the register until the interrupt bit is no longer valid. The interrupt bit is valid as long
as there is a valid bit in FIFO. A cleared interrupt bit is not affected by the FIFO status. When Qsys
finishes reading the register, the access violation service is ready to receive new access violation requests.
If an access violation occurs when FIFO is full, then an overflow bit is set, indicating more than n access
violations have occurred, and some are not logged.

Qsys exits the access violation service after either the interrupt bit is no longer set, or when it determines
that the access violation service has continued for too long.

CSR Interrupt Status Registers

Table 10-10: CSR Interrupt Status Registers

For CSR register maps: Address = Memory Address Base + Offset.
Offset Bit Attribute Default Descripton

0x00 31:4 R0 0 Reserved.

3 RW1C 0 Read Access Violation Interrupt Overflow register

Asserted when a read access causes the Interconnect to
return a DECERR response, and the buffer log depth is
full. Indicates that there is a logging error lost due to an
exceeded buffer log depth. Cleared by setting the bit to
1.

2 RW1C 0 Write Access Violation Interrupt Overflow register

Asserted when a write access causes the Interconnect
to return a DECERR response, and the buffer log depth is
full. Indicates that there is a logging error lost due to an
exceeded buffer log depth. Cleared by setting the bit to
1.

QPS5V1
2015.11.02 CSR Registers 10-29

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bit Attribute Default Descripton

1 RW1C 0 Read Access Violation Interrupt register

Asserted when a read access causes the Interconnect to
return a DECERR response. Cleared by setting the bit to
1.

Note: Access violation are logged until the bit is
cleared.

0 RW1C 0 Write Access Violation Interrupt register

Asserted when a write access causes the Interconnect
to return a DECERR response. Cleared by setting the bit
to 1.

Note: Access violation are logged until the bit is
cleared.

CSR Read Access Violation Log
The CSR read access violation log settings are valid only when an associated read interrupt register is set.
This set of registers should be read until the valid bit is cleared.

Table 10-11: CSR Read Access Violation Log

Offset Bit Attribute Default Description

0x100 31:13 R0 0 Reserved.

12:11 R0 0 Indicates the burst type of the initiating cycle that
causes the access violation.

10:7 R0 0 Indicates the burst length of the initiating cycle that
causes the access violation.

6:4 R0 0 Indicates the burst size of the initiating cycle that
causes the access violation.

3:1 R0 0 Indicates the PROT of the initiating cycle that causes the
access violation.

0 R0 0 Read access violation log for the transaction is valid
only when this bit is set. This bit is cleared when the
interrupt register is cleared.

0x104 31:0 R0 0 Master ID for the cycle that causes the access violation.

0x108 31:0 R0 0 Read cycle target address for the cycle that causes the
access violation (lower 32-bit).

10-30 CSR Read Access Violation Log
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bit Attribute Default Description

0x10C 31:0 R0 0 Read cycle target address for the cycle that causes the
access violation (upper 32-bit). Valid only if widest
address in system is larger than 32 bits.

Note: When this register is read, the current read
access violation log is recovered from FIFO.

CSR Write Access Violation Log
The CSR write access violation log settings are valid only when an associated read interrupt register is set.
This set of registers should be read until the valid bit is cleared.

Table 10-12: CSR Write Access Violation Log

Offset Bit Attribute Default Description

0x190 31:13 R0 0 Reserved.

12:11 R0 0 Indicates the burst type of the initiating cycle that
causes the access violation.

10:7 R0 0 Indicates the burst length of the initiating cycle that
causes the access violation.

6:4 R0 0 Indicates the burst size of the initiating cycle that
causes the access violation.

3:1 R0 0 Indicates the PROT of the initiating cycle that causes the
access violation.

0 R0 0 Write access violation log for the transaction is valid
only when this bit is set. This bit is cleared when the
interrupt register is cleared.

0x194 31:0 R0 0 Master ID for the cycle that causes the access violation.

0x198 31:0 R0 0 Write target address for the cycle that causes the access
violation (lower 32-bit).

0x19C 31:0 R0 0 Write target address for the cycle that causes the access
violation (upper 32-bit). Valid only if widest address in
system is larger than 32 bits.

QPS5V1
2015.11.02 CSR Write Access Violation Log 10-31

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Bit Attribute Default Description

0x1A0 31:0 R0 0 First 32 bits of the write data for the write cycle that
causes the access violation.

Note: When this register is read, the current write
access violation log is recovered from FIFO,
when the data width is 32 bits.

0x1A4 31:0 R0 0 Bits [63:32] of the write data for the write cycle that
causes the access violation. Valid only if the data width
is greater than 32 -bits.

0x1A8 31:0 R0 0 Bits [95:64] of the write data for the write cycle that
causes the access violation. Valid only if the data width
is greater than 64 -bits.

0x1AC 31:0 R0 0 The first bits (127:96) of the write data for the write
cycle that causes the access violation. Valid only if the
data width is greater than 64 -bits.

Note: When this register is read, the current write
access violation log is recovered from FIFO.

Designating a Default Slave in the System Contents Tab
You can designate any slave in your Qsys system as the error response default slave. The designated
default slave provides an error response service for masters that attempt access to an undefined memory
region.

1. In your Qsys system, in the System Contents tab, right-click the header and turn on Show Default
Slave Column.

2. Select the slave that you want to designate as the default slave, and then click the checkbox for the slave
in the Default Slave column.

3. In the System Contents tab, in the Connections column, connect the designated default slave to one
or more masters.

Tri-State Components
The tri-state interface type allows you to design Qsys subsystems that connect to tri-state devices on your
PCB. You can use tri-state components to implement pin sharing, convert between unidirectional and
bidirectional signals, and create tri-state controllers for devices whose interfaces can be described using
the tri-state signal types.

10-32 Designating a Default Slave in the System Contents Tab
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-19: Tri-State Conduit System to Control Off-Chip SRAM and Flash Devices

In this example, there are two generic Tri-State Conduit Controllers. The first is customized to control a
flash memory. The second is customized to control an off-chip SSRAM. The Tri-State Conduit Pin Sharer
multiplexes between these two controllers, and the Tri-State Conduit Bridge converts between an on-chip
encoding of tri-state signals and true bidirectional signals. By default, the Tri-State Conduit Pin Sharer
and Tri-State Conduit Bridge present byte addresses. Typically, each address location contains more than
one byte of data.

Altera FPGA

Printed Circuit Board

M

M

M

Nios II
Processor

Cn SSRAM

Cn Flash
TCM

S TCM

Generic Tri-state
Controller

Parameterized
for 2 MByte
x32 SSRAM

TCM

TCS
Tri-state
Conduit

Pin
Sharer

Avalon-MM Master

Avalon-MM Slave

CnTCS
Tri-state
Conduit
Bridge

Generic Tri-state
Controller

Parameterized
for 8 MByte

x16 FlashS

S

TCS

TCM Avalon-TC Master

Avalon-TC Slave

Conduit Cn

TCS

QPS5V1
2015.11.02 Tri-State Components 10-33

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-20: Address Connections from Qsys System to PCB

The flash device operates on 16-bit words and must ignore the least-significant bit of the Avalon-MM
address, and shows addr[0]as not connected. The SSRAM memory operates on 32-bit words and must
ignore the two, low-order memory bits. Because neither device requires a byte address, addr[0] is not
routed on the PCB.

The flash device responds to address range 0 MBytes to 8 MBytes-1. The SSRAM responds to address
range 8 MBytes to 10 MBytes-1. The PCB schematic for the PCB connects addr [21:0] to addr [18:0] of
the SSRAM device because the SSRAM responds to 32-bit word address. The 8 MByte flash device
accesses 16-bit words; consequently, the schematic does not connect addr[0]. The chipselect signals
select between the two devices.

PCB_Addr [21:0]

2 MByte SSRAM
(32-bit word)

2 MByte SSRAM
(32-bit word)

0

8 MBytes

16 MBytes

10 MBytes

PCB_Addr [19:1]

Addr [21:0]

8 MByte Flash
 (16-bit word)

8 MByte Flash
 (16-bit word)

UnusedAddr [18:0]

Tristate Conduit
Bridge

PCB

Qsys Address Map

Addr [22:1]
PCB_Addr [21:0]

Addr [0]

Addr [23] x

x

Note: If you create a custom tri-state conduit master with word aligned addresses, the Tri-state Conduit
Pin Sharer does not change or align the address signals.

10-34 Tri-State Components
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-21: Tri-State Conduit System in Qsys

Related Information

• Avalon Interface Specifications
• Avalon Tri-State Conduit Components User Guide

Generic Tri-State Controller
The Generic Tri-State Controller provides a template for a controller. You can customize the tri-state
controller with various parameters to reflect the behavior of an off-chip device. The following types of
parameters are available for the tri-state controller:

• Width of the address and data signals
• Read and write wait times
• Bus-turnaround time
• Data hold time

Note: In calculating delays, the Generic Tri-State Controller chooses the larger of the bus-turnaround
time and read latency. Turnaround time is measured from the time that a command is accepted,
not from the time that the previous read returned data.

QPS5V1
2015.11.02 Generic Tri-State Controller 10-35

Qsys System Design Components Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://www.altera.com/literature/ug/ug_avalon_tc.pdf?GSA_pos=1&WT.oss_r=1&WT.oss=Tristate
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Generic Tri-State Controller includes the following interfaces:

• Memory-mapped slave interface—This interface connects to an memory-mapped master, such as a
processor.

• Tristate Conduit Master interface—Tri-state master interface usually connects to the tri-state conduit
slave interface of the tri-state conduit pin sharer.

• Clock sink—The component’s clock reference. You must connect this interface to a clock source.
• Reset sink—This interface connects to a reset source interface.

Tri‑State Conduit Pin Sharer
The Tri-state Conduit Pin Sharer multiplexes between the signals of the connected tri-state controllers.
You connect all signals from the tri-state controllers to the Tri-state Conduit Pin Sharer and use the
parameter editor to specify the signals that are shared.

Figure 10-22: Tri‑State Conduit Pin Sharer Parameter Editor

The parameter editor includes a Shared Signal Name column. If the widths of shared signals differ, the
signals are aligned on their 0th bit and the higher-order pins are driven to 0 whenever the smaller signal
has control of the bus. Unshared signals always propagate through the pin sharer. The tri-state conduit
pin sharer uses the round-robin arbiter to select between tri-state conduit controllers.

Note: All tri-state conduit components are connected to a pin sharer must be in the same clock domain.

10-36 Tri‑State Conduit Pin Sharer
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Avalon-ST Round Robin Scheduler on page 10-66

Tri‑State Conduit Bridge
The Tri-State Conduit Bridge instantiates bidirectional signals for each tri-state signal while passing all
other signals straight through the component. The Tri-State Conduit Bridge registers all outgoing and
incoming signals, which adds two cycles of latency for a read request. You must account for this
additional pipelining when designing a custom controller. During reset, all outputs are placed in a high-
impedance state. Outputs are enabled in the first clock cycle after reset is deasserted, and the output
signals are then bidirectional.

Test Pattern Generator and Checker Cores
The data generation and monitoring solution for Avalon-ST consists of two components: a test pattern
generator core that generates data, and sends it out on an Avalon-ST data interface, and a test pattern
checker core that receives the same data and verifies it. Optionally, the data can be formatted as packets,
with accompanying start_of_packet and end_of_packet signals.

The test pattern generator inserts different error conditions, and the test pattern checker reports these
error conditions to the control interface, each via an Avalon Memory-Mapped (Avalon-MM) slave. The
Throttle Seed is the starting value for the throttle control random number generator. Altera recommends
a unique value for each instance of the test pattern generator and checker cores in a system.

Test Pattern Generator
Figure 10-23: Test Pattern Generator Core

The test pattern generator core accepts commands to generate data via an Avalon-MM command
interface, and drives the generated data to an Avalon-ST data interface. You can parameterize most
aspects of the Avalon-ST data interface, such as the number of error bits and data signal width, thus
allowing you to test components with different interfaces.

Avalon-MM
Slave Port

Av
alo

n-
M

M
Sla

ve
 Po

rt
Avalon-ST
 SourceTEST PATTERN

 GENERATOR

command data_out

control & status

QPS5V1
2015.11.02 Tri‑State Conduit Bridge 10-37

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The data pattern is calculated as: Symbol Value = Symbol Position in Packet XOR Data Error Mask. Data
that is not organized in packets is a single stream with no beginning or end. The test pattern generator has
a throttle register that is set via the Avalon-MM control interface. The test pattern generator uses the
value of the throttle register in conjunction with a pseudo-random number generator to throttle the data
generation rate.

Test Pattern Generator Command Interface
The command interface for the Test Pattern Generator is a 32-bit Avalon-MM write slave that accepts
data generation commands. It is connected to a 16-element deep FIFO, thus allowing a master peripheral
to drive a number of commands into the test pattern generator.

The command interface maps to the following registers: cmd_lo and cmd_hi. The command is pushed
into the FIFO when the register cmd_lo (address 0) is addressed. When the FIFO is full, the command
interface asserts the waitrequest signal. You can create errors by writing to the register cmd_hi (address
1). The errors are cleared when 0 is written to this register, or its respective fields.

Test Pattern Generator Control and Status Interface

The control and status interface of the Test Pattern Generator is a 32-bit Avalon-MM slave that allows
you to enable or disable the data generation, as well as set the throttle. This interface also provides
generation-time information, such as the number of channels and whether or not data packets are
supported.

Test Pattern Generator Output Interface
The output interface of the Test Pattern Generator is an Avalon-ST interface that optionally supports data
packets. You can configure the output interface to align with your system requirements. Depending on
the incoming stream of commands, the output data may contain interleaved packet fragments for
different channels. To keep track of the current symbol’s position within each packet, the test pattern
generator maintains an internal state for each channel.

You can configure the output interface of the test pattern generator with the following parameters:

• Number of Channels—Number of channels that the test pattern generator supports. Valid values are 1
to 256.

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and writedata signals,
which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per beat. Valid values are 1
to 256.

• Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Error Signal Width (bits)—Width of the error signal on the output interface. Valid values are 0 to 31.
A value of 0 indicates that the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are generated.

Test Pattern Generator Functional Parameter

The Test Pattern Generator functional parameter allows you to configure the test pattern generator as a
whole system.

10-38 Test Pattern Generator Command Interface
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Test Pattern Checker
Figure 10-24: Test Pattern Checker

The test pattern checker core accepts data via an Avalon-ST interface and verifies it against the same
predetermined pattern that the test pattern generator uses to produce the data. The test pattern checker
core reports any exceptions to the control interface. You can parameterize most aspects of the test pattern
checker's Avalon-ST interface such as the number of error bits and the data signal width. This enables the
ability to test components with different interfaces. The test pattern checker has a throttle register that is
set via the Avalon-MM control interface. The value of the throttle register controls the rate at which data
is accepted.

Avalon-MM
Slave Port

Av
alo

n-
ST

Sin
k

TEST PATTERN
 CHECKER

data_in

control & status

The test pattern checker detects exceptions and reports them to the control interface via a 32-element
deep internal FIFO. Possible exceptions are data error, missing start-of-packet (SOP), missing end-of-
packet (EOP), and signaled error.

As each exception occurs, an exception descriptor is pushed into the FIFO. If the same exception occurs
more than once consecutively, only one exception descriptor is pushed into the FIFO. All exceptions are
ignored when the FIFO is full. Exception descriptors are deleted from the FIFO after they are read by the
control and status interface.

Test Pattern Checker Input Interface
The Test Pattern Checker input interface is an Avalon-ST interface that optionally supports data packets.
You can configure the input interface to align with your system requirements. Incoming data may contain
interleaved packet fragments. To keep track of the current symbol’s position, the test pattern checker
maintains an internal state for each channel.

Test Pattern Checker Control and Status Interface
The Test Pattern Checker control and status interface is a 32-bit Avalon-MM slave that allows you to
enable or disable data acceptance, as well as set the throttle. This interface provides generation-time
information, such as the number of channels and whether the test pattern checker supports data packets.
The control and status interface also provides information on the exceptions detected by the test pattern
checker. The interface obtains this information by reading from the exception FIFO.

QPS5V1
2015.11.02 Test Pattern Checker 10-39

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Test Pattern Checker Functional Parameter
The Test Pattern Checker functional parameter allows you to configure the test pattern checker as a whole
system.

Test Pattern Checker Input Parameters

You can configure the input interface of the test pattern checker using the following parameters:

• Data Bits Per Symbol—Bits per symbol is related to the width of readdata and writedata signals,
which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—Number of symbols (words) that are transferred per beat. Valid values are 1
to 32.

• Include Packet Support—Indicates whether or not data packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and empty signals.

• Number of Channels—Number of channels that the test pattern checker supports. Valid values are 1
to 256.

• Error Signal Width (bits)—Width of the error signal on the input interface. Valid values are 0 to 31.
A value of 0 indicates that the error signal in not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are generated.

Software Programming Model for the Test Pattern Generator and Checker Cores
The HAL system library support, software files, and register maps describe the software programming
model for the test pattern generator and checker cores.

HAL System Library Support
For Nios II processor users, Altera provides HAL system library drivers that allow you to initialize and
access the test pattern generator and checker cores. Altera recommends you to use the provided drivers to
access the cores instead of accessing the registers directly.

For Nios II IDE users, copy the provided drivers from the following installation folders to your software
application directory:

• <IP installation directory>/ip/sopc_builder_ip/altera_avalon_data_source/HAL
• <IP installation directory>/ip/sopc_builder_ip/altera_avalon_data_sink/HAL

Note: This instruction does not apply if you use the Nios II command-line tools.

Test Pattern Generator and Test Pattern Checker Core Files
The following files define the low-level access to the hardware, and provide the routines for the HAL
device drivers.

Note: Do not modify the test pattern generator or test pattern checker core files.

10-40 Test Pattern Checker Functional Parameter
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Test pattern generator core files:

• data_source_regs.h—Header file that defines the test pattern generator's register maps.
• data_source_util.h , data_source_util.c—Header and source code for the functions and variables

required to integrate the driver into the HAL system library.
• Test pattern checker core files:

• data_sink_regs.h—Header file that defines the core’s register maps.
• data_sink_util.h , data_sink_util.c—Header and source code for the functions and variables

required to integrate the driver into the HAL system library.

Register Maps for the Test Pattern Generator and Test Pattern Checker Cores

Test Pattern Generator Control and Status Registers

Table 10-13: Test Pattern Generator Control and Status Register Map

Shows the offset for the test pattern generator control and status registers. Each register is 32-bits wide.

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 10-14: Test Pattern Generator Status Register Bits

Bit(s) Name Access Description

[15:0] ID RO A constant value of 0x64.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates data packet support.

Table 10-15: Test Pattern Generator Control Register Bits

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern generator core.

[7:1] Reserved

QPS5V1
2015.11.02 Register Maps for the Test Pattern Generator and Test Pattern Checker... 10-41

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit(s) Name Access Description

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256,
inclusively. The test pattern generator uses this value in conjunc‐
tion with a pseudo-random number generator to throttle the data
generation rate.

Setting THROTTLE to 0 stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full
throttle. Values between 0–256 result in a data rate proportional to
the throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are
reset. Write 0 to this bit to exit reset.

[31:18] Reserved

Table 10-16: Test Pattern Generator Fill Register Bits

Bit(s) Name Access Description

[0] BUSY RO A value of 1 indicates that data transmission is in progress, or that
there is at least one command in the command queue.

[6:1] Reserved

[15:7] FILL RO The number of commands currently in the command FIFO.

[31:16] Reserved

Test Pattern Generator Command Registers

Table 10-17: Test Pattern Generator Command Register Map

Shows the offset for the command registers. Each register is 32-bits wide.

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

The cmd_lo is pushed into the FIFO only when the cmd_lo register is addressed.

10-42 Test Pattern Generator Command Registers
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-18: cmd_lo Register Bits

Bit(s) Name Access Description

[15:0] SIZE RW The segment size in symbols. Except for the last segment in a
packet, the size of all segments must be a multiple of the
configured number of symbols per beat. If this condition is not
met, the test pattern generator core inserts additional symbols to
the segment to ensure the condition is fulfilled.

[29:16] CHANNEL RW The channel to send the segment on. If the channel signal is less
than 14 bits wide, the test pattern generator uses the low order bits
of this register to drive the signal.

[30] SOP RW Set this bit to 1 when sending the first segment in a packet. This
bit is ignored when data packets are not supported.

[31] EOP RW Set this bit to 1 when sending the last segment in a packet. This bit
is ignored when data packets are not supported.

Table 10-19: cmd_hi Register Bits

Bit(s) Name Access Description

[15:0] SIGNALED

ERROR
RW Specifies the value to drive the error signal. A non-zero value

creates a signalled error.

[23:16] DATA ERROR RW The output data is XORed with the contents of this register to
create data errors. To stop creating data errors, set this register to
0.

[24] SUPPRESS

SOP
RW Set this bit to 1 to suppress the assertion of the startofpacket

signal when the first segment in a packet is sent.

[25] SUPRESS

EOP
RW Set this bit to 1 to suppress the assertion of the endofpacket

signal when the last segment in a packet is sent.

Test Pattern Checker Control and Status Registers

Table 10-20: Test Pattern Checker Control and Status Register Map

Shows the offset for the control and status registers. Each register is 32 bits wide.

Offset Register Name

base + 0 status

base + 1 control

QPS5V1
2015.11.02 Test Pattern Checker Control and Status Registers 10-43

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Register Name

base + 2

Reservedbase + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 10-21: Test Pattern Checker Status Register Bits

Bit(s) Name Access Description

[15:0] ID RO Contains a constant value of 0x65.

[23:16] NUMCHANNELS RO The configured number of channels.

[30:24] NUMSYMBOLS RO The configured number of symbols per beat.

[31] SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 10-22: Test Pattern Checker Control Register Bits

Bit(s) Name Access Description

[0] ENABLE RW Setting this bit to 1 enables the test pattern checker.

[7:1] Reserved

[16:8] THROTTLE RW Specifies the throttle value which can be between 0–256,
inclusively. Qsys uses this value in conjunction with a pseudo-
random number generator to throttle the data generation rate.

Setting THROTTLE to 0 stops the test pattern generator core. Setting
it to 256 causes the test pattern generator core to run at full
throttle. Values between 0–256 result in a data rate proportional to
the throttle value.

[17] SOFT RESET RW When this bit is set to 1, all internal counters and statistics are
reset. Write 0 to this bit to exit reset.

[31:18] Reserved

10-44 Test Pattern Checker Control and Status Registers
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If there is no exception, reading the exception_descriptor register bit register returns 0.

Table 10-23: exception_descriptor Register Bits

Bit(s) Name Access Description

[0] DATA ERROR RO A value of 1 indicates that an error is detected in the incoming
data.

[1] MISSINGSOP RO A value of 1 indicates missing start-of-packet.

[2] MISSINGEOP RO A value of 1 indicates missing end-of-packet.

[7:3] Reserved

[15:8] SIGNALLED

ERROR
RO The value of the error signal.

[23:16] Reserved

[31:24] CHANNEL RO The channel on which the exception was detected.

Table 10-24: indirect_select Register Bits

Bit Bits Name Access Description

[7:0] INDIRECT

CHANNEL
RW Specifies the channel number that applies to the INDIRECT

PACKET COUNT, INDIRECT SYMBOL COUNT, and INDIRECT ERROR
COUNT registers.

[15:8] Reserved

[31:16] INDIRECT

ERROR
RO The number of data errors that occurred on the channel specified

by INDIRECT CHANNEL.

Table 10-25: indirect_count Register Bits

Bit Bits Name Access Description

[15:0] INDIRECT

PACKET

COUNT

RO The number of data packets received on the channel specified by
INDIRECT CHANNEL.

[31:16] INDIRECT

SYMBOL

COUNT

RO The number of symbols received on the channel specified by
INDIRECT CHANNEL.

.

QPS5V1
2015.11.02 Test Pattern Checker Control and Status Registers 10-45

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Test Pattern Generator API
The following subsections describe application programming interface (API) for the test pattern
generator.

Note: API functions are currently not available from the interrupt service routine (ISR).

data_source_reset() on page 10-46

data_source_init() on page 10-47

data_source_get_id() on page 10-47

data_source_get_supports_packets() on page 10-48

data_source_get_num_channels() on page 10-48

data_source_get_symbols_per_cycle() on page 10-48

data_source_get_enable() on page 10-49

data_source_set_enable() on page 10-49

data_source_get_throttle() on page 10-50

data_source_set_throttle() on page 10-50

data_source_is_busy() on page 10-51

data_source_fill_level() on page 10-51

data_source_send_data() on page 10-51

data_source_reset()

Table 10-26: data_source_reset()

Information Type Description

Prototype void data_source_reset(alt_u32 base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns void

Description Resets the test pattern generator core including all internal counters
and FIFOs. The control and status registers are not reset by this
function.

10-46 Test Pattern Generator API
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_source_init()

Table 10-27: data_source_init()

Information Type Description

Prototype int data_source_init(alt_u32 base, alt_u32 command_base);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

command_base—Base address of the command slave.

Returns 1—Initialization is successful.

0—Initialization is unsuccessful.

Description Performs the following operations to initialize the test pattern
generator core:

• Resets and disables the test pattern generator core.
• Sets the maximum throttle.
• Clears all inserted errors.

data_source_get_id()

Table 10-28: data_source_get_id()

Information Type Description

Prototype int data_source_get_id(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Test pattern generator core identifier.

Description Retrieves the test pattern generator core’s identifier.

QPS5V1
2015.11.02 data_source_init() 10-47

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_source_get_supports_packets()

Table 10-29: data_source_get_supports_packets()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Data packets are supported.

0—Data packets are not supported.

Description Checks if the test pattern generator core supports data packets.

data_source_get_num_channels()

Table 10-30: data_source_get_num_channels()

Description Description

Prototype int data_source_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the test pattern
generator core.

data_source_get_symbols_per_cycle()

Table 10-31: data_source_get_symbols_per_cycle()

Description Description

Prototype int data_source_get_symbols(alt_u32 base);

Thread-safe Yes

10-48 data_source_get_supports_packets()
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Description Description

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of symbols transferred in a beat.

Description Retrieves the number of symbols transferred by the test pattern
generator core in each beat.

data_source_get_enable()

Table 10-32: data_source_get_enable()

Information Type Description

Prototype int data_source_get_enable(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

data_source_set_enable()

Table 10-33: data_source_set_enable()

Information Type Description

Prototype void data_source_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

value— ENABLE bit set to the value of this parameter.

Returns void

QPS5V1
2015.11.02 data_source_get_enable() 10-49

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Description Enables or disables the test pattern generator core. When disabled, the
test pattern generator core stops data transmission but continues to
accept commands and stores them in the FIFO

data_source_get_throttle()

Table 10-34: data_source_get_throttle()

Information Type Description

Prototype int data_source_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Throttle value.

Description Retrieves the current throttle value.

data_source_set_throttle()

Table 10-35: data_source_set_throttle()

Information Type Description

Prototype void data_source_set_throttle(alt_u32 base, alt_u32 value)

;

Thread-safe No

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The
throttle value, when divided by 256 yields the rate at which the test
pattern generator sends data.

10-50 data_source_get_throttle()
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_source_is_busy()

Table 10-36: data_source_is_busy()

Information Type Description

Prototype int data_source_is_busy(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Test pattern generator core is busy.

0—Test pattern generator core is not busy.

Description Checks if the test pattern generator is busy. The test pattern generator
core is busy when it is sending data or has data in the command FIFO
to be sent.

data_source_fill_level()

Table 10-37: data_source_fill_level()

Information Type Description

Prototype int data_source_fill_level(alt_u32 base);

Thread-safe Yes

Include <data_source_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of commands in the command FIFO.

Description Retrieves the number of commands currently in the command FIFO.

data_source_send_data()

Table 10-38: data_source_send_data()

Information Type Description

Prototype int data_source_send_data(alt_u32 cmd_base, alt_u16

channel, alt_u16 size, alt_u32 flags, alt_u16 error, alt_

u8 data_error_mask);

QPS5V1
2015.11.02 data_source_is_busy() 10-51

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Thread-safe No

Include <data_source_util.h >

Parameters cmd_base—Base address of the command slave.

channel—Channel to send the data.

size—Data size.

flags —Specifies whether to send or suppress SOP and EOP signals.
Valid values are DATA_SOURCE_SEND_SOP, DATA_SOURCE_SEND_EOP,
DATA_SOURCE_SEND_SUPRESS_SOP and DATA_SOURCE_SEND_SUPRESS_
EOP.

error—Value asserted on the error signal on the output interface.

data_error_mask—Parameter and the data are XORed together to
produce erroneous data.

Returns Returns 1.

Description Sends a data fragment to the specified channel. If data packets are
supported, applications must ensure consistent usage of SOP and EOP
in each channel. Except for the last segment in a packet, the length of
each segment is a multiple of the data width.

If data packets are not supported, applications must ensure that there
are no SOP and EOP indicators in the data. The length of each segment
in a packet is a multiple of the data width.

Test Pattern Checker API
The following subsections describe API for the test pattern checker core. The API functions are currently
not available from the ISR.

data_sink_reset() on page 10-53

data_sink_init() on page 10-53

data_sink_get_id() on page 10-54

data_sink_get_supports_packets() on page 10-54

data_sink_get_num_channels() on page 10-55

data_sink_get_symbols_per_cycle() on page 10-55

data_sink_get_enable() on page 10-55

data_sink_set enable() on page 10-56

data_sink_get_throttle() on page 10-56

data_sink_set_throttle() on page 10-57

10-52 Test Pattern Checker API
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_get_packet_count() on page 10-57

data_sink_get_error_count() on page 10-58

data_sink_get_symbol_count() on page 10-58

data_sink_get_exception() on page 10-58

data_sink_exception_is_exception() on page 10-59

data_sink_exception_has_data_error() on page 10-59

data_sink_exception_has_missing_sop() on page 10-60

data_sink_exception_has_missing_eop() on page 10-60

data_sink_exception_signalled_error() on page 10-61

data_sink_exception_channel() on page 10-61

data_sink_reset()

Table 10-39: data_sink_reset()

Information Type Description

Prototype void data_sink_reset(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns void

Description Resets the test pattern checker core including all internal counters.

data_sink_init()

Table 10-40: data_sink_init()

Information Type Description

Prototype int data_source_init(alt_u32 base);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

QPS5V1
2015.11.02 data_sink_reset() 10-53

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Returns 1—Initialization is successful.

0—Initialization is unsuccessful.

Description Performs the following operations to initialize the test pattern checker
core:

• Resets and disables the test pattern checker core.
• Sets the throttle to the maximum value.

data_sink_get_id()

Table 10-41: data_sink_get_id()

Information Type Description

Prototype int data_sink_get_id(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Test pattern checker core identifier.

Description Retrieves the test pattern checker core’s identifier.

data_sink_get_supports_packets()

Table 10-42: data_sink_get_supports_packets()

Information Type Description

Prototype int data_sink_init(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns 1—Data packets are supported.

0—Data packets are not supported.

Description Checks if the test pattern checker core supports data packets.

10-54 data_sink_get_id()
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_get_num_channels()

Table 10-43: data_sink_get_num_channels()

Information Type Description

Prototype int data_sink_get_num_channels(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of channels supported.

Description Retrieves the number of channels supported by the test pattern checker
core.

data_sink_get_symbols_per_cycle()

Table 10-44: data_sink_get_symbols_per_cycle()

Information Type Description

Prototype int data_sink_get_symbols(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Number of symbols received in a beat.

Description Retrieves the number of symbols received by the test pattern checker
core in each beat.

data_sink_get_enable()

Table 10-45: data_sink_get_enable()

Information Type Description

Prototype int data_sink_get_enable(alt_u32 base);

Thread-safe Yes

QPS5V1
2015.11.02 data_sink_get_num_channels() 10-55

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Value of the ENABLE bit.

Description Retrieves the value of the ENABLE bit.

data_sink_set enable()

Table 10-46: data_sink_set enable()

Information Type Description

Prototype void data_sink_set_enable(alt_u32 base, alt_u32 value);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

value—ENABLE bit is set to the value of the parameter.

Returns void

Description Enables the test pattern checker core.

data_sink_get_throttle()

Table 10-47: data_sink_get_throttle()

Information Type Description

Prototype int data_sink_get_throttle(alt_u32 base);

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns Throttle value.

Description Retrieves the throttle value.

10-56 data_sink_set enable()
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_set_throttle()

Table 10-48: data_sink_set_throttle()

Information Type Description

Prototype void data_sink_set_throttle(alt_u32 base, alt_u32 value);

Thread-safe No

Include: <data_sink_util.h >

Parameters base—Base address of the control and status slave.

value—Throttle value.

Returns void

Description Sets the throttle value, which can be between 0–256 inclusively. The
throttle value, when divided by 256 yields the rate at which the test
pattern checker receives data.

data_sink_get_packet_count()

Table 10-49: data_sink_get_packet_count()

Information Type Description

Prototype int data_sink_get_packet_count(alt_u32 base, alt_u32

channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

channel—Channel number.

Returns Number of data packets received on the channel.

Description Retrieves the number of data packets received on a channel.

QPS5V1
2015.11.02 data_sink_set_throttle() 10-57

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_get_error_count()

Table 10-50: data_sink_get_error_count()

Information Type Description

Prototype int data_sink_get_error_count(alt_u32 base, alt_u32

channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

channel—Channel number.

Returns Number of errors received on the channel.

Description Retrieves the number of errors received on a channel.

data_sink_get_symbol_count()

Table 10-51: data_sink_get_symbol_count()

Information Type Description

Prototype int data_sink_get_symbol_count(alt_u32 base, alt_u32

channel);

Thread-safe No

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

channel—Channel number.

Returns Number of symbols received on the channel.

Description Retrieves the number of symbols received on a channel.

data_sink_get_exception()

Table 10-52: data_sink_get_exception()

Information Type Description

Prototype int data_sink_get_exception(alt_u32 base);

10-58 data_sink_get_error_count()
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Thread-safe Yes

Include <data_sink_util.h >

Parameters base—Base address of the control and status slave.

Returns First exception descriptor in the exception FIFO.

0—No exception descriptor found in the exception FIFO.

Description Retrieves the first exception descriptor in the exception FIFO and pops
it off the FIFO.

data_sink_exception_is_exception()

Table 10-53: data_sink_exception_is_exception()

Information Type Description

Prototype int data_sink_exception_is_exception(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor

Returns 1—Indicates an exception.

0—No exception.

Description Checks if an exception descriptor describes a valid exception.

data_sink_exception_has_data_error()

Table 10-54: data_sink_exception_has_data_error()

Information Type Description

Prototype int data_sink_exception_has_data_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

QPS5V1
2015.11.02 data_sink_exception_is_exception() 10-59

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Information Type Description

Returns 1—Data has errors.

0—No errors.

Description Checks if an exception indicates erroneous data.

data_sink_exception_has_missing_sop()

Table 10-55: data_sink_exception_has_missing_sop()

Information Type Description

Prototype int data_sink_exception_has_missing_sop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing SOP.

0—Other exception types.

Description Checks if an exception descriptor indicates missing SOP.

data_sink_exception_has_missing_eop()

Table 10-56: data_sink_exception_has_missing_eop()

Information Type Description

Prototype int data_sink_exception_has_missing_eop(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns 1—Missing EOP.

0—Other exception types.

Description Checks if an exception descriptor indicates missing EOP.

10-60 data_sink_exception_has_missing_sop()
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

data_sink_exception_signalled_error()

Table 10-57: data_sink_exception_signalled_error()

Information Type Description

Prototype int data_sink_exception_signalled_error(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Signal error value.

Description Retrieves the value of the signaled error from the exception.

data_sink_exception_channel()

Table 10-58: data_sink_exception_channel()

Information Type Description

Prototype int data_sink_exception_channel(int exception);

Thread-safe Yes

Include <data_sink_util.h >

Parameters exception—Exception descriptor.

Returns Channel number on which an exception occurred.

Description Retrieves the channel number on which an exception occurred.

QPS5V1
2015.11.02 data_sink_exception_signalled_error() 10-61

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Splitter Core
Figure 10-25: Avalon-ST Splitter Core

The Avalon-ST Splitter Core allows you to replicate transactions from an Avalon-ST source interface to
multiple Avalon-ST sink interfaces. This core supports from 1 to 16 outputs.

Output 0

In_Data

Out_Data

Av
alo

n-
ST

 S
ink

Avalon-ST
Splitter Core

Output N

Avalon-ST
Source 0

Clock

Avalon-ST
Source N

The Avalon-ST Splitter core copies input signals from the input interface to the corresponding output
signals of each output interface without altering the size or functionality. This includes all signals except
for the ready signal. The core includes a clock signal to determine the Avalon-ST interface and clock
domain where the core resides. Because the splitter core does nor use the clock signal internally, latency
is not introduced when using this core.

Splitter Core Backpressure
The Avalon-ST Splitter core integrates with backpressure by AND-ing the ready signals from the output
interfaces and sending the result to the input interface. As a result, if an output interface deasserts the
ready signal, the input interface receives the deasserted ready signal, as well. This functionality ensures
that backpressure on the output interfaces is propagated to the input interface.

When the Qualify Valid Out parameter is set to 1, the out_valid signals on all other output interfaces
are gated when backpressure is applied from one output interface. In this case, when any output interface
deasserts its ready signal, the out_valid signals on the other output interfaces are also deasserted.

When the Qualify Valid Out parameter is set to 0, the output interfaces have a non-gated out_valid
signal when backpressure is applied. In this case, when an output interface deasserts its ready signal, the
out_valid signals on the other output interfaces are not affected.

Because the logic is combinational, the core introduces no latency.

Splitter Core Interfaces
The Avalon-ST Splitter core supports streaming data, with optional packet, channel, and error signals.
The core propagates backpressure from any output interface to the input interface.

10-62 Avalon-ST Splitter Core
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 10-59: Avalon-ST Splitter Core Support

Feature Support

Backpressure Ready latency = 0.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

Splitter Core Parameters

Table 10-60: Avalon-ST Splitter Core Parameters

Parameter Legal Values Default Value Description

Number Of Outputs 1 to 16 2 The number of output interfaces. Qsys
supports 1 for some systems where no
duplicated output is required.

Qualify Valid Out 0 or 1 1 Determines whether the out_valid signal
is gated or non-gated when backpressure is
applied.

Data Width 1–512 8 The width of the data on the Avalon-ST
data interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input
and output interfaces. For example, byte-
oriented interfaces have 8-bit symbols.

Use Packets 0 or 1 0 Indicates whether or not data packet
transfers are supported. Packet support
includes the startofpacket, endofpacket,
and empty signals.

Use Channel 0 or 1 0 The option to enable or disable the channel
signal.

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when
Use Channel is set to 0.

QPS5V1
2015.11.02 Splitter Core Parameters 10-63

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Legal Values Default Value Description

Max Channels 0-255 1 The maximum number of channels that a
data interface can support. This parameter
is disabled when Use Channel is set to 0.

Use Error 0 or 1 0 The option to enable or disable the error
signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the
splitter core is not using the error signal.
This parameter is disabled when Use Error
is set to 0.

Avalon-ST Delay Core
Figure 10-26: Avalon-ST Delay Core

The Avalon-ST Delay Core provides a solution to delay Avalon-ST transactions by a constant number of
clock cycles. This core supports up to 16 clock cycle delays.

Out_Data
In_Data

Clock

Av
alo

n-
ST

Sin
k

Avalon-ST
 SourceAvalon-ST

Delay Core

The Delay core adds a delay between the input and output interfaces. The core accepts transactions
presented on the input interface and reproduces them on the output interface N cycles later without
changing the transaction.

The input interface delays the input signals by a constant N number of clock cycles to the corresponding
output signals of the output interface. The Number Of Delay Clocks parameter defines the constant N,
which must be between 0 and 16. The change of the in_valid signal is reflected on the out_valid signal
exactly N cycles later.

Delay Core Reset Signal
The Avalon-ST Delay core has a reset signal that is synchronous to the clk signal. When the core asserts
the reset signal, the output signals are held at 0. After the reset signal is deasserted, the output signals

10-64 Avalon-ST Delay Core
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

are held at 0 for N clock cycles. The delayed values of the input signals are then reflected at the output
signals after N clock cycles.

Delay Core Interfaces
The Delay core supports streaming data, with optional packet, channel, and error signals. The delay core
does not support backpressure.

Table 10-61: Avalon-ST Delay Core Support

Feature Support

Backpressure Not supported.

Data Width Configurable.

Channel Supported (optional).

Error Supported (optional).

Packet Supported (optional).

Delay Core Parameters

Table 10-62: Avalon-ST Delay Core Parameters

Parameter Legal Values Default Value Description

Number Of Delay Clocks 0 to 16 1 Specifies the delay the core introduces, in
clock cycles. Qsys supports 0 for some
systems where no delay is required.

Data Width 1–512 8 The width of the data on the Avalon-ST
data interfaces.

Bits Per Symbol 1–512 8 The number of bits per symbol for the input
and output interfaces. For example, byte-
oriented interfaces have 8-bit symbols.

Use Packets 0 or 1 0 Indicates whether or not data packet
transfers are supported. Packet support
includes the startofpacket, endofpacket,
and empty signals.

Use Channel 0 or 1 0 The option to enable or disable the channel
signal.

QPS5V1
2015.11.02 Delay Core Interfaces 10-65

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Legal Values Default Value Description

Channel Width 0-8 1 The width of the channel signal on the data
interfaces. This parameter is disabled when
Use Channel is set to 0.

Max Channels 0-255 1 The maximum number of channels that a
data interface can support. This parameter
is disabled when Use Channel is set to 0.

Use Error 0 or 1 0 The option to enable or disable the error
signal.

Error Width 0–31 1 The width of the error signal on the output
interfaces. A value of 0 indicates that the
error signal is not in use. This parameter is
disabled when Use Error is set to 0.

Avalon-ST Round Robin Scheduler
Figure 10-27: Avalon-ST Round Robin Scheduler

The Avalon-ST Round Robin Scheduler core controls the read operations from a multi-channel Avalon-
ST component that buffers data by channels. It reads the almost-full threshold values from the multiple
channels in the multi-channel component and issues the read request to the Avalon-ST source according
to a round-robin scheduling algorithm.

Request
(Channel_select) Almost Full Status

Avalon-ST
Round-Robin

SchedulerA v
alo

n-
M

M

W
ri t

e M
as

te
r Avalon-ST Sink

In a multi-channel component, the component can store data either in the sequence that it comes in
(FIFO), or in segments according to the channel. When data is stored in segments according to channels,
a scheduler is needed to schedule the read operations.

10-66 Avalon-ST Round Robin Scheduler
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Almost-Full Status Interface (Round Robin Scheduler)
The Almost-Full Status interface is an Avalon-ST sink interface that collects the almost-full status from
the sink components for the channels in the sequence provided.

Table 10-63: Avalon-ST Interface Feature Support

Feature Property

Backpressure Not supported

Data Width Data width = 1; Bits per symbol = 1

Channel Maximum channel = 32; Channel width = 5

Error Not supported

Packet Not supported

Request Interface (Round Robin Scheduler)
The Request Interface is an Avalon-MM write master interface that requests data from a specific channel.
The Avalon-ST Round Robin Scheduler cycles through the channels it supports and schedules data to be
read.

Round Robin Scheduler Operation
If a particular channel is almost full, the Avalon-ST Round Robin Scheduler does not schedule data to be
read from that channel in the source component.

The scheduler only requests 1 beat of data from a channel at each transaction. To request 1 beat of data
from channel n, the scheduler writes the value 1 to address (4 ×n). For example, if the scheduler is
requesting data from channel 3, the scheduler writes 1 to address 0xC. At every clock cycle, the scheduler
requests data from the next channel. Therefore, if the scheduler starts requesting from channel 1, at the
next clock cycle, it requests from channel 2. The scheduler does not request data from a particular channel
if the almost-full status for the channel is asserted. In this case, the scheduler uses one clock cycle without
a request transaction.

The Avalon-ST Round Robin Scheduler cannot determine if the requested component is able to service
the request transaction. The component asserts waitrequest when it cannot accept new requests.

Table 10-64: Avalon-ST Round Robin Scheduler Ports

Signal Direction Description

Clock and Reset

clk In Clock reference.

reset_n In Asynchronous active low reset.

QPS5V1
2015.11.02 Almost-Full Status Interface (Round Robin Scheduler) 10-67

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Direction Description

Avalon-MM Request Interface

request_address (log2 Max_

Channels–1:0)
Out The write address that indicates which channel has

the request.

request_write Out Write enable signal.

request_writedata Out The amount of data requested from the particular
channel.

This value is always fixed at 1.

request_waitrequest In Wait request signal that pauses the scheduler when
the slave cannot accept a new request.

Avalon-ST Almost-Full Status Interface

almost_full_valid In Indicates that almost_full_channel and almost_
full_data are valid.

almost_full_channel (Channel_

Width–1:0)
In Indicates the channel for the current status

indication.

almost_full_data (log2 Max_

Channels–1:0)
In A 1-bit signal that is asserted high to indicate that

the channel indicated by almost_full_channel is
almost full.

Round Robin Scheduler Parameters

Table 10-65: Avalon-ST Round Robin Scheduler Parameters

Parameters Values Description

Number of channels 2–32 Specifies the number of channels the Avalon-ST Round
Robin Scheduler supports.

Use almost-full status 0–1 Specifies whether the scheduler uses the almost-full
interface. If not, the core requests data from the next
channel at the next clock cycle.

10-68 Round Robin Scheduler Parameters
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon Packets to Transactions Converter
Figure 10-28: Avalon Packets to Transactions Converter Core

The Avalon Packets to Transactions Converter core receives streaming data from upstream components
and initiates Avalon-MM transactions. The core then returns Avalon-MM transaction responses to the
requesting components.

Av
alo

n-
ST

Sin

k

Avalon
Packets to

Transactions
Converter

data_out
Av

alo
n-

M
M

 M
as

te
r

data_in

Av
alo

n-
ST

So

ur
ce

Avalon-MM
Slave

Component

Note: The SPI Slave to Avalon Master Bridge and JTAG to Avalon Master Bridge are examples of the
Packets to Transactions Converter core. For more information, refer to the Avalon Interface
Specifications.

Related Information
Avalon Interface Specifications

Packets to Transactions Converter Interfaces

Table 10-66: Properties of Avalon-ST Interfaces

Feature Property

Backpressure Ready latency = 0.

Data Width Data width = 8 bits; Bits per symbol = 8.

Channel Not supported.

QPS5V1
2015.11.02 Avalon Packets to Transactions Converter 10-69

Qsys System Design Components Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Property

Error Not used.

Packet Supported.

The Avalon-MM master interface supports read and write transactions. The data width is set to 32 bits,
and burst transactions are not supported.

Packets to Transactions Converter Operation
The Packets to Transactions Converter core receives streams of packets on its Avalon-ST sink interface
and initiates Avalon-MM transactions. Upon receiving transaction responses from Avalon-MM slaves,
the core transforms the responses to packets and returns them to the requesting components via its
Avalon-ST source interface. The core does not report Avalon-ST errors.

Packets to Transactions Converter Data Packet Formats
A response packet is returned for every write transaction. The core also returns a response packet if a no
transaction (0x7f) is received. An invalid transaction code is regarded as a no transaction. For read
transactions, the core returns the data read.

The Packets to Transactions Converter core expects incoming data streams to be in the formats shown the
table below.

Table 10-67: Data Packet Formats

Byte Field Description

Transaction Packet Format

0 Transaction code Type of transaction.

1 Reserved Reserved for future use.

[3:2] Size Transaction size in bytes. For write transactions, the size
indicates the size of the data field. For read transactions,
the size indicates the total number of bytes to read.

[7:4] Address 32-bit address for the transaction.

[n:8] Data Transaction data; data to be written for write transactions.

Response Packet Format

0 Transaction code The transaction code with the most significant bit
inversed.

1 Reserved Reserved for future use.

10-70 Packets to Transactions Converter Operation
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Byte Field Description

[4:2] Size Total number of bytes read/written successfully.

Related Information

• Packets to Transactions Converter Interfaces on page 10-69
• Packets to Transactions Converter Interfaces on page 10-69

Packets to Transactions Converter Supported Transactions

Table 10-68: Packets to Transactions Converter Supported Transactions

Avalon-MM transactions supported by the Packets to Transactions Converter core.

Transac‐
tion Code

Avalon-MM Transaction Description

0x00 Write, non-incrementing address. Writes data to the address until the total number of bytes
written to the same word address equals to the value
specified in the size field.

0x04 Write, incrementing address. Writes transaction data starting at the current address.

0x10 Read, non-incrementing address. Reads 32 bits of data from the address until the total
number of bytes read from the same address equals to the
value specified in the size field.

0x14 Read, incrementing address. Reads the number of bytes specified in the size parameter
starting from the current address.

0x7f No transaction. No transaction is initiated. You can use this transaction
type for testing purposes. Although no transaction is
initiated on the Avalon-MM interface, the core still
returns a response packet for this transaction code.

The Packets to Transactions Converter core can process only a single transaction at a time. The ready
signal on the core's Avalon-ST sink interface is asserted only when the current transaction is completely
processed.

No internal buffer is implemented on the data paths. Data received on the Avalon-ST interface is
forwarded directly to the Avalon-MM interface and vice-versa. Asserting the waitrequest signal on the
Avalon-MM interface backpressures the Avalon-ST sink interface. In the opposite direction, if the
Avalon-ST source interface is backpressured, the read signal on the Avalon-MM interface is not asserted
until the backpressure is alleviated. Backpressuring the Avalon-ST source in the middle of a read could
result in data loss. In this cases, the core returns the data that is successfully received.

A transaction is considered complete when the core receives an EOP. For write transactions, the actual
data size is expected to be the same as the value of the size property. Whether or not both values agree,
the core always uses the end of packet (EOP) to determine the end of data.

QPS5V1
2015.11.02 Packets to Transactions Converter Supported Transactions 10-71

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Packets to Transactions Converter Malformed Packets

The following are examples of malformed packets:

• Consecutive start of packet (SOP)—An SOP marks the beginning of a transaction. If an SOP is
received in the middle of a transaction, the core drops the current transaction without returning a
response packet for the transaction, and initiates a new transaction. This effectively precesses packets
without an end of packet (EOP).

• Unsupported transaction codes—The core processes unsupported transactions as a no transaction.

Avalon-ST Streaming Pipeline Stage
The Avalon-ST pipeline stage receives data from an Avalon-ST source interface, and outputs the data to
an Avalon-ST sink interface. In the absence of back pressure, the Avalon-ST pipeline stage source
interface outputs data one cycle after receiving the data on its sink interface.

If the pipeline stage receives back pressure on its source interface, it continues to assert its source interfa‐
ce's current data output. While the pipeline stage is receiving back pressure on its source interface and it
receives new data on its sink interface, the pipeline stage internally buffers the new data. It then asserts
back pressure on its sink interface.

Once the backpressure is deasserted, the pipeline stage's source interface is de-asserted and the pipeline
stage asserts internally buffered data (if present). Additionally, the pipeline stage de-asserts back pressure
on its sink interface.

Figure 10-29: Pipeline Stage Simple Register

If the ready signal is not pipelined, the pipeline stage becomes a simple register.

Sink Sourcedata_in data_outRegister 0

10-72 Packets to Transactions Converter Malformed Packets
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-30: Pipeline Stage Holding Register

If the ready signal is pipelined, the pipeline stage must also include a second "holding" register.

Sink Sourcedata_in data_out
Register 1

Register 0

Full?

Full?

Streaming Channel Multiplexer and Demultiplexer Cores
The Avalon-ST channel multiplexer core receives data from various input interfaces and multiplexes the
data into a single output interface, using the optional channel signal to indicate the origin of the data. The
Avalon-ST channel demultiplexer core receives data from a channelized input interface and drives that
data to multiple output interfaces, where the output interface is selected by the input channel signal.

The multiplexer and demultiplexer cores can transfer data between interfaces on cores that support
unidirectional flow of data. The multiplexer and demultiplexer allow you to create multiplexed or
demultiplexed data paths without having to write custom HDL code. The multiplexer includes an Avalon-
ST Round Robin Scheduler.

Related Information
Avalon-ST Round Robin Scheduler on page 10-66

Software Programming Model For the Multiplexer and Demultiplexer Components
The multiplexer and demultiplexer components do not have any user-visible control or status registers.
Therefore, Qsys cannot control or configure any aspect of the multiplexer or demultiplexer at run-time.
The components cannot generate interrupts.

QPS5V1
2015.11.02 Streaming Channel Multiplexer and Demultiplexer Cores 10-73

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Multiplexer
Figure 10-31: Avalon-ST Multiplexer

The Avalon-ST multiplexer takes data from a variety of input data interfaces, and multiplexes the data
onto a single output interface. The multiplexer includes a round-robin scheduler that selects from the next
input interface that has data. Each input interface has the same width as the output interface, so that the
other input interfaces are backpressured when the multiplexer is carrying data from a different input
interface.

src
sink

data_in_ n

sink

data_in 0

data_out

. .
 .

Round Robin, Burst
Aware Scheduler

(optional)

sink

sink

. .
 .

channel

The multiplexer includes an optional channel signal that enables each input interface to carry channelized
data. The output interface channel width is equal to:

(log2 (n-1)) + 1 + w

where n is the number of input interfaces, and w is the channel width of each input interface. All input
interfaces must have the same channel width. These bits are appended to either the most or least signifi‐
cant bits of the output channel signal.

The scheduler processes one input interface at a time, selecting it for transfer. Once an input interface has
been selected, data from that input interface is sent until one of the following scenarios occurs:

• The specified number of cycles have elapsed.
• The input interface has no more data to send and the valid signal is deasserted on a ready cycle.
• When packets are supported, endofpacket is asserted.

Multiplexer Input Interfaces
Each input interface is an Avalon-ST data interface that optionally supports packets. The input interfaces
are identical; they have the same symbol and data widths, error widths, and channel widths.

10-74 Avalon-ST Multiplexer
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Multiplexer Output Interface
The output interface carries the multiplexed data stream with data from the inputs. The symbol, data, and
error widths are the same as the input interfaces.

The width of the channel signal is the same as the input interfaces, with the addition of the bits needed to
indicate the origin of the data.

You can configure the following parameters for the output interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer).
Valid values are 1 to 32.

• Include Packet Support—Indicates whether or not packet transfers are supported. Packet support
includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)— The number of bits Qsys uses for the channel signal for output
interfaces. For example, set this parameter to 1 if you have two input interfaces with no channel, or set
this parameter to 2 if you have two input interfaces with a channel width of 1 bit. The input channel
can have a width between 0-31 bits.

• Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of 0
means the error signal is not in use.

Note: If you change only bits per symbol, and do not change the data width, errors are generated.

Multiplexer Parameters

You can configure the following parameters for the multiplexer:

• Number of Input Ports—The number of input interfaces that the multiplexer supports. Valid values
are 2 to 16.

• Scheduling Size (Cycles)—The number of cycles that are sent from a single channel before changing
to the next channel.

• Use Packet Scheduling—When this parameter is turned on, the multiplexer only switches the selected
input interface on packet boundaries. Therefore, packets on the output interface are not interleaved.

• Use high bits to indicate source port—When this parameter is turned on, the multiplexer uses the
high bits of the output channel signal to indicate the origin of the input interface of the data. For
example, if the input interfaces have 4-bit channel signals, and the multiplexer has 4 input interfaces,
the output interface has a 6-bit channel signal. If this parameter is turned on, bits [5:4] of the output
channel signal indicate origin of the input interface of the data, and bits [3:0] are the channel bits that
were presented at the input interface.

QPS5V1
2015.11.02 Multiplexer Output Interface 10-75

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Demultiplexer
Figure 10-32: Avalon-ST Demultiplexer

That Avalon-ST demultiplexer takes data from a channelized input data interface and provides that data
to multiple output interfaces, where the output interface selected for a particular transfer is specified by
the input channel signal.

sink
data_out _n

data_out 0

sink
sinkdata_in

src

src

. .
 . . .
 .

channel

The data is delivered to the output interfaces in the same order it is received at the input interface,
regardless of the value of channel, packet, frame, or any other signal. Each of the output interfaces has
the same width as the input interface; each output interface is idle when the demultiplexer is driving data
to a different output interface. The demultiplexer uses log2 (num_output_interfaces) bits of the
channel signal to select the output for the data; the remainder of the channel bits are forwarded to the
appropriate output interface unchanged.

Demultiplexer Input Interface
Each input interface is an Avalon-ST data interface that optionally supports packets. You can configure
the following parameters for the input interface:

• Data Bits Per Symbol—The bits per symbol is related to the width of readdata and writedata
signals, which must be a multiple of the bits per symbol.

• Data Symbols Per Beat—The number of symbols (words) that are transferred per beat (transfer).
Valid values are 1 to 32.

• Include Packet Support—Indicates whether or not data packet transfers are supported. Packet
support includes the startofpacket, endofpacket, and empty signals.

• Channel Signal Width (bits)—The number of bits for the channel signal for output interfaces. A
value of 0 means that output interfaces do not use the optional channel signal.

• Error Signal Width (bits)—The width of the error signal for input and output interfaces. A value of 0
means the error signal is in use.

Note: If you change only bits per symbol, and do not change the data width, errors are generated.

Demultiplexer Output Interface
Each output interface carries data from a subset of channels from the input interface. Each output
interface is identical; all have the same symbol and data widths, error widths, and channel widths. The

10-76 Avalon-ST Demultiplexer
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

symbol, data, and error widths are the same as the input interface. The width of the channel signal is the
same as the input interface, without the bits that the demultiplexer uses to select the output interface.

Demultiplexer Parameters

You can configure the following parameters for the demultiplexer:

• Number of Output Ports—The number of output interfaces that the multiplexer supports Valid
values are 2 to 16.

• High channel bits select output—When this option is turned on, the demultiplexing function uses the
high bits of the input channel signal, and the low order bits are passed to the output. When this option
is turned off, the demultiplexing function uses the low order bits, and the high order bits are passed to
the output.

Where you place the signals in our design affects the functionality; for example, there is one input
interface and two output interfaces. If the low-order bits of the channel signal select the output interfaces,
the even channels goes to channel 0, and the odd channels goes to channel 1. If the high-order bits of the
channel signal select the output interface, channels 0 to 7 goes to channel 0 and channels 8 to 15 goes to
channel 1.

Figure 10-33: Select Bits for the Demultiplexer

sink

data_out_n

data_ out 0

sink
sink

data_ in
src

src

channel <4 .. 0 >

channel <3 .. 0 >

channel <3 .. 0 >

Single-Clock and Dual-Clock FIFO Cores
The Avalon-ST Single-Clock and Avalon-ST Dual-Clock FIFO cores are FIFO buffers which operate with
a common clock and independent clocks for input and output ports respectively.

QPS5V1
2015.11.02 Demultiplexer Parameters 10-77

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-34: Avalon-ST Single Clock FIFO Core

Avalon-ST
Single-Clock

FIFO

Avalon-MM
Slave

almost_full almost_empty

csr

Avalon-ST
Status
Source

Avalon-ST
Status
Source

outin Avalon-ST
Data
Sink

Avalon-ST
Data

Source

10-78 Single-Clock and Dual-Clock FIFO Cores
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-35: Avalon-ST Dual Clock FIFO Core

Avalon-MM
Slave

in_csr out_csr

Avalon-MM
Slave

outin

Clock A Clock B

Avalon-ST
Dual-Clock

FIFO

Avalon-ST
Data
Sink

Avalon-ST
Data

Source

Interfaces Implemented in FIFO Cores
The following interfaces are implemented in FIFO cores:

Avalon-ST Data Interface on page 10-79

Avalon-MM Control and Status Register Interface on page 10-80

Avalon-ST Status Interface on page 10-80

Avalon-ST Data Interface

Each FIFO core has an Avalon-ST data sink and source interfaces. The data sink and source interfaces in
the dual-clock FIFO core are driven by different clocks.

Table 10-69: Avalon-ST Interfaces Properties

Feature Property

Backpressure Ready latency = 0.

Data Width Configurable.

QPS5V1
2015.11.02 Interfaces Implemented in FIFO Cores 10-79

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Property

Channel Supported, up to 255 channels.

Error Configurable.

Packet Configurable.

Avalon-MM Control and Status Register Interface

You can configure the single-clock FIFO core to include an optional Avalon-MM interface, and the dual-
clock FIFO core to include an Avalon-MM interface in each clock domain. The Avalon-MM interface
provides access to 32-bit registers, which allows you to retrieve the FIFO buffer fill level and configure the
almost-empty and almost-full thresholds. In the single-clock FIFO core, you can also configure the packet
and error handling modes.

Avalon-ST Status Interface

The single-clock FIFO core has two optional Avalon-ST status source interfaces from which you can
obtain the FIFO buffer almost-full and almost empty statuses.

FIFO Operating Modes
• Default mode—The core accepts incoming data on the in interface (Avalon-ST data sink) and

forwards it to the out interface (Avalon-ST data source). The core asserts the valid signal on the
Avalon-ST source interface to indicate that data is available at the interface.

• Store and forward mode—This mode applies only to the single-clock FIFO core. The core asserts the
valid signal on the out interface only when a full packet of data is available at the interface. In this
mode, you can also enable the drop-on-error feature by setting the drop_on_error register to 1. When
this feature is enabled, the core drops all packets received with the in_error signal asserted.

• Cut-through mode—This mode applies only to the single-clock FIFO core. The core asserts the valid
signal on the out interface to indicate that data is available for consumption when the number of
entries specified in the cut_through_threshold register are available in the FIFO buffer.

Note: To turn on Cut-through mode, Use store and forward must be set to 0. Turning on Use store and
forward mode prompts the user to turn on Use fill level, and then the CSR appears.

Fill Level of the FIFO Buffer
You can obtain the fill level of the FIFO buffer via the optional Avalon-MM control and status interface.
Turn on the Use fill level parameter (Use sink fill level and Use source fill level in the dual-clock FIFO
core) and read the fill_level register.

The dual-clock FIFO core has two fill levels. one in each clock domain. Due to the latency of the clock
crossing logic, the fill levels reported in the input and output clock domains may be different for any
instance. In both cases, the fill level may report badly for the clock domain; that is, the fill level is reported
high in the input clock domain, and low in the output clock domain.

The dual-clock FIFO has an output pipeline stage to improve fMAX. This output stage is accounted for
when calculating the output fill level, but not when calculating the input fill level. Therefore, the best
measure of the amount of data in the FIFO is by the fill level in the output clock domain. The fill level in

10-80 Avalon-MM Control and Status Register Interface
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the input clock domain represents the amount of space available in the FIFO (available space = FIFO
depth – input fill level).

Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
You can use almost-full and almost-empty thresholds as a mechanism to prevent FIFO overflow and
underflow. This feature is available only in the single-clock FIFO core. To use the thresholds, turn on the
Use fill level, Use almost-full status, and Use almost-empty status parameters. You can access the
almost_full_threshold and almost_full_threshold registers via the csr interface and set the registers
to an optimal value for your application.

You can obtain the almost-full and almost-empty statuses from almost_full and almost_empty
interfaces (Avalon-ST status source). The core asserts the almost_full signal when the fill level is equal
to or higher than the almost-full threshold. Likewise, the core asserts the almost_empty signal when the
fill level is equal to or lower than the almost-empty threshold.

Single-Clock and Dual-Clock FIFO Core Parameters

Table 10-70: Single-Clock and Dual-Clock FIFO Core Parameters

Parameter Legal
Values

Description

Bits per symbol 1–32 These parameters determine the width of the FIFO.

FIFO width = Bits per symbol * Symbols per beat, where:
Bits per symbol is the number of bits in a symbol, and
Symbols per beat is the number of symbols transferred in
a beat.

Symbols per beat 1–32

Error width 0–32 The width of the error signal.

FIFO depth 2 n The FIFO depth. An output pipeline stage is added to the
FIFO to increase performance, which increases the FIFO
depth by one. <n> = n=1,2,3,4...

Use packets — Turn on this parameter to enable data packet support on
the Avalon-ST data interfaces.

Channel width 1–32 The width of the channel signal.

Avalon-ST Single Clock FIFO Only

Use fill level — Turn on this parameter to include the Avalon-MM
control and status register interface (CSR). The CSR is
enabled when Use fill level is set to 1.

QPS5V1
2015.11.02 Almost-Full and Almost-Empty Thresholds to Prevent Overflow and... 10-81

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Legal
Values

Description

Use Store and Forward To turn on Cut-through mode, Use store and forward
must be set to 0. Turning on Use store and forward
prompts the user to turn on Use fill level, and then the
CSR appears.

Avalon-ST Dual Clock FIFO Only

Use sink fill level — Turn on this parameter to include the Avalon-MM
control and status register interface in the input clock
domain.

Use source fill level — Turn on this parameter to include the Avalon-MM control
and status register interface in the output clock domain.

Write pointer synchronizer
length

2–8 The length of the write pointer synchronizer chain. Setting
this parameter to a higher value leads to better metasta‐
bility while increasing the latency of the core.

Read pointer synchronizer
length

2–8 The length of the read pointer synchronizer chain. Setting
this parameter to a higher value leads to better metasta‐
bility.

Use Max Channel — Turn on this parameter to specify the maximum channel
number.

Max Channel 1–255 Maximum channel number.

Note: For more information on metastability in Altera devices, refer to Understanding Metastability in
FPGAs. For more information on metastability analysis and synchronization register chains, refer
to the Managing Metastability.

Related Information

• Understanding Metastability in FPGAs
• Managing Metastability on page 13-1

10-82 Single-Clock and Dual-Clock FIFO Core Parameters
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-ST Single-Clock FIFO Registers

Table 10-71: Avalon-ST Single-Clock FIFO Registers

The CSR interface in the Avalon-ST Single Clock FIFO core provides access to registers.

32-Bit
Word
Offset

Name Access Reset Description

0 fill_

level
R 0 24-bit FIFO fill level. Bits 24 to 31 are not used.

1 Reserved — — Reserved for future use.

2 almost_

full_

threshold

RW FIFO
depth–1

Set this register to a value that indicates the FIFO buffer is
getting full.

3 almost_

empty_

threshold

RW 0 Set this register to a value that indicates the FIFO buffer is
getting empty.

4 cut_

through_

threshold

RW 0 0—Enables store and forward mode.

Greater than 0—Enables cut-through mode and specifies
the minimum of entries in the FIFO buffer before the
valid signal on the Avalon-ST source interface is asserted.
Once the FIFO core starts sending the data to the
downstream component, it continues to do so until the
end of the packet.

Note: To turn on Cut-through mode, Use store and
forward must be set to 0. Turning on Use store
and forward mode prompts the user to turn on
Use fill level, and then the CSR appears.

5 drop_on_

error
RW 0 0—Disables drop-on error.

1—Enables drop-on error.

This register applies only when the Use packet and Use
store and forward parameters are turned on.

Table 10-72: Register Description for Avalon-ST Dual-Clock FIFO

The in_csr and out_csr interfaces in the Avalon-ST Dual Clock FIFO core reports the FIFO fill level.

32-Bit Word Offset Name Access Reset Value Description

0 fill_level R 0 24-bit FIFO fill
level. Bits 24 to 31
are not used.

QPS5V1
2015.11.02 Avalon-ST Single-Clock FIFO Registers 10-83

Qsys System Design Components Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Avalon Interface Specifications
• Avalon Memory-Mapped Design Optimizations

Document Revision History

Table 10-73: Document Revision History

The table below indicates edits made to the Qsys System Design Components content since its creation.

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II
to Quartus Prime.

2015.05.04 15.0.0 Avalon-MM Unaligned Burst
Expansion Bridge and Avalon-
MM Pipeline Bridge, Maximum
pending read transactions
parameter. Extended descrip‐
tion.

December 2014 14.1.0 • AXI Timout Bridge.
• Added notes to Avalon-MM

Clock Crossing Bridge
pertaining to:

• SDC constraints for its
internal asynchronous
FIFOs.

• FIFO-based clock
crossing.

June 2014 14.0.0 • AXI Bridge support.
• Address Span Extender

updates.
• Avalon-MM Unaligned Burst

Expansion Bridge support.

November 2013 13.1.0 • Address Span Extender

May 2013 13.0.0 • Added Streaming Pipeline
Stage support.

• Added AMBA APB support.

November 2012 12.1.0 • Moved relevant content from
the Embedded Peripherals IP
User Guide.

10-84 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Qsys System Design Components

Send Feedback

https://documentation.altera.com/#/link/nik1412467993397/nik1412467919954/en-us
http://www.altera.com/literature/hb/nios2/edh_ed51007.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 10-85

Qsys System Design Components Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Qsys%20System%20Design%20Components%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Recommended Design Practices 11
2015.11.02

QPS5V1 Subscribe Send Feedback

This chapter provides design recommendations for Altera® devices and describes the Quartus Prime
Design Assistant, which helps you check your design for violations of Altera’s design recommendations.

Current FPGA applications have reached the complexity and performance requirements of ASICs. In the
development of complex system designs, good design practices have an enormous impact on the timing
performance, logic utilization, and system reliability of a device. Well-coded designs behave in a predict‐
able and reliable manner even when retargeted to different families or speed grades. Good design practices
also aid in successful design migration between FPGA and ASIC implementations for prototyping and
production.

For optimal performance, reliability, and faster time-to-market when designing with Altera devices, you
should adhere to the following guidelines:

• Understand the impact of synchronous design practices
• Follow recommended design techniques, including hierarchical design partitioning, and timing

closure guidelines
• Take advantage of the architectural features in the targeted device

Following Synchronous FPGA Design Practices
The first step in good design methodology is to understand the implications of your design practices and
techniques. This section outlines the benefits of optimal synchronous design practices and the hazards
involved in other techniques.

Good synchronous design practices can help you meet your design goals consistently. Problems with
other design techniques can include reliance on propagation delays in a device, which can lead to race
conditions, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers every event. As long as you ensure that all the timing
requirements of the registers are met, a synchronous design behaves in a predictable and reliable manner
for all process, voltage, and temperature (PVT) conditions. You can easily migrate synchronous designs to
different device families or speed grades.

Implementing Synchronous Designs
In a synchronous design, the clock signal controls the activities of all inputs and outputs.

On every active edge of the clock (usually the rising edge), the data inputs of registers are sampled and
transferred to outputs. Following an active clock edge, the outputs of combinational logic feeding the data

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Recommended%20Design%20Practices&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

inputs of registers change values. This change triggers a period of instability due to propagation delays
through the logic as the signals go through several transitions and finally settle to new values. Changes
that occur on data inputs of registers do not affect the values of their outputs until after the next active
clock edge.

Because the internal circuitry of registers isolates data outputs from inputs, instability in the combina‐
tional logic does not affect the operation of the design as long as you meet the following timing require‐
ments:

• Before an active clock edge, you must ensure that the data input has been stable for at least the setup
time of the register.

• After an active clock edge, you must ensure that the data input remains stable for at least the hold time
of the register.

When you specify all of your clock frequencies and other timing requirements, the Quartus Prime
TimeQuest Timing Analyzer reports actual hardware requirements for the setup times (tSU) and hold
times (tH) for every pin in your design. By meeting these external pin requirements and following
synchronous design techniques, you ensure that you satisfy the setup and hold times for all registers in
your device.

Tip: To meet setup and hold time requirements on all input pins, any inputs to combinational logic
that feed a register should have a synchronous relationship with the clock of the register. If
signals are asynchronous, you can register the signals at the inputs of the device to help prevent a
violation of the required setup and hold times.

When you violate the setup or hold time of a register, you might oscillate the output, or set the
output to an intermediate voltage level between the high and low levels called a metastable state.
In this unstable state, small perturbations such as noise in power rails can cause the register to
assume either the high or low voltage level, resulting in an unpredictable valid state. Various
undesirable effects can occur, including increased propagation delays and incorrect output states.
In some cases, the output can even oscillate between the two valid states for a relatively long
period of time.

Asynchronous Design Hazards
Designers use asynchronous techniques such as ripple counters or pulse generators in programmable
logic device (PLD) designs, enabling them to take “short cuts” to save device resources.

Asynchronous design techniques have inherent problems such as relying on propagation delays in a
device, which can vary with temperature and voltage fluctuations, resulting in incomplete timing
constraints and possible glitches and spikes.

Some asynchronous design structures rely on the relative propagation delays of signals to function
correctly. In these cases, race conditions can arise where the order of signal changes can affect the output
of the logic. PLD designs can have varying timing delays, depending on how the design is placed and
routed in the device with each compilation. Therefore, it is almost impossible to determine the timing
delay associated with a particular block of logic ahead of time. As devices become faster due to device
process improvements, the delays in an asynchronous design may decrease, resulting in a design that does
not function as expected. This chapter provides specific examples. Relying on a particular delay also
makes asynchronous designs difficult to migrate to different architectures, devices, or speed grades.

The timing of asynchronous design structures is often difficult or impossible to model with timing
assignments and constraints. If you do not have complete or accurate timing constraints, the timing-
driven algorithms used by your synthesis and place-and-route tools may not be able to perform the best
optimizations, and the reported results may not be complete.

Some asynchronous design structures can generate harmful glitches, which are pulses that are very short
compared with clock periods. Most glitches are generated by combinational logic. When the inputs of

11-2 Asynchronous Design Hazards
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

combinational logic change, the outputs exhibit several glitches before they settle to their new values.
These glitches can propagate through the combinational logic, leading to incorrect values on the outputs
in asynchronous designs. In a synchronous design, glitches on the data inputs of registers are normal
events that have no negative consequences because the data is not processed until the clock edge.

HDL Design Guidelines
When designing with HDL code, you should understand how a synthesis tool interprets different HDL
design techniques and what results to expect.

Your design techniques can affect logic utilization and timing performance, as well as the design’s
reliability. This section describes basic design techniques that ensure optimal synthesis results for designs
targeted to Altera devices while avoiding several common causes of unreliability and instability. Altera
recommends that you design your combinational logic carefully to avoid potential problems and pay
attention to your clocking schemes so that you can maintain synchronous functionality and avoid timing
problems.

Optimizing Combinational Logic
Combinational logic structures consist of logic functions that depend only on the current state of the
inputs. In Altera FPGAs, these functions are implemented in the look-up tables (LUTs) with either logic
elements (LEs) or adaptive logic modules (ALMs).

For cases where combinational logic feeds registers, the register control signals can implement part of the
logic function to save LUT resources. By following the recommendations in this section, you can improve
the reliability of your combinational design.

Avoid Combinational Loops
Combinational loops are among the most common causes of instability and unreliability in digital
designs. Combinational loops generally violate synchronous design principles by establishing a direct
feedback loop that contains no registers.

You should avoid combinational loops whenever possible. In a synchronous design, feedback loops
should include registers. For example, a combinational loop occurs when the left-hand side of an
arithmetic expression also appears on the right-hand side in HDL code. A combinational loop also occurs
when you feed back the output of a register to an asynchronous pin of the same register through combina‐
tional logic.

Figure 11-1: Combinational Loop Through Asynchronous Control Pin

Logic

Tip: Use recovery and removal analysis to perform timing analysis on asynchronous ports, such as clear
or reset in the Quartus Prime software.

QPS5V1
2015.11.02 HDL Design Guidelines 11-3

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Combinational loops are inherently high-risk design structures for the following reasons:

• Combinational loop behavior generally depends on relative propagation delays through the logic
involved in the loop. As discussed, propagation delays can change, which means the behavior of
the loop is unpredictable.

• Combinational loops can cause endless computation loops in many design tools. Most tools
break open combinational loops to process the design. The various tools used in the design flow
may open a given loop in a different manner, processing it in a way that is inconsistent with the
original design intent.

Avoid Unintended Latch Inference
A latch is a small circuit with combinational feedback that holds a value until a new value is assigned. You
can implement latches with the Quartus Prime Text Editor or Block Editor.

It is common for mistakes in HDL code to cause unintended latch inference; Quartus Prime Synthesis
issues a warning message if this occurs. Unlike other technologies, a latch in FPGA architecture is not
significantly smaller than a register. The architecture is not optimized for latch implementation and
latches generally have slower timing performance compared to equivalent registered circuitry.

Latches have a transparent mode in which data flows continuously from input to output. A positive latch
is in transparent mode when the enable signal is high (low for negative latch). In transparent mode,
glitches on the input can pass through to the output because of the direct path created. This presents
significant complexity for timing analysis. Typical latch schemes use multiple enable phases to prevent
long transparent paths from occurring. However, timing analysis cannot identify these safe applications.

The TimeQuest analyzer analyzes latches as synchronous elements clocked on the falling edge of the
positive latch signal by default, and allows you to treat latches as having nontransparent start and end
points. Be aware that even an instantaneous transition through transparent mode can lead to glitch
propagation. The TimeQuest analyzer cannot perform cycle-borrowing analysis.

Due to various timing complexities, latches have limited support in formal verification tools. Therefore,
you should not rely on formal verification for a design that includes latches.

Tip: Avoid using latches to ensure that you can completely analyze the timing performance and reliability
of your design.

Avoid Delay Chains in Clock Paths
You require delay chains when you use two or more consecutive nodes with a single fan-in and a single
fan-out to cause delay. Inverters are often chained together to add delay. Delay chains are sometimes used
to resolve race conditions created by other asynchronous design practices.

Delays in PLD designs can change with each placement and routing cycle. Effects such as rise and fall time
differences and on-chip variation mean that delay chains, especially those placed on clock paths, can cause
significant problems in your design. Avoid using delay chains to prevent these kinds of problems.

In some ASIC designs, delays are used for buffering signals as they are routed around the device. This
functionality is not required in FPGA devices because the routing structure provides buffers throughout
the device.

Use Synchronous Pulse Generators
You can use delay chains to generate either one pulse (pulse generators) or a series of pulses
(multivibrators). There are two common methods for pulse generation. These techniques are purely
asynchronous and must be avoided.

11-4 Avoid Unintended Latch Inference
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-2: Asynchronous Pulse Generators

Pulse

PulseT rigger

T rigger

Clock

Using an AND Gate

Using a Register

A trigger signal feeds both inputs of a 2-input AND gate, but the design adds inverts to create a delay
chain to one of the inputs. The width of the pulse depends on the time differences between path that feeds
the gate directly, and the path that goes through the delay chain. This is the same mechanism responsible
for the generation of glitches in combinational logic following a change of input values. This technique
artificially increases the width of the glitch.

A register’s output drives the same register’s asynchronous reset signal through a delay chain. The register
resets itself asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and place-and-route to determine, set,
or verify. The actual pulse width can only be determined after placement and routing, when routing and
propagation delays are known. You cannot reliably create a specific pulse width when creating HDL code,
and it cannot be set by EDA tools. The pulse may not be wide enough for the application under all PVT
conditions. Also, the pulse width changes if you change to a different device. Additionally, verification is
difficult because static timing analysis cannot verify the pulse width.

Multivibrators use a glitch generator to create pulses, together with a combinational loop that turns the
circuit into an oscillator. This creates additional problems because of the number of pulses involved.
Additionally, when the structures generate multiple pulses, they also create a new artificial clock in the
design must be analyzed by design tools.

When you must use a pulse generator, use synchronous techniques.

Figure 11-3: Recommended Pulse-Generation Technique

T rigger Signal

Clock

Pulse

The pulse width is always equal to the clock period. This pulse generator is predictable, can be verified
with timing analysis, and is easily moved to other architectures, devices, or speed grades.

QPS5V1
2015.11.02 Use Synchronous Pulse Generators 11-5

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimizing Clocking Schemes
Like combinational logic, clocking schemes have a large effect on the performance and reliability of a
design.

Avoid using internally generated clocks (other than PLLs) wherever possible because they can cause
functional and timing problems in the design. Clocks generated with combinational logic can introduce
glitches that create functional problems, and the delay inherent in combinational logic can lead to timing
problems.

Tip: Specify all clock relationships in the Quartus Prime software to allow for the best timing-driven
optimizations during fitting and to allow correct timing analysis. Use clock setting assignments on
any derived or internal clocks to specify their relationship to the base clock.

Use global device-wide, low-skew dedicated routing for all internally-generated clocks, instead of
routing clocks on regular routing lines.

Avoid data transfers between different clocks wherever possible. If you require a data transfer
between different clocks, use FIFO circuitry. You can use the clock uncertainty features in the
Quartus Prime software to compensate for the variable delays between clock domains. Consider
setting a clock setup uncertainty and clock hold uncertainty value of 10% to 15% of the clock delay.

The following sections provide specific examples and recommendations for avoiding clocking
scheme problems.

Register Combinational Logic Outputs
If you use the output from combinational logic as a clock signal or as an asynchronous reset signal, you
can expect to see glitches in your design. In a synchronous design, glitches on data inputs of registers are
normal events that have no consequences. However, a glitch or a spike on the clock input (or an
asynchronous input) to a register can have significant consequences.

Narrow glitches can violate the register’s minimum pulse width requirements. Setup and hold require‐
ments might also be violated if the data input of the register changes when a glitch reaches the clock input.
Even if the design does not violate timing requirements, the register output can change value unexpect‐
edly and cause functional hazards elsewhere in the design.

To avoid these problems, you should always register the output of combinational logic before you use it as
a clock signal.

Figure 11-4: Recommended Clock-Generation Technique

Internally Generated Clock
Routed on Global Clock Resource

Clock
Generation

Logic

Registering the output of combinational logic ensures that glitches generated by the combinational logic
are blocked at the data input of the register.

11-6 Optimizing Clocking Schemes
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avoid Asyncrhonous Clock Division
Designs often require clocks that you create by dividing a master clock. Most Altera FPGAs provide
dedicated phase-locked loop (PLL) circuitry for clock division. Using dedicated PLL circuitry can help
you to avoid many of the problems that can be introduced by asynchronous clock division logic.

When you must use logic to divide a master clock, always use synchronous counters or state machines.
Additionally, create your design so that registers always directly generate divided clock signals, and route
the clock on global clock resources. To avoid glitches, do not decode the outputs of a counter or a state
machine to generate clock signals.

Avoid Ripple Counters
To simplify verification, avoid ripple counters in your design. In the past, FPGA designers implemented
ripple counters to divide clocks by a power of two because the counters are easy to design and may use
fewer gates than their synchronous counterparts.

Ripple counters use cascaded registers, in which the output pin of one register feeds the clock pin of the
register in the next stage. This cascading can cause problems because the counter creates a ripple clock at
each stage. These ripple clocks must be handled properly during timing analysis, which can be difficult
and may require you to make complicated timing assignments in your synthesis and placement and
routing tools.

You can often use ripple clock structures to make ripple counters out of the smallest amount of logic
possible. However, in all Altera devices supported by the Quartus Prime software, using a ripple clock
structure to reduce the amount of logic used for a counter is unnecessary because the device allows you to
construct a counter using one logic element per counter bit. You should avoid using ripple counters
completely.

Use Multiplexed Clocks
Use clock multiplexing to operate the same logic function with different clock sources. In these designs,
multiplexing selects a clock source.

For example, telecommunications applications that deal with multiple frequency standards often use
multiplexed clocks.

Figure 11-5: Multiplexing Logic and Clock Sources

Clock 1

Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

QPS5V1
2015.11.02 Avoid Asyncrhonous Clock Division 11-7

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Adding multiplexing logic to the clock signal can create the problems addressed in the previous sections,
but requirements for multiplexed clocks vary widely, depending on the application. Clock multiplexing is
acceptable when the clock signal uses global clock routing resources and if the following criteria are met:

• The clock multiplexing logic does not change after initial configuration
• The design uses multiplexing logic to select a clock for testing purposes
• Registers are always reset when the clock switches
• A temporarily incorrect response following clock switching has no negative consequences

If the design switches clocks in real time with no reset signal, and your design cannot tolerate a
temporarily incorrect response, you must use a synchronous design so that there are no timing
violations on the registers, no glitches on clock signals, and no race conditions or other logical
problems. By default, the Quartus Prime software optimizes and analyzes all possible paths through the
multiplexer and between both internal clocks that may come from the multiplexer. This may lead to
more restrictive analysis than required if the multiplexer is always selecting one particular clock. If you
do not require the more complete analysis, you can assign the output of the multiplexer as a base clock
in the Quartus Prime software, so that all register-to-register paths are analyzed using that clock.

Tip: Use dedicated hardware to perform clock multiplexing when it is available, instead of using
multiplexing logic. For example, you can use the clock-switchover feature or clock control block
available in certain Altera devices. These dedicated hardware blocks ensure that you use global
low-skew routing lines and avoid any possible hold time problems on the device due to logic
delay on the clock line.

Note: For device-specific information about clocking structures, refer to the appropriate device data sheet
or handbook on the Literature page of the Altera website.

Use Gated Clocks
Gated clocks turn a clock signal on and off using an enable signal that controls gating circuitry. When a
clock is turned off, the corresponding clock domain is shut down and becomes functionally inactive.

Figure 11-6: Gated Clock

Clock

Gated ClockGating Signal

You can use gated clocks to reduce power consumption in some device architectures by effectively
shutting down portions of a digital circuit when they are not in use. When a clock is gated, both the clock
network and the registers driven by it stop toggling, thereby eliminating their contributions to power
consumption. However, gated clocks are not part of a synchronous scheme and therefore can significantly
increase the effort required for design implementation and verification. Gated clocks contribute to clock
skew and make device migration difficult. These clocks are also sensitive to glitches, which can cause
design failure.

Use dedicated hardware to perform clock gating rather than an AND or OR gate. For example, you can
use the clock control block in newer Altera devices to shut down an entire clock network. Dedicated
hardware blocks ensure that you use global routing with low skew, and avoid any possible hold time
problems on the device due to logic delay on the clock line.

From a functional point of view, you can shut down a clock domain in a purely synchronous manner
using a synchronous clock enable signal. However, when using a synchronous clock enable scheme, the

11-8 Use Gated Clocks
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

clock network continues toggling. This practice does not reduce power consumption as much as gating
the clock at the source does. In most cases, use a synchronous scheme.

Use Synchronous Clock Enables
To turn off a clock domain in a synchronous manner, use a synchronous clock enable signal. FPGAs
efficiently support clock enable signals because there is a dedicated clock enable signal available on all
device registers.

This scheme does not reduce power consumption as much as gating the clock at the source because the
clock network keeps toggling, and performs the same function as a gated clock by disabling a set of
registers. Insert a multiplexer in front of the data input of every register to either load new data, or copy
the output of the register.

Figure 11-7: Synchronous Clock Enable

Enable

Data

Recommended Clock-Gating Methods
Use gated clocks only when your target application requires power reduction and when gated clocks are
able to provide the required reduction in your device architecture.

If you must use clocks gated by logic, implement these clocks using the robust clock-gating technique and
ensure that the gated clock signal uses dedicated global clock routing.

You can gate a clock signal at the source of the clock network, at each register, or somewhere in between.
Because the clock network contributes to switching power consumption, gate the clock at the source
whenever possible, so that you can shut down the entire clock network instead of gating it further along
the clock network at the registers.

Figure 11-8: Recommended Clock-Gating Technique

Clock

Enable
Gated Clock Routed on
Global Clock Resources

Gating Signal

A register generates the enable signal to ensure that the signal is free of glitches and spikes. The register
that generates the enable signal is triggered on the inactive edge of the clock to be gated. Use the falling
edge when gating a clock that is active on the rising edge. Using this technique, only one input of the gate
that turns the clock on and off changes at a time. This prevents glitches or spikes on the output. Use an
AND gate to gate a clock that is active on the rising edge. For a clock that is active on the falling edge, use
an OR gate to gate the clock and register the enable command with a positive edge-triggered register.

QPS5V1
2015.11.02 Use Synchronous Clock Enables 11-9

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When using this technique, pay close attention to the duty cycle of the clock and the delay through the
logic that generates the enable signal because you must generate the enable command in one-half the
clock cycle. This situation might cause problems if the logic that generates the enable command is particu‐
larly complex, or if the duty cycle of the clock is severely unbalanced. However, careful management of
the duty cycle and logic delay may be an acceptable solution when compared with problems created by
other methods of gating clocks.

Ensure that you apply a clock setting to the gated clock in the TimeQuest analyzer. Apply a clock setting
to the output of the AND gate. Otherwise, the timing analyzer might analyze the circuit using the clock
path through the register as the longest clock path and the path that skips the register as the shortest clock
path, resulting in artificial clock skew.

In certain cases, converting the gated clocks to clock enables may help reduce glitch and clock skew, and
eventually produce a more accurate timing analysis. You can set the Quartus Prime software to automati‐
cally convert gated clocks to clock enables by turning on the Auto Gated Clock Conversion option. The
conversion applies to two types of gated clocking schemes: single-gated clock and cascaded-gated clock.

Optimizing Physical Implementation and Timing Closure
This section provides design and timing closure techniques for high speed or complex core logic designs
with challenging timing requirements. These techniques may also be helpful for low or medium speed
designs.

Planning Physical Implementation
When planning a design, consider the following elements of physical implementation:

• The number of unique clock domains and their relationships
• The amount of logic in each functional block
• The location and direction of data flow between blocks
• How data routes to the functional blocks between I/O interfaces

Interface-wide control or status signals may have competing or opposing constraints. For example,
when a functional block's control or status signals interface with physical channels from both sides of
the device. In such cases you must provide enough pipeline register stages to allow these signals to
traverse the width of the device. In addition, you can structure the hierarchy of the design into separate
logic modules for each side of the device. The side modules can generate and use registered control
signals per side. This simplifies floorplanning, particularly in designs with transceivers, by placing per-
side logic near the transceivers.

When adding register stages to pipeline control signals, turn off the Auto Shift Register Replacement
option (Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis)) for these
registers. By default, chains of registers can be converted to a RAM-based implementation based on
performance and resource estimates. Since pipelining helps meet timing requirements over long
distance, this assignment ensures that control signals are not converted.

Planning FPGA Resources
Your design requirements impact the use of FPGA resources. Plan functional blocks with appropriate
global, regional, and dual-regional network signals in mind.

In general, after allocating the clocks in a design, use global networks for the highest fan-out control
signals. When a global network signal distributes a high fan-out control signal, the global signal can drive
logic anywhere in the device. Similarly, when using a regional network signal, the driven must be in one
quadrant of the device, or half the device for a dual-regional network signal. Depending on data flow and
physical locations of the data entry and exit between the I/Os and the device, restricting a functional block
to a quadrant or half the device may not be practical for performance or resource requirements.

11-10 Optimizing Physical Implementation and Timing Closure
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When floorplanning a design, consider the balance of different types of device resources, such as memory,
logic, and DSP blocks in the main functional blocks. For example, if a design is memory intensive with a
small amount of logic, it may be difficult to develop an effective floorplan. Logic that interfaces with the
memory would have to spread across the chip to access the memory. In this case, it is important to use
enough register stages in the data and control paths to allow signals to traverse the chip to access the
physically disparate resources needed.

Optimizing Timing Closure
You can make changes to your design and constraints that help you achieve timing closure.

Whenever you change the project settings, you must balance any performance improvement of the setting
against any potential increase in compilation time associated with the setting. You can view the perform‐
ance gain versus runtime cost by reviewing the Fitter messages after design processing.

You can use physical synthesis optimizations for combinational logic, register retiming, and register
duplication techniques to optimize your design for timing closure.

Click Assignments > Settings > Compiler Settings > Advanced Settings (Fitter) to turn on physical
synthesis options.

• Physical synthesis for combinational logic—When the Perform physical synthesis for combinational
logic is turned on, the report panel identifies logic that physical synthesis can modify. You can use this
information to modify the design so that the associated optimization can be turned off to save compile
time.

• Register duplication—This technique is most useful where registers have high fan-out, or where the
fan-out is in physically distant areas of the device. Review the netlist optimizations report and consider
manually duplicating registers automatically added by physical synthesis. You can also locate the
original and duplicate registers in the Chip Planner. Compare their locations, and if the fan-out is
improved, modify the code and turn off register duplication to save compile time.

• Register retiming—This technique is particularly useful where some combinatorial paths between
registers exceed the timing goal while other paths fall short. If a design is already heavily pipelined,
register retiming is less likely to provide significant performance gains since there should not be
significantly unbalanced levels of logic across pipeline stages.

The application of appropriate timing constraints is essential to timing closure. Use the following
general guidelines in applying timing constraints:

• Apply multicycle constraints in your design wherever single-cycle timing analysis is not required.
• Apply False Path constraints to all asynchronous clock domain crossings or resets in the design. This

technique prevents overconstraining and the Fitter focuses only on critical paths to reduce compile
time. However, over constraining timing critical clock domains can sometimes provide better timing
results and lower compile times than physical synthesis.

• Overconstrain rather than using physical synthesis when the slack improvement from physical
synthesis is near zero. Overconstrain the frequency requirement on timing critical clock domains by
using setup uncertainty.

• When evaluating the effect of constraint changes on performance and runtime, compile the design
with at least three different seeds to determine the average performance and runtime effects. Different
constraint combinations produce various results. Three samples or more establishes a performance
trend. Modify your constraints based on performance improvement or decline.

• Leave settings at the default value whenever possible. Increasing performance constraints can increase
the compile time significantly. While those increases may be necessary to close timing on a design,
using the default settings whenever possible minimizes compile time.

QPS5V1
2015.11.02 Optimizing Timing Closure 11-11

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimizing Critical Timing Paths
To close timing in high speed designs, review paths with the largest timing failures. Correcting a single,
large timing failure can result in a very significant timing improvement.

Review the register placement and routing paths by clicking Tools > Chip Planner. Large timing failures
on high fan-out control signals can be caused by any of the following conditions:

• Sub-optimal use of global networks
• Signals that traverse the chip on local routing without pipelining
• Failure to correct high fan-out by register duplication

For high-speed and high-bandwidth designs, optimize speed by reducing bus width and wire usage. To
reduce wire use, move the data as little as possible. For example, if a block of logic functions on a few
bits of a word, store inactive bits in a fifo or memory. Memory is cheaper and denser than registers and
reduces wire usage.

Optimizing Power Consumption
The total FPGA power consumption is comprised of I/O power, core static power, and core dynamic
power. Knowledge of the relationship between these components is fundamental in calculating the overall
total power consumption.

You can use various optimization techniques and tools to minimize power consumption when applied
during FPGA design implementation. The Quartus Prime software offers power-driven compilation
features to fully optimize device power consumption. Power-driven compilation focuses on reducing your
design’s total power consumption using power-driven synthesis and power-driven placement and
routing.

Managing Design Metastability
Metastability in PLD designs can be caused by the synchronization of asynchronous signals. You can use
the Quartus Prime software to analyze the mean time between failures (MTBF) due to metastability, thus
optimizing the design to improve the metastability MTBF. A high metastability MTBF indicates a more
robust design.

Checking Design Violations
To improve the reliability, timing performance, and logic utilization of your design, avoid design rule
violations. The Quartus Prime software provides the Design Assistant tool that automatically checks for
design rule violations and reports their location.

The Design Assistant is a design rule checking tool that allows you to check for design issues early in the
design flow. The Design Assistant checks your design for adherence to Altera-recommended design
guidelines. You can specify which rules you want the Design Assistant to apply to your design. This is
useful if you know that your design violates particular rules that are not critical and you can allow these
rule violations. The Design Assistant generates design violation reports with details about each violation
based on the settings that you specified.

This section provides an introduction to the Quartus Prime design flow with the Design Assistant,
message severity levels, and an explanation about how to set up the Design Assistant. The last parts of the
section describe the design rules and the reports generated by the Design Assistant. The Design Assistant
supports all Altera devices supported by the Quartus Prime software.

11-12 Optimizing Critical Timing Paths
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Validating Against Design Rules
You can run the Design Assistant following design synthesis or compilation. The Design Assistant
performs a post-fit netlist analysis of your design.

The default is to apply all of the rules to your project. If there are some rules that are unimportant to your
design, you can turn off the rules that you do not want the Design Assistant to use.

Figure 11-9: Quartus Prime Design Flow with the Design Assistant

Design Files

Analysis & Elaboration

Synthesis
(Logic Synthesis &

Technology Mapping)

Fitter

T iming Analysis

Design Assistant

Pre-Synthesis
Netlist

Design Assistant
Golden Rules (1)

Rule V iolation
Report

Custom
Rules (2)

Post-Fitting
Netlist

Post-Synthesis
Netlist

1. Database of the default rules for the Design Assistant.
2. A file that contains the .xml codes of the custom rules for the Design Assistant. For more details about

how to create this file .

The Design Assistant analyzes your design netlist at different stages of the compilation flow and may
yield different warnings or errors, even though the netlists are functionally the same. Your pre-
synthesis, post-synthesis, and post-fitting netlists might be different due to optimizations performed
by the Quartus Prime software. For example, a warning message in a pre-synthesis netlist may be
removed after the netlist has been synthesized into a post-synthesis or post-fitting netlist.

The exact operation of the Design Assistant depends on when you run it:

QPS5V1
2015.11.02 Validating Against Design Rules 11-13

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When you run the Design Assistant after running a full compilation or fitting, the Design Assistant
performs a post-fitting analysis on the design.

• When you run the Design Assistant after performing Analysis and Synthesis, the Design Assistant
performs post-synthesis analysis on the design.

• When you start the Design Assistant after performing Analysis and Elaboration, the Design Assistant
performs a pre-synthesis analysis on the design. You can also perform pre-synthesis analysis with the
Design Assistant using the command-line. You can use the -rtl option with the quartus_drc
executable, as shown in the following example:

quartus_drc <project_name> --rtl=on

If your design violates a design rule, the Design Assistant generates warning messages and information
messages about the violated rule. The Design Assistant displays these messages in the Messages
window, in the Design Assistant Messages report, and in the Design Assistant report files. You can find
the Design Assistant report files called <project_name>.drc.rpt in the <project_name> subdirectory of
the project directory.

Related Information
Design Assistant Rules

Creating Custom Design Rules
You can define and validate your design against your own custom set of design rules. You can save these
rules in a text file (with any file extension) with the XML format.

You then specify the path to that file in the Design Assistant settings page and run the Design Assistant
for violation checking.

Refer to the following location to locate the file that contains the default rules for the Design Assistant:

<Quartus Prime install path>\quartus\libraries\design-assistant\da_golden_rule.xml

Custom Design Rule Examples
The following examples of custom rules show how to check node relationships and clock relationships in
a design.

This example shows the XML codes for checking SR latch structures in a design.

Example 11-1: Detecting SR Latches in a Design

<DA_RULE ID="EX01" SEVERITY="CRITICAL" NAME="Checking Design for SR Latch"
DEFAULT_RUN="YES">
<RULE_DEFINITION>
 <FORBID>
 <OR>
 <NODE NAME="NODE_1" TYPE="SRLATCH" />
 <HAS_NODE NODE_LIST="NODE_1" />
 <NODE NAME="NODE_1" TOTAL_FANIN="EQ2" />
 <NODE NAME="NODE_2" TOTAL_FANIN="EQ2" />
 <AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND"
TO_NAME="NODE_2" TO_TYPE="NAND" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND"
TO_NAME="NODE_1" TO_TYPE="NAND" />
 </AND>
 <AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR"
TO_NAME="NODE_2" TO_TYPE="NOR" />

11-14 Creating Custom Design Rules
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

http://quartushelp.altera.com/current/index.htm#verify/da/da_file_rules_list.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR"
TO_NAME="NODE_1" TO_TYPE="NOR" />
 </AND>
 </OR>
 </FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
 <MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">
 <MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
 <MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />
 </MESSAGE>
</REPORTING_ROOT>
</DA_RULE>

The possible SR latch structures are specified in the rule definition section. Codes defined in the
<AND></AND> block are tied together, meaning that each statement in the block must be true for
the block to be fulfilled (AND gate similarity). In the <OR></OR> block, as long as one statement
in the block is true, the block is fulfilled (OR gate similarity). If no <AND></AND> or <OR></OR>
blocks are specified, the default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design, which in this
case is the SR latch structures. If the condition is fulfilled, the Design Assistant highlights a rule
violation.

Example 11-2: Detecting SR Latches in a Design

<AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NAND" TO_NAME="NODE_2"
 TO_TYPE="NAND" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NAND" TO_NAME="NODE_1"
 TO_TYPE="NAND" />
</AND>

Figure 11-10: Undesired Condition 1

NAND2

NODE_1

NAND2

NODE_2

<AND>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" FROM_TYPE="NOR" TO_NAME="NODE_2"
TO_TYPE="NOR" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" FROM_TYPE="NOR" TO_NAME="NODE_1"
TO_TYPE="NOR" />
</AND>

QPS5V1
2015.11.02 Custom Design Rule Examples 11-15

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-11: Undesired Condition 2

This example shows how to use the CLOCK_RELATIONSHIP attribute to relate nodes to clock
domains. This example checks for correct synchronization in data transfer between asynchronous
clock domains. Synchronization is done with cascaded registers, also called synchronizers, at the
receiving clock domain. The code in This example checks for the synchronizer configuration
based on the following guidelines:

• The cascading registers need to be triggered on the same clock edge
• There is no logic between the register output of the transmitting clock domain and the

cascaded registers in the receiving asynchronous clock domain.

Example 11-3: Detecting Incorrect Synchronizer Configuration

<DA_RULE ID="EX02" SEVERITY="HIGH" NAME="Data Transfer Not Synch Correctly"
DEFAULT_RUN="YES">

<RULE_DEFINITION>
<DECLARE>
 <NODE NAME="NODE_1" TYPE="REG" />
 <NODE NAME="NODE_2" TYPE="REG" />
 <NODE NAME="NODE_3" TYPE="REG" />
</DECLARE>
<FORBID>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />
 <NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />
 <OR>
 <NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2"
TO_PORT="D_PORT" REQUIRED_THROUGH="YES" THROUGH_TYPE="COMB" CLOCK_RELATION-
SHIP="ASYN" />
 <CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />
 </OR>
</FORBID>
</RULE_DEFINITION>

<REPORTING_ROOT>
<MESSAGE NAME="Rule %ARG1%: Found %ARG2% node(s) related to this rule.">
 <MESSAGE_ARGUMENT NAME="ARG1" TYPE="ATTRIBUTE" VALUE="ID" />
 <MESSAGE_ARGUMENT NAME="ARG2" TYPE="TOTAL_NODE" VALUE="NODE_1" />
 <MESSAGE NAME="Source node(s): %ARG3%, Destination node(s): %ARG4%">
 <MESSAGE_ARGUMENT NAME="ARG3" TYPE="NODE" VALUE="NODE_1" />
 <MESSAGE_ARGUMENT NAME="ARG4" TYPE="NODE" VALUE="NODE_2" />
 </MESSAGE>

11-16 Custom Design Rule Examples
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

</MESSAGE>
</REPORTING_ROOT>
</DA_RULE>

The codes differentiate the clock domains. ASYN means asynchronous, and !ASYN means non-
asynchronous. This notation is useful for describing nodes that are in different clock domains.
The following lines from the example state that NODE_2 and NODE_3 are in the same clock domain,
but NODE_1 is not.

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

The next line of code states that NODE_2 and NODE_3 have a clock relationship of either sequential
edge or asynchronous.

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

The <FORBID></FORBID> section contains the undesirable condition for the design, which in this
case is the undesired configuration of the synchronizer. If the condition is fulfilled, the Design
Assistant highlights a rule violation.

The possible SR latch structures are specified in the rule definition section. Codes defined in the
<AND></AND> block are tied together, meaning that each statement in the block must be true for
the block to be fulfilled (AND gate similarity). In the <OR></OR> block, as long as one statement
in the block is true, the block is fulfilled (OR gate similarity). If no <AND></AND> or <OR></OR>
blocks are specified, the default is <AND></AND>.

The <FORBID></FORBID> section contains the undesirable condition for the design, which in this
case is the SR latch structures. If the condition is fulfilled, the Design Assistant highlights a rule
violation.

The following examples show the undesired conditions from with their equivalent block
diagrams:

Example 11-4: Undesired Condition 3

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
REQUIRED_THROUGH="YES"
 THROUGH_TYPE="COMB" CLOCK_RELATIONSHIP="ASYN" />

QPS5V1
2015.11.02 Custom Design Rule Examples 11-17

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-12: Undesired Condition 3

NODE_1

Logic

NODE_2 NODE_3

D

CLOCK_1

CLOCK_2

Q

Example 11-5: Undesired Condition 4

<NODE_RELATIONSHIP FROM_NAME="NODE_1" TO_NAME="NODE_2" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="ASYN" />

<NODE_RELATIONSHIP FROM_NAME="NODE_2" TO_NAME="NODE_3" TO_PORT="D_PORT"
CLOCK_RELATIONSHIP="!ASYN" />

<CLOCK_RELATIONSHIP NAME="SEQ_EDGE|ASYN" NODE_LIST="NODE_2, NODE_3" />

Figure 11-13: Undesired Condition 4

NODE_1 NODE_2 NODE_3

D

CLOCK_1

CLOCK_2

Q

Use Clock and Register-Control Architectural Features
In addition to following general design guidelines, you must code your design with the device architecture
in mind. FPGAs provide device-wide clocks and register control signals that can improve performance.

Use Global Clock Network Resources
Altera FPGAs provide device-wide global clock routing resources and dedicated inputs. Use the FPGA’s
low-skew, high fan-out dedicated routing where available.

By assigning a clock input to one of these dedicated clock pins or with a Quartus Prime logic option to
assign global routing, you can take advantage of the dedicated routing available for clock signals.

In an ASIC design, you should balance the clock delay as it is distributed across the device. Because Altera
FPGAs provide device-wide global clock routing resources and dedicated inputs, there is no need to
manually balance delays on the clock network.

11-18 Use Clock and Register-Control Architectural Features
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You should limit the number of clocks in your design to the number of dedicated global clock resources
available in your FPGA. Clocks feeding multiple locations that do not use global routing may exhibit clock
skew across the device that could lead to timing problems. In addition, when you use combinational logic
to generate an internal clock, it adds delays on the clock path. In some cases, delay on a clock line can
result in a clock skew greater than the data path length between two registers. If the clock skew is greater
than the data delay, you violate the timing parameters of the register (such as hold time requirements) and
the design does not function correctly.

FPGAs offer a number of low-skew global routing resources to distribute high fan-out signals to help with
the implementation of large designs with many clock domains. Many large FPGA devices provide
dedicated global clock networks, regional clock networks, and dedicated fast regional clock networks.
These clocks are organized into a hierarchical clock structure that allows many clocks in each device
region with low skew and delay. There are typically several dedicated clock pins to drive either global or
regional clock networks, and both PLL outputs and internal clocks can drive various clock networks.

To reduce clock skew in a given clock domain and ensure that hold times are met in that clock domain,
assign each clock signal to one of the global high fan-out, low-skew clock networks in the FPGA device.
The Quartus Prime software automatically uses global routing for high fan-out control signals, PLL
outputs, and signals feeding the global clock pins on the device. You can make explicit Global Signal logic
option settings by turning on the Global Signal option setting. Use this option when it is necessary to
force the software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock signals in a design (input clock pins
or internally-generated clocks) need to drive only the clock input ports of registers. In older Altera device
families, if a clock signal feeds the data ports of a register, the signal may not be able to use dedicated
routing, which can lead to decreased performance and clock skew problems. In general, allowing clock
signals to drive the data ports of registers is not considered synchronous design and can complicate
timing analysis.

Use Global Reset Resources
ASIC designs may use local resets to avoid long routing delays. Take advantage of the device-wide
asynchronous reset pin available on most FPGAs to eliminate these problems. This reset signal provides
low-skew routing across the device.

The following are three types of resets used in synchronous circuits:

• Synchronous Reset
• Asynchronous Reset
• Synchronized Asynchronous Reset—preferred when designing an FPGA circuit

Use Synchronous Resets
The synchronous reset ensures that the circuit is fully synchronous. You can easily time the circuit with
the Quartus Prime TimeQuest analyzer.

Because clocks that are synchronous to each other launch and latch the reset signal, the data arrival and
data required times are easily determined for proper slack analysis. The synchronous reset is easier to use
with cycle-based simulators.

There are two methods by which a reset signal can reach a register; either by being gated in with the data
input, or by using an LAB-wide control signal (synclr). If you use the first method, you risk adding an
additional gate delay to the circuit to accommodate the reset signal, which causes increased data arrival
times and negatively impacts setup slack. The second method relies on dedicated routing in the LAB to
each register, but this is slower than an asynchronous reset to the same register.

QPS5V1
2015.11.02 Use Global Reset Resources 11-19

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-14: Synchronous Reset

DFF
AND2

inst1

Figure 11-15: LAB-Wide Control Signals

Dedicated Row LAB Clocks

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

Local Interconnect

There are two unique
clock signals per LAB

6

6

6

labclk0

labclkena0

labclk1 labclk2 syncload labclr1

labclkena1 labclkena2 labclr0 synclr

Consider two types of synchronous resets when you examine the timing analysis of synchronous resets—
externally synchronized resets and internally synchronized resets. Externally synchronized resets are
synchronized to the clock domain outside the FPGA, and are not very common. A power-on asynchro‐
nous reset is dual-rank synchronized externally to the system clock and then brought into the FPGA.
Inside the FPGA, gate this reset with the data input to the registers to implement a synchronous reset.

11-20 Use Synchronous Resets
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-16: Externally Synchronized Reset

por_n

clock
reset_n

data_a

INPU T
VCC

VCC
INPU T

VCC
INPU Tclock

VCC
INPU Tdata_b

AND2

lc 1

AND2

lc 2

OUTPU T out_a

out_b
OUTPU T

FPG A

The following example shows the Verilog equivalent of the schematic. When you use synchronous resets,
the reset signal is not put in the sensitivity list.

The following example shows the necessary modifications that you should make to the internally
synchronized reset.

Example 11-6: Verilog Code for Externally Synchronized Reset

module sync_reset_ext (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2
assign out_a = reg1;
assign out_b = reg2;
always @ (posedge clock)
begin
 if (!reset_n)
 begin
 reg1 <= 1’b0;
 reg2 <= 1’b0;
 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_reset_ext

The following example shows the constraints for the externally synchronous reset. Because the
external reset is synchronous, you only need to constrain the reset_n signal as a normal input
signal with set_input_delay constraint for -max and -min.

QPS5V1
2015.11.02 Use Synchronous Resets 11-21

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 11-7: SDC Constraints for Externally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}
Input constraints on low-active reset
and data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}] \
 [get_ports {reset_n data_a data_b}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {reset_n data_a data_b}]

More often, resets coming into the device are asynchronous, and must be synchronized internally
before being sent to the registers.

Figure 11-17: Internally Synchronized Reset

INPU T
VCC

VCC
INPU T

VCC
INPU T

VCC
INPU T

AND2

lc 1

AND2

lc 2

OUTPU T

OUTPU T

The following example shows the Verilog equivalent of the schematic. Only the clock edge is in
the sensitivity list for a synchronous reset.

Example 11-8: Verilog Code for Internally Synchronized Reset

module sync_reset_ext (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2
assign out_a = reg1;

11-22 Use Synchronous Resets
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

assign out_b = reg2;
always @ (posedge clock)
begin
 if (!reset_n)
 begin
 reg1 <= 1’b0;
 reg2 <= 1’b0;
 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_reset_ext

The SDC constraints are similar to the external synchronous reset, except that the input reset
cannot be constrained because it is asynchronous and should be cut with a set_false_path
statement to avoid these being considered as unconstrained paths.

Example 11-9: SDC Constraints for Internally Synchronized Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \
 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}
Input constraints on data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}] \
 [get_ports {data_a data_b}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {data_a data_b}]
Cut the asynchronous reset input
set_false_path \
 -from [get_ports {reset_n}] \
 -to [all_registers]

An issue with synchronous resets is their behavior with respect to short pulses (less than a period)
on the asynchronous input to the synchronizer flipflops. This can be a disadvantage because the
asynchronous reset requires a pulse width of at least one period wide to guarantee that it is
captured by the first flipflop. However, this can also be viewed as an advantage in that this circuit
increases noise immunity. Spurious pulses on the asynchronous input have a lower chance of
being captured by the first flipflop, so the pulses do not trigger a synchronous reset. In some
cases, you might want to increase the noise immunity further and reject any asynchronous input
reset that is less than n periods wide to debounce an asynchronous input reset.

QPS5V1
2015.11.02 Use Synchronous Resets 11-23

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-18: Internally Synchronized Reset with Pulse Extender

INPU T
VCC

VCC
INPU T

VCC
INPU T

VCC
INPU T

AND2

lc 1

AND2

lc 2

OUTPU T

OUTPU T

BNAND2

Synchronizer Flip-Flops n Pulse Extender Flip-Flops

lc 3

1. Junction dots indicate the number of stages. You can have more flip flops to get a wider pulse
that spans more clock cycles.

Many designs have more than one clock signal. In these cases, use a separate reset synchroni‐
zation circuit for each clock domain in the design. When you create synchronizers for PLL
output clocks, these clock domains are not reset until you lock the PLL and the PLL output
clocks are stable. If you use the reset to the PLL, this reset does not have to be synchronous
with the input clock of the PLL. You can use an asynchronous reset for this. Using a reset to
the PLL further delays the assertion of a synchronous reset to the PLL output clock domains
when using internally synchronized resets.

Using Asynchronous Resets
Asynchronous resets are the most common form of reset in circuit designs, as well as the easiest to
implement. Typically, you can insert the asynchronous reset into the device, turn on the global buffer, and
connect to the asynchronous reset pin of every register in the device.

This method is only advantageous under certain circumstances—you do not need to always reset the
register. Unlike the synchronous reset, the asynchronous reset is not inserted in the data path, and does
not negatively impact the data arrival times between registers. Reset takes effect immediately, and as soon
as the registers receive the reset pulse, the registers are reset. The asynchronous reset is not dependent on
the clock.

However, when the reset is deasserted and does not pass the recovery (µtSU) or removal (µtH) time check
(the TimeQuest analyzer recovery and removal analysis checks both times), the edge is said to have fallen
into the metastability zone. Additional time is required to determine the correct state, and the delay can
cause the setup time to fail to register downstream, leading to system failure. To avoid this, add a few
follower registers after the register with the asynchronous reset and use the output of these registers in the
design. Use the follower registers to synchronize the data to the clock to remove the metastability issues.
You should place these registers close to each other in the device to keep the routing delays to a minimum,
which decreases data arrival times and increases MTBF. Ensure that these follower registers themselves
are not reset, but are initialized over a period of several clock cycles by “flushing out” their current or
initial state.

11-24 Using Asynchronous Resets
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-19: Asynchronous Reset with Follower Registers

DFF DFF DFF

INPU T
VCC

VCC
INPU T

VCC
INPU T

out_aOUTPU T

The following example shows the equivalent Verilog code. The active edge of the reset is now in the
sensitivity list for the procedural block, which infers a clock enable on the follower registers with the
inverse of the reset signal tied to the clock enable. The follower registers should be in a separate
procedural block as shown using non-blocking assignments.

Example 11-10: Verilog Code of Asynchronous Reset with Follower Registers

module async_reset (
 input clock,
 input reset_n,
 input data_a,
 output out_a,
);
reg reg1, reg2, reg3;
assign out_a = reg3;
always @ (posedge clock, negedge reset_n)
begin
 if (!reset_n)
 reg1 <= 1’b0;
 else
 reg1 <= data_a;
end
always @ (posedge clock)
begin
 reg2 <= reg1;
 reg3 <= reg2;
end
endmodule // async_reset

You can easily constrain an asynchronous reset. By definition, asynchronous resets have a non-
deterministic relationship to the clock domains of the registers they are resetting. Therefore, static
timing analysis of these resets is not possible and you can use the set_false_path command to
exclude the path from timing analysis. Because the relationship of the reset to the clock at the
register is not known, you cannot run recovery and removal analysis in the TimeQuest analyzer
for this path. Attempting to do so even without the false path statement results in no paths
reported for recovery and removal.

Example 11-11: SDC Constraints for Asynchronous Reset

Input clock - 100 MHz
create_clock [get_ports {clock}] \

QPS5V1
2015.11.02 Using Asynchronous Resets 11-25

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 -name {clock} \
 -period 10.0 \
 -waveform {0.0 5.0}
Input constraints on data
set_input_delay 7.0 \
 -max \
 -clock [get_clocks {clock}]\
 [get_ports {data_a}]
set_input_delay 1.0 \
 -min \
 -clock [get_clocks {clock}] \
 [get_ports {data_a}]
Cut the asynchronous reset input
set_false_path \
 -from [get_ports {reset_n}] \
 -to [all_registers]

The asynchronous reset is susceptible to noise, and a noisy asynchronous reset can cause a
spurious reset. You must ensure that the asynchronous reset is debounced and filtered. You can
easily enter into a reset asynchronously, but releasing a reset asynchronously can lead to potential
problems (also referred to as “reset removal”) with metastability, including the hazards of
unwanted situations with synchronous circuits involving feedback.

Use Synchronized Asynchronous Reset
To avoid potential problems associated with purely synchronous resets and purely asynchronous resets,
you can use synchronized asynchronous resets. Synchronized asynchronous resets combine the
advantages of synchronous and asynchronous resets.

These resets are asynchronously asserted and synchronously deasserted. This takes effect almost instanta‐
neously, and ensures that no data path for speed is involved, and that the circuit is synchronous for timing
analysis and is resistant to noise.

The following example shows a method for implementing the synchronized asynchronous reset. You
should use synchronizer registers in a similar manner as synchronous resets. However, the asynchronous
reset input is gated directly to the CLRN pin of the synchronizer registers and immediately asserts the
resulting reset. When the reset is deasserted, logic “1” is clocked through the synchronizers to synchro‐
nously deassert the resulting reset.

11-26 Use Synchronized Asynchronous Reset
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-20: Schematic of Synchronized Asynchronous Reset

DFF

reg3

VCC

DFF

reg4

DFF

reg1

DFF

reg2

data_a

clock

INPU T
VCC

VCC
INPU T

VCC
INPU Treset_n

VCC
INPU Tdata_b

out_aOUTPU T

out_bOUTPU T

The following example shows the equivalent Verilog HDL code. Use the active edge of the reset in the
sensitivity list for the blocks.

Example 11-12: Verilog Code for Synchronized Asynchronous Reset

module sync_async_reset (
 input clock,
 input reset_n,
 input data_a,
 input data_b,
 output out_a,
 output out_b
);
reg reg1, reg2;
reg reg3, reg4;
assign out_a = reg1;
assign out_b = reg2;
assign rst_n = reg4;
always @ (posedge clock, negedge reset_n)
begin
 if (!reset_n)
 begin
 reg3 <= 1’b0;
 reg4 <= 1’b0;
 end
 else
 begin
 reg3 <= 1’b1;
 reg4 <= reg3;
 end
end
always @ (posedge clock, negedge rst_n)
begin
 if (!rst_n)

QPS5V1
2015.11.02 Use Synchronized Asynchronous Reset 11-27

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 begin
 reg1 <= 1’b0;
 reg2 <= 1;b0;
 end
 else
 begin
 reg1 <= data_a;
 reg2 <= data_b;
 end
end
endmodule // sync_async_reset

To minimize the metastability effect between the two synchronization registers, and to increase
the MTBF, the registers should be located as close as possible in the device to minimize routing
delay. If possible, locate the registers in the same logic array block (LAB). The input reset signal
(reset_n) must be excluded with a set_false_path command:

set_false_path -from [get_ports {reset_n}] -to [all_registers]

The set_false_path command used with the specified constraint excludes unnecessary input
timing reports that would otherwise result from specifying an input delay on the reset pin.

The instantaneous assertion of synchronized asynchronous resets is susceptible to noise and runt
pulses. If possible, you should debounce the asynchronous reset and filter the reset before it enters
the device. The circuit ensures that the synchronized asynchronous reset is at least one full clock
period in length. To extend this time to n clock periods, you must increase the number of
synchronizer registers to n + 1. You must connect the asynchronous input reset (reset_n) to the
CLRN pin of all the synchronizer registers to maintain the asynchronous assertion of the synchron‐
ized asynchronous reset.

Avoid Asynchronous Register Control Signals
Avoid using an asynchronous load signal if the design target device architecture does not include registers
with dedicated circuitry for asynchronous loads. Also, avoid using both asynchronous clear and preset if
the architecture provides only one of these control signals.

Some Altera devices directly support an asynchronous clear function, but not a preset or load function.
When the target device does not directly support the signals, the synthesis or placement and routing
software must use combinational logic to implement the same functionality. In addition, if you use signals
in a priority other than the inherent priority in the device architecture, combinational logic may be
required to implement the necessary control signals. Combinational logic is less efficient and can cause
glitches and other problems; it is best to avoid these implementations.

Implementing Embedded RAM
Altera’s dedicated memory architecture offers many advanced features that you can enable with Altera-
provided IP cores. Use synchronous memory blocks for your design, so that the blocks can be mapped
directly into the device dedicated memory blocks.

You can use single-port, dual-port, or three-port RAM with a single- or dual-clocking method. You
should not infer the asynchronous memory logic as a memory block or place the asynchronous memory
logic in the dedicated memory block, but implement the asynchronous memory logic in regular logic
cells.

Altera memory blocks have different read-during-write behaviors, depending on the targeted device
family, memory mode, and block type. Read-during-write behavior refers to read and write from the same

11-28 Avoid Asynchronous Register Control Signals
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

memory address in the same clock cycle; for example, you read from the same address to which you write
in the same clock cycle.

You should check how you specify the memory in your HDL code when you use read-during-write
behavior. The HDL code that describes the read returns either the old data stored at the memory location,
or the new data being written to the memory location.

In some cases, when the device architecture cannot implement the memory behavior described in your
HDL code, the memory block is not mapped to the dedicated RAM blocks, or the memory block is
implemented using extra logic in addition to the dedicated RAM block. Implement the read-during-write
behavior using single-port RAM in Arria GX devices and the Cyclone and Stratix series of devices to avoid
this extra logic implementation.

In many synthesis tools, you can specify that the read-during-write behavior is not important to your
design; if, for example, you never read and write from the same address in the same clock cycle. For
Quartus Prime integrated synthesis, add the synthesis attribute ramstyle=”no_rw_check” to allow the
software to choose the read-during-write behavior of a RAM, rather than using the read-during-write
behavior specified in your HDL code. Using this type of attribute prevents the synthesis tool from using
extra logic to implement the memory block and, in some cases, can allow memory inference when it
would otherwise be impossible.

Document Revision History

Table 11-1: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Optimization Settings to Compiler Settings.

June 2014 14.0.0 Removed references to obsolete MegaWizard Plug-In Manager.

November
2013

13.1.0 Removed HardCopy device information.

May 2013 13.0.0 Removed PrimeTime support.

June 2012 12.0.0 Removed survey link.

November
2011

11.0.1 Template update.

May 2011 11.0.0 Added information to Reset Resources .

QPS5V1
2015.11.02 Document Revision History 11-29

Recommended Design Practices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

December
2010

10.1.0 • Title changed from Design Recommendations for Altera Devices and the
Quartus Prime Design Assistant.

• Updated to new template.
• Added references to Quartus Prime Help for “Metastability” on page 9–13 and

“Incremental Compilation” on page 9–13.
• Removed duplicated content and added references to Quartus Prime Help for

“Custom Rules” on page 9–15.

July 2010 10.0.0 • Removed duplicated content and added references to Quartus Prime Help for
Design Assistant settings, Design Assistant rules, Enabling and Disabling Design
Assistant Rules, and Viewing Design Assistant reports.

• Removed information from “Combinational Logic Structures” on page 5–4
• Changed heading from “Design Techniques to Save Power” to “Power

Optimization” on page 5–12
• Added new “Metastability” section
• Added new “Incremental Compilation” section
• Added information to “Reset Resources” on page 5–23
• Removed “Referenced Documents” section

November
2009

9.1.0 • Removed documentation of obsolete rules.

March
2009

9.0.0 • No change to content.

November
2008

8.1.0 • Changed to 8-1/2 x 11 page size
• Added new section “Custom Rules Coding Examples” on page 5–18
• Added paragraph to “Recommended Clock-Gating Methods” on page 5–11
• Added new section: “Design Techniques to Save Power” on page 5–12

May 2008 8.0.0 • Updated Figure 5–9 on page 5–13; added custom rules file to the flow
• Added notes to Figure 5–9 on page 5–13
• Added new section: “Custom Rules Report” on page 5–34
• Added new section: “Custom Rules” on page 5–34
• Added new section: “Targeting Embedded RAM Architectural Features” on

page 5–38
• Minor editorial updates throughout the chapter
• Added hyperlinks to referenced documents throughout the chapter

Related Information
http://www.altera.com/literature/lit-qts_archive.jsp

11-30 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Recommended Design Practices

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20Design%20Practices%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Recommended HDL Coding Styles 12
2015.11.02

QPS5V1 Subscribe Send Feedback

This chapter provides Hardware Description Language (HDL) coding style recommendations to ensure
optimal synthesis results when targeting Altera devices.

HDL coding styles can have a significant effect on the quality of results that you achieve for program‐
mable logic designs. Synthesis tools optimize HDL code for both logic utilization and performance;
however, synthesis tools have no information about the purpose or intent of the design. The best
optimizations require your conscious interaction. The Altera website provides design examples for other
types of functions and to target specific applications.

Note: For style recommendations, options, or HDL attributes specific to your synthesis tool (including
Quartus Prime integrated synthesis and other EDA tools), refer to the tool vendor’s documenta‐
tion.

Related Information

• Quartus Prime Integrated Synthesis on page 16-1
• Recommended Design Practices on page 11-1
• Advanced Synthesis Cookbook
• Design Examples
• Reference Designs

Using Provided HDL Templates
You can use provided HDL templates to start your HDL designs.

Altera provides templates for Verilog HDL, SystemVerilog, and VHDL. Many of the HDL examples in
this document correspond with theFull Designs examples in the Quartus Prime Templates. You can
insert HDL code into your own design using the templates or examples.

Inserting a HDL Code from the Template
Insert HDL code from a provided template, follow these steps:

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Recommended%20HDL%20Coding%20Styles%20&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/manual/stx_cookbook.pdf
http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/support/refdesigns/ref-index.jsp
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

1. On the File menu, click New.
2. In the New dialog box, select the type of design file corresponding to the type of HDL you want to use,

SystemVerilog HDL File, VHDL File, or Verilog HDL File.
3. Right-click in the HDL file and then click Insert Template.
4. In the Insert Template dialog box, expand the section corresponding to the appropriate HDL, then

expand the Full Designs section.
5. Select a design. The HDL appears in the Preview pane.
6. Click Insert to paste the HDL design to the blank Verilog or VHDL file you created in step 2.
7. Click Close to close the Insert Template dialog box.

Figure 12-1: Inserting a RAM Template

Note: You can use any of the standard features of the Quartus Prime Text Editor to modify the HDL
design or save the template as an HDL file to edit in your preferred text editor.

Related Information
About the Quartus Prime Text Editor

Instantiating IP Cores in HDL
Altera provides parameterizable IP cores that are optimized for Altera device architectures. Using IP cores
instead of coding your own logic saves valuable design time.

Additionally, the Altera-provided IP cores offer more efficient logic synthesis and device implementation.
You can scale the IP core’s size and specify various options by setting parameters. You can instantiate the
IP core directly in your HDL file code by calling the IP core name and defining its parameters as you

12-2 Instantiating IP Cores in HDL
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

http://quartushelp.altera.com/current/index.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

would any other module, component, or subdesign. Alternatively, you can use the IP Catalog (Tools > IP
Catalog) and parameter editor GUI to simplify customization of your IP core variation. You can infer or
instantiate IP cores that optimize the following device architecture features:

• Transceivers
• LVDS drivers
• Memory and DSP blocks
• Phase-locked loops (PLLs)
• double-data rate input/output (DDIO) circuitry

For some types of logic functions, such as memories and DSP functions, you can infer device-specific
dedicated architecture blocks instead of instantiating an IP core. Quartus Prime synthesis recognizes
certain HDL code structures and automatically infers the appropriate IP core or map directly to device
atoms.

Related Information

• Inferring Multipliers and DSP Functions on page 12-3
• Inferring Memory Functions from HDL Code on page 12-8
• Altera IP Core Literature

Inferring Multipliers and DSP Functions
The following sections describe how to infer multiplier and DSP functions from generic HDL code, and, if
applicable, how to target the dedicated DSP block architecture in Altera devices.

Related Information
DSP Solutions Center

Inferring Multipliers
To infer multiplier functions, synthesis tools detect multiplier logic and implement this in Altera IP cores,
or map the logic directly to device atoms.

For devices with DSP blocks, the software can implement the function in a DSP block instead of logic,
depending on device utilization. The Quartus Prime Fitter can also place input and output registers in
DSP blocks (that is, perform register packing) to improve performance and area utilization.

The Verilog HDL and VHDL code examples show, for unsigned and signed multipliers, that synthesis
tools can infer as an IP core or DSP block atoms. Each example fits into one DSP block element. In
addition, when register packing occurs, no extra logic cells for registers are required.

Note: The signed declaration in Verilog HDL is a feature of the Verilog 2001 Standard.

Example 12-1: Verilog HDL Unsigned Multiplier

module unsigned_mult (out, a, b);
 output [15:0] out;
 input [7:0] a;
 input [7:0] b;

QPS5V1
2015.11.02 Inferring Multipliers and DSP Functions 12-3

Recommended HDL Coding Styles Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/technology/dsp/dsp-index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 assign out = a * b;
endmodule

Example 12-2: Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)

module signed_mult (out, clk, a, b);
 output [15:0] out;
 input clk;
 input signed [7:0] a;
 input signed [7:0] b;

 reg signed [7:0] a_reg;
 reg signed [7:0] b_reg;
 reg signed [15:0] out;
 wire signed [15:0] mult_out;

 assign mult_out = a_reg * b_reg;

 always @ (posedge clk)
 begin
 a_reg <= a;
 b_reg <= b;
 out <= mult_out;
 end
endmodule

Example 12-3: VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
 PORT (
 a: IN UNSIGNED (7 DOWNTO 0);
 b: IN UNSIGNED (7 DOWNTO 0);
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 result: OUT UNSIGNED (15 DOWNTO 0)
);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
 SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);
BEGIN
 PROCESS (clk, aclr)
 BEGIN
 IF (aclr ='1') THEN
 a_reg <= (OTHERS => '0');
 b_reg <= (OTHERS => '0');
 result <= (OTHERS => '0');
 ELSIF (clk'event AND clk = '1') THEN
 a_reg <= a;
 b_reg <= b;
 result <= a_reg * b_reg;
 END IF;

12-4 Inferring Multipliers
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 END PROCESS;
END rtl;

Example 12-4: VHDL Signed Multiplier

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY signed_mult IS
 PORT (
 a: IN SIGNED (7 DOWNTO 0);
 b: IN SIGNED (7 DOWNTO 0);
 result: OUT SIGNED (15 DOWNTO 0)
);
END signed_mult;

ARCHITECTURE rtl OF signed_mult IS
BEGIN
 result <= a * b;
END rtl;

Inferring Multiply‑Accumulator and Multiply-Adder
Synthesis tools detect multiply-accumulate or multiply-add functions and implement them as Altera IP
cores, respectively, or may map them directly to device atoms. The Quartus Prime software then places
these functions in DSP blocks during placement and routing.

Note: Synthesis tools infer multiply-accumulator and multiply-adder functions only if the Altera device
family has dedicated DSP blocks that support these functions.

A simple multiply-accumulator consists of a multiplier feeding an addition operator. The addition
operator feeds a set of registers that then feeds the second input to the addition operator. A simple
multiply-adder consists of two to four multipliers feeding one or two levels of addition, subtraction, or
addition/subtraction operators. Addition is always the second-level operator, if it is used. In addition to
the multiply-accumulator and multiply-adder, the Quartus Prime Fitter also places input and output
registers into the DSP blocks to pack registers and improve performance and area utilization.

Some device families offer additional advanced multiply-add and accumulate functions, such as complex
multiplication, input shift register, or larger multiplications.

The Verilog HDL and VHDL code samples infer multiply-accumulators and multiply-adders with input,
output, and pipeline registers, as well as an optional asynchronous clear signal. Using the three sets of
registers provides the best performance through the function, with a latency of three. You can remove the
registers in your design to reduce the latency.

Note: To obtain high performance in DSP designs, use register pipelining and avoid unregistered DSP
functions.

Example 12-5: Verilog HDL Unsigned Multiply-Accumulator

module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);
 input [7:0] dataa, datab;
 input clk, aclr, clken;

QPS5V1
2015.11.02 Inferring Multiply‑Accumulator and Multiply-Adder 12-5

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 output reg[16:0] dataout;

 reg [7:0] dataa_reg, datab_reg;
 reg [15:0] multa_reg;
 wire [15:0] multa;
 wire [16:0] adder_out;
 assign multa = dataa_reg * datab_reg;
 assign adder_out = multa_reg + dataout;

 always @ (posedge clk or posedge aclr)
 begin
 if (aclr)
 begin
 dataa_reg <= 8'b0;
 datab_reg <= 8'b0;
 multa_reg <= 16'b0;
 dataout <= 17'b0;
 end
 else if (clken)
 begin
 dataa_reg <= dataa;
 datab_reg <= datab;
 multa_reg <= multa;
 dataout <= adder_out;
 end
 end
endmodule

Example 12-6: Verilog HDL Signed Multiply-Adder

module sig_altmult_add (dataa, datab, datac, datad, clock, aclr, result);
 input signed [15:0] dataa, datab, datac, datad;
 input clock, aclr;
 output reg signed [32:0] result;

 reg signed [15:0] dataa_reg, datab_reg, datac_reg, datad_reg;
 reg signed [31:0] mult0_result, mult1_result;

 always @ (posedge clock or posedge aclr) begin
 if (aclr) begin
 dataa_reg <= 16'b0;
 datab_reg <= 16'b0;
 datac_reg <= 16'b0;
 datad_reg <= 16'b0;
 mult0_result <= 32'b0;
 mult1_result <= 32'b0;
 result <= 33'b0;
 end
 else begin
 dataa_reg <= dataa;
 datab_reg <= datab;
 datac_reg <= datac;
 datad_reg <= datad;
 mult0_result <= dataa_reg * datab_reg;
 mult1_result <= datac_reg * datad_reg;
 result <= mult0_result + mult1_result;
 end
 end
endmodule

12-6 Inferring Multiply‑Accumulator and Multiply-Adder
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 12-7: VHDL Signed Multiply-Accumulator

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
 PORT (
 a: IN SIGNED(7 DOWNTO 0);
 b: IN SIGNED (7 DOWNTO 0);
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 accum_out: OUT SIGNED (15 DOWNTO 0)
) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
 SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
 SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
 SIGNAL adder_out: SIGNED (15 DOWNTO 0);
BEGIN
 PROCESS (clk, aclr)
 BEGIN
 IF (aclr = '1') then
 a_reg <= (others => '0');
 b_reg <= (others => '0');
 pdt_reg <= (others => '0');
 adder_out <= (others => '0');
 ELSIF (clk'event and clk = '1') THEN
 a_reg <= (a);
 b_reg <= (b);
 pdt_reg <= a_reg * b_reg;
 adder_out <= adder_out + pdt_reg;
 END IF;
 END process;
 accum_out <= adder_out;
END rtl;

Example 12-8: VHDL Unsigned Multiply-Adder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
 PORT (
 a: IN UNSIGNED (7 DOWNTO 0);
 b: IN UNSIGNED (7 DOWNTO 0);
 c: IN UNSIGNED (7 DOWNTO 0);
 d: IN UNSIGNED (7 DOWNTO 0);
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 result: OUT UNSIGNED (15 DOWNTO 0)
);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
 SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
 SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
 SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);

QPS5V1
2015.11.02 Inferring Multiply‑Accumulator and Multiply-Adder 12-7

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

BEGIN
 PROCESS (clk, aclr)
 BEGIN
 IF (aclr = '1') THEN
 a_reg <= (OTHERS => '0');
 b_reg <= (OTHERS => '0');
 c_reg <= (OTHERS => '0');
 d_reg <= (OTHERS => '0');
 pdt_reg <= (OTHERS => '0');
 pdt2_reg <= (OTHERS => '0');

 ELSIF (clk'event AND clk = '1') THEN
 a_reg <= a;
 b_reg <= b;
 c_reg <= c;
 d_reg <= d;
 pdt_reg <= a_reg * b_reg;
 pdt2_reg <= c_reg * d_reg;
 result_reg <= pdt_reg + pdt2_reg;
 END IF;
 END PROCESS;
 result <= result_reg;
END rtl;

Related Information

• DSP Design Examples
• AN639: Inferring Stratix V DSP Blocks for FIR Filtering

Inferring Memory Functions from HDL Code
The following sections describe how to infer memory functions and target dedicated memory architecture
using HDL code.

Altera’s dedicated memory architecture offers a number of advanced features that can be easily targeted
by instantiating Altera various Altera memory IP Cores in HDL. The following coding recommendations
provide portable examples of generic HDL code that infer the appropriate Altera memory IP core.
However, if you want to use some of the advanced memory features in Altera devices, consider using the
IP core directly so that you can customize the ports and parameters easily. You can also use the Quartus
Prime templates provided in the Quartus Prime software as a starting point.

Most of these designs can also be found on the Design Examples page on the Altera website.

12-8 Inferring Memory Functions from HDL Code
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

http://www.altera.com/support/examples/exm-index.html
http://www.altera.com/literature/an/an639.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 12-1: Altera Memory HDL Design Examples

Language Full Design Name

VHDL Single-Port RAM

Single-Port RAM with Initial Contents

Simple Dual-Port RAM (single clock)Simple Dual-Port RAM (dual clock)

True Dual-Port RAM (single clock)

True Dual-Port RAM (dual clock)

Mixed-Width RAM

Mixed-Width True Dual-Port RAM

Byte-Enabled Simple Dual-Port RAM

Byte-Enabled True Dual-Port RAM

Single-Port ROMDual-Port ROM

Verilog HDL Single-Port RAM

Single-Port RAM with Initial Contents

Simple Dual-Port RAM (single clock)

Simple Dual-Port RAM (dual clock)

True Dual-Port RAM (single clock)

True Dual-Port RAM (dual clock)

Single-Port ROM

Dual-Port ROM

System Verilog Mixed-Width Port RAM

Mixed-Width True Dual-Port RAM

Mixed-Width True Dual-Port RAM (new data on same port read during write)

Byte-Enabled Simple Dual Port RAM

Byte-Enabled True Dual-Port RAM

Related Information

• Instantiating Altera IP Cores in HDL Code
• Design Examples

Inferring RAM functions from HDL Code
To infer RAM functions, synthesis tools detect sets of registers and logic that can be replaced with Altera
IP cores for device families that have dedicated RAM blocks, or may map them directly to device memory
atoms.

QPS5V1
2015.11.02 Inferring RAM functions from HDL Code 12-9

Recommended HDL Coding Styles Altera Corporation

Send Feedback

http://www.altera.com/support/examples/exm-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synthesis tools typically consider all signals and variables that have a multi-dimensional array type and
then create a RAM block, if applicable. This is based on the way the signals or variables are assigned or
referenced in the HDL source description.

Standard synthesis tools recognize single-port and simple dual-port (one read port and one write port)
RAM blocks. Some tools (such as the Quartus Prime software) also recognize true dual-port (two read
ports and two write ports) RAM blocks that map to the memory blocks in certain Altera devices.

Some tools (such as the Quartus Prime software) also infer memory blocks for array variables and signals
that are referenced (read/written) by two indices, to recognize mixed-width and byte-enabled RAMs for
certain coding styles.

Note: If your design contains a RAM block that your synthesis tool does not recognize and infer, the
design might require a large amount of system memory that can potentially cause compilation
problems

When you use a formal verification flow, Altera recommends that you create RAM blocks in separate
entities or modules that contain only the RAM logic. In certain formal verification flows, for example,
when using Quartus Prime integrated synthesis, the entity or module containing the inferred RAM is put
into a black box automatically because formal verification tools do not support RAM blocks. The Quartus
Prime software issues a warning message when this situation occurs. If the entity or module contains any
additional logic outside the RAM block, this logic cannot be verified because it also must be treated as a
black box for formal verification.

Use Synchronous Memory Blocks
Use synchronous memory blocks for Altera designs.

Because memory blocks in the newest devices from Altera are synchronous, RAM designs that are
targeted towards architectures that contain these dedicated memory blocks must be synchronous to be
mapped directly into the device architecture. For these devices, asynchronous memory logic is
implemented in regular logic cells.

Synchronous memory offers several advantages over asynchronous memory, including higher frequencies
and thus higher memory bandwidth, increased reliability, and less standby power. In many designs with
asynchronous memory, the memory interfaces with synchronous logic so that the conversion to synchro‐
nous memory design is straightforward. To convert asynchronous memory you can move registers from
the data path into the memory block.

Synchronous memories are supported in all Altera device families. A memory block is considered
synchronous if it uses one of the following read behaviors:

• Memory read occurs in a Verilog always block with a clock signal or a VHDL clocked process. The
recommended coding style for synchronous memories is to create your design with a registered read
output.

• Memory read occurs outside a clocked block, but there is a synchronous read address (that is, the
address used in the read statement is registered). This type of logic is not always inferred as a memory
block, or may require external bypass logic, depending on the target device architecture.

Note: The synchronous memory structures in Altera devices can differ from the structures in other
vendors’ devices. For best results, match your design to the target device architecture.

Later sections provide coding recommendations for various memory types. All of these examples are
synchronous to ensure that they can be directly mapped into the dedicated memory architecture available
in Altera FPGAs.

12-10 Use Synchronous Memory Blocks
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avoid Unsupported Reset and Control Conditions
To ensure that your HDL code can be implemented in the target device architecture, avoid unsupported
reset conditions or other control logic that does not exist in the device architecture.

The RAM contents of Altera memory blocks cannot be cleared with a reset signal during device operation.
If your HDL code describes a RAM with a reset signal for the RAM contents, the logic is implemented in
regular logic cells instead of a memory block. Altera recommends against putting RAM read or write
operations in an always block or process block with a reset signal. If you want to specify memory
contents, initialize the memory or write the data to the RAM during device operation.

In addition to reset signals, other control logic can prevent memory logic from being inferred as a
memory block. For example, you cannot use a clock enable on the read address registers in some devices
because this affects the output latch of the RAM, and therefore the synthesized result in the device RAM
architecture would not match the HDL description. You can use the address stall feature as a read address
clock enable to avoid this limitation. Check the documentation for your device architecture to ensure that
your code matches the hardware available in the device.

Example 12-9: Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in
Device Architecture

module clear_ram
(
 input clock, reset, we,
 input [7:0] data_in,
 input [4:0] address,
 output reg [7:0] data_out
);

 reg [7:0] mem [0:31];
 integer i;

 always @ (posedge clock or posedge reset)
 begin
 if (reset == 1'b1)
 mem[address] <= 0;
 else if (we == 1'b1)
 mem[address] <= data_in;

 data_out <= mem[address];
 end
endmodule

Example 12-10: Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device
Architecture

module bad_reset
(
 input clock,
 input reset,
 input we,
 input [7:0] data_in,
 input [4:0] address,
 output reg [7:0] data_out,
 input d,
 output reg q
);

QPS5V1
2015.11.02 Avoid Unsupported Reset and Control Conditions 12-11

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 reg [7:0] mem [0:31];
 integer i;

 always @ (posedge clock or posedge reset)
 begin
 if (reset == 1'b1)
 q <= 0;
 else
 begin
 if (we == 1'b1)
 mem[address] <= data_in;

 data_out <= mem[address];
 q <= d;
 end
 end
endmodule

Related Information
Specifying Initial Memory Contents at Power-Up on page 12-25

Check Read‑During‑Write Behavior
It is important to check the read-during-write behavior of the memory block described in your HDL
design as compared to the behavior in your target device architecture.

Your HDL source code specifies the memory behavior when you read and write from the same memory
address in the same clock cycle. The code specifies that the read returns either the old data at the address,
or the new data being written to the address. This behavior is referred to as the read-during-write
behavior of the memory block. Altera memory blocks have different read-during-write behavior
depending on the target device family, memory mode, and block type.

Synthesis tools map an HDL design into the target device architecture, with the goal of maintaining the
functionality described in your source code. Therefore, if your source code specifies unsupported
read-during-write behavior for the device RAM blocks, the software must implement the logic outside the
RAM hardware in regular logic cells.

One common problem occurs when there is a continuous read in the HDL code, as in the following
examples. You should avoid using these coding styles:

//Verilog HDL concurrent signal assignment
assign q = ram[raddr_reg];

-- VHDL concurrent signal assignment
q <= ram(raddr_reg);

When a write operation occurs, this type of HDL implies that the read should immediately reflect the new
data at the address, independent of the read clock. However, that is not the behavior of synchronous
memory blocks. In the device architecture, the new data is not available until the next edge of the read
clock. Therefore, if the synthesis tool mapped the logic directly to a synchronous memory block, the
device functionality and gate-level simulation results would not match the HDL description or functional
simulation results. If the write clock and read clock are the same, the synthesis tool can infer memory
blocks and add extra bypass logic so that the device behavior matches the HDL behavior. If the write and
read clocks are different, the synthesis tool cannot reliably add bypass logic, so the logic is implemented in
regular logic cells instead of dedicated RAM blocks. The examples in the following sections discuss some
of these differences for read-during-write conditions.

12-12 Check Read‑During‑Write Behavior
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In addition, the MLAB feature in certain device logic array blocks (LABs) does not easily support old data
or new data behavior for a read-during-write in the dedicated device architecture. Implementing the extra
logic to support this behavior significantly reduces timing performance through the memory.

Note: For best performance in MLAB memories, your design should not depend on the read data during
a write operation.

In many synthesis tools, you can specify that the read-during-write behavior is not important to your
design; for example, if you never read from the same address to which you write in the same clock cycle.
For Quartus Prime integrated synthesis, add the synthesis attribute ramstyle set to "no_rw_check" to
allow the software to choose the read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code. In some cases, this attribute prevents the synthesis tool from using extra
logic to implement the memory block, or can allow memory inference when it would otherwise be
impossible.

Synchronous RAM blocks require a synchronous read, so Quartus Prime integrated synthesis packs either
data output registers or read address registers into the RAM block. When the read address registers are
packed into the RAM block, the read address signals connected to the RAM block contain the next value
of the read address signals indexing the HDL variable, which impacts which clock cycle the read and the
write occur, and changes the read-during-write conditions. Therefore, bypass logic may still be added to
the design to preserve the read-during-write behavior, even if the "no_rw_check" attribute is set.

Related Information
Quartus Prime Integrated Synthesis on page 16-1

Controlling RAM Inference and Implementation
Synthesis tools usually do not infer small RAM blocks because small RAM blocks typically can be
implemented more efficiently using the registers in regular logic.

If you are using Quartus Prime integrated synthesis, you can direct the software to infer RAM blocks for
all sizes with the Allow Any RAM Size for Recognition option in the Advanced Analysis & Synthesis
Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred RAM blocks for Altera
devices with synchronous memory blocks. For example, Quartus Prime integrated synthesis provides the
ramstyle synthesis attribute to specify the type of memory block or to specify the use of regular logic
instead of a dedicated memory block. Quartus Prime integrated synthesis does not map inferred memory
into MLABs unless the HDL code specifies the appropriate ramstyle attribute, although the Fitter may
map some memories to MLABs.

If you want to control the implementation after the RAM function is inferred during synthesis, you can
set the ram_block_type parameter of the ALTSYNCRAM IP core. In the Assignment Editor, select
Parameters in the Categories list. You can use the Node Finder or drag the appropriate instance from the
Project Navigator window to enter the RAM hierarchical instance name. Type ram_block_type as the
Parameter Name and type one of the following memory types supported by your target device family in
the Value field: "M-RAM", "M512", "M4K", "M9K", "M10K", "M20K", "M144K", or "MLAB".

You can also specify the maximum depth of memory blocks used to infer RAM or ROM in your design.
Apply the max_depth synthesis attribute to the declaration of a variable that represents a RAM or ROM in
your design file. For example:

// Limit the depth of the memory blocks implement "ram" to 512
// This forces the software to use two M512 blocks instead of one M4K block to
implement this RAM
(* max_depth = 512 *) reg [7:0] ram[0:1023];

QPS5V1
2015.11.02 Controlling RAM Inference and Implementation 12-13

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Quartus Prime Integrated Synthesis on page 16-1

Single-Clock Synchronous RAM with Old Data Read‑During‑Write Behavior
The code examples in this section show Verilog HDL and VHDL code that infers simple dual-port, single-
clock synchronous RAM. Single-port RAM blocks use a similar coding style.

The read-during-write behavior in these examples is to read the old data at the memory address. Altera
recommends that you use the Old Data Read-During-Write coding style for most RAM blocks as long as
your design does not require the RAM location’s new value when you perform a simultaneous read and
write to that RAM location. For best performance in MLAB memories, use the appropriate attribute so
that your design does not depend on the read data during a write operation. The simple dual-port RAM
code samples map directly into Altera synchronous memory.

Single-port versions of memory blocks (that is, using the same read address and write address signals) can
allow better RAM utilization than dual-port memory blocks, depending on the device family.

Example 12-11: Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read-During-Write Behavior

module single_clk_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [6:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [127:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 q <= mem[read_address]; // q doesn't get d in this clock cycle
 end
endmodule

Example 12-12: VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data
Read‑During‑Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
BEGIN

12-14 Single-Clock Synchronous RAM with Old Data Read‑During‑Write Behavior
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 PROCESS (clock)
 BEGIN
 IF (clock'event AND clock = '1') THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 q <= ram_block(read_address);
 -- VHDL semantics imply that q doesn't get data
 -- in this clock cycle
 END IF;
 END PROCESS;
END rtl;

Related Information

• Check Read-During-Write Behavior on page 12-12
• Single-Clock Synchronous RAM with New Data Read-During-Write Behavior on page 12-15

Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
The examples in this section describe RAM blocks in which a simultaneous read and write to the same
location reads the new value that is currently being written to that RAM location.

To implement this behavior in the target device, synthesis software adds bypass logic around the RAM
block. This bypass logic increases the area utilization of the design and decreases the performance if the
RAM block is part of the design’s critical path.

Single-port versions of the Verilog memory block (that is, using the same read address and write address
signals) do not require any logic cells to create bypass logic in the Arria, Stratix, and Cyclone series of
devices, because the device memory supports new data read-during-write behavior when in single-port
mode (same clock, same read address, and same write address).

For Quartus Prime integrated synthesis, if you do not require the read-through-write capability, add the
synthesis attribute ramstyle="no_rw_check" to allow the software to choose the read-during-write
behavior of a RAM, rather than using the behavior specified by your HDL code. This attribute may
prevent generation of extra bypass logic, but it is not always possible to eliminate the requirement for
bypass logic.

Example 12-13: Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data
Read-During-Write Behavior

module single_clock_wr_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [6:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [127:0];

 always @ (posedge clk) begin
 if (we)
 mem[write_address] = d;
 q = mem[read_address]; // q does get d in this clock cycle
if // we is high
 end
endmodule

QPS5V1
2015.11.02 Single-Clock Synchronous RAM with New Data Read-During-Write Behavior 12-15

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

It is possible to create a single-clock RAM using an assign statement to read the address of mem to
create the output q. By itself, the code describes new data read-during-write behavior. However, if
the RAM output feeds a register in another hierarchy, a read-during-write results in the old data.
Synthesis tools may not infer a RAM block if the tool cannot determine which behavior is
described, such as when the memory feeds a hard hierarchical partition boundary. Avoid this type
of coding.

Example 12-14: Avoid This Coding Style

 reg [7:0] mem [127:0];
 reg [6:0] read_address_reg;

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;

 read_address_reg <= read_address;
 end

 assign q = mem[read_address_reg];

The following example uses a concurrent signal assignment to read from the RAM. By itself, this
example describes new data read-during-write behavior. However, if the RAM output feeds a
register in another hierarchy, a read-during-write results in the old data. Synthesis tools may not
infer a RAM block if the tool cannot determine which behavior is described, such as when the
memory feeds a hard hierarchical partition boundary

Example 12-15: VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-
During-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY single_clock_rw_ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
);
END single_clock_rw_ram;

ARCHITECTURE rtl OF single_clock_rw_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
 SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (clock'event AND clock = '1') THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 read_address_reg <= read_address;
 END IF;

12-16 Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 END PROCESS;
 q <= ram_block(read_address_reg);
END rtl;

For Quartus Prime integrated synthesis, if you do not require the read-through-write capability,
add the synthesis attribute ramstyle="no_rw_check" to allow the software to choose the read-
during-write behavior of a RAM, rather than using the behavior specified by your HDL code. This
attribute may prevent generation of extra bypass logic but it is not always possible to eliminate the
requirement for bypass logic.

Related Information

• Check Read-During-Write Behavior on page 12-12
• Check Read-During-Write Behavior on page 12-12
• Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior on page 12-14

Simple Dual-Port, Dual-Clock Synchronous RAM
In dual clock designs, synthesis tools cannot accurately infer the read-during-write behavior because it
depends on the timing of the two clocks within the target device.

Therefore, the read-during-write behavior of the synthesized design is undefined and may differ from
your original HDL code. When Quartus Prime integrated synthesis infers this type of RAM, it issues a
warning because of the undefined read-during-write behavior.

Example 12-16: Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM

module dual_clock_ram(
 output reg [7:0] q,
 input [7:0] d,
 input [6:0] write_address, read_address,
 input we, clk1, clk2
);
 reg [6:0] read_address_reg;
 reg [7:0] mem [127:0];

 always @ (posedge clk1)
 begin
 if (we)
 mem[write_address] <= d;
 end

 always @ (posedge clk2) begin
 q <= mem[read_address_reg];
 read_address_reg <= read_address;
 end
endmodule

Example 12-17: VHDL Simple Dual-Port, Dual-Clock Synchronous RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dual_clock_ram IS
 PORT (
 clock1, clock2: IN STD_LOGIC;

QPS5V1
2015.11.02 Simple Dual-Port, Dual-Clock Synchronous RAM 12-17

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL ram_block: MEM;
 SIGNAL read_address_reg : INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock1)
 BEGIN
 IF (clock1'event AND clock1 = '1') THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 END IF;
 END PROCESS;
 PROCESS (clock2)
 BEGIN
 IF (clock2'event AND clock2 = '1') THEN
 q <= ram_block(read_address_reg);
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
END rtl;

Related Information
Check Read-During-Write Behavior on page 12-12

True Dual-Port Synchronous RAM
The code examples in this section show Verilog HDL and VHDL code that infers true dual-port
synchronous RAM. Different synthesis tools may differ in their support for these types of memories.

Altera synchronous memory blocks have two independent address ports, allowing for operations on two
unique addresses simultaneously. A read operation and a write operation can share the same port if they
share the same address. The Quartus Prime software infers true dual-port RAMs in Verilog HDL and
VHDL with any combination of independent read or write operations in the same clock cycle, with at
most two unique port addresses, performing two reads and one write, two writes and one read, or two
writes and two reads in one clock cycle with one or two unique addresses.

In the synchronous RAM block architecture, there is no priority between the two ports. Therefore, if you
write to the same location on both ports at the same time, the result is indeterminate in the device
architecture. You must ensure your HDL code does not imply priority for writes to the memory block, if
you want the design to be implemented in a dedicated hardware memory block. For example, if both ports
are defined in the same process block, the code is synthesized and simulated sequentially so that there is a
priority between the two ports. If your code does imply a priority, the logic cannot be implemented in the
device RAM blocks and is implemented in regular logic cells. You must also consider the read-during-
write behavior of the RAM block to ensure that it can be mapped directly to the device RAM architecture.

When a read and write operation occurs on the same port for the same address, the read operation may
behave as follows:

• Read new data—This mode matches the behavior of synchronous memory blocks.
• Read old data—This mode is supported only in device families that support M144K and M9K

memory blocks.

12-18 True Dual-Port Synchronous RAM
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When a read and write operation occurs on different ports for the same address (also known as mixed
port), the read operation may behave as follows:

• Read new data—Quartus Prime integrated synthesis supports this mode by creating bypass logic
around the synchronous memory block.

• Read old data—Synchronous memory blocks support this behavior.
• Read don’t care—This behavior is supported on different ports in simple dual-port mode by synchro‐

nous memory blocks.

The Verilog HDL single-clock code sample maps directly into Altera synchronous memory. When a read
and write operation occurs on the same port for the same address, the new data being written to the
memory is read. When a read and write operation occurs on different ports for the same address, the old
data in the memory is read. Simultaneous writes to the same location on both ports results in indetermi‐
nate behavior.

A dual-clock version of this design describes the same behavior, but the memory in the target device will
have undefined mixed port read-during-write behavior because it depends on the relationship between
the clocks.

Example 12-18: Verilog HDL True Dual-Port RAM with Single Clock

module true_dual_port_ram_single_clock
(
 input [(DATA_WIDTH-1):0] data_a, data_b,
 input [(ADDR_WIDTH-1):0] addr_a, addr_b,
 input we_a, we_b, clk,
 output reg [(DATA_WIDTH-1):0] q_a, q_b
);

 parameter DATA_WIDTH = 8;
 parameter ADDR_WIDTH = 6;

 // Declare the RAM variable
 reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

 always @ (posedge clk)
 begin // Port A
 if (we_a)
 begin
 ram[addr_a] <= data_a;
 q_a <= data_a;
 end
 else
 q_a <= ram[addr_a];
 end
 always @ (posedge clk)
 begin // Port b
 if (we_b)
 begin
 ram[addr_b] <= data_b;
 q_b <= data_b;
 end
 else
 q_b <= ram[addr_b];
 end

endmodule

If you use the following Verilog HDL read statements instead of the if-else statements, the HDL
code specifies that the read results in old data when a read operation and write operation occurs

QPS5V1
2015.11.02 True Dual-Port Synchronous RAM 12-19

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

at the same time for the same address on the same port or mixed ports. This mode is supported
only in device families that support M144, M9k, and MLAB memory blocks.

Example 12-19: VHDL Read Statement Example

 always @ (posedge clk)
 begin // Port A
 if (we_a)
 ram[addr_a] <= data_a;

 q_a <= ram[addr_a];
 end

 always @ (posedge clk)
 begin // Port B
 if (we_b)
 ram[addr_b] <= data_b;

 q_b <= ram[addr_b];
 end

The VHDL single-clock code sample i maps directly into Altera synchronous memory. When a
read and write operation occurs on the same port for the same address, the new data being
written to the memory is read. When a read and write operation occurs on different ports for the
same address, the old data in the memory is read. Simultaneous write operations to the same
location on both ports results in indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the memory in the target
device will have undefined mixed port read-during-write behavior because it depends on the
relationship between the clocks.

Example 12-20: VHDL True Dual-Port RAM with Single Clock (part 1)

 library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is
 generic (
 DATA_WIDTH : natural := 8;
 ADDR_WIDTH : natural := 6
);
 port (
 clk : in std_logic;
 addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;
 addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
 data_a : in std_logic_vector((DATA_WIDTH-1) downto 0);
 data_b : in std_logic_vector((DATA_WIDTH-1) downto 0);
 we_a : in std_logic := '1';
 we_b : in std_logic := '1';
 q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
 q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is
 -- Build a 2-D array type for the RAM
 subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);

12-20 True Dual-Port Synchronous RAM
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 type memory_t is array((2**ADDR_WIDTH - 1) downto 0) of word_t;
 -- Declare the RAM signal.
 shared variable ram : memory_t;

Example 12-21: VHDL True Dual-Port RAM with Single Clock (part 2)

 begin
 process(clk)
 begin
 if(rising_edge(clk)) then -- Port A
 if(we_a = '1') then
 ram(addr_a) <= data_a;

 -- Read-during-write on the same port returns NEW data
 q_a <= data_a;
 else
 -- Read-during-write on the mixed port returns OLD data
 q_a <= ram(addr_a);
 end if;
 end if;
 end process;

 process(clk)
 begin
 if(rising_edge(clk)) then -- Port B
 if(we_b = '1') then
 ram(addr_b) := data_b;
 -- Read-during-write on the same port returns NEW data
 q_b <= data_b;
 else
 -- Read-during-write on the mixed port returns OLD data
 q_b <= ram(addr_b);
 end if;
 end if;
 end process;

end rtl;

Related Information
Check Read-During-Write Behavior on page 12-12

Mixed-Width Dual-Port RAM
The RAM code examples show SystemVerilog and VHDL code that infers RAM with data ports with
different widths.

This type of logic is not supported in Verilog-1995 or Verilog-2001 because of the requirement for a
multi-dimensional array to model the different read width, write width, or both. Different synthesis tools
may differ in their support for these memories. This section describes the inference rules for Quartus
Prime integrated synthesis.

The first dimension of the multi-dimensional packed array represents the ratio of the wider port to the
narrower port, and the second dimension represents the narrower port width. The read and write port
widths must specify a read or write ratio supported by the memory blocks in the target device, or the
synthesis tool does not infer a RAM.

QPS5V1
2015.11.02 Mixed-Width Dual-Port RAM 12-21

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Refer to the Quartus Prime templates for parameterized examples that you can use for supported
combinations of read and write widths, and true dual port RAM examples with two read ports and two
write ports for mixed-width writes and reads.

Example 12-22: SystemVerilog Mixed-Width RAM with Read Width Smaller than Write Width

 module mixed_width_ram // 256x32 write and 1024x8 read
(
 input [7:0] waddr,
 input [31:0] wdata,
 input we, clk,
 input [9:0] raddr,
 output [7:0] q
);
 logic [3:0][7:0] ram[0:255];
 always_ff@(posedge clk)
 begin
 if(we) ram[waddr] <= wdata;
 q <= ram[raddr / 4][raddr % 4];
 end
endmodule : mixed_width_ram

Example 12-23: SystemVerilog Mixed-Width RAM with Read Width Larger than Write Width

module mixed_width_ram // 1024x8 write and 256x32 read
(
 input [9:0] waddr,
 input [31:0] wdata,
 input we, clk,
 input [7:0] raddr,
 output [9:0] q
);
 logic [3:0][7:0] ram[0:255];
 always_ff@(posedge clk)
 begin
 if(we) ram[waddr / 4][waddr % 4] <= wdata;
 q <= ram[raddr];
 end
endmodule : mixed_width_ram

Example 12-24: VHDL Mixed-Width RAM with Read Width Smaller than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 255) of word_t;
end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

12-22 Mixed-Width Dual-Port RAM
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

entity mixed_width_ram is
 port (
 we, clk : in std_logic;
 waddr : in integer range 0 to 255;
 wdata : in word_t;
 raddr : in integer range 0 to 1023;
 q : out std_logic_vector(7 downto 0));
end mixed_width_ram;

architecture rtl of mixed_width_ram is
 signal ram : ram_t;
begin -- rtl
 process(clk, we)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 ram(waddr) <= wdata;
 end if;
 q <= ram(raddr / 4)(raddr mod 4);
 end if;
 end process;
end rtl;

Example 12-25: VHDL Mixed-Width RAM with Read Width Larger than Write Width

library ieee;
use ieee.std_logic_1164.all;

package ram_types is
 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 255) of word_t;
end ram_types;

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.ram_types.all;

entity mixed_width_ram is
 port (
 we, clk : in std_logic;
 waddr : in integer range 0 to 1023;
 wdata : in std_logic_vector(7 downto 0);
 raddr : in integer range 0 to 255;
 q : out word_t);
end mixed_width_ram;

architecture rtl of mixed_width_ram is
 signal ram : ram_t;
begin -- rtl
 process(clk, we)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 ram(waddr / 4)(waddr mod 4) <= wdata;
 end if;
 q <= ram(raddr);
 end if;
 end process;
end rtl;

QPS5V1
2015.11.02 Mixed-Width Dual-Port RAM 12-23

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

RAM with Byte-Enable Signals
The RAM code examples show SystemVerilog and VHDL code that infers RAM with controls for writing
single bytes into the memory word, or byte-enable signals.

Byte enables are modeled by creating write expressions with two indices and writing part of a RAM
"word." With these implementations, you can also write more than one byte at once by enabling the
appropriate byte enables.

This type of logic is not supported in Verilog-1995 or Verilog-2001 because of the requirement for a
multidimensional array. Different synthesis tools may differ in their support for these memories. This
section describes the inference rules for Quartus Prime integrated synthesis.

Refer to the Quartus Prime templates for parameterized examples that you can use for different address
widths, and true dual port RAM examples with two read ports and two write ports.

Example 12-26: SystemVerilog Simple Dual-Port Synchronous RAM with Byte Enable

module byte_enabled_simple_dual_port_ram
(
 input we, clk,
 input [5:0] waddr, raddr, // address width = 6
 input [3:0] be, // 4 bytes per word
 input [31:0] wdata, // byte width = 8, 4 bytes per word
 output reg [31:0] q // byte width = 8, 4 bytes per word
);
 // use a multi-dimensional packed array
 //to model individual bytes within the word
 logic [3:0][7:0] ram[0:63]; // # words = 1 << address width

 always_ff@(posedge clk)
 begin
 if(we) begin
 if(be[0]) ram[waddr][0] <= wdata[7:0];
 if(be[1]) ram[waddr][1] <= wdata[15:8];
 if(be[2]) ram[waddr][2] <= wdata[23:16];
 if(be[3]) ram[waddr][3] <= wdata[31:24];
 end
 q <= ram[raddr];
 end
endmodule

Example 12-27: VHDL Simple Dual-Port Synchronous RAM with Byte Enable

library ieee;
use ieee.std_logic_1164.all;
library work;

entity byte_enabled_simple_dual_port_ram is
port (
 we, clk : in std_logic;
 waddr, raddr : in integer range 0 to 63 ; -- address width = 6
 be : in std_logic_vector (3 downto 0); -- 4 bytes per word
 wdata : in std_logic_vector(31 downto 0); -- byte width = 8
 q : out std_logic_vector(31 downto 0)); -- byte width = 8
end byte_enabled_simple_dual_port_ram;

architecture rtl of byte_enabled_simple_dual_port_ram is
 -- build up 2D array to hold the memory

12-24 RAM with Byte-Enable Signals
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 type word_t is array (0 to 3) of std_logic_vector(7 downto 0);
 type ram_t is array (0 to 63) of word_t;

 signal ram : ram_t;
 signal q_local : word_t;

 begin -- Re-organize the read data from the RAM to match the output
 unpack: for i in 0 to 3 generate
 q(8*(i+1) - 1 downto 8*i) <= q_local(i);
 end generate unpack;

 process(clk)
 begin
 if(rising_edge(clk)) then
 if(we = '1') then
 if(be(0) = '1') then
 ram(waddr)(0) <= wdata(7 downto 0);
 end if;
 if be(1) = '1' then
 ram(waddr)(1) <= wdata(15 downto 8);
 end if;
 if be(2) = '1' then
 ram(waddr)(2) <= wdata(23 downto 16);
 end if;
 if be(3) = '1' then
 ram(waddr)(3) <= wdata(31 downto 24);
 end if;
 end if;
 q_local <= ram(raddr);
 end if;
 end process;
end rtl;

Specifying Initial Memory Contents at Power‑Up
Your synthesis tool may offer various ways to specify the initial contents of an inferred memory.

There are slight power-up and initialization differences between dedicated RAM blocks and the MLAB
memory due to the continuous read of the MLAB. Altera dedicated RAM block outputs always power-up
to zero and are set to the initial value on the first read. For example, if address 0 is pre-initialized to FF,
the RAM block powers up with the output at 0. A subsequent read after power-up from address 0 outputs
the pre-initialized value of FF. Therefore, if a RAM is powered up and an enable (read enable or clock
enable) is held low, the power-up output of 0 is maintained until the first valid read cycle. The MLAB is
implemented using registers that power-up to 0, but are initialized to their initial value immediately at
power-up or reset. Therefore, the initial value is seen, regardless of the enable status. The Quartus Prime
software maps inferred memory to MLABs when the HDL code specifies an appropriate ramstyle
attribute.

In Verilog HDL, you can use an initial block to initialize the contents of an inferred memory. Quartus
Prime integrated synthesis automatically converts the initial block into a .mif file for the inferred RAM.

Example 12-28: Verilog HDL RAM with Initialized Contents

module ram_with_init(
 output reg [7:0] q,
 input [7:0] d,
 input [4:0] write_address, read_address,
 input we, clk
);
 reg [7:0] mem [0:31];

QPS5V1
2015.11.02 Specifying Initial Memory Contents at Power‑Up 12-25

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 integer i;

 initial begin
 for (i = 0; i < 32; i = i + 1)
 mem[i] = i[7:0];
 end

 always @ (posedge clk) begin
 if (we)
 mem[write_address] <= d;
 q <= mem[read_address];
 end
endmodule

Quartus Prime integrated synthesis and other synthesis tools also support the $readmemb and
$readmemh commands so that RAM initialization and ROM initialization work identically in
synthesis and simulation.

Example 12-29: Verilog HDL RAM Initialized with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
 $readmemb("ram.txt", ram);
end

In VHDL, you can initialize the contents of an inferred memory by specifying a default value for
the corresponding signal. Quartus Prime integrated synthesis automatically converts the default
value into a .mif file for the inferred RAM.

Example 12-30: VHDL RAM with Initialized Contents

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
 PORT(
 clock: IN STD_LOGIC;
 data: IN UNSIGNED (7 DOWNTO 0);
 write_address: IN integer RANGE 0 to 31;
 read_address: IN integer RANGE 0 to 31;
 we: IN std_logic;
 q: OUT UNSIGNED (7 DOWNTO 0));
END;

ARCHITECTURE rtl OF ram_with_init IS

 TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
 FUNCTION initialize_ram
 return MEM is
 variable result : MEM;
 BEGIN
 FOR i IN 31 DOWNTO 0 LOOP
 result(i) := to_unsigned(natural(i), natural'(8));
 END LOOP;
 RETURN result;

12-26 Specifying Initial Memory Contents at Power‑Up
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 END initialize_ram;

 SIGNAL ram_block : MEM := initialize_ram;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (clock'event AND clock = '1') THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 q <= ram_block(read_address);
 END IF;
 END PROCESS;
END rtl;

Related Information
Quartus Prime Integrated Synthesis on page 16-1

Inferring ROM Functions from HDL Code
ROMs are inferred when a CASE statement exists in which a value is set to a constant for every choice in
the case statement.

Because small ROMs typically achieve the best performance when they are implemented using the
registers in regular logic, each ROM function must meet a minimum size requirement to be inferred and
placed into memory.

Note: If you use Quartus Prime integrated synthesis, you can direct the software to infer ROM blocks for
all sizes with the Allow Any ROM Size for Recognition option in the Advanced Analysis &
Synthesis Settings dialog box.

Some synthesis tools provide options to control the implementation of inferred ROM blocks for Altera
devices with synchronous memory blocks. For example, Quartus Prime integrated synthesis provides the
romstyle synthesis attribute to specify the type of memory block or to specify the use of regular logic
instead of a dedicated memory block.

Note: Because formal verification tools do not support ROM IP cores, Quartus Prime integrated
synthesis does not infer ROM IP cores when a formal verification tool is selected. When you are
using a formal verification flow, Altera recommends that you instantiate ROM IP core blocks in
separate entities or modules that contain only the ROM logic, because you may need to treat the
entity or module as a black box during formal verification. Depending on the device family’s
dedicated RAM architecture, the ROM logic may have to be synchronous; refer to the device family
handbook for details.

For device architectures with synchronous RAM blocks, such as the Arria series, Cyclone series, or
Stratix series devices and newer device families, either the address or the output must be registered for
synthesis software to infer a ROM block. When your design uses output registers, the synthesis software
implements registers from the input registers of the RAM block without affecting the functionality of the
ROM. If you register the address, the power-up state of the inferred ROM can be different from the HDL
design. In this scenario, the synthesis software issues a warning. The Quartus Prime Help explains the
condition under which the functionality changes when you use Quartus Prime integrated synthesis.

The following ROM examples map directly to the Altera memory architecture.

QPS5V1
2015.11.02 Inferring ROM Functions from HDL Code 12-27

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 12-31: Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_out);
 input clock;
 input [7:0] address;
 output [5:0] data_out;

 reg [5:0] data_out;

 always @ (posedge clock)
 begin
 case (address)
 8'b00000000: data_out = 6'b101111;
 8'b00000001: data_out = 6'b110110;
 ...
 8'b11111110: data_out = 6'b000001;
 8'b11111111: data_out = 6'b101010;
 endcase
 end
endmodule

Example 12-32: VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sync_rom IS
 PORT (
 clock: IN STD_LOGIC;
 address: IN STD_LOGIC_VECTOR(7 downto 0);
 data_out: OUT STD_LOGIC_VECTOR(5 downto 0)
);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)
 BEGIN
 IF rising_edge (clock) THEN
 CASE address IS
 WHEN "00000000" => data_out <= "101111";
 WHEN "00000001" => data_out <= "110110";
 ...
 WHEN "11111110" => data_out <= "000001";
 WHEN "11111111" => data_out <= "101010";
 WHEN OTHERS => data_out <= "101111";
 END CASE;
 END IF;
 END PROCESS;
END rtl;

Example 12-33: Verilog HDL Dual-Port Synchronous ROM Using readmemb

module dual_port_rom (
 input [(addr_width-1):0] addr_a, addr_b,

12-28 Inferring ROM Functions from HDL Code
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 input clk,
 output reg [(data_width-1):0] q_a, q_b
);
 parameter data_width = 8;
 parameter addr_width = 8;

 reg [data_width-1:0] rom[2**addr_width-1:0];

 initial // Read the memory contents in the file
 //dual_port_rom_init.txt.
 begin
 $readmemb("dual_port_rom_init.txt", rom);
 end

 always @ (posedge clk)
 begin
 q_a <= rom[addr_a];
 q_b <= rom[addr_b];
 end
endmodule

Example 12-34: VHDL Dual-Port Synchronous ROM Using Initialization Function

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dual_port_rom is
 generic (
 DATA_WIDTH : natural := 8;
 ADDR_WIDTH : natural := 8
);
 port (
 clk : in std_logic;
 addr_a : in natural range 0 to 2**ADDR_WIDTH - 1;
 addr_b : in natural range 0 to 2**ADDR_WIDTH - 1;
 q_a : out std_logic_vector((DATA_WIDTH -1) downto 0);
 q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
end entity;

architecture rtl of dual_port_rom is
 -- Build a 2-D array type for the ROM
 subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
 type memory_t is array(addr_a'high downto 0) of word_t;

 function init_rom
 return memory_t is
 variable tmp : memory_t := (others => (others => '0'));
 begin
 for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop
 -- Initialize each address with the address itself
 tmp(addr_pos) := std_logic_vector(to_unsigned(addr_pos,
DATA_WIDTH));
 end loop;
 return tmp;
 end init_rom;

 -- Declare the ROM signal and specify a default initialization value.
 signal rom : memory_t := init_rom;
begin
 process(clk)
 begin

QPS5V1
2015.11.02 Inferring ROM Functions from HDL Code 12-29

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 if (rising_edge(clk)) then
 q_a <= rom(addr_a);
 q_b <= rom(addr_b);
 end if;
 end process;
end rtl;

Related Information
Quartus Prime Integrated Synthesis on page 16-1

Inferring Shift Registers in HDL Code
To infer shift registers, synthesis tools detect a group of shift registers of the same length and convert
them to an Altera shift register IP core.

To be detected, all the shift registers must have the following characteristics:

• Use the same clock and clock enable
• Do not have any other secondary signals
• Have equally spaced taps that are at least three registers apart

When you use a formal verification flow, Altera recommends that you create shift register blocks in
separate entities or modules containing only the shift register logic, because you might have to treat the
entity or module as a black box during formal verification.

Note: Because formal verification tools do not support shift register IP cores, Quartus Prime integrated
synthesis does not infer the Altera shift register IP core when a formal verification tool is selected.
You can select EDA tools for use with your design on the EDA Tool Settings page of the Settings
dialog box in the Quartus Prime software.

Synthesis recognizes shift registers only for device families that have dedicated RAM blocks, and the
software uses certain guidelines to determine the best implementation.

Quartus Prime integrated synthesis uses the following guidelines which are common in other EDA tools.
The Quartus Prime software determines whether to infer the Altera shift register IP core based on the
width of the registered bus (W), the length between each tap (L), and the number of taps (N). If the Auto
Shift Register Recognition setting is set to Auto, Quartus Prime integrated synthesis uses the Optimiza‐
tion Technique setting, logic and RAM utilization information about the design, and timing information
from Timing-Driven Synthesis to determine which shift registers are implemented in RAM blocks for
logic.

• If the registered bus width is one (W = 1), the software infers shift register IP if the number of taps
times the length between each tap is greater than or equal to 64 (N x L > 64).

• If the registered bus width is greater than one (W > 1), the software infers Altera shift register IP core if
the registered bus width times the number of taps times the length between each tap is greater than or
equal to 32 (W × N × L > 32).

If the length between each tap (L) is not a power of two, the software uses more logic to decode the read
and write counters. This situation occurs because for different sizes of shift registers, external decode logic
that uses logic elements (LEs) or ALMs is required to implement the function. This decode logic
eliminates the performance and utilization advantages of implementing shift registers in memory.

The registers that the software maps to the Altera shift register IP core and places in RAM are not
available in a Verilog HDL or VHDL output file for simulation tools because their node names do not
exist after synthesis.

12-30 Inferring Shift Registers in HDL Code
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If your design uses a shift enable signal to infer a shift register, the shift register will not be
implemented into MLAB memory, but can use only dedicated RAM blocks. You can use the
ramstyle attribute to control the type of memory structure that implements the shift register.

Simple Shift Register
The code samples show a simple, single-bit wide, 64-bit long shift register.

The synthesis software implements the register (W = 1 and M = 64) in an ALTSHIFT_TAPS IP core for
supported devices and maps it to RAM in supported devices, which may be placed in dedicated RAM
blocks or MLAB memory. If the length of the register is less than 64 bits, the software implements the
shift register in logic.

Example 12-35: Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift_1x64 (clk, shift, sr_in, sr_out);
 input clk, shift;
 input sr_in;
 output sr_out;

 reg [63:0] sr;

 always @ (posedge clk)
 begin
 if (shift == 1'b1)
 begin
 sr[63:1] <= sr[62:0];
 sr[0] <= sr_in;
 end
 end
 assign sr_out = sr[63];
endmodule

Example 12-36: VHDL Single-Bit Wide, 64-Bit Long Shift Register

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_1x64 IS
 PORT (
 clk: IN STD_LOGIC;
 shift: IN STD_LOGIC;
 sr_in: IN STD_LOGIC;
 sr_out: OUT STD_LOGIC
);
END shift_1x64;

ARCHITECTURE arch OF shift_1x64 IS
 TYPE sr_length IS ARRAY (63 DOWNTO 0) OF STD_LOGIC;
 SIGNAL sr: sr_length;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (clk'EVENT and clk = '1') THEN
 IF (shift = '1') THEN
 sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
 sr(0) <= sr_in;
 END IF;
 END IF;
 END PROCESS;

QPS5V1
2015.11.02 Simple Shift Register 12-31

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 sr_out <= sr(63);
END arch;

Shift Register with Evenly Spaced Taps
The following examples show a Verilog HDL and VHDL 8-bit wide, 64-bit long shift register (W > 1 and
M = 64) with evenly spaced taps at 15, 31, and 47.

The synthesis software implements this function in a single ALTSHIFT_TAPS IP core and maps it to
RAM in supported devices, which is allowed placement in dedicated RAM blocks or MLAB memory.

Example 12-37: Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module shift_8x64_taps (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two,
sr_tap_three);
 input clk, shift;
 input [7:0] sr_in;
 output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

 reg [7:0] sr [63:0];
 integer n;

 always @ (posedge clk)
 begin
 if (shift == 1'b1)
 begin
 for (n = 63; n>0; n = n-1)
 begin
 sr[n] <= sr[n-1];
 end
 sr[0] <= sr_in;
 end

 end
 assign sr_tap_one = sr[15];
 assign sr_tap_two = sr[31];
 assign sr_tap_three = sr[47];
 assign sr_out = sr[63];
endmodule

Example 12-38: VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY shift_8x64_taps IS
 PORT (
 clk: IN STD_LOGIC;
 shift: IN STD_LOGIC;
 sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
 SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
 TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;

12-32 Shift Register with Evenly Spaced Taps
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 SIGNAL sr: sr_length;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (clk'EVENT and clk = '1') THEN
 IF (shift = '1') THEN
 sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
 sr(0) <= sr_in;
 END IF;
 END IF;
 END PROCESS;
 sr_tap_one <= sr(15);
 sr_tap_two <= sr(31);
 sr_tap_three <= sr(47);
 sr_out <= sr(63);
END arch;

Register and Latch Coding Guidelines
This section provides device-specific coding recommendations for Altera registers and latches.

Understanding the architecture of the target Altera device helps ensure that your code produces the
expected results and achieves the optimal quality of results.

Register Power-Up Values in Altera Devices
Registers in the device core always power up to a low (0) logic level on all Altera devices.

If your design specifies a power-up level other than 0, synthesis tools can implement logic that causes
registers to behave as if they were powering up to a high (1) logic level.

If your design uses a preset signal on a device that does not support presets in the register architecture,
your synthesis tool may convert the preset signal to a clear signal, which requires synthesis to perform an
optimization referred to as NOT gate push-back. NOT gate push-back adds an inverter to the input and
the output of the register so that the reset and power-up conditions will appear to be high, and the device
operates as expected. In this case, your synthesis tool may issue a message informing you about the
power-up condition. The register itself powers up low, but the register output is inverted, so the signal
that arrives at all destinations is high.

Due to these effects, if you specify a non-zero reset value, you may cause your synthesis tool to use the
asynchronous clear (aclr) signals available on the registers to implement the high bits with NOT gate
push-back. In that case, the registers look as though they power up to the specified reset value.

When an asynchronous load (aload) signal is available in the device registers, your synthesis tools can
implement a reset of 1 or 0 value by using an asynchronous load of 1 or 0. When the synthesis tool uses a
load signal, it is not performing NOT gate push-back, so the registers power up to a 0 logic level.

For additional details, refer to the appropriate device family handbook or the appropriate handbook on
the Altera website.

Designers typically use an explicit reset signal for the design, which forces all registers into their
appropriate values after reset. Altera recommends this practice to reset the device after power-up to
restore the proper state.

You can make your design more stable and avoid potential glitches by synchronizing external or
combinational logic of the device architecture before you drive the asynchronous control ports of
registers.

QPS5V1
2015.11.02 Register and Latch Coding Guidelines 12-33

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Design Recommendations for Altera Devices and the Quartus Prime Design Assistant on page 11-1

Specifying a Power-Up Value
If you want to force a particular power-up condition for your design, you can use the synthesis options
available in your synthesis tool.

With Quartus Prime integrated synthesis, you can apply the Power-Up Level logic option. You can also
apply the option with an altera_attribute assignment in your source code. Using this option forces
synthesis to perform NOT gate push-back because synthesis tools cannot actually change the power-up
states of core registers.

You can apply the Quartus Prime integrated synthesis Power-Up Level logic option to a specific register
or to a design entity, module, or subdesign. If you do so, every register in that block receives the value.
Registers power up to 0 by default; therefore, you can use this assignment to force all registers to power up
to 1 using NOT gate push-back.

Note: Setting the Power-Up Level to a logic level of high for a large design entity could degrade the
quality of results due to the number of inverters that are required. In some situations, issues are
caused by enable signal inference or secondary control logic inference. It may also be more difficult
to migrate such a design to an ASIC.

Note: You can simulate the power-up behavior in a functional simulation if you use initialization.

Some synthesis tools can also read the default or initial values for registered signals and implement this
behavior in the device. For example, Quartus Prime integrated synthesis converts default values for
registered signals into Power-Up Level settings. When the Quartus Prime software reads the default
values, the synthesized behavior matches the power-up state of the HDL code during a functional
simulation.

Example 12-39: Verilog Register with High Power-Up Value

reg q = 1’b1; //q has a default value of ‘1’

always @ (posedge clk)
begin
 q <= d;
end

Example 12-40: VHDL Register with High Power-Up Level

SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN
 IF (rising_edge(clk)) THEN
 q <= d;
 END IF;
END PROCESS;

There may also be undeclared default power-up conditions based on signal type. If you declare a
VHDL register signal as an integer, Quartus Prime synthesis attempts to use the left end of the
integer range as the power-up value. For the default signed integer type, the default power-up

12-34 Specifying a Power-Up Value
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

value is the highest magnitude negative integer (100…001). For an unsigned integer type, the
default power-up value is 0.

Note: If the target device architecture does not support two asynchronous control
signals, such as aclr and aload, you cannot set a different power-up state and
reset state. If the NOT gate push-back algorithm creates logic to set a register to 1,
that register will power-up high. If you set a different power-up condition through
a synthesis assignment or initial value, the power-up level is ignored during
synthesis.

Related Information
Quartus Prime Integrated Synthesis on page 16-1

Secondary Register Control Signals Such as Clear and Clock Enable
The registers in Altera FPGAs provide a number of secondary control signals (such as clear and enable
signals) that you can use to implement control logic for each register without using extra logic cells.

The registers in Altera FPGAs provide a number of secondary control signals (such as clear and enable
signals) that you can use to implement control logic for each register without using extra logic cells.
Device families vary in their support for secondary signals, so consult the device family data sheet to verify
which signals are available in your target device.

To make the most efficient use of the signals in the device, your HDL code should match the device
architecture as closely as possible. The control signals have a certain priority due to the nature of the
architecture, so your HDL code should follow that priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so achieving functionally correct
results is always possible. However, if your design requirements are flexible in terms of which control
signals are used and in what priority, match your design to the target device architecture to achieve the
most efficient results. If the priority of the signals in your design is not the same as that of the target
architecture, extra logic may be required to implement the control signals. This extra logic uses additional
device resources and can cause additional delays for the control signals.

In addition, there are certain cases where using logic other than the dedicated control logic in the device
architecture can have a larger impact. For example, the clock enable signal has priority over the synchro‐
nous reset or clear signal in the device architecture. The clock enable turns off the clock line in the LAB,
and the clear signal is synchronous. Therefore, in the device architecture, the synchronous clear takes
effect only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority over the clock enable signal, the
software must emulate the clock enable functionality using data inputs to the registers. Because the signal
does not use the clock enable port of a register, you cannot apply a Clock Enable Multicycle constraint. In
this case, following the priority of signals available in the device is clearly the best choice for the priority of
these control signals, and using a different priority causes unexpected results with an assignment to the
clock enable signal.

Note: The priority order for secondary control signals in Altera devices differs from the order for other
vendors’ devices. If your design requirements are flexible regarding priority, verify that the
secondary control signals meet design performance requirements when migrating designs between
FPGA vendors and try to match your target device architecture to achieve the best results.

QPS5V1
2015.11.02 Secondary Register Control Signals Such as Clear and Clock Enable 12-35

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The signal order is the same for all Altera device families, although, as noted previously, not all device
families provide every signal. The following priority order is observed:

1. Asynchronous Clear, aclr—highest priority
2. Asynchronous Load, aload
3. Enable, ena
4. Synchronous Clear, sclr
5. Synchronous Load, sload
6. Data In, data—lowest priority

The following examples provide Verilog HDL and VHDL code that creates a register with the aclr,
aload, and ena control signals.

Note: The Verilog HDL example does not have adata on the sensitivity list, but the VHDL example does.
This is a limitation of the Verilog HDL language—there is no way to describe an asynchronous
load signal (in which q toggles if adata toggles while aload is high). All synthesis tools should infer
an aload signal from this construct despite this limitation. When they perform such inference, you
may see information or warning messages from the synthesis tool.

Example 12-41: Verilog HDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals

module dff_control(clk, aclr, aload, ena, data, adata, q);
 input clk, aclr, aload, ena, data, adata;
 output q;

 reg q;

 always @ (posedge clk or posedge aclr or posedge aload)
 begin
 if (aclr)
 q <= 1'b0;
 else if (aload)
 q <= adata;
 else if (ena)
 q <= data;
 end
endmodule

Example 12-42: VHDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals (part
1)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
 PORT (
 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 aload: IN STD_LOGIC;
 adata: IN STD_LOGIC;
 ena: IN STD_LOGIC;
 data: IN STD_LOGIC;
q: OUT STD_LOGIC

12-36 Secondary Register Control Signals Such as Clear and Clock Enable
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

);
END dff_control;

Example 12-43: VHDL D-Type Flipflop (Register) with ena, aclr, and aload Control Signals (part
2)

ARCHITECTURE rtl OF dff_control IS
BEGIN
 PROCESS (clk, aclr, aload, adata)
 BEGIN
IF (aclr = '1') THEN
q <= '0';
ELSIF (aload = '1') THEN
q <= adata;
ELSE
 IF (clk = '1' AND clk'event) THEN
 IF (ena ='1') THEN
q <= data;
 END IF;
 END IF;
 END IF;
 END PROCESS;
END rtl;

Latches
A latch is a small combinational loop that holds the value of a signal until a new value is assigned.

Latches can be inferred from HDL code when you did not intend to use a latch. If you do intend to infer a
latch, it is important to infer it correctly to guarantee correct device operation.

Note: Altera recommends that you design without the use of latches whenever possible.

Related Information
Recommended Design Practices on page 11-1

Avoid Unintentional Latch Generation
When you are designing combinational logic, certain coding styles can create an unintentional latch.

For example, when CASE or IF statements do not cover all possible input conditions, latches may be
required to hold the output if a new output value is not assigned. Check your synthesis tool messages for
references to inferred latches. If your code unintentionally creates a latch, make code changes to remove
the latch.

A latch is required if a signal is assigned a value outside of a clock edge (for example, with an asynchro‐
nous reset), but is not assigned a value in an edge-triggered design block. An unintentional latch may be
generated if your HDL code assigns a value to a signal in an edge-triggered design block, but that logic is
removed during synthesis. For example, when a CASE or IF statement tests the value of a condition with a
parameter or generic that evaluates to FALSE, any logic or signal assignment in that statement is not
required and is optimized away during synthesis. This optimization may result in a latch being generated
for the signal.

Note: Latches have limited support in formal verification tools. Therefore, ensure that you do not infer
latches unintentionally.

QPS5V1
2015.11.02 Latches 12-37

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The full_case attribute can be used in Verilog HDL designs to treat unspecified cases as don’t care
values (X). However, using the full_case attribute can cause simulation mismatches because this
attribute is a synthesis-only attribute, so simulation tools still treat the unspecified cases as latches.

Omitting the final else or when others clause in an if or case statement can also generate a latch.
Don’t care (X) assignments on the default conditions are useful in preventing latch generation. For the
best logic optimization, assign the default case or final else value to don’t care (X) instead of a logic
value.

Without the final else clause, the following code creates unintentional latches to cover the remaining
combinations of the sel inputs. When you are targeting a Stratix device with this code, omitting the final
else condition can cause the synthesis software to use up to six LEs, instead of the three it uses with the
else statement. Additionally, assigning the final else clause to 1 instead of X can result in slightly more
LEs, because the synthesis software cannot perform as much optimization when you specify a constant
value compared to a don’t care value.

Example 12-44: VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
 PORT (a,b,c: IN STD_LOGIC;
 sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 oput: OUT STD_LOGIC);
END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN
 PROCESS (a,b,c,sel) BEGIN
 if sel = "00000" THEN
 oput <= a;
 ELSIF sel = "00001" THEN
 oput <= b;
 ELSIF sel = "00010" THEN
 oput <= c;
 ELSE --- Prevents latch inference
 oput <= ''X'; --/
 END if;
 END PROCESS;
END rtl;

Related Information
Quartus Prime Integrated Synthesis on page 16-1

Inferring Latches Correctly
Synthesis tools can infer a latch that does not exhibit the glitch and timing hazard problems typically
associated with combinational loops. When using Quartus Prime integrated synthesis, latches that are
inferred by the software are reported in the User-Specified and Inferred Latches section of the
Compilation Report. This report indicates whether the latch is considered safe and free of timing hazards.

Note: Timing analysis does not completely model latch timing in some cases. Do not use latches unless
required by your design, and you fully understand the impact of using the latches.

If a latch or combinational loop in your design is not listed in the User Specified and Inferred Latches
section, it means that it was not inferred as a safe latch by the software and is not considered glitch-free.

12-38 Inferring Latches Correctly
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

All combinational loops listed in the Analysis & Synthesis Logic Cells Representing Combinational
Loops table in the Compilation Report are at risk of timing hazards. These entries indicate possible
problems with your design that you should investigate. However, it is possible to have a correct design
that includes combinational loops. For example, it is possible that the combinational loop cannot be
sensitized. This can occur in cases where there is an electrical path in the hardware, but either the designer
knows that the circuit never encounters data that causes that path to be activated, or the surrounding logic
is set up in a mutually exclusive manner that prevents that path from ever being sensitized, independent
of the data input.

For macrocell-based devices, all data (D-type) latches and set-reset (S-R) latches listed in the Analysis &
Synthesis User Specified and Inferred Latches table have an implementation free of timing hazards, such
as glitches. The implementation includes both a cover term to ensure there is no glitching and a single
macrocell in the feedback loop.

For 4-input LUT-based devices, such as Stratixdevices, the Cyclone series, and MAX II devices, all latches
in the User Specified and Inferred Latches table with a single LUT in the feedback loop are free of timing
hazards when a single input changes. Because of the hardware behavior of the LUT, the output does not
glitch when a single input toggles between two values that are supposed to produce the same output value,
such as a D-type input toggling when the enable input is inactive or a set input toggling when a reset input
with higher priority is active. This hardware behavior of the LUT means that no cover term is required for
a loop around a single LUT. The Quartus Prime software uses a single LUT in the feedback loop whenever
possible. A latch that has data, enable, set, and reset inputs in addition to the output fed back to the input
cannot be implemented in a single 4-input LUT. If the Quartus Prime software cannot implement the
latch with a single-LUT loop because there are too many inputs, the User Specified and Inferred Latches
table indicates that the latch is not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch inputs with a single adaptive look-up
table (ALUT) in the combinational loop. Therefore, all latches in the User-Specified and Inferred
Latches table are free of timing hazards when a single input changes.

If a latch is listed as a safe latch, other optimizations performed by the Quartus Prime software, such as
physical synthesis netlist optimizations in the Fitter, maintain the hazard-free performance. To ensure
hazard-free behavior, only one control input can change at a time. Changing two inputs simultaneously,
such as deasserting set and reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Quartus Prime integrated synthesis infers latches from always blocks in Verilog HDL and process
statements in VHDL, but not from continuous assignments in Verilog HDL or concurrent signal
assignments in VHDL. These rules are the same as for register inference. The software infers registers or
flipflops only from always blocks and process statements.

Example 12-45: Verilog HDL Set-Reset Latch

module simple_latch (
 input SetTerm,
 input ResetTerm,
 output reg LatchOut
);

 always @ (SetTerm or ResetTerm) begin
 if (SetTerm)
 LatchOut = 1'b1
 else if (ResetTerm)
 LatchOut = 1'b0

QPS5V1
2015.11.02 Inferring Latches Correctly 12-39

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 end
endmodule

Example 12-46: VHDL Data Type Latch

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY simple_latch IS
 PORT (
 enable, data : IN STD_LOGIC;
 q : OUT STD_LOGIC
);
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

 latch : PROCESS (enable, data)
 BEGIN
 IF (enable = '1') THEN
 q <= data;
 END IF;
 END PROCESS latch;
END rtl;

The following example shows a Verilog HDL continuous assignment that does not infer a latch in
the Quartus Prime software:

Example 12-47: VHDL Continuous Assignment Does Not Infer Latch

assign latch_out = (~en & latch_out) | (en & data);

The behavior of the assignment is similar to a latch, but it may not function correctly as a latch,
and its timing is not analyzed as a latch. Quartus Prime integrated synthesis also creates safe
latches when possible for instantiations of an Altera latch IP core. You can use an Altera latch IP
core to define a latch with any combination of data, enable, set, and reset inputs. The same
limitations apply for creating safe latches as for inferring latches from HDL code.

Inferring Altera latch IP core in another synthesis tool ensures that the implementation is also
recognized as a latch in the Quartus Prime software. If a third-party synthesis tool implements a
latch using the Altera latch IP core, the Quartus Prime integrated synthesis lists the latch in the
User-Specified and Inferred Latches table in the same way as it lists latches created in HDL
source code. The coding style necessary to produce an Altera latch IP core implementation may
depend on your synthesis tool. Some third-party synthesis tools list the number of Altera latch IP
cores that are inferred.

For LUT-based families, the Fitter uses global routing for control signals, including signals that
Analysis and Synthesis identifies as latch enables. In some cases the global insertion delay may
decrease the timing performance. If necessary, you can turn off the Quartus Prime Global Signal
logic option to manually prevent the use of global signals. Global latch enables are listed in the
Global & Other Fast Signals table in the Compilation Report.

12-40 Inferring Latches Correctly
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

General Coding Guidelines
This section describes how coding styles impacts synthesis of HDL code into the target Altera device.

Following Altera recommended coding styles, and in some cases designing logic structures to match the
appropriate device architecture, can provide significant improvements in your design's efficiency and
performance.

Tri-State Signals
When you target Altera devices, you should use tri-state signals only when they are attached to top-level
bidirectional or output pins.

Avoid lower-level bidirectional pins, and avoid using the Z logic value unless it is driving an output or
bidirectional pin. Synthesis tools implement designs with internal tri-state signals correctly in Altera
devices using multiplexer logic, but Altera does not recommend this coding practice.

Note: In hierarchical block-based design flows, a hierarchical boundary cannot contain any bidirectional
ports, unless the lower-level bidirectional port is connected directly through the hierarchy to a top-
level output pin without connecting to any other design logic. If you use boundary tri-states in a
lower-level block, synthesis software must push the tri-states through the hierarchy to the top level
to make use of the tri-state drivers on output pins of Altera devices. Because pushing tri-states
requires optimizing through hierarchies, lower-level tri-states are restricted with block-based
design methodologies.

Clock Multiplexing
Clock multiplexing is sometimes used to operate the same logic function with different clock sources.

This type of logic can introduce glitches that create functional problems, and the delay inherent in the
combinational logic can lead to timing problems. Clock multiplexers trigger warnings from a wide range
of design rule check and timing analysis tools.

Altera recommends using dedicated hardware to perform clock multiplexing when it is available, instead
of using multiplexing logic. For example, you can use the Clock Switchover feature or the Clock Control
Block available in certain Altera devices. These dedicated hardware blocks avoid glitches, ensure that you
use global low-skew routing lines, and avoid any possible hold time problems on the device due to logic
delay on the clock line. Many Altera devices also support dynamic PLL reconfiguration, which is the safest
and most robust method of changing clock rates during device operation.

If you implement a clock multiplexer in logic cells because the design has too many clocks to use the clock
control block, or if dynamic reconfiguration is too complex for your design, it is important to consider
simultaneous toggling inputs and ensure glitch-free transitions.

QPS5V1
2015.11.02 General Coding Guidelines 12-41

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-2: Simple Clock Multiplexer in a 6-Input LUT

clk0

clk1

clk2

clk3

Sys_clk

clk_select (static)

The data sheet for your target device describes how LUT outputs may glitch during a simultaneous toggle
of input signals, independent of the LUT function. Although, in practice, the 4:1 MUX function does not
generate detectable glitches during simultaneous data input toggles, it is possible to construct cell
implementations that do exhibit significant glitches, so this simple clock mux structure is not
recommended. An additional problem with this implementation is that the output behaves erratically
during a change in the clk_select signals. This behavior could create timing violations on all registers
fed by the system clock and result in possible metastability.

A more sophisticated clock select structure can eliminate the simultaneous toggle and switching
problems.

Figure 12-3: Glitch-Free Clock Multiplexer Structure

sel0

sel1

clk0

clk1

clk_out

DQ DQ DQ

DQDQDQ

You can generalize this structure for any number of clock channels. The design ensures that no clock
activates until all others are inactive for at least a few cycles, and that activation occurs while the clock is
low. The design applies a synthesis_keep directive to the AND gates on the right side, which ensures
there are no simultaneous toggles on the input of the clk_out OR gate.

12-42 Clock Multiplexing
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Switching from clock A to clock B requires that clock A continue to operate for at least a few cycles.
If the old clock stops immediately, the design sticks. The select signals are implemented as a “one-
hot” control in this example, but you can use other encoding if you prefer. The input side logic is
asynchronous and is not critical. This design can tolerate extreme glitching during the switch
process.

Example 12-48: Verilog HDL Clock Multiplexing Design to Avoid Glitches

module clock_mux (clk,clk_select,clk_out);

 parameter num_clocks = 4;

 input [num_clocks-1:0] clk;
 input [num_clocks-1:0] clk_select; // one hot
 output clk_out;

 genvar i;

 reg [num_clocks-1:0] ena_r0;
 reg [num_clocks-1:0] ena_r1;
 reg [num_clocks-1:0] ena_r2;
 wire [num_clocks-1:0] qualified_sel;

 // A look-up-table (LUT) can glitch when multiple inputs
 // change simultaneously. Use the keep attribute to
 // insert a hard logic cell buffer and prevent
 // the unrelated clocks from appearing on the same LUT.

 wire [num_clocks-1:0] gated_clks /* synthesis keep */;

 initial begin
 ena_r0 = 0;
 ena_r1 = 0;
 ena_r2 = 0;
 end

 generate
 for (i=0; i<num_clocks; i=i+1)
 begin : lp0
 wire [num_clocks-1:0] tmp_mask;
 assign tmp_mask = {num_clocks{1'b1}} ^ (1 << i);

 assign qualified_sel[i] = clk_select[i] & (~|(ena_r2 &
tmp_mask));

 always @(posedge clk[i]) begin
 ena_r0[i] <= qualified_sel[i];
 ena_r1[i] <= ena_r0[i];
 end

 always @(negedge clk[i]) begin
 ena_r2[i] <= ena_r1[i];
 end

 assign gated_clks[i] = clk[i] & ena_r2[i];
 end
 endgenerate

 // These will not exhibit simultaneous toggle by construction
 assign clk_out = |gated_clks;

endmodule

QPS5V1
2015.11.02 Clock Multiplexing 12-43

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Altera IP Core Literature

Adder Trees
Structuring adder trees appropriately to match your targeted Altera device architecture can provide
significant improvements in your design's efficiency and performance.

A good example of an application using a large adder tree is a finite impulse response (FIR) correlator.
Using a pipelined binary or ternary adder tree appropriately can greatly improve the quality of your
results.

This section explains why coding recommendations are different for Altera 4-input LUT devices and
6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements
Architectures such as Stratix devices and the Cyclone series of devices contain 4-input LUTs as the
standard combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three numbers A, B, and C in devices that use
4-input lookup tables is to addA + B, register the output, and then add the registered output to C. Adding
A + B takes one level of logic (one bit is added in one LE), so this runs at full clock speed. This can be
extended to as many numbers as desired.

Adding five numbers in devices that use 4-input lookup tables requires four adders and three levels of
registers for a total of 64 LEs (for 16-bit numbers).

Architectures with 6-Input LUTs in Adaptive Logic Modules
High-performance Altera device families use a 6-input LUT in their basic logic structure. These devices
benefit from a different coding style from the previous example presented for 4-input LUTs.

Specifically, in these devices, ALMs can simultaneously add three bits. Therefore, the tree must be two
levels deep and contain just two add-by-three inputs instead of four add-by-two inputs.

Although the code in the previous example compiles successfully for 6-input LUT devices, the code is
inefficient and does not take advantage of the 6-input adaptive ALUT. By restructuring the tree as a
ternary tree, the design becomes much more efficient, significantly improving density utilization.
Therefore, when you are targeting with ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the advanced device architecture.

Note: You cannot pack a LAB full when using this type of coding style because of the number of LAB
inputs. However, in a typical design, the Quartus Prime Fitter can pack other logic into each LAB
to take advantage of the unused ALMs.

These examples show pipelined adders, but partitioning your addition operations can help you achieve
better results in nonpipelined adders as well. If your design is not pipelined, a ternary tree provides much
better performance than a binary tree. For example, depending on your synthesis tool, the HDL code
sum = (A + B + C) + (D + E) is more likely to create the optimal implementation of a 3-input adder
for A + B + C followed by a 3-input adder for sum1 + D + E than the code without the parentheses. If
you do not add the parentheses, the synthesis tool may partition the addition in a way that is not optimal
for the architecture.

Example 12-49: Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);

12-44 Adder Trees
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

http://www.altera.com/literature/lit-ip.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 input clk, reset;
 input [3:0] in_1, in_2;
 output [4:0] out;
 parameter state_0 = 3'b000;
 parameter state_1 = 3'b001;
 parameter state_2 = 3'b010;
 parameter state_3 = 3'b011;
 parameter state_4 = 3'b100;

 reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
 reg [2:0] state, next_state;

 always @ (posedge clk or posedge reset)
 begin
 if (reset)
 state <= state_0;
 else
 state <= next_state;
 end
 always @ (*)
 begin
 tmp_out_0 = in_1 + in_2;
 tmp_out_1 = in_1 - in_2;
 case (state)
 state_0: begin
 tmp_out_2 = in_1 + 5'b00001;
 next_state = state_1;
 end
 state_1: begin
 if (in_1 < in_2) begin
 next_state = state_2;
 tmp_out_2 = tmp_out_0;
 end
 else begin
 next_state = state_3;
 tmp_out_2 = tmp_out_1;
 end
 end
 state_2: begin
 tmp_out_2 = tmp_out_0 - 5'b00001;
 next_state = state_3;
 end
 state_3: begin
 tmp_out_2 = tmp_out_1 + 5'b00001;
 next_state = state_0;
 end
 state_4:begin
 tmp_out_2 = in_2 + 5'b00001;
 next_state = state_0;
 end
 default:begin
 tmp_out_2 = 5'b00000;
 next_state = state_0;
 end
 endcase
 end
 assign out = tmp_out_2;
endmodule

An equivalent implementation of this state machine can be achieved by using ‘define instead of
the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010

QPS5V1
2015.11.02 Architectures with 6-Input LUTs in Adaptive Logic Modules 12-45

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a ‘state_x instead of a state_x,
for example:

next_state <= ‘state_3;

Note: Although the ‘define construct is supported, Altera strongly recommends the use
of the parameter data type because doing so preserves the state names throughout
synthesis.

State Machine HDL Guidelines
Synthesis tools can recognize and encode Verilog HDL and VHDL state machines during synthesis. This
section presents guidelines to ensure the best results when you use state machines.

Ensuring that your synthesis tool recognizes a piece of code as a state machine allows the tool to recode
the state variables to improve the quality of results, and allows the tool to use the known properties of
state machines to optimize other parts of the design. When synthesis recognizes a state machine, it is often
able to improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot encoding for FPGA devices and
minimal-bit encoding for CPLD devices, although the choice of implementation can vary for different
state machines and different devices. Refer to your synthesis tool documentation for specific ways to
control the manner in which state machines are encoded.

To ensure proper recognition and inference of state machines and to improve the quality of results, Altera
recommends that you observe the following guidelines, which apply to both Verilog HDL and VHDL:

• Assign default values to outputs derived from the state machine so that synthesis does not generate
unwanted latches.

• Separate the state machine logic from all arithmetic functions and data paths, including assigning
output values.

• If your design contains an operation that is used by more than one state, define the operation outside
the state machine and cause the output logic of the state machine to use this value.

• Use a simple asynchronous or synchronous reset to ensure a defined power-up state. If your state
machine design contains more elaborate reset logic, such as both an asynchronous reset and an
asynchronous load, the Quartus Prime software generates regular logic rather than inferring a state
machine.

If a state machine enters an illegal state due to a problem with the device, the design likely ceases to
function correctly until the next reset of the state machine. Synthesis tools do not provide for this
situation by default. The same issue applies to any other registers if there is some kind of fault in the
system. A default or when others clause does not affect this operation, assuming that your design never
deliberately enters this state. Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Quartus Prime integrated synthesis) have an option to implement a safe
state machine. The software inserts extra logic to detect an illegal state and force the state machine’s
transition to the reset state. It is commonly used when the state machine can enter an illegal state. The

12-46 State Machine HDL Guidelines
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

most common cause of this situation is a state machine that has control inputs that come from another
clock domain, such as the control logic for a dual-clock FIFO.

This option protects only state machines by forcing them into the reset state. All other registers in the
design are not protected this way. If the design has asynchronous inputs, Altera recommends using a
synchronization register chain instead of relying on the safe state machine option.

Related Information
Quartus Prime Integrated Synthesis on page 16-1

Verilog HDL State Machines
To ensure proper recognition and inference of Verilog HDL state machines, observe the following
additional Verilog HDL guidelines.

Some of these guidelines may be specific to Quartus Prime integrated synthesis. Refer to your synthesis
tool documentation for specific coding recommendations. If the state machine is not recognized and
inferred by the synthesis software (such as Quartus Prime integrated synthesis), the state machine is
implemented as regular logic gates and registers, and the state machine is not listed as a state machine in
the Analysis & Synthesis section of the Quartus Prime Compilation Report. In this case, the software does
not perform any of the optimizations that are specific to state machines.

• If you are using the SystemVerilog standard, use enumerated types to describe state machines.
• Represent the states in a state machine with the parameter data types in Verilog-1995 and

Verilog-2001, and use the parameters to make state assignments. This parameter implementation
makes the state machine easier to read and reduces the risk of errors during coding.

• Altera recommends against the direct use of integer values for state variables, such as next_state
<= 0. However, using an integer does not prevent inference in the Quartus Prime software.

• No state machine is inferred in the Quartus Prime software if the state transition logic uses arithmetic
similar to that in the following example:

 case (state)
 0: begin
 if (ena) next_state <= state + 2;
 else next_state <= state + 1;
 end
 1: begin
 ...
 endcase

case (state)0: beginif (ena) next_state <= state + 2;else next_state <= state + 1;end1: begin...endcase

• No state machine is inferred in the Quartus Prime software if the state variable is an output.
• No state machine is inferred in the Quartus Prime software for signed variables.

Related Information

• Verilog-2001 State Machine Coding Example on page 12-47
• SystemVerilog State Machine Coding Example on page 12-49

Verilog-2001 State Machine Coding Example
The following module verilog_fsm is an example of a typical Verilog HDL state machine
implementation.

This state machine has five states. The asynchronous reset sets the variable state to state_0. The sum of
in_1 and in_2 is an output of the state machine in state_1 and state_2. The difference (in_1 – in_2) is

QPS5V1
2015.11.02 Verilog HDL State Machines 12-47

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

also used in state_1 and state_2. The temporary variables tmp_out_0 and tmp_out_1 store the sum and
the difference of in_1 and in_2. Using these temporary variables in the various states of the state machine
ensures proper resource sharing between the mutually exclusive states.

Example 12-50: Verilog-2001 State Machine

module verilog_fsm (clk, reset, in_1, in_2, out);
 input clk, reset;
 input [3:0] in_1, in_2;
 output [4:0] out;
 parameter state_0 = 3'b000;
 parameter state_1 = 3'b001;
 parameter state_2 = 3'b010;
 parameter state_3 = 3'b011;
 parameter state_4 = 3'b100;

 reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
 reg [2:0] state, next_state;

 always @ (posedge clk or posedge reset)
 begin
 if (reset)
 state <= state_0;
 else
 state <= next_state;
 end
 always @ (*)
 begin
 tmp_out_0 = in_1 + in_2;
 tmp_out_1 = in_1 - in_2;
 case (state)
 state_0: begin
 tmp_out_2 = in_1 + 5'b00001;
 next_state = state_1;
 end
 state_1: begin
 if (in_1 < in_2) begin
 next_state = state_2;
 tmp_out_2 = tmp_out_0;
 end
 else begin
 next_state = state_3;
 tmp_out_2 = tmp_out_1;
 end
 end
 state_2: begin
 tmp_out_2 = tmp_out_0 - 5'b00001;
 next_state = state_3;
 end
 state_3: begin
 tmp_out_2 = tmp_out_1 + 5'b00001;
 next_state = state_0;
 end
 state_4:begin
 tmp_out_2 = in_2 + 5'b00001;
 next_state = state_0;
 end
 default:begin
 tmp_out_2 = 5'b00000;
 next_state = state_0;
 end
 endcase
 end

12-48 Verilog-2001 State Machine Coding Example
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 assign out = tmp_out_2;
endmodule

An equivalent implementation of this state machine can be achieved by using ‘define instead of
the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a ‘state_x instead of a state_x,
for example:

next_state <= ‘state_3;

Note: Although the ‘define construct is supported, Altera strongly recommends the use
of the parameter data type because doing so preserves the state names throughout
synthesis.

SystemVerilog State Machine Coding Example
The module enum_fsm is an example of a SystemVerilog state machine implementation that uses
enumerated types. Altera recommends using this coding style to describe state machines in
SystemVerilog.

Note: In Quartus Prime integrated synthesis, the enumerated type that defines the states for the state
machine must be of an unsigned integer type. If you do not specify the enumerated type as int
unsigned, a signed int type is used by default. In this case, the Quartus Prime integrated synthesis
synthesizes the design, but does not infer or optimize the logic as a state machine.

Example 12-51: SystemVerilog State Machine Using Enumerated Types

module enum_fsm (input clk, reset, input int data[3:0], output int o);

enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;

always_comb begin : next_state_logic
 next_state = S0;
 case(state)
 S0: next_state = S1;
 S1: next_state = S2;
 S2: next_state = S3;
 S3: next_state = S3;
 endcase
end

always_comb begin
 case(state)
 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];
 endcase
end

QPS5V1
2015.11.02 SystemVerilog State Machine Coding Example 12-49

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

always_ff@(posedge clk or negedge reset) begin
 if(~reset)
 state <= S0;
 else
 state <= next_state;
end
endmodule

VHDL State Machines
To ensure proper recognition and inference of VHDL state machines, represent the states in a state
machine with enumerated types and use the corresponding types to make state assignments.

This implementation makes the state machine easier to read and reduces the risk of errors during coding.
If the state is not represented by an enumerated type, synthesis software (such as Quartus Prime
integrated synthesis) does not recognize the state machine. Instead, the state machine is implemented as
regular logic gates and registers and the state machine is not listed as a state machine in the Analysis &
Synthesis section of the Quartus Prime Compilation Report. In this case, the software does not perform
any of the optimizations that are specific to state machines.

VHDL State Machine Coding Example
The following state machine has five states. The asynchronous reset sets the variable state to state_0.

The sum of in1 and in2 is an output of the state machine in state_1 and state_2. The difference (in1 -
 in2) is also used in state_1 and state_2. The temporary variables tmp_out_0 and tmp_out_1 store the
sum and the difference of in1 and in2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive states.

Example 12-52: VHDL State Machine

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
ENTITY vhdl_fsm IS
 PORT(
 clk: IN STD_LOGIC;
 reset: IN STD_LOGIC;
 in1: IN UNSIGNED(4 downto 0);
 in2: IN UNSIGNED(4 downto 0);
 out_1: OUT UNSIGNED(4 downto 0)
);
END vhdl_fsm;
ARCHITECTURE rtl OF vhdl_fsm IS
 TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
 SIGNAL state: Tstate;
 SIGNAL next_state: Tstate;
BEGIN
 PROCESS(clk, reset)
 BEGIN
 IF reset = '1' THEN
 state <=state_0;
 ELSIF rising_edge(clk) THEN
 state <= next_state;
 END IF;
 END PROCESS;
PROCESS (state, in1, in2)
 VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
 VARIABLE tmp_out_1: UNSIGNED (4 downto 0);
 BEGIN

12-50 VHDL State Machines
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 tmp_out_0 := in1 + in2;
 tmp_out_1 := in1 - in2;
 CASE state IS
 WHEN state_0 =>
 out_1 <= in1;
 next_state <= state_1;
 WHEN state_1 =>
 IF (in1 < in2) then
 next_state <= state_2;
 out_1 <= tmp_out_0;
 ELSE
 next_state <= state_3;
 out_1 <= tmp_out_1;
 END IF;
 WHEN state_2 =>
 IF (in1 < "0100") then
 out_1 <= tmp_out_0;
 ELSE
 out_1 <= tmp_out_1;
 END IF;
 next_state <= state_3;
 WHEN state_3 =>
 out_1 <= "11111";
 next_state <= state_4;
 WHEN state_4 =>
 out_1 <= in2;
 next_state <= state_0;
 WHEN OTHERS =>
 out_1 <= "00000";
 next_state <= state_0;
 END CASE;
 END PROCESS;
END rtl;

Multiplexer HDL Guidelines
Multiplexers form a large portion of the logic utilization in many FPGA designs. By optimizing your
multiplexer logic, you ensure the most efficient implementation in your Altera device.

This section addresses common problems and provides design guidelines to achieve optimal resource
utilization for multiplexer designs. The section also describes various types of multiplexers, and how they
are implemented.

For more information, refer to the Advanced Synthesis Cookbook.

Related Information
Advanced Synthesis Cookbook

Quartus Prime Software Option for Multiplexer Restructuring
Quartus Prime integrated synthesis provides the Restructure Multiplexers logic option that extracts and
optimizes buses of multiplexers during synthesis.

The default setting Auto for this option uses the optimization when it is most likely to benefit the
optimization targets for your design. You can turn the option on or off specifically to have more control
over its use.

Even with this Quartus Prime-specific option turned on, it is beneficial to understand how your coding
style can be interpreted by your synthesis tool, and avoid the situations that can cause problems in your
design.

QPS5V1
2015.11.02 Multiplexer HDL Guidelines 12-51

Recommended HDL Coding Styles Altera Corporation

Send Feedback

http://www.altera.com/literature/manual/stx_cookbook.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Quartus Prime Integrated Synthesis on page 16-1

Multiplexer Types
This section addresses how multiplexers are created from various types of HDL code. CASE statements, IF
statements, and state machines are all common sources of multiplexer logic in designs.

These HDL structures create different types of multiplexers, including binary multiplexers, selector
multiplexers, and priority multiplexers. Understanding how multiplexers are created from HDL code, and
how they might be implemented during synthesis, is the first step toward optimizing multiplexer
structures for best results.

Binary Multiplexers
Binary multiplexers select inputs based on binary-encoded selection bits.

Stratix series devices starting with the Stratix II device family feature 6-input look up tables (LUTs) which
are perfectly suited for 4:1 multiplexer building blocks (4 data and 2 select inputs). The extended input
mode facilitates implementing 8:1 blocks, and the fractured mode handles residual 2:1 multiplexer pairs.
For device families using 4-input LUTs, such as the Cyclone series and Stratix devices, the 4:1 binary
multiplexer is efficiently implemented by using two 4-input LUTs. Larger binary multiplexers are
decomposed by the synthesis tool into 4:1 multiplexer blocks, possibly with a residual 2:1 multiplexer at
the head.

Example 12-53: Verilog HDL Binary-Encoded Multiplexers

case (sel)
 2'b00: z = a;
 2'b01: z = b;
 2'b10: z = c;
 2'b11: z = d;
endcase

Selector Multiplexers
Selector multiplexers have a separate select line for each data input.

The select lines for the multiplexer are one-hot encoded. Selector multiplexers are commonly built as a
tree of AND and OR gates. An N-input selector multiplexer of this structure is slightly less efficient in
implementation than a binary multiplexer. However, in many cases the select signal is the output of a
decoder, in which case Quartus Prime Synthesis will try to combine the selector and decoder into a binary
multiplexer.

Example 12-54: Verilog HDL One-Hot-Encoded Case Statement

case (sel)
 4'b0001: z = a;
 4'b0010: z = b;
 4'b0100: z = c;
 4'b1000: z = d;
 default: z = 1'bx;
endcase

12-52 Multiplexer Types
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Priority Multiplexers
In priority multiplexers, the select logic implies a priority. The options to select the correct item must be
checked in a specific order based on signal priority.

These structures commonly are created from IF, ELSE, WHEN, SELECT, and ?: statements in VHDL or
Verilog HDL.

Example 12-55: VHDL IF Statement Implying Priority

IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

The multiplexers form a chain, evaluating each condition or select bit sequentially.

Figure 12-4: Priority Multiplexer Implementation of an IF Statement

sel[1:0]

Binary MUX
sel[3:2]

“10xx”“01xx”

“00xx” “11xx”

z

a b c d

Depending on the number of multiplexers in the chain, the timing delay through this chain can
become large, especially for device families with 4-input LUTs.

To improve the timing delay through the multiplexer, avoid priority multiplexers if priority is not
required. If the order of the choices is not important to the design, use a CASE statement to
implement a binary or selector multiplexer instead of a priority multiplexer. If delay through the
structure is important in a multiplexed design requiring priority, consider recoding the design to
reduce the number of logic levels to minimize delay, especially along your critical paths.

Implicit Defaults in If Statements
The IF statements in Verilog HDL and VHDL can be a convenient way to specify conditions that do not
easily lend themselves to a CASE-type approach.

However, using IF statements can result in complicated multiplexer trees that are not easy for synthesis
tools to optimize. In particular, every IF statement has an implicit ELSE condition, even when it is not
specified. These implicit defaults can cause additional complexity in a multiplexed design.

There are several ways you can simplify multiplexed logic and remove unneeded defaults. The optimal
method may be to recode the design so the logic takes the structure of a 4:1 CASE statement. Alternatively,
if priority is important, you can restructure the code to reduce default cases and flatten the multiplexer.
Examine whether the default "ELSE IF" conditions are don’t care cases. You may be able to create a

QPS5V1
2015.11.02 Priority Multiplexers 12-53

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

default ELSE statement to make the behavior explicit. Avoid unnecessary default conditions in your
multiplexer logic to reduce the complexity and logic utilization required to implement your design.

Default or Others Case Assignment
To fully specify the cases in a CASE statement, include a default (Verilog HDL) or OTHERS (VHDL)
assignment.

This assignment is especially important in one-hot encoding schemes where many combinations of the
select lines are unused. Specifying a case for the unused select line combinations gives the synthesis tool
information about how to synthesize these cases, and is required by the Verilog HDL and VHDL language
specifications.

Some designs do not require that the outcome in the unused cases be considered, often because designers
assume these cases will not occur. For these types of designs, you can specify any value for the default or
OTHERS assignment. However, be aware that the assignment value you choose can have a large effect on
the logic utilization required to implement the design due to the different ways synthesis tools treat
different values for the assignment, and how the synthesis tools use different speed and area optimiza‐
tions.

To obtain best results, explicitly define invalid CASE selections with a separate default or OTHERS
statement instead of combining the invalid cases with one of the defined cases.

If the value in the invalid cases is not important, specify those cases explicitly by assigning the X
(don’t care) logic value instead of choosing another value. This assignment allows your synthesis tool to
perform the best area optimizations.

Cyclic Redundancy Check Functions
CRC computations are used heavily by communications protocols and storage devices to detect any
corruption of data.

These functions are highly effective; there is a very low probability that corrupted data can pass a 32-bit
CRC check.

CRC functions typically use wide XOR gates to compare the data. The way synthesis tools flatten and
factor these XOR gates to implement the logic in FPGA LUTs can greatly impact the area and perform‐
ance results for the design. XOR gates have a cancellation property that creates an exceptionally large
number of reasonable factoring combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for these designs. When properly
synthesized, CRC processing designs can run at high speeds in devices with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC designs in Altera devices.

If Performance is Important, Optimize for Speed
Synthesis tools flatten XOR gates to minimize area and depth of levels of logic.

Synthesis tools such as Quartus Prime integrated synthesis target area optimization by default for these
logic structures. Therefore, for more focus on depth reduction, set the synthesis optimization technique to
speed.

Flattening for depth sometimes causes a significant increase in area.

12-54 Default or Others Case Assignment
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use Separate CRC Blocks Instead of Cascaded Stages
Some designers optimize their CRC designs to use cascaded stages (for example, four stages of 8 bits). In
such designs, intermediate calculations are used as required (such as the calculations after 8, 24, or 32 bits)
depending on the data width.

This design is not optimal in FPGA devices. The XOR cancellations that can be performed in CRC designs
mean that the function does not require all the intermediate calculations to determine the final result.
Therefore, forcing the use of intermediate calculations increases the area required to implement the
function, as well as increasing the logic depth because of the cascading. It is typically better to create full
separate CRC blocks for each data width that you require in the design, and then multiplex them together
to choose the appropriate mode at a given time

Use Separate CRC Blocks Instead of Allowing Blocks to Merge
Synthesis tools often attempt to optimize CRC designs by sharing resources and extracting duplicates in
two different CRC blocks because of the factoring options in the XOR logic.

The CRC logic allows significant reductions, but this works best when each CRC function is optimized
separately. Check for duplicate extraction behavior if you have different CRC functions that are driven by
common data signals or that feed the same destination signals.

If you are having problems with the quality of results and you see that two CRC functions are sharing
logic, ensure that the blocks are synthesized independently using one of the following methods:

• Define each CRC block as a separate design partition in an incremental compilation design flow.
• Synthesize each CRC block as a separate project in your third-party synthesis tool and then write a

separate Verilog Quartus Mapping (.vqm) or EDIF netlist file for each.

Take Advantage of Latency if Available
If your design can use more than one cycle to implement the CRC functionality, adding registers and
retiming the design can help reduce area, improve performance, and reduce power utilization.

If your synthesis tool offers a retiming feature (such as the Quartus Prime software Perform gate-level
register retiming option), you can insert an extra bank of registers at the input and allow the retiming
feature to move the registers for better results. You can also build the CRC unit half as wide and alternate
between halves of the data in each clock cycle.

Save Power by Disabling CRC Blocks When Not in Use
CRC designs are heavy consumers of dynamic power because the logic toggles whenever there is a change
in the design.

To save power, use clock enables to disable the CRC function for every clock cycle that the logic is not
required. Some designs don’t check the CRC results for a few clock cycles while other logic is performed.
It is valuable to disable the CRC function even for this short amount of time.

Use the Device Synchronous Load (sload) Signal to Initialize
The data in many CRC designs must be initialized to 1’s before operation. If your target device supports
the use of the sload signal, you should use it to set all the registers in your design to 1’s before operation.

To enable use of the sload signal, follow the coding guidelines presented in this chapter. You can check
the register equations in the Chip Planner to ensure that the signal was used as expected.

If you must force a register implementation using an sload signal, you can use low-level device primitives
as described in Designing with Low-Level Primitives User Guide.

QPS5V1
2015.11.02 Use Separate CRC Blocks Instead of Cascaded Stages 12-55

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Secondary Register Control Signals Such as Clear and Clock Enable on page 12-35
• Designing with Low-Level Primitives User Guide

Comparator HDL Guidelines
Synthesis software, including Quartus Prime integrated synthesis, uses device and context-specific
implementation rules for comparators (<, >, or ==) and selects the best one for your design.

This section provides some information about the different types of implementations available and
provides suggestions on how you can code your design to encourage a specific implementation.

The == comparator is implemented in general logic cells. The < comparison can be implemented using the
carry chain or general logic cells. In devices with 6-input ALUTs, the carry chain is capable of comparing
up to three bits per cell. In devices with 4-input LUTs, the capacity is one bit of comparison per cell,
which is similar to an add/subtract chain. The carry chain implementation tends to be faster than the
general logic on standalone benchmark test cases, but can result in lower performance when it is part of a
larger design due to the increased restriction on the Fitter. The area requirement is similar for most input
patterns. The synthesis software selects an appropriate implementation based on the input pattern.

If you are using Quartus Prime integrated synthesis, you can guide the synthesis by using specific coding
styles. To select a carry chain implementation explicitly, rephrase your comparison in terms of addition.
As a simple example, the following coding style allows the synthesis tool to select the implementation,
which is most likely using general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except for a few cases, such as when the
chain is very short or the signals a and b minimize to the same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in twos complement logic if a is less
than b, because the subtraction a – b results in a negative number.

If you have any information about the range of the input, you have “don’t care” values that you can use to
optimize the design. Because this information is not available to the synthesis tool, you can often reduce
the device area required to implement the comparator with specific hand implementation of the logic.

You can also check whether a bus value is within a constant range with a small amount of logic area by
using the following logic structure . This type of logic occurs frequently in address decoders.

12-56 Comparator HDL Guidelines
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-5: Example Logic Structure for Using Comparators to Check a Bus Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

Counter HDL Guidelines
Implementing counters in HDL code is easy; they are implemented with an adder followed by registers.

Remember that the register control signals, such as enable (ena), synchronous clear (sclr), and synchro‐
nous load (sload), are available. For the best area utilization, ensure that the up/down control or controls
are expressed in terms of one addition instead of two separate addition operators.

If you use the following coding style, your synthesis tool may implement two separate carry chains for
addition (if it doesn’t detect the issue and optimize the logic):

out <= count_up ? out + 1 : out - 1;

The following coding style requires only one adder along with some other logic:

out <= out + (count_up ? 1 : -1);

In this case, the coding style better matches the device hardware because there is only one carry chain
adder, and the –1 constant logic is implemented in the LUT in front of the adder without adding extra
area utilization.

Designing with Low-Level Primitives
Low-level HDL design is the practice of using low-level primitives and assignments to dictate a particular
hardware implementation for a piece of logic. Low-level primitives are small architectural building blocks
that assist you in creating your design.

With the Quartus Prime software, you can use low-level HDL design techniques to force a specific
hardware implementation that can help you achieve better resource utilization or faster timing results.

Note: Using low-level primitives is an advanced technique to help with specific design challenges, and is
optional in the Altera design flow. For many designs, synthesizing generic HDL source code and
Altera IP cores give you the best results.

QPS5V1
2015.11.02 Counter HDL Guidelines 12-57

Recommended HDL Coding Styles Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Low-level primitives allow you to use the following types of coding techniques:

• Instantiate the logic cell or LCELL primitive to prevent Quartus Prime integrated synthesis from
performing optimizations across a logic cell

• Create carry and cascade chains using CARRY, CARRY_SUM, and CASCADE primitives
• Instantiate registers with specific control signals using DFF primitives
• Specify the creation of LUT functions by identifying the LUT boundaries
• Use I/O buffers to specify I/O standards, current strengths, and other I/O assignments
• Use I/O buffers to specify differential pin names in your HDL code, instead of using the automatically-

generated negative pin name for each pair

For details about and examples of using these types of assignments, refer to the Designing with Low-Level
Primitives User Guide.

Related Information
Designing with Low-Level Primitives User Guide

Document Revision History
The following revisions history applies to this chapter.

Table 12-2: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Added information and reference about ramstyle attribute for sift register
inference.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

2014.08.18 14.0.a10.0 • Added recommendation to use register pipelining to obtain high
performance in DSP designs.

2014.06.30 14.0.0 Removed obsolete MegaWizard Plug-In Manager support.

November
2013

13.1.0 Removed HardCopy device support.

June 2012 12.0.0 • Revised section on inserting Altera templates.
• Code update for Example 11-51.
• Minor corrections and updates.

November
2011

11.1.0 • Updated document template.
• Minor updates and corrections.

December
2010

10.1.0 • Changed to new document template.
• Updated Unintentional Latch Generation content.
• Code update for Example 11-18.

12-58 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Recommended HDL Coding Styles

Send Feedback

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

July 2010 10.0.0 • Added support for mixed-width RAM
• Updated support for no_rw_check for inferring RAM blocks
• Added support for byte-enable

November
2009

9.1.0 • Updated support for Controlling Inference and Implementation in
Device RAM Blocks

• Updated support for Shift Registers

March 2009 9.0.0 • Corrected and updated several examples
• Added support for Arria II GX devices
• Other minor changes to chapter

November
2008

8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 Updates for the Quartus Prime software version 8.0 release, including:

• Added information to “RAM
• Functions—Inferring ALTSYNCRAM and ALTDPRAM Megafunctions

from HDL Code” on page 6–13
• Added information to “Avoid Unsupported Reset and Control

Conditions” on page 6–14
• Added information to “Check Read-During-Write Behavior” on page 6–

16
• Added two new examples to “ROM Functions—Inferring

ALTSYNCRAM and LPM_ROM Megafunctions from HDL Code” on
page 6–28: Example 6–24 and Example 6–25

• Added new section: “Clock Multiplexing” on page 6–46
• Added hyperlinks to references within the chapter
• Minor editorial updates

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 12-59

Recommended HDL Coding Styles Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Recommended%20HDL%20Coding%20Styles%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Managing Metastability with the Quartus
Prime Software 13

2015.11.02

QPS5V1 Subscribe Send Feedback

You can use the Quartus Prime software to analyze the average mean time between failures (MTBF) due
to metastability caused by synchronization of asynchronous signals, and optimize the design to improve
the metastability MTBF.

All registers in digital devices, such as FPGAs, have defined signal-timing requirements that allow each
register to correctly capture data at its input ports and produce an output signal. To ensure reliable
operation, the input to a register must be stable for a minimum amount of time before the clock edge
(register setup time or tSU) and a minimum amount of time after the clock edge (register hold time or tH).
The register output is available after a specified clock-to-output delay (tCO).

If the data violates the setup or hold time requirements, the output of the register might go into a
metastable state. In a metastable state, the voltage at the register output hovers at a value between the high
and low states, which means the output transition to a defined high or low state is delayed beyond the
specified tCO. Different destination registers might capture different values for the metastable signal,
which can cause the system to fail.

In synchronous systems, the input signals must always meet the register timing requirements, so that
metastability does not occur. Metastability problems commonly occur when a signal is transferred
between circuitry in unrelated or asynchronous clock domains, because the signal can arrive at any time
relative to the destination clock.

The MTBF due to metastability is an estimate of the average time between instances when metastability
could cause a design failure. A high MTBF (such as hundreds or thousands of years between metastability
failures) indicates a more robust design. You should determine an acceptable target MTBF in the context
of your entire system and taking in account that MTBF calculations are statistical estimates.

The metastability MTBF for a specific signal transfer, or all the transfers in a design, can be calculated
using information about the design and the device characteristics. Improving the metastability MTBF for
your design reduces the chance that signal transfers could cause metastability problems in your device.

The Quartus Prime software provides analysis, optimization, and reporting features to help manage
metastability in Altera designs. These metastability features are supported only for designs constrained
with the Quartus Prime Timing Analyzer. Both typical and worst-case MBTF values are generated for
select device families.

Related Information

• Understanding Metastability in FPGAs
For more information about metastability due to signal synchronization, its effects in FPGAs, and how
MTBF is calculated

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Reliability Report
For information about Altera device reliability

Metastability Analysis in the Quartus Prime Software
When a signal transfers between circuitry in unrelated or asynchronous clock domains, the first register in
the new clock domain acts as a synchronization register.

To minimize the failures due to metastability in asynchronous signal transfers, circuit designers typically
use a sequence of registers (a synchronization register chain or synchronizer) in the destination clock
domain to resynchronize the signal to the new clock domain and allow additional time for a potentially
metastable signal to resolve to a known value. Designers commonly use two registers to synchronize a
new signal, but a standard of three registers provides better metastability protection.

The timing analyzer can analyze and report the MTBF for each identified synchronizer that meets its
timing requirements, and can generate an estimate of the overall design MTBF. The software uses this
information to optimize the design MTBF, and you can use this information to determine whether your
design requires longer synchronizer chains.

Related Information

• Metastability and MTBF Reporting on page 13-4
• MTBF Optimization on page 13-7

Synchronization Register Chains
A synchronization register chain, or synchronizer, is defined as a sequence of registers that meets the
following requirements:

• The registers in the chain are all clocked by the same clock or phase-related clocks.
• The first register in the chain is driven asynchronously or from an unrelated clock domain.
• Each register fans out to only one register, except the last register in the chain.

The length of the synchronization register chain is the number of registers in the synchronizing clock
domain that meet the above requirements. The figure shows a sample two-register synchronization chain.

Figure 13-1: Sample Synchronization Register Chain

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Output
Registers

D Q D Q D Q

Synchronization Chain

13-2 Metastability Analysis in the Quartus Prime Software
QPS5V1

2015.11.02

Altera Corporation Managing Metastability with the Quartus Prime Software

Send Feedback

http://www.altera.com/literature/rr/rr.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The path between synchronization registers can contain combinational logic as long as all registers of the
synchronization register chain are in the same clock domain. The figure shows an example of a synchroni‐
zation register chain that includes logic between the registers.

Figure 13-2: Sample Synchronization Register Chain Containing Logic

Clock 1 Domain Clock 2 Domain

Data

Clock 1 Clock 2

Clock 2

Clock 2

Output
Registers

D Q D Q

D Q

D Q

Synchronization Chain

Data

The timing slack available in the register-to-register paths of the synchronizer allows a metastable signal
to settle, and is referred to as the available settling time. The available settling time in the MTBF calcula‐
tion for a synchronizer is the sum of the output timing slacks for each register in the chain. Adding
available settling time with additional synchronization registers improves the metastability MTBF.

Related Information
How Timing Constraints Affect Synchronizer Identification and Metastability Analysis on page 13-
3

Identifying Synchronizers for Metastability Analysis
The first step in enabling metastability MTBF analysis and optimization in the Quartus Prime software is
to identify which registers are part of a synchronization register chain. You can apply synchronizer
identification settings globally to automatically list possible synchronizers with the Synchronizer
identification option on the Timing Analyzer page in the Settings dialog box.

Synchronization chains are already identified within most Altera intellectual property (IP) cores.

Related Information
Identifying Synchronizers for Metastability
For more information about how to enable metastability MTBF analysis and optimization in the Quartus
Prime software, and more detailed descriptions of the synchronizer identification settings

How Timing Constraints Affect Synchronizer Identification and Metastability
Analysis

The timing analyzer can analyze metastability MTBF only if a synchronization chain meets its timing
requirements. The metastability failure rate depends on the timing slack available in the synchronizer’s
register-to-register connections, because that slack is the available settling time for a potential metastable

QPS5V1
2015.11.02 Identifying Synchronizers for Metastability Analysis 13-3

Managing Metastability with the Quartus Prime Software Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_pro_identifying_synchronizers.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

signal. Therefore, you must ensure that your design is correctly constrained with the real application
frequency requirements to get an accurate MTBF report.

In addition, the Auto and Forced If Asynchronous synchronizer identification options use timing
constraints to automatically detect the synchronizer chains in the design. These options check for signal
transfers between circuitry in unrelated or asynchronous clock domains, so clock domains must be related
correctly with timing constraints.

The timing analyzer views input ports as asynchronous signals unless they are associated correctly with a
clock domain. If an input port fans out to registers that are not acting as synchronization registers, apply a
set_input_delay constraint to the input port; otherwise, the input register might be reported as a
synchronization register. Constraining a synchronous input port with a set_max_delay constraint for a
setup (tSU) requirement does not prevent synchronizer identification because the constraint does not
associate the input port with a clock domain.

Instead, use the following command to specify an input setup requirement associated with a clock:

set_input_delay -max -clock <clock name> <latch – launch – tsu requirement> <input port name>

Registers that are at the end of false paths are also considered synchronization registers because false paths
are not timing-analyzed. Because there are no timing requirements for these paths, the signal may change
at any point, which may violate the tSU and tH of the register. Therefore, these registers are identified as
synchronization registers. If these registers are not used for synchronization, you can turn off synchron‐
izer identification and analysis. To do so, set Synchronizer Identification to Off for the first synchroniza‐
tion register in these register chains.

Metastability and MTBF Reporting
The Quartus Prime software reports the metastability analysis results in the Compilation Report and
Timing Analyzer reports.

The MTBF calculation uses timing and structural information about the design, silicon characteristics,
and operating conditions, along with the data toggle rate.

If you change the Synchronizer Identification settings, you can generate new metastability reports by
rerunning the timing analyzer. However, you should rerun the Fitter first so that the registers identified
with the new setting can be optimized for metastability MTBF.

Related Information

• Metastability Reports on page 13-4
• MTBF Optimization on page 13-7
• Synchronizer Data Toggle Rate in MTBF Calculation on page 13-6
• Understanding Metastability in FPGAs

For more information about how metastability MTBF is calculated

Metastability Reports
Metastability reports provide summaries of the metastability analysis results. In addition to the MTBF
Summary and Synchronizer Summary reports, the Timing Analyzer tool reports additional statistics in a
report for each synchronizer chain.

Note: If the design uses only the Auto Synchronizer Identification setting, the reports list likely
synchronizers but do not report MTBF. To obtain an MTBF for each register chain, force identifi‐
cation of synchronization registers.

13-4 Metastability and MTBF Reporting
QPS5V1

2015.11.02

Altera Corporation Managing Metastability with the Quartus Prime Software

Send Feedback

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If the synchronizer chain does not meet its timing requirements, the reports list identified
synchronizers but do not report MTBF. To obtain MTBF calculations, ensure that the design is
properly constrained and that the synchronizer meets its timing requirements.

Related Information

• Identifying Synchronizers for Metastability Analysis on page 13-3
• How Timing Constraints Affect Synchronizer Identification and Metastability Analysis on page

13-3

MTBF Summary Report
The MTBF Summary reports an estimate of the overall robustness of cross-clock domain and
asynchronous transfers in the design. This estimate uses the MTBF results of all synchronization chains in
the design to calculate an MTBF for the entire design.

Typical and Worst-Case MTBF of Design
The MTBF Summary Report shows the Typical MTBF of Design and the Worst-Case MTBF of Design
for supported fully-characterized devices. The typical MTBF result assumes typical conditions, defined as
nominal silicon characteristics for the selected device speed grade, as well as nominal operating
conditions. The worst case MTBF result uses the worst case silicon characteristics for the selected device
speed grade.

When you analyze multiple timing corners in the timing analyzer, the MTBF calculation may vary
because of changes in the operating conditions, and the timing slack or available metastability settling
time. Altera recommends running multi-corner timing analysis to ensure that you analyze the worst
MTBF results, because the worst timing corner for MTBF does not necessarily match the worst corner for
timing performance.

Related Information
Timing Analyzer page

Synchronizer Chains
The MTBF Summary report also lists the Number of Synchronizer Chains Found and the length of the
Shortest Synchronizer Chain, which can help you identify whether the report is based on accurate
information.

If the number of synchronizer chains found is different from what you expect, or if the length of the
shortest synchronizer chain is less than you expect, you might have to add or change Synchronizer
Identification settings for the design. The report also provides the Worst Case Available Settling Time,
defined as the available settling time for the synchronizer with the worst MTBF.

You can use the reported Fraction of Chains for which MTBFs Could Not be Calculated to determine
whether a high proportion of chains are missing in the metastability analysis. A fraction of 1, for example,
means that MTBF could not be calculated for any chains in the design. MTBF is not calculated if you have
not identified the chain with the appropriate Synchronizer identification option, or if paths are not
timing-analyzed and therefore have no valid slack for metastability analysis. You might have to correct
your timing constraints to enable complete analysis of the applicable register chains.

QPS5V1
2015.11.02 MTBF Summary Report 13-5

Managing Metastability with the Quartus Prime Software Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_tqa_settings.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Increasing Available Settling Time
The MTBF Summary report specifies how an increase of 100ps in available settling time increases the
MTBF values. If your MTBF is not satisfactory, this metric can help you determine how much extra slack
would be required in your synchronizer chain to allow you to reach the desired design MTBF.

Synchronizer Summary Report
The Synchronizer Summary lists the synchronization register chains detected in the design depending on
the Synchronizer Identification setting.

The Source Node is the register or input port that is the source of the asynchronous transfer. The
Synchronization Node is the first register of the synchronization chain. The Source Clock is the clock
domain of the source node, and the Synchronization Clock is the clock domain of the synchronizer
chain.

This summary reports the calculated Worst-Case MTBF, if available, and the Typical MTBF, for each
appropriately identified synchronization register chain that meets its timing requirement.

Related Information
Synchronizer Chain Statistics Report in the Timing Analyzer on page 13-6

Synchronizer Chain Statistics Report in the Timing Analyzer
The timing analyzer provides an additional report for each synchronizer chain.

The Chain Summary tab matches the Synchronizer Summary information described in Synchronizer
Summary Report, while the Statistics tab adds more details, including whether the Method of Synchron‐
izer Identification was User Specified (with the Forced if Asynchronous or Forced settings for the
Synchronizer Identification setting), or Automatic (with the Auto setting). The Number of Synchroni‐
zation Registers in Chain report provides information about the parameters that affect the MTBF
calculation, including the Available Settling Time for the chain and the Data Toggle Rate Used in
MTBF Calculation.

The following information is also included to help you locate the chain in your design:

• Source Clock and Asynchronous Source node of the signal.
• Synchronization Clock in the destination clock domain.
• Node names of the Synchronization Registers in the chain.

Related Information
Synchronizer Data Toggle Rate in MTBF Calculation on page 13-6

Synchronizer Data Toggle Rate in MTBF Calculation
The MTBF calculations assume the data being synchronized is switching at a toggle rate of 12.5% of the
source clock frequency. That is, the arriving data is assumed to switch once every eight source clock
cycles.

If multiple clocks apply, the highest frequency is used. If no source clocks can be determined, the data rate
is taken as 12.5% of the synchronization clock frequency.

If you know an approximate rate at which the data changes, specify it with the Synchronizer Toggle Rate
assignment in the Assignment Editor. You can also apply this assignment to an entity or the entire design.
Set the data toggle rate, in number of transitions per second, on the first register of a synchronization
chain. The timing analyzer takes the specified rate into account when computing the MTBF of that
particular register chain. If a data signal never toggles and does not affect the reliability of the design, you

13-6 Increasing Available Settling Time
QPS5V1

2015.11.02

Altera Corporation Managing Metastability with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

can set the Synchronizer Toggle Rate to 0 for the synchronization chain so the MTBF is not reported. To
apply the assignment with Tcl, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in transitions/
second> -to <register name>

In addtion to Synchronizer Toggle Rate, there are two other assignments associated with toggle rates,
which are not used for metastability MTBF calculations. The I/O Maximum Toggle Rate is only used for
pins, and specifies the worst-case toggle rates used for signal integrity purposes. The Power Toggle Rate
assignment is used to specify the expected time-averaged toggle rate, and is used by the PowerPlay Power
Analyzer to estimate time-averaged power consumption.

MTBF Optimization
In addition to reporting synchronization register chains and MTBF values found in the design, the
Quartus Prime software can also protect these registers from optimizations that might negatively impact
MTBF and can optimize the register placement and routing if the MTBF is too low.

Synchronization register chains must first be explicitly identified as synchronizers. Altera recommends
that you set Synchronizer Identification to Forced If Asynchronous for all registers that are part of a
synchronizer chain.

Optimization algorithms, such as register duplication and logic retiming in physical synthesis, are not
performed on identified synchronization registers. The Fitter protects the number of synchronization
registers specified by the Synchronizer Register Chain Length option.

In addition, the Fitter optimizes identified synchronizers for improved MTBF by placing and routing the
registers to increase their output setup slack values. Adding slack in the synchronizer chain increases the
available settling time for a potentially metastable signal, which improves the chance that the signal
resolves to a known value, and exponentially increases the design MTBF. The Fitter optimizes the number
of synchronization registers specified by the Synchronizer Register Chain Length option.

Metastability optimization is on by default. To view or change the Optimize Design for Metastability
option, click Assignments > Settings > Compiler Settings > Advanced Settings (Fitter). To turn the
optimization on or off with Tcl, use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Information
Identifying Synchronizers for Metastability Analysis on page 13-3

Synchronization Register Chain Length
The Synchronization Register Chain Length option specifies how many registers should be protected
from optimizations that might reduce MTBF for each register chain, and controls how many registers
should be optimized to increase MTBF with the Optimize Design for Metastability option.

For example, if the Synchronization Register Chain Length option is set to 2, optimizations such as
register duplication or logic retiming are prevented from being performed on the first two registers in all
identified synchronization chains. The first two registers are also optimized to improve MTBF when the
Optimize Design for Metastability option is turned on.

QPS5V1
2015.11.02 MTBF Optimization 13-7

Managing Metastability with the Quartus Prime Software Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The default setting for the Synchronization Register Chain Length option is 2. The first register of a
synchronization chain is always protected from operations that might reduce MTBF, but you should set
the protection length to protect more of the synchronizer chain. Altera recommends that you set this
option to the maximum length of synchronization chains you have in your design so that all synchroniza‐
tion registers are preserved and optimized for MTBF.

Click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis) to change the global
Synchronization Register Chain Length option.

You can also set the Synchronization Register Chain Length on a node or an entity in the Assignment
Editor. You can set this value on the first register in a synchronization chain to specify how many registers
to protect and optimize in this chain. This individual setting is useful if you want to protect and optimize
extra registers that you have created in a specific synchronization chain that has low MTBF, or optimize
less registers for MTBF in a specific chain where the maximum frequency or timing performance is not
being met. To make the global setting with Tcl, use the following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers>

To apply the assignment to a design instance or the first register in a specific chain with Tcl, use the
following command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers> -to <register or instance name>

Reducing Metastability Effects
You can check your design's metastability MTBF in the Metastability Summary report, and determine an
acceptable target MTBF given the context of your entire system and the fact that MTBF calculations are
statistical estimates. A high metastability MTBF (such as hundreds or thousands of years between
metastability failures) indicates a more robust design.

This section provides guidelines to ensure complete and accurate metastability analysis, and some
suggestions to follow if the Quartus Prime metastability reports calculate an unacceptable MTBF value.
The Timing Optimization Advisor (available from the Tools menu) gives similar suggestions in the
Metastability Optimization section.

Related Information
Metastability Reports on page 13-4

Apply Complete System-Centric Timing Constraints for the Timing Analyzer
To enable the Quartus Prime metastability features, make sure that the timing analyzer is used for timing
analysis.

Ensure that the design is fully timing constrained and that it meets its timing requirements. If the
synchronization chain does not meet its timing requirements, MTBF cannot be calculated. If the clock
domain constraints are set up incorrectly, the signal transfers between circuitry in unrelated or asynchro‐
nous clock domains might be identified incorrectly.

Use industry-standard system-centric I/O timing constraints instead of using FPGA-centric timing
constraints.

13-8 Reducing Metastability Effects
QPS5V1

2015.11.02

Altera Corporation Managing Metastability with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You should use set_input_delay constraints in place of set_max_delay constraints to associate each
input port with a clock domain to help eliminate false positives during synchronization register identifica‐
tion.

Related Information
How Timing Constraints Affect Synchronizer Identification and Metastability Analysis on page 13-3

Force the Identification of Synchronization Registers
Use the guidelines in Identifying Synchronizers for Metastability Analysis to ensure the software
reports and optimizes the appropriate register chains.

You should identify synchronization registers with the Synchronizer Identification set to Forced If
Asynchronous in the Assignment Editor. If there are any registers that the software detects as synchro‐
nous but you want to be analyzed for metastability, apply the Forced setting to the first synchronizing
register. Set Synchronizer Identification to Off for registers that are not synchronizers for asynchronous
signals or unrelated clock domains.

To help you find the synchronizers in your design, you can set the global Synchronizer Identification
setting on the Timing Analyzer page of the Settings dialog box to Auto to generate a list of all the
possible synchronization chains in your design.

Related Information
Identifying Synchronizers for Metastability Analysis on page 13-3

Set the Synchronizer Data Toggle Rate
The MTBF calculations assume the data being synchronized is switching at a toggle rate of 12.5% of the
source clock frequency.

To obtain a more accurate MTBF for a specific chain or all chains in your design, set the Synchronizer
Toggle Rate.

Related Information
Synchronizer Data Toggle Rate in MTBF Calculation on page 13-6

Optimize Metastability During Fitting
Ensure that the Optimize Design for Metastability setting is turned on.

Related Information
MTBF Optimization on page 13-7

Increase the Length of Synchronizers to Protect and Optimize
Increase the Synchronizer Chain Length parameter to the maximum length of synchronization chains in
your design. If you have synchronization chains longer than 2 identified in your design, you can protect
the entire synchronization chain from operations that might reduce MTBF and allow metastability
optimizations to improve the MTBF.

Related Information
Synchronization Register Chain Length on page 13-7

QPS5V1
2015.11.02 Force the Identification of Synchronization Registers 13-9

Managing Metastability with the Quartus Prime Software Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Set Fitter Effort to Standard Fit instead of Auto Fit
If your design MTBF is too low after following the other guidelines, you can try increasing the Fitter effort
to perform more metastability optimization. The default Auto Fit setting reduces the Fitter’s effort after
meeting the design’s timing and routing requirements to reduce compilation time.

This effort reduction can result in less metastability optimization if the timing requirements are easy to
meet. If Auto Fit reduces the Fitter’s effort during your design compilation, setting the Fitter effort to
Standard Fit might improve the design’s MTBF results. To modify the Fitter Effort, click Assignments >
Settings > Compiler Settings > Advanced Settings (Fitter).

Increase the Number of Stages Used in Synchronizers
Designers commonly use two registers in a synchronization chain to minimize the occurrence of
metastable events, and a standard of three registers provides better metastability protection. However,
synchronization chains with two or even three registers may not be enough to produce a high enough
MTBF when the design runs at high clock and data frequencies.

If a synchronization chain is reported to have a low MTBF, consider adding an additional register stage to
your synchronization chain. This additional stage increases the settling time of the synchronization chain,
allowing more opportunity for the signal to resolve to a known state during a metastable event. Additional
settling time increases the MTBF of the chain and improves the robustness of your design. However,
adding a synchronization stage introduces an additional stage of latency on the signal.

If you use the Altera FIFO IP core with separate read and write clocks to cross clock domains, increase the
metastability protection (and latency) for better MTBF. In the DCFIFO parameter editor, choose the Best
metastability protection, best fmax, unsynchronized clocks option to add three or more synchroniza‐
tion stages. You can increase the number of stages to more than three using the How many sync stages?
setting.

Select a Faster Speed Grade Device
The design MTBF depends on process parameters of the device used. Faster devices are less susceptible to
metastability issues. If the design MTBF falls significantly below the target MTBF, switching to a faster
speed grade can improve the MTBF substantially.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command options, refer to
the Quartus Prime Command-Line and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r

Related Information

• Tcl Scripting
For more information about Tcl scripting

• Quartus Prime Settings File Reference Manual
For more information about settings and constraints in the Quartus Prime software

13-10 Set Fitter Effort to Standard Fit instead of Auto Fit
QPS5V1

2015.11.02

Altera Corporation Managing Metastability with the Quartus Prime Software

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Command-Line Scripting
For more information about command-line scripting

• About Quartus Prime Scripting
For more information about command-line scripting

Identifying Synchronizers for Metastability Analysis
To apply the global Synchronizer Identification assignment, use the following command:

set_global_assignment -name SYNCHRONIZER_IDENTIFICATION <OFF|AUTO|"FORCED IF
ASYNCHRONOUS">

To apply the Synchronizer Identification assignment to a specific register or instance, use the following
command:

set_instance_assignment -name SYNCHRONIZER_IDENTIFICATION <AUTO|"FORCED IF ASYNCHRO-
NOUS"|FORCED|OFF> -to <register or instance name>

Synchronizer Data Toggle Rate in MTBF Calculation
To specify a toggle rate for MTBF calculations as described on page Synchronizer Data Toggle Rate in
MTBF Calculation, use the following command:

set_instance_assignment -name SYNCHRONIZER_TOGGLE_RATE <toggle rate in transitions/
second> -to <register name>

Related Information
Synchronizer Data Toggle Rate in MTBF Calculation on page 13-6

report_metastability and Tcl Command
If you use a command-line or scripting flow, you can generate the metastability analysis reports described
in Metastability Reports outside of the Quartus Prime and user interfaces.

The table describes the options for the report_metastability and Tcl command.

Table 13-1: report_metastabilty Command Options

Option Description

-append If output is sent to a file, this option appends the result
to that file. Otherwise, the file is overwritten.

-file <name> Sends the results to an ASCII or HTML file. The
extension specified in the file name determines the file
type — either *.txt or *.html.

-panel_name

<name>
Sends the results to the panel and specifies the name
of the new panel.

-stdout Indicates the report be sent to the standard output, via
messages. This option is required only if you have
selected another output format, such as a file, and
would also like to receive messages.

QPS5V1
2015.11.02 Identifying Synchronizers for Metastability Analysis 13-11

Managing Metastability with the Quartus Prime Software Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
http://quartushelp.altera.com/current/index.htm#reference/scripting/tcl_view_using_tcl_scripts.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Metastability Reports on page 13-4

MTBF Optimization
To ensure that metastability optimization described on page MTBF Optimization is turned on (or to turn
it off), use the following command:

set_global_assignment -name OPTIMIZE_FOR_METASTABILITY <ON|OFF>

Related Information
MTBF Optimization on page 13-7

Synchronization Register Chain Length
To globally set the number of registers in a synchronization chain to be protected and optimized as
described on page Synchronization Register Chain Length, use the following command:

set_global_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers>

To apply the assignment to a design instance or the first register in a specific chain, use the following
command:

set_instance_assignment -name SYNCHRONIZATION_REGISTER_CHAIN_LENGTH <number of
registers> -to <register or instance name>

Related Information
Synchronization Register Chain Length on page 13-7

Managing Metastability
Altera’s Quartus Prime software provides industry-leading analysis and optimization features to help you
manage metastability in your FPGA designs. Set up your Quartus Prime project with the appropriate
constraints and settings to enable the software to analyze, report, and optimize the design MTBF. Take
advantage of these features in the Quartus Prime software to make your design more robust with respect
to metastability.

Document Revision History

Table 13-2: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

13-12 MTBF Optimization
QPS5V1

2015.11.02

Altera Corporation Managing Metastability with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

November
2011

10.0.2 Template update.

December
2010

10.0.1 Changed to new document template.

July 2010 10.0.0 Technical edit.

November
2009

9.1.0 Clarified description of synchronizer identification settings.

Minor changes to text and figures throughout document.

March 2009 9.0.0 Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 13-13

Managing Metastability with the Quartus Prime Software Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Metastability%20with%20the%20Quartus%20Prime%20Software%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Best Practices for Incremental Compilation
Partitions and Floorplan Assignments 14

2015.11.02

QPS5V1 Subscribe Send Feedback

About Incremental Compilation and Floorplan Assignments
This manual provides guidelines to help you partition your design to take advantage of Quartus Prime
incremental compilation, and to help you create a design floorplan using LogicLock® regions when they
are recommended to support the compilation flow.

The Quartus Prime incremental compilation feature allows you to partition a design, compile partitions
separately, and reuse results for unchanged partitions. Incremental compilation provides the following
benefits:

• Reduces compilation times by an average of 75% for large design changes
• Preserves performance for unchanged design blocks
• Provides repeatable results and reduces the number of compilations
• Enables team-based design flows

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design documentation on
page 3-1

Incremental Compilation Overview
Quartus Prime incremental compilation is an optional compilation flow that enhances the default
Quartus Prime compilation. If you do not partition your design for incremental compilation, your design
is compiled using the default “flat” compilation flow.

To prepare your design for incremental compilation, you first determine which logical hierarchy
boundaries should be defined as separate partitions in your design, and ensure your design hierarchy and
source code is set up to support this partitioning. You can then create design partition assignments in the
Quartus Prime software to specify which hierarchy blocks are compiled independently as partitions
(including empty partitions for missing or incomplete logic blocks).

During compilation, Quartus Prime Analysis & Synthesis and the Fitter create separate netlists for each
partition. Netlists are internal post-synthesis and post-fit database representations of your design.

In subsequent compilations, you can select which netlist to preserve for each partition. You can either
reuse the synthesis or fitting netlist, or instruct the Quartus Prime software to resynthesize the source files.
You can also use compilation results exported from another Quartus Prime project.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

When you make changes to your design, the Quartus Prime software recompiles only the designated
partitions and merges the new compilation results with existing netlists for other partitions, according to
the degree of results preservation you set with the netlist for each design partition.

In some cases, Altera recommends that you create a design floorplan with placement assignments to
constrain parts of the design to specific regions of the device.

You must use the partial reconfiguration (PR) feature in conjunction with incremental compilation for
Stratix® V device families. Partial reconfiguration allows you to reconfigure a portion of the FPGA
dynamically, while the remainder of the device continues to operate as intended.

Related Information

• Introduction to Design Floorplans on page 14-35
• Design Planning for Partial Reconfiguration documentation on page 4-1
The Partial Reconfiguration (PR) feature in the Quartus Prime software allows you to reconfigure a
portion of the FPGA dynamically, while the remainder of the device continues to operate.

Recommendations for the Netlist Type
For subsequent compilations, you specify which post-compilation netlist you want to use with the netlist
type for each partition.

Use the following general guidelines to set the netlist type for each partition:

• Source File—Use this setting to resynthesize the source code (with any new assignments, and replace
any previous synthesis or Fitter results).

• If you modify the design source, the software automatically resynthesizes the partitions with the
appropriate netlist type, which makes the Source File setting optional in this case.

• Most assignments do not trigger an automatic recompilation, so you must set the netlist type to
Source File to compile the source files with new assignments or constraints that affect synthesis.

• Post-Synthesis (default)—Use this setting to re-fit the design (with any new Fitter assignments), but
preserve the synthesis results when the source files have not changed. If it is difficult to meet the
required timing performance, you can use this setting to allow the Fitter the most flexibility in
placement and routing. This setting does not reduce compilation time as much as the Post-Fit setting
or preserve timing performance from the previous compilation.

• Post-Fit—Use this setting to preserve Fitter and performance results when the source files have not
changed. This setting reduces compilation time the most, and preserves timing performance from the
previous compilation.

• Post-Fit with Fitter Preservation Level set to Placement—Use the Advanced Fitter Preservation
Level setting on the Advanced tab in the Design Partition Properties dialog box to allow more
flexibility and find the best routing for all partitions given their placement.

The Quartus Prime software Rapid Recompile feature instructs the Compiler to reuse the compatible
compilation results if most of the design has not changed since the last compilation. This feature reduces
compilation time and preserves performance when there are small and isolated design changes within a
partition, and works with all netlist type settings. With this feature, you do not have control over which
parts of the design are recompiled; the Compiler determines which parts of the design must be
recompiled.

14-2 Recommendations for the Netlist Type
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Flows Using Incremental Compilation
The Quartus Prime incremental compilation feature supports various design flows. Your design flow
affects design optimization and the amount of design planning required to obtain optimal results.

Using Standard Flow
In the standard incremental compilation flow, the top-level design is divided into partitions, which can be
compiled and optimized together in one Quartus Prime project. If another team member or IP provider is
developing source code for the top-level design, they can functionally verify their partition independently,
and then simply provide the partition’s source code to the project lead for integration into the top-level
design. If the project lead wants to compile the top-level design when source code is not yet complete for a
partition, they can create an empty placeholder for the partition until the code is ready to be added to the
top-level design.

Compiling all design partitions in a single Quartus Prime project ensures that all design logic is compiled
with a consistent set of assignments, and allows the software to perform global placement and routing
optimizations. Compiling all design logic together is beneficial for FPGA design flows because all parts of
the design must use the same shared set of device resources. Therefore, it is often easier to ensure good
quality of results when partitions are developed within a single top-level Quartus Prime project.

Using Team-Based Flow
In the team-based incremental compilation flow, you can design and optimize partitions by accessing the
top-level project from a shared source control system or creating copies of the top-level Quartus Prime
project framework. As development continues, designers export their partition so that the post-synthesis
netlist or post-fitting results can be integrated into the top-level design.

Using Third-Party IP Delivery Flow
If required for third-party IP delivery, or in cases where designers cannot access a shared or copied top-
level project framework, you can create and compile a design partition logic in isolation and export a
partition that is included in the top-level project. If this type of design flow is necessary, planning and
rigorous design guidelines might be required to ensure that designers have a consistent view of project
assignments and resource allocations. Therefore, developing partitions in completely separate Quartus
Prime projects can be more challenging than having all source code within one project or developing
design partitions within the same top-level project framework.

Combining Design Flows
You can also combine design flows and use exported partitions only when it is necessary to support your
design environment. For example, if the top-level design includes one or more design blocks that will be
optimized by remote designers or IP providers, you can integrate those blocks into the reserved partitions
in the top-level design when the code is complete, but also have other partitions that will be developed
within the top-level design.

If any partitions are developed independently, the project lead must ensure that top-level constraints
(such as timing constraints, any relevant floorplan or pin assignments, and optimization settings) are
consistent with those used by all designers.

QPS5V1
2015.11.02 Design Flows Using Incremental Compilation 14-3

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Project Management in Team-Based Design Flows
If possible, each team member should work within the same top-level project framework. Using the same
project framework amongst team members ensures that designers have the settings and constraints
needed for their partition and allows designers to analyze how their design block interacts with other
partitions in the top-level design.

Using a Source Control System
In a team-based environment where designers have access to the project through source control software,
each designer can use project files as read-only and develop their partition within the source control
system. As designers check in their completed partitions, other team members can see how their
partitions interact.

Using a Copy of the Top-Level Project
If designers do not have access to a source control system, the project lead can provide each designer with
a copy of the top-level project framework to use as they develop their partitions. In both cases, each
designer exports their completed design as a partition, and then the project lead integrates the partition
into the top-level design. The project lead can choose to use only the post-synthesis netlist and rerun
placement and routing, or to use the post-fitting results to preserve the placement and routing results
from the other designer's projects. Using post-synthesis partitions gives the Fitter the most flexibility and
is likely to achieve a good result for all partitions, but if one partition has difficultly meeting timing, the
designer can choose to preserve their successful fitting results.

Using a Separate Project
Alternatively, designers can use their own Quartus Prime project for their independent design block. You
might use this design flow if a designer, such as a third-party IP provider, does not have access to the
entire top-level project framework. In this case, each designer must create their own project with all the
relevant assignments and constraints. This type of design flow requires more planning and rigorous
design guidelines. If the project lead plans to incorporate the post-fitting compilation results for the
partition, this design flow requires especially careful planning to avoid resource conflicts.

Using Scripts
The project lead also has the option to generate design partition scripts to manage resource and timing
budgets in the top-level design when partitions are developed outside the top-level project framework.
Scripts make it easier for designers of independent Quartus Prime projects to follow instructions from the
project lead. The Quartus Prime design partition scripts feature creates Tcl scripts or .tcl files and
makefiles that an independent designer can run to set up an independent Quartus Prime project.

Using Constraints
If designers create Quartus Prime assignments or timing constraints for their partitions, they must ensure
that the constraints are integrated into the top-level design. If partition designers use the same top-level
project framework (and design hierarchy), the constraints or Synopsys Design Constraints File (.sdc) can
be easily copied or included in the top-level design. If partition designers use a separate Quartus Prime
project with a different design hierarchy, they must ensure that constraints are applied to the appropriate
level of hierarchy in the top-level design, and design the .sdc for easy delivery to the project lead.

Related Information

• Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery on page 14-31

14-4 Project Management in Team-Based Design Flows
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design documentation
on page 3-1
Information about the different types of incremental design flows and example applications, as well as
documented restrictions and limitations

Why Plan Partitions and Floorplan Assignments?
Incremental design flows typically require more planning than flat compilations, and require you to be
more rigorous about following good design practices. For example, you might need to structure your
source code or design hierarchy to ensure that logic is grouped correctly for optimization. It is easier to
implement the correct logic grouping early in the design cycle than to restructure the code later.

Planning involves setting up the design logic for partitioning and may also involve planning placement
assignments to create a floorplan. Not all design flows require floorplan assignments. If you decide to add
floorplan assignments later, when the design is close to completion, well-planned partitions make
floorplan creation easier. Poor partition or floorplan assignments can worsen design area utilization and
performance and make timing closure more difficult.

As FPGA devices get larger and more complex, following good design practices become more important
for all design flows. Adhering to recommended synchronous design practices makes designs more robust
and easier to debug. Using an incremental compilation flow adds additional steps and requirements to
your project, but can provide significant benefits in design productivity by preserving the performance of
critical blocks and reducing compilation time.

Related Information
Introduction to Design Floorplans on page 14-35

Partition Boundaries and Optimization
The logical hierarchical boundaries between partitions are treated as hard boundaries for logic
optimization (except for some limited cross-boundary optimizations) to allow the software to size and
place each partition independently. The figure shows the effects of partition boundaries during logic
optimization.

Figure 14-1: Effects of Partition Boundaries During Logic Optimization

Hierarchy A

Hierarchy B

Compile
with

partition
 boundaries

Compile
without
partition

boundaries

Hierarchy A

Hierarchy A

Hierarchy B

Hierarchy B

Cannot obtain results of an
individual hierarchy for

incremental compilation

Hierarchies remain independent
during logic optimizations

(with limited cross-boundary optimizations)

Possible to incrementally
recompile each hierarchy

QPS5V1
2015.11.02 Why Plan Partitions and Floorplan Assignments? 14-5

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Merging Partitions
You can use the Merge command in the Design Partitions window to combine hierarchical partitions into
a single partition, as long as they share the same immediate parent partition. Merging partitions allows
additional optimizations for partition I/O ports that connect between or feed more than one of the
merged hierarchical design blocks.

When partitions are placed together, the Fitter can perform placement optimizations on the design as a
whole to optimize the placement of cross-boundary paths. However, the Fitter can never perform logic
optimizations such as physical synthesis across the partition boundary. If partitions are fit separately in
different projects, or if some partitions use previous post-fitting results, the Fitter does not place and route
the entire cross-boundary path at the same time and cannot fully optimize placement across the partition
boundaries. Good design partitions can be placed independently because cross-partition paths are not the
critical timing paths in the design.

Resource Utilization
There are possible timing performance utilization effects due to partitioning and creating a floorplan. Not
all designs encounter these issues, but you should consider these effects if a flat version of your design is
very close to meeting its timing requirements, or is close to using all the device resources, before adding
partition or floorplan assignments:

• Partitions can increase resource utilization due to cross-boundary optimization limitations if the
design does not follow partitioning guidelines. Floorplan assignments can also increase resource
utilization because regions can lead to unused logic. If your device is full with the flat version of your
design, you can focus on creating partitions and floorplan assignments for timing-critical or
often-changing blocks to benefit most from incremental compilation.

• Partitions and floorplan assignments might increase routing utilization compared to a flat design. If
long compilation times are due to routing congestion, you might not be able to use the incremental
flow to reduce compilation time. Review the Fitter messages to check how much time is spent during
routing optimizations to determine the percentage of routing utilization. When routing is difficult, you
can use incremental compilation to lock the routing for routing-critical blocks only (with other
partitions empty), and then compile the rest of the design after the critical blocks meets their require‐
ments.

• Partitions can reduce timing performance in some cases because of the optimization and resource
effects described above, causing longer logic delays. Floorplan assignments restrict logic placement,
which can make it more difficult for the Fitter to meet timing requirements. Use the guidelines in this
manual to reduce any effect on your design performance.

Related Information

• Design Partition Guidelines on page 14-9
• Checking Floorplan Quality on page 14-43

Turning On Supported Cross-Boundary Optimizations
You can improve the optimizations performed between design partitions by turning on the cross-
boundary optimizations feature. You can select the optimizations as individual assignments for each
partition. This allows the cross-boundary optimization feature to give you more control over the
optimizations that work best for your design.

You can turn on the cross-boundary optimizations for your design partitions on the Advanced tab of the
Design Partition Properties dialog box. Once you change the optimization settings, the Quartus Prime

14-6 Merging Partitions
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

software recompiles your partition from source automatically. Cross-boundary optimizations include the
following: propagate constants, propagate inversions on partition inputs, merge inputs fed by a common
source, merge electrically equivalent bidirectional pins, absorb internal paths, and remove logic connected
to dangling outputs.

Cross-boundary optimizations are implemented top-down from the parent partition into the child
partition, but not vice-versa. The cross-boundary optimization feature cannot be used with partitions with
multiple personas (partial reconfiguration partitions).

Although more partitions allow for a greater reduction in compilation time, consider limiting the number
of partitions to prevent degradation in the quality of results. Creating good design partitions and good
floorplan location assignments helps to improve the design resource utilization and timing performance
results for cross-partition paths.

Related Information
Design Partition Properties Dialog Box online help

Guidelines for Incremental Compilation

General Partitioning Guidelines
The first step in planning your design partitions is to organize your source code so that it supports good
partition assignments. Although you can assign any hierarchical block of your design as a design partition
or merge hierarchical blocks into the same partition, following the design guidelines presented below
ensures better results.

Plan Design Hierarchy and Design Files
You begin the partitioning process by planning the design hierarchy. When you assign a hierarchical
instance as a design partition, the partition includes the assigned instance and entities instantiated below
that are not defined as separate partitions. You can use the Merge command in the Design Partitions
window to combine hierarchical partitions into a single partition, as long as they have the same
immediate parent partition.

• When planning your design hierarchy, keep logic in the “leaves” of the hierarchy instead of having
logic at the top-level of the design so that you can isolate partitions if required.

• Create entities that can form partitions of approximately equal size. For example, do not instantiate
small entities at the same hierarchy level, because it is more difficult to group them to form reasonably-
sized partitions.

• Create each entity in an independent file. The Quartus Prime software uses a file checksum to detect
changes, and automatically recompiles a partition if its source file changes and its netlist type is set to
either post-synthesis or post-fit. If the design entities for two partitions are defined in the same file,
changes to the logic in one partition initiates recompilation for both partitions.

• Design dependencies also affect which partitions are compiled when a source file changes. If two
partitions rely on the same lower-level entity definition, changes in that lower-level entity affect both
partitions. Commands such as VHDL use and Verilog HDL include create dependencies between
files, so that changes to one file can trigger recompilations in all dependent files. Avoid these types of
file dependencies if possible. The Partition Dependent Files report for each partition in the Analysis &
Synthesis section of the Compilation report lists which files contribute to each partition.

QPS5V1
2015.11.02 Guidelines for Incremental Compilation 14-7

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_tab_qid_part_window_properties.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using Partitions with Third-Party Synthesis Tools
Incremental compilation works well with third-party synthesis tools in addition to Quartus Prime
Integrated Synthesis. If you use a third-party synthesis tool, set up your tool to create a separate Verilog
Quartus Mapping File (.vqm) or EDIF Input File (.edf) netlist for each hierarchical partition. In the
Quartus Prime software, designate the top-level entity from each netlist as a design partition. The .vqm
or .edf netlist file is treated as the source file for the partition in the Quartus Prime software.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design documentation on
page 3-1

Partition Design by Functionality and Block Size
Initially, you should partition your design along functional boundaries. In a top-level system block
diagram, each block is often a natural design partition. Typically, each block of a system is relatively
independent and has more signal interaction internally than interaction between blocks, which helps
reduce optimizations between partition boundaries. Keeping functional blocks together means that
synthesis and fitting can optimize related logic as a whole, which can lead to improved optimization.

• Consider how many partitions you want to maintain in your design to determine the size of each
partition. Your compilation time reduction goal is also a factor, because compiling small partitions is
typically faster than compiling large partitions.

• There is no minimum size for partitions; however, having too many partitions can reduce the quality
of results by limiting optimization. Ensure that the design partitions are not too small. As a general
guideline, each partition should contain more than approximately 2,000 logic elements (LEs) or
adaptive logic modules (ALMs). If your design is incomplete when you partition the design, use
previous designs to help estimate the size of each block.

Partition Design by Clock Domain and Timing Criticality
Consider which clock in your design feeds the logic in each partition. If possible, keep clock domains
within one partition. When a clock signal is isolated to one partition, it reduces dependence on other
partitions for timing optimization. Isolating a clock domain to one partition also allows better use of
regional clock routing networks if the partition logic is constrained to one region of the design.
Additionally, limiting the number of clocks within each partition simplifies the timing requirements for
each partition during optimization. Use an appropriate subsystem to implement the required logic for any
clock domain transfers (such as a synchronization circuit, dual-port RAM, or FIFO). You can include this
logic inside the partition at one side of the transfer.

Try to isolate timing-critical logic from logic that you expect to easily meet timing requirements. Doing so
allows you to preserve the satisfactory results for non-critical partitions and focus optimization iterations
on only the timing-critical portions of the design to minimize compilation time.

Related Information
Analyzing and Optimizing the Design Floorplan with the Chip Planner documentation
Information about clock domains and their affect on partition design

Consider What Is Changing
When assigning partitions, you should consider what is changing in the design. Is there intellectual
property (IP) or reused logic for which the source code will not change during future design iterations? If
so, define the logic in its own partition so that you can compile one time and immediately preserve the
results and not have to compile that part of the design again. Is logic being tuned or optimized, or are

14-8 Using Partitions with Third-Party Synthesis Tools
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471303170/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

specifications changing for part of the design? If so, define changing logic in its own partition so that you
can recompile only the changing part while the rest of the design remains unchanged.

As a general rule, create partitions to isolate logic that will change from logic that will not change.
Partitioning a design in this way maximizes the preservation of unchanged logic and minimizes compila‐
tion time.

Design Partition Guidelines
Follow the design partition guidelines below when you create or modify the HDL code for each design
block that you might want to assign as a design partition. You do not need to follow all the
recommendations exactly to achieve a good quality of results with the incremental compilation flow, but
adhering to as many as possible maximizes your chances for success.

The design partition guidelines include examples of the types of optimizations that are prevented by
partition boundaries, and describes how you can structure or modify your partitions to avoid these
limitations.

Register Partition Inputs and Outputs
Use registers at partition input and output connections that are potentially timing-critical. Registers
minimize the delays on inter-partition paths and prevent the need for cross-boundary optimizations.

If every partition boundary has a register as shown in the figure, every register-to-register timing path
between partitions includes only routing delay. Therefore, the timing paths between partitions are likely
not timing-critical, and the Fitter can generally place each partition independently from other partitions.
This advantage makes it easier to create floorplan location assignments for each separate partition, and is
especially important for flows in which partitions are placed independently in separate Quartus Prime
projects. Additionally, the partition boundary does not affect combinational logic optimization because
each register-to-register logic path is contained within a single partition.

Figure 14-2: Registering Partition I/O

Partition A Partition B

Cross-boundary partition
routing delay is not the

critical timing path

D Q D Q D Q D Q

If a design cannot include both input and output registers for each partition due to latency or resource
utilization concerns, choose to register one end of each connection. If you register every partition output,
for example, the combinational logic that occurs in each cross-partition path is included in one partition
so that it can be optimized together.

It is a good synchronous design practice to include registers for every output of a design block. Registered
outputs ensure that the input timing performance for each design block is controlled exclusively within
the destination logic block.

Related Information

• Partition Statistics Report on page 14-30

QPS5V1
2015.11.02 Design Partition Guidelines 14-9

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Incremental Compilation Advisor on page 14-27

Minimize Cross-Partition-Boundary I/O
Minimize the number of I/O paths that cross between partition boundaries to keep logic paths within a
single partition for optimization. Doing so makes partitions more independent for both logic and
placement optimization.

This guideline is most important for timing-critical and high-speed connections between partitions,
especially in cases where the input and output of each partition is not registered. Slow connections that
are not timing-critical are acceptable because they should not impact the overall timing performance of
the design. If there are timing-critical paths between partitions, rework or merge the partitions to avoid
these inter-partition paths.

When dividing your design into partitions, consider the types of functions at the partition boundaries.
The figure shows an expansive function with more outputs than inputs in the left diagram, which makes a
poor partition boundary, and, on the right side, a better place to assign the partition boundary that
minimizes
cross-partition I/Os. Adding registers to one or both sides of the cross-partition path in this example
would further improve partition quality.

Figure 14-3: Minimizing I/O Between Partitions by Moving the Partition Boundary

Expansive function:
Not ideal partition boundary

A A B

Better part of design to assign
a partition output boundary

B

Another way to minimize connections between partitions is to avoid using combinational ”glue logic”
between partitions. You can often move the logic to the partition at one end of the connection to keep
more logic paths within one partition. For example, the bottom diagram includes a new level of hierarchy
C defined as a partition instead of block B. Clearly, there are fewer I/O connections between partitions A
and C than between partitions A and B.

14-10 Minimize Cross-Partition-Boundary I/O
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14-4: Minimizing I/O between Partitions by Modifying Glue Logic

Top

A BGlue
Logic

Many cross-boundary partition paths: Poor design partition assignment

Fewer cross-boundary partition paths: Better design partition assignment
Top

A
C

Glue
Logic

B

Related Information

• Partition Statistics Report on page 14-30
• Incremental Compilation Advisor on page 14-27

Examine the Need for Logic Optimization Across Partitions
Partition boundaries prevent logic optimizations across partitions (except for some limited cross-
boundary optimizations).

In some cases, especially if part of the design is complete or comes from another designer, the designer
might not have followed these guidelines when the source code was created. These guidelines are not
mandatory to implement an incremental compilation flow, but can improve the quality of results. If
assigning a partition affects resource utilization or timing performance of a design block as compared to
the flat design, it might be due to one of the issues described in the logic optimization across partitions
guidelines below. Many of the examples suggest simple changes to your partition definitions or hierarchy
to move the partition boundary to improve your results.

The following guidelines ensure that your design does not require logic optimization across partition
boundaries:

Keep Logic in the Same Partition for Optimization and Merging
If your design logic requires logic optimization or merging to obtain optimal results, ensure that all the
logic is part of the same partition because only limited cross-boundary optimizations are permitted.

Example—Combinational Logic Path
If a combinational logic path is split across two partitions, the logic cannot be optimized or merged into
one logic cell in the device. This effect can result in an extra logic cell in the path, increasing the logic
delay. As a very simple example, consider two inverters on the same signal in two different partitions, A

QPS5V1
2015.11.02 Examine the Need for Logic Optimization Across Partitions 14-11

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and B, as shown in the left diagram of the figure. To maintain correct incremental functionality, these two
inverters cannot be removed from the design during optimization because they occur in different design
partitions. The Quartus Prime software cannot use information about other partitions when it compiles
each partition, because each partition is allowed to change independently from the other.

On the right side of the figure, partitions A and B are merged to group the logic in blocks A and B into
one partition. If the two blocks A and B are not under the same immediate parent partition, you can
create a wrapper file to define a new level of hierarchy that contains both blocks, and set this new
hierarchy block as the partition. With the logic contained in one partition, the software can optimize the
logic and remove the two inverters (shown in gray), which reduces the delay for that logic path. Removing
two inverters is not a significant reduction in resource utilization because inversion logic is readily
available in Altera device architecture. However, this example is a simple demonstration of the types of
logic optimization that are prevented by partition boundaries.

Figure 14-5: Keeping Logic in the Same Partition for Optimization

A B

Inverters in separate partitions A and B
cannot be removed from design:
Poor design partition assignment

Inverters in merged partition can be removed:
Better design partition assignment

A

Merged Parition

B

Example—Fitter Merging
In a flat design, the Fitter can also merge logical instantiations into the same physical device resource.
With incremental compilation, logic defined in different partitions cannot be merged to use the same
physical device resource.

For example, the Fitter can merge two single-port RAMs from a design into one dedicated RAM block in
the device. If the two RAMs are defined in different partitions, the Fitter cannot merge them into one
dedicated device RAM block.

This limitation is a only a concern if merging is required to fit the design in the target device. Therefore,
you are more likely to encounter this issue during troubleshooting rather than during planning, if your
design uses more logic than is available in the device.

Merging PLLs and Transceivers (GXB)
Multiple instances of the ALTPLL IP core can use the same PLL resource on the device. Similarly, GXB
transceiver instances can share high-speed serial interface (HSSI) resources in the same quad as other
instances. The Fitter can merge multiple instantiations of these blocks into the same device resource, even
if it requires optimization across partitions. Therefore, there are no restrictions for PLLs and
high-speed transceiver blocks when setting up partitions.

14-12 Example—Fitter Merging
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Keep Constants in the Same Partition as Logic
Because the Quartus Prime software cannot fully optimize across a partition boundary, constants are not
propagated across partition boundaries, except from parent partition to child partition. A signal that is
constant (1/VCC or 0/GND) in one partition cannot affect another partition.

Example—Constants in Merged Partitions
For example, the left diagram of the figure shows part of a design in which partition A defines some
signals as constants (and assumes that the other input connections come from elsewhere in the design and
are not shown in the figure). Constants such as these could appear due to parameter or generic settings or
configurations with parameters, setting a bus to a specific set of values, or could result from optimizations
that occur within a group of logic. Because the blocks are independent, the software cannot optimize the
logic in block B based on the information from block A. The right side of the figure shows a merged
partition that groups the logic in blocks A and B. If the two blocks A and B are not under the same
immediate parent partition, you can create a wrapper file to define a new level of hierarchy that contains
both blocks, and set this new hierarchical block as the partition.

Within the single merged partition, the Quartus Prime software can use the constants to optimize and
remove much of the logic in block B (shown in gray), as shown in the figure.

Figure 14-6: Keeping Constants in the Same Partition as the Logic They Feed

Connections to constants in another partition:
Poor design partition assignment

Constants in merged partition are used to optimize:
Better design partition assignment

VCC

GND

A

M
er

ge
d P

ar
tit

ion

A

VCC

GND

BB

Related Information

• Partition Statistics Report on page 14-30
• Incremental Compilation Advisor on page 14-27

Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
Do not use the same signal to drive multiple ports of a single partition or directly connect two ports of a
partition. If the same signal drives multiple ports of a partition, or if two ports of a partition are directly
connected, those ports are logically equivalent. However, the software has limited information about
connections made in another partition (including the top-level partition), the compilation cannot take
advantage of the equivalence. This restriction usually produces sub-optimal results.

QPS5V1
2015.11.02 Keep Constants in the Same Partition as Logic 14-13

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If your design has these types of connections, redefine the partition boundaries to remove the affected
ports. If one signal from a higher-level partition feeds two input ports of the same partition, feed the one
signal into the partition, and then make the two connections within the partition. If an output port drives
an input port of the same partition, the connection can be made internally without going through any I/O
ports. If an input port drives an output port directly, the connection can likely be implemented without
the ports in the lower-level partition by connecting the signals in a higher-level partition.

Example—Single Signal Driving More Than One Port
The figure shows an example of one signal driving more than one port. The left diagram shows a design
where a single clock signal is used to drive both the read and write clocks of a RAM block. Because the
RAM block is compiled as a separate partition A, the RAM block is implemented as though there are two
unique clocks. If you know that the port connectivity will not change (that is, the ports will always be
driven by the same signal in the top-level partition), redefine the port interface so that there is only a
single port that can drive both connections inside the partition. You can create a wrapper file to define a
partition that has fewer ports, as shown in the diagram on the right side. With the single clock fed into the
partition, the RAM can be optimized into a single-clock RAM instead of a dual-clock RAM. Single-clock
RAM can provide better performance in the device architecture. Additionally, partition A might use two
global routing lines for the two copies of the clock signal. Partition B can use one global line that fans out
to all destinations. Using just the single port connection prevents overuse of global routing resources.

Figure 14-7: Preventing One Signal from Driving Multiple Partition Inputs

Top

rd_clk
wr_clk

Dual-
clock
RAM

A

Clock

Top

rd_clk
wr_clk

Single-
clock
RAM

A

Clock

B

Two clocks cannot be
treated as the same signal:

Poor design partition assignment

With Partition B, RAM can
be optimized for one clock:

Better design partition assignment

Related Information
Incremental Compilation Advisor on page 14-27

Invert Clocks in Destination Partitions
For best results, clock inversion should be performed in the destination logic array block (LAB) because
each LAB contains clock inversion circuitry in the device architecture. In a flat compilation, the Quartus
Prime software can optimize a clock inversion to propagate it to the destination LABs regardless of where
the inversion takes place in the design hierarchy. However, clock inversion cannot propagate through a
partition boundary (except from a parent partition to a child partition) to take advantage of the inversion
architecture in the destination LABs.

14-14 Example—Single Signal Driving More Than One Port
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example—Clock Signal Inversion
With partition boundaries as shown in the left diagram of the figure, the Quartus Prime software uses
logic to invert the signal in the partition that defines the inversion (the top-level partition in this
example), and then routes the signal on a global clock resource to its destinations (in partitions A and B).
The inverted clock acts as a gated clock with high skew. A better solution is to invert the clock signal in
the destination partitions as shown on the right side of the diagram. In this case, the correct logic and
routing resources can be used, and the signal does not behave like a gated clock.

The figure shows the clock signal inversion in the destination partitions.

Figure 14-8: Inverting Clock Signal in Destination Partitions

Inverter acts as clock gating (adding skew):
Poor design partition assignment

Clock inverted inside destination LABs,
only one global routing signal:

Better design partition assignment

Clock

Top Top

Clock

A

B

A

B

Notice that this diagram also shows another example of a single pin feeding two ports of a partition
boundary. In the left diagram, partition B does not have the information that the clock and inverted clock
come from the same source. In the right diagram, partition B has more information to help optimize the
design because the clock is connected as one port of the partition.

Connect I/O Pin Directly to I/O Register for Packing Across Partition Boundaries
The Quartus Prime software allows cross-partition register packing of I/O registers in certain cases where
your input and output pins are defined in the top-level hierarchy (and the top-level partition), but the
corresponding I/O registers are defined in other partitions.

Input pin cross-partition register packing requires the following specific circumstances:

• The input pin feeds exactly one register.
• The path between the input pin and register includes only input ports of partitions that have one fan-

out each.

Output pin cross-partition register packing requires the following specific circumstances:

• The register feeds exactly one output pin.
• The output pin is fed by only one signal.
• The path between the register and output pin includes only output ports of partitions that have one

fan-out each.

QPS5V1
2015.11.02 Example—Clock Signal Inversion 14-15

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following examples of I/O register packing illustrate this point using Block Design File (.bdf)
schematics to describe the design logic.

Example 1—Output Register in Partition Feeding Multiple Output Pins
In this example, the subdesign contains a single register.

Figure 14-9: Subdesign with One Register, Designated as a Separate Partition

If the top-level design instantiates the subdesign with a single fan-out directly feeding an output pin, and
designates the subdesign as a separate design partition, the Quartus Prime software can perform cross-
partition register packing because the single partition port feeds the output pin directly.

In this example, the top-level design instantiates the subdesign as an output register with more than one
fan-out signal.

Figure 14-10: Top-Level Design Instantiating the Subdesign with Two Output Pins

In this case, the Quartus Prime software does not perform output register packing. If there is a Fast
Output Register assignment on pin out, the software issues a warning that the Fitter cannot pack the
node to an I/O pin because the node and the I/O cell are connected across a design partition boundary.

This type of cross-partition register packing is not allowed because it requires modification to the
interface of the subdesign partition. To perform incremental compilation, the Quartus Prime software
must preserve the interface of design partitions.

14-16 Example 1—Output Register in Partition Feeding Multiple Output Pins
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To allow the Quartus Prime software to pack the register in the subdesign with the output pin out in the
figure, restructure your HDL code so that output registers directly connect to output pins by making one
of the following changes:

• Place the register in the same partition as the output pin. The simplest method is to move the register
from the subdesign partition into the partition containing the output pin. Doing so guarantees that the
Fitter can optimize the two nodes without violating partition boundaries.

• Duplicate the register in your subdesign HDL so that each register feeds only one pin, and then
connect the extra output pin to the new port in the top-level design. Doing so converts the cross-
partition register packing into the simplest case where each register has a single fan-out.

Figure 14-11: Modified Subdesign with Two Output Registers and Two Output Ports

Figure 14-12: Modified Top-Level Design Connecting Two Output Ports to Output Pins

Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output Register in Partition
Feeding an Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a register. The top-level design in
the figure instantiates the subdesign as an input register with the input pin inverted. The top-level design
instantiates the subdesign as an output register with the signal inverted before feeding an output pin.

QPS5V1
2015.11.02 Example 2—Input Register in Partition Fed by an Inverted Input Pin or... 14-17

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14-13: Top-Level Design Instantiating Subdesign as an Input Register with an Inverted Input Pin

Figure 14-14: Top-Level Design Instantiating the Subdesign as an Output Register Feeding an Inverted
Output Pin

In these cases, the Quartus Prime software does not perform register packing. If there is a Fast Input
Register assignment on pin in, as shown in the top figure, or a Fast Output Register assignment on pin
out, as shown in the bottom figure, the Quartus Prime software issues a warning that the Fitter cannot
pack the node to an I/O pin because the node and I/O cell are connected across a design partition
boundary.

This type of register packing is not allowed because it requires moving logic across a design partition
boundary to place into a single I/O device atom. To perform register packing, either the register must be
moved out of the subdesign partition, or the inverter must be moved into the subdesign partition to be
implemented in the register.

To allow the Quartus Prime software to pack the single register in the subdesign with the input pin in, as
shown in top figure or the output pin out, as shown in the bottom figure, restructure your HDL code to
place the register in the same partition as the inverter by making one of the following changes:

• Move the register from the subdesign partition into the top-level partition containing the pin. Doing
so ensures that the Fitter can optimize the I/O register and inverter without violating partition
boundaries.

• Move the inverter from the top-level block into the subdesign, and then connect the subdesign directly
to a pin in the top-level design. Doing so allows the Fitter to optimize the inverter into the register
implementation, so that the register is directly connected to a pin, which enables register packing.

Do Not Use Internal Tri-States
Internal tri-state signals are not recommended for FPGAs because the device architecture does not
include internal tri-state logic. If designs use internal tri-states in a flat design, the tri-state logic is usually
converted to OR gates or multiplexing logic. If tri-state logic occurs on a hierarchical partition boundary,

14-18 Do Not Use Internal Tri-States
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the Quartus Prime software cannot convert the logic to combinational gates because the partition could
be connected to a top-level device I/O through another partition.

The figures below show a design with partitions that are not supported for incremental compilation due
to the internal tri-state output logic on the partition boundaries. Instead of using internal tri-state logic
for partition outputs, implement the correct logic to select between the two signals. Doing so is good
practice even when there are no partitions, because such logic explicitly defines the behavior for the
internal signals instead of relying on the Quartus Prime software to convert the tri-state signals into logic.

Figure 14-15: Unsupported Internal Tri-State Signals

Top

Design results in Quartus Prime error message:
The software cannot synthesize this

design and maintain incremental functionality.

Figure 14-16: Merged Partition Allows Synthesis to Convert Internal Tri-State Logic to Combinational
Logic

Top

Merged Partition

Merged partition allows synthesis to
convert tri-state logic into

combinational logic.

QPS5V1
2015.11.02 Do Not Use Internal Tri-States 14-19

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Do not use tri-state signals or bidirectional ports on hierarchical partition boundaries, unless the port is
connected directly to a top-level I/O pin on the device. If you must use internal tri-state logic, ensure that
all the control and destination logic is contained in the same partition, in which case the Quartus Prime
software can convert the internal tri-state signals into combinational logic as in a flat design. In this
example, you can also merge all three partitions into one partition, as shown in the bottom figure, to allow
the Quartus Prime software to treat the logic as internal tri-state and perform the same type of optimiza‐
tion as a flat design. If possible, you should avoid using internal
tri-state logic in any Altera FPGA design to ensure that you get the desired implementation when the
design is compiled for the target device architecture.

Include All Tri-State and Enable Logic in the Same Partition
When multiple output signals use tri-state logic to drive a device output pin, the Quartus Prime software
merges the logic into one tri-state output pin. The Quartus Prime software cannot merge tri-state outputs
into one output pin if any of the tri-state logic occurs on a partition boundary. Similarly, output pins with
an output enable signal cannot be packed into the device I/O cell if the output enable logic is part of a
different partition from the output register. To allow register packing for output pins with an output
enable signal, structure your HDL code or design partition assignments so that the register and enable
logic are defined in the same partition.

The figure shows a design with tri-state output signals that feed a device bidirectional I/O pin (assuming
that the input connection feeds elsewhere in the design and is not shown in the figure). In the left diagram
below, the tri-state output signals appear as the outputs of two separate partitions. In this case, the
Quartus Prime software cannot implement the specified logic and maintain incremental functionality. In
the right diagram, partitions A and B are merged to group the logic from the two blocks. With this single
partition, the Quartus Prime software can merge the two tri-state output signals and implement them in
the tri-state logic available in the device I/O element.

Figure 14-17: Including All Tri-State Output Logic in the Same Partition

A

B

Top

A

B

Multiple tri-states on partition boundaries:
Illegal design partitions

Tri-state output logic within merged partition:
Better design partition

Top

Merged Partition

A

B

14-20 Include All Tri-State and Enable Logic in the Same Partition
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Summary of Guidelines Related to Logic Optimization Across Partitions
To ensure that your design does not require logic optimization across partitions, follow the guidelines
below:

• Include logic in the same partition for optimization and merging
• Include constants in the same partition as logic
• Avoid signals that drive multiple partition I/O or connect I/O together
• Invert clocks in destination partitions
• Connect I/O directly to I/O register for packing across partition boundaries
• Do not use internal tri-states
• Include all tri-state and enable logic in the same partition

Remember that these guidelines are not mandatory when implementing an incremental compilation flow,
but can improve the quality of results. When creating source design code, follow these guidelines and
organize your HDL code to support good partition boundaries. For designs that are complete, assess
whether assigning a partition affects the resource utilization or timing performance of a design block as
compared to the flat design. Make the appropriate changes to your design or hierarchy, or merge
partitions as required, to improve your results.

Consider a Cascaded Reset Structure
Designs typically have a global asynchronous reset signal where a top-level signal feeds all partitions. To
minimize skew for the high fan-out signal, the global reset signal is typically placed onto a global routing
resource.

In some cases, having one global reset signal can lead to recovery and removal time problems. This issue is
not specific to incremental flows; it could be applicable in any large high-speed design. In an incremental
flow, the global reset signal creates a timing dependency between the top-level partition and lower-level
partitions.

For incremental compilation, it is helpful to minimize the impact of global structures. To isolate each
partition, consider adding reset synchronizers. Using cascaded reset structures, the intent is to reduce the
inter-partition fan-out of the reset signal, thereby minimizing the effect of the global signal. Reducing the
fan-out of the global reset signal also provides more flexibility in routing the cascaded signals, and might
help recovery and removal times in some cases.

This recommendation can help in large designs, regardless of whether you are using incremental compila‐
tion. However, if one global signal can feed all the logic in its domain and meet recovery and removal
times, this recommendation may not be applicable for your design. Minimizing global structures is more
relevant for
high-performance designs where meeting timing on the reset logic can be challenging. Isolating each
partition and allowing more flexibility in global routing structures is an additional advantage in
incremental flows.

If you add additional reset synchronizers to your design, latency is also added to the reset path, so ensure
that this is acceptable in your design. Additionally, parts of the design may come out of the reset state in
different clock cycles. You can balance the latency or add hand-shaking logic between partitions, if
necessary, to accommodate these differences.

The signal is first synchronized on the chip following good synchronous design practices, meaning that
the design asynchronously resets, but synchronously releases from reset to avoid any race conditions or
metastability problems. Then, to minimize the impact of global structures, the circuit employs a divide-

QPS5V1
2015.11.02 Summary of Guidelines Related to Logic Optimization Across Partitions 14-21

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and-conquer approach for the reset structure. By implementing a cascaded reset structure, the reset paths
for each partition are independent. This structure reduces the effect of inter-partition dependency because
the inter-partition reset signals can now be treated as false paths for timing analysis. In some cases, the
reset signal of the partition can be placed on local lines to reduce the delay added by routing to a global
routing line. In other cases, the signal can be routed on a regional or quadrant clock signal.

The figure shows a cascaded reset structure.

Figure 14-18: Cascaded Reset Structure

TopFalse Timing
Paths

VCC

Reset

CLRN CLRN

D DQ Q

CLRN CLRN

CLRN CLRN

VCC

VCC

A

B

A_Reset

B_Reset

D D

DD

Q Q

QQ

This circuit design can help you achieve timing closure and partition independence for your global reset
signal. Evaluate the circuit and consider how it works for your design.

Related Information
Recommended Design Practices documentation on page 11-1
Information and design recommendations for reset structures

Design Partition Guidelines for Third-Party IP Delivery
There are additional design guidelines that can improve incremental compilation flows where exported
partitions are developed independently. These guidelines are not always required, but are usually
recommended if the design includes partitions compiled in a separate Quartus Prime project, such as
when delivering intellectual property (IP). A unique challenge of IP delivery for FPGAs is the fact that the
partitions developed independently must share a common set of resources. To minimize issues that might
arise from sharing a common set of resources, you can design partitions within a single Quartus Prime
project, or a copy of the top-level design. A common project ensures that designers have a consistent view
of the top-level design framework.

Alternatively, an IP designer can export just the post-synthesis results to be integrated in the top-level
design when the post-fitting results from the IP project are not required. Using a post-synthesis netlist
provides more flexibility to the Quartus Prime Fitter, so that less resource allocation is required. If a

14-22 Design Partition Guidelines for Third-Party IP Delivery
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

common project is not possible, especially when the project lead plans to integrate the IP's post-fitting
results, it is important that the project lead and IP designer clearly communicate their requirements.

Related Information
Project Management in Team-Based Design Flows on page 14-4

Allocate Logic Resources
In an incremental compilation design flow in which designers, such as third-party IP providers, optimize
partitions and then export them to a top-level design, the Quartus Prime software places and routes each
partition separately. In some cases, partitions can use conflicting resources when combined at the top
level. Allocation of logic resources requires that you decide on a set of logic resources (including I/O, LAB
logic blocks, RAM and DSP blocks) that the IP block will ”own”. This process can be interactive; the
project lead and the IP designer might work together to determine what resources are required for the IP
block and are available in the top-level design.

You can constrain logic utilization for the IP core using design floorplan location assignments. The design
should specify I/O pin locations with pin assignments.

You can also specify limits for Quartus Prime synthesis to allocate and balance resources. This procedure
can also help if device resources are overused in the individual partitions during synthesis.

In the standard synthesis flow, the Quartus Prime software can perform automated resource balancing for
DSP blocks or RAM blocks and convert some of the logic into regular logic cells to prevent overuse.

You can use the Quartus Prime synthesis options to control inference of IP cores that use the DSP, or
RAM blocks. You can also use the IP Catalog and Parameter Editor to customize your RAM or DSP IP
cores to use regular logic instead of the dedicated hardware blocks.

Related Information

• Introduction to Design Floorplans on page 14-35
• Quartus Prime Integrated Synthesis documentation on page 16-1

Information about resource balancing DSP and RAM blocks when using Quartus Prime synthesis
• Timing Closure and Optimization documentation

Tips about resource balancing and reducing resource utilization
• More Analysis Synthesis Settings Dialog Box online help

Information about how to set global logic options for partitions

Allocate Global Routing Signals and Clock Networks if Required
In most cases, you do not have to allocate global routing signals because the
Quartus Prime software finds the best solution for the global signals. However, if your design is complex
and has multiple clocks, especially for a partition developed by a third-party IP designer, you may have to
allocate global routing resources between various partitions.

Global routing signals can cause conflicts when independent partitions are integrated into a top-level
design. The Quartus Prime software automatically promotes high fan-out signals to use global routing
resources available in the device. Third-party partitions can use the same global routing resources, thus
causing conflicts in the top-level design. Additionally, LAB placement depends on whether the inputs to
the logic cells within the LAB use a global clock signal. Problems can occur if a design does not use a
global signal in a lower-level partition, but does use a global signal in the top-level design.

QPS5V1
2015.11.02 Allocate Logic Resources 14-23

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471203263/en-us
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_asd.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the exported IP core is small, you can reduce the potential for problems by using constraints to promote
clock and high fan-out signals to regional routing signals that cover only part of the device, instead of
global routing signals. In this case, the Quartus Prime software is likely to find a routing solution in the
top-level design because there are many regional routing signals available on most Altera devices, and
designs do not typically overuse regional resources.

To ensure that an IP block can utilize a regional clock signal, view the resource coverage of regional clocks
in the Chip Planner, and then align LogicLock regions that constrain partition placement with available
global clock routing resources. For example, if the LogicLock region for a particular partition is limited to
one device quadrant, that partition’s clock can use a regional clock routing type that covers only one
device quadrant. When all partition logic is available, the project lead can compile the entire design at the
top level with floorplan assignments to allow the use of regional clocks that span only a part of the device.

If global resources are heavily used in the overall design, or the IP designer requires global clocks for their
partition, you can set up constraints to avoid signal overuse at the top-level by assigning the appropriate
type of global signals or setting a maximum number of clock signals for the partition.

You can use the Global Signal assignment to force or prevent the use of a global routing line, making the
assignment to a clock source node or signal. You can also assign certain types of global clock resources in
some device families, such as regional clocks. For example, if you have an IP core, such as a memory
interface that specifies the use of a dual regional clock, you can constrain the IP to part of the device
covered by a regional clock and change the Global Signal assignment to use a regional clock. This type of
assignment can reduce clocking congestion and conflicts.

Alternatively, partition designers can specify the number of clocks allowed in the project using the
maximum clocks allowed options in the Advanced Settings (Fitter) dialog box. Specify Maximum
number of clocks of any type allowed, or use the Maximum number of global clocks allowed,
Maximum number of regional clocks allowed, and Maximum number of periphery clocks allowed
options to restrict the number of clock resources of a particular type in your design.

If you require more control when planning a design with integrated partitions, you can assign a specific
signal to use a particular clock network in newer device families by assigning the clock control block
instance called CLKCTRL. You can make a point-to-point assignment from a clock source node to a
destination node, or a single-point assignment to a clock source node with the Global Clock CLKCTRL
Location logic option. Set the assignment value to the name of the clock control block: CLKCTRL_G<global
network number> for a global routing network, or CLKCTRL_R<regional network number> for a dedicated
regional routing network in the device.

If you want to disable the automatic global promotion performed in the Fitter to prevent other signals
from being placed on global (or regional) routing networks, turn off the Auto Global Clock and Auto
Global Register Control Signals options in the Advanced Settings (Fitter) dialog box.

If you are using design partition scripts for independent partitions, the Quartus Prime software can
automatically write the commands to pass global constraints and turn off automatic options.

Alternatively, to avoid problems when integrating partitions into the top-level design, you can direct the
Fitter to discard the placement and routing of the partition netlist by using the post-synthesis netlist,
which forces the Fitter to reassign all the global signals for the partition when compiling the top-level
design.

14-24 Allocate Global Routing Signals and Clock Networks if Required
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Advanced Settings (Fitter) Dialog Box online help
Information about how to disable automatic global promotion

• Analyzing and Optimizing the Design Floorplan with the Chip Planner documentation
Information about how clock networks affect partition design

Assign Virtual Pins
Virtual pins map lower-level design I/Os to internal cells. If you are developing an IP block in an
independent Quartus Prime project, use virtual pins when the number of I/Os on a partition exceeds the
device I/O count, and to increase the timing accuracy of cross-partition paths.

You can create a virtual pin assignment in the Assignment Editor for partition I/Os that will become
internal nodes in the top-level design. When you apply the Virtual Pin assignment to an input pin, the pin
no longer appears as an FPGA pin, but is fixed to GND or VCC in the design. The assigned pin is not an
open node. Leave the clock pins mapped to I/O pins to ensure proper routing.

You can specify locations for the virtual pins that correspond to the placement of other partitions, and
also make timing assignments to the virtual pins to define a timing budget. Virtual pins are created
automatically from the top-level design if you use design partition scripts. The scripts place the virtual
pins to correspond with the placement of the other partitions in the top-level design.

Note: Tri-state outputs cannot be assigned as virtual pins because internal tri-state signals are not
supported in Altera devices. Connect the signal in the design with regular logic, or allow the
software to implement the signal as an external device I/O pin.

Perform Timing Budgeting if Required
If you optimize partitions independently and integrate them to the top-level design, or compile with
empty partitions, any unregistered paths that cross between partitions are not optimized as entire paths.
In these cases, the Quartus Prime software has no information about the placement of the logic that
connects to the I/O ports. If the logic in one partition is placed far away from logic in another partition,
the routing delay between the logic can lead to problems in meeting timing requirements. You can reduce
this effect by ensuring that input and output ports of the partitions are registered whenever possible.
Additionally, using the same top-level project framework helps to avoid this problem by providing the
software with full information about other design partitions in the top-level design.

To ensure that the software correctly optimizes the input and output logic in any independent partitions,
you might be required to perform some manual timing budgeting. For each unregistered timing path that
crosses between partitions, make timing assignments on the corresponding I/O path in each partition to
constrain both ends of the path to the budgeted timing delay. Assigning a timing budget for each part of
the connection ensures that the software optimizes the paths appropriately.

When performing manual timing budgeting in a partition for I/O ports that become internal partition
connections in a top-level design, you can assign location and timing constraints to the virtual pin that
represents each connection to further improve the quality of the timing budget.

Note: If you use design partition scripts, the Quartus Prime software can write I/O timing budget
constraints automatically for virtual pins.

Drive Clocks Directly
When partitions are exported from another Quartus Prime project, you should drive partition clock
inputs directly with device clock input pins.

QPS5V1
2015.11.02 Assign Virtual Pins 14-25

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_db_fitter_settings.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471303170/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Connecting the clock signal directly avoids any timing analysis difficulties with gated clocks. Clock gating
is never recommended for FPGA designs because of potential glitches and clock skew. Clock gating can be
especially problematic with exported partitions because the partitions have no information about gating
that takes place at the top-level design or in another partition. If a gated clock is required in a partition,
perform the gating within that partition.

Direct connections to input clock pins also allows design partition scripts to send constraints from the
top-level device pin to lower-level partitions.

Related Information
Invert Clocks in Destination Partitions on page 14-14

Recreate PLLs for Lower-Level Partitions if Required
If you connect a PLL in your top-level design to partitions designed in separate Quartus Prime projects by
third-party IP designers, the IP partitions do not have information about the multiplication, phase shift,
or compensation delays for the PLL in the top-level design. To accommodate the PLL timing, you can
make appropriate timing assignments in the projects created by IP designers to ensure that clocks are not
left unconstrained or constrained with an incorrect frequency. Alternatively, you can duplicate the top-
level PLL (or other derived clock logic) in the design file for the project created by the IP designer to
ensure that you have the correct PLL parameters and clock delays for a complete and accurate timing
analysis.

If the project lead creates a copy of the top-level project framework that includes all the settings and
constraints needed for the design, this framework should include PLLs and other interface logic if this
information is important to optimize partitions.

If you use a separate Quartus Prime project for an independent design block (such as when a designer or
third-party IP provider does not have access to the entire design framework), include a copy of the top-
level PLL in the lower-level partition as shown in figure.

In either case, the IP partition in the separate Quartus Prime project should contain just the partition logic
that will be exported to the top-level design, while the full project includes more information about the
top-level design. When the partition is complete, you can export just the partition without exporting the
auxiliary PLL components to the top-level design. When you export a partition, the Quartus Prime
software exports any hierarchy under the specified partition into the Quartus Prime Exported Partition
File (.qxp), but does not include logic defined outside the partition (the PLL in this example).

Figure 14-19: Recreating a Top-Level PLL in a Lower-Level Partition

Device Input
Clock

Other Inputs
from Device

Pins

PLL From
Top-Level

Design

Virtual
Input
Pins Lower-Level

Partition
to be

Exported

Virtual
Output

Pins

Outputs to
Device Pins

Top Partition
in Lower-Level

Project

14-26 Recreate PLLs for Lower-Level Partitions if Required
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Checking Partition Quality
There are several tools you can use to create and analyze partitions in the Quartus Prime software. Take
advantage of these tools to assess your partition quality, and use the information to improve your design
or assignments as required to achieve the best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to ensure that your design follows Altera’s
recommendations for creating design partitions and implementing the incremental compilation design
flow methodology. Each recommendation in the Incremental Compilation Advisor provides an
explanation, describes the effect of the recommendation, and provides the action required to make the
suggested change.

Related Information

• Incremental Compilation Advisor on page 14-27
• Incremental Compilation Advisor Command online help
• Example of Using the Incremental Compilation Advisor to Identify Non-Global Ports That Are

Not Registered online help
For more information about the Incremental Compilation Advisor

• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design documentation
on page 3-1

Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy, and can assist you in
creating effective design partitions that follow the guidelines in this manual. You can also use the Design
Partition Planner to optimize design performance by isolating and resolving failing paths on a partition-
by-partition basis.

To view a design and create design partitions in the Design Partition Planner, you must first compile the
design, or perform Analysis & Synthesis. In the Design Partition Planner, the design appears as a single
top-level design block, with lower-level instances displayed as color-specific boxes.

In the Design Partition Planner, you can show connectivity between blocks and extract instances from the
top-level design block. When you extract entities, connection bundles are drawn between entities,
showing the number of connections existing between pairs of entities. When you have extracted a design
block that you want to set as a design partition, right-click that design block, and then click Create Design
Partition.

The Design Partition Planner also has an auto-partition feature that creates partitions based on the size
and connectivity of the hierarchical design blocks. You can right-click the design block you want to
partition (such as the top-level design hierarchy), and then click Auto-Partition Children. You can then
analyze and adjust the partition assignments as required.

The figure shows the Design Partition Planner after making a design partition assignment to one instance
and dragging another instance away from the top-level block within the same partition (two design blocks
in the pale blue shaded box). The figure shows the connections between each partition and information
about the size of each design instance.

QPS5V1
2015.11.02 Checking Partition Quality 14-27

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/oaw/oaw_com_inc_compoa_command.htm
http://quartushelp.altera.com/current/index.htm#report/oaw/oaw_ex_inc_comp.htm
http://quartushelp.altera.com/current/index.htm#report/oaw/oaw_ex_inc_comp.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14-20: Design Partition Planner

You can switch between connectivity display mode and hierarchical display mode, to examine the view-
only hierarchy display. You can also remove the connection lines between partitions and I/O banks by
turning off Display connections to I/O banks, or use the settings on the Connection Counting tab in the
Bundle Configuration dialog box to adjust how the connections are counted in the bundles.

To optimize design performance, confine failing paths within individual design partitions so that there are
no failing paths passing between partitions. In the top-level entity, child entities that contain failing paths
are marked by a small red dot in the upper right corner of the entity box.

To view the critical timing paths from a timing analyzer report, first perform a timing analysis on your
design, and then in the Design Partition Planner, click Show Timing Data on the View menu.

14-28 Design Partition Planner
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Viewing Design Partition Planner and Floorplan Side-by-Side
You can use the Design Partition Planner together with the Chip Planner to analyze natural placement
groupings. This information can help you decide whether the design blocks should be grouped together in
one partition, or whether they will make good partitions in the next compilation. It can also help
determine whether the logic can easily be constrained by a LogicLock region. If logic naturally groups
together when compiled without placement constraints, you can probably assign a reasonably sized
LogicLock region to constrain the placement for subsequent compilations. You can experiment by
extracting different design blocks in the Design Partition Planner and viewing the placement results of
those design blocks from the previous compilation.

To view the Design Partition Planner and Chip Planner side-by-side, open the Design Partition Planner,
and then open the Chip Planner and select the Design Partition Planner task. The Design Partition
Planner task displays the physical locations of design entities with the same colors as in the Design
Partition Planner.

In the Design Partition Planner, you can extract instances of interest from their parents by dragging and
dropping, or with the Extract from Parent command. Evaluate the physical locations of instances in the
Chip Planner and the connectivity between instances displayed in the Design Partition Planner. An entity
is generally not suitable to be set as a separate design partition or constrained in a LogicLock region if the
Chip Planner shows it physically dispersed over a noncontiguous area of the device after compilation. Use
the Design Partition Planner to analyze the design connections. Child instances that are unsuitable to be
set as separate design partitions or placed in LogicLock regions can be returned to their parent by
dragging and dropping, or with the Collapse to Parent command.

The figure shows a design displayed in the Design Partition Planner and the Chip Planner with different
colors for the top-level design and the three major design instances.

Figure 14-21: Design Partition Planner and Chip Planner

QPS5V1
2015.11.02 Viewing Design Partition Planner and Floorplan Side-by-Side 14-29

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Partition Statistics Report
You can view statistics about design partitions in the Partition Merge Partition Statistics report and the
Statistics tab of the Design Partitions Properties dialog box. These reports are useful when optimizing
your design partitions, or when compiling the completed top-level design in a team-based compilation
flow to ensure that partitions meet the guidelines discussed in this manual.

The Partition Merge Partition Statistics report in the Partition Merge section of the Compilation report
lists statistics about each partition. The statistics for each partition (each row in the table) include the
number of logic cells, as well as the number of input and output pins and how many are registered. This
report also lists how many ports are unconnected, or driven by a constant VCC or GND. You can use this
information to assess whether you have followed the guidelines for partition boundaries.

You can also view statistics about the resource and port connections for a particular partition on the
Statistics tab of the Design Partition Properties dialog box. The Show All Partitions button allows you
to view all the partitions in the same report. The Partition Merge Partition Statistics report also shows
statistics for the Internal Congestion: Total Connections and Registered Connections. This information
represents how many signals are connected within the partition. It then lists the inter-partition
connections for each partition, which helps you to see how partitions are connected to each other.

Related Information
Partition Merge Reports online help

Report Partition Timing in the TimeQuest Timing Analyzer
The Report Partitions diagnostic report and the report_partitions SDC command in the TimeQuest
analyzer produce a Partition Timing Overview and Partition Timing Details table, which lists the
partitions, the number of failing paths, and the worst case timing slack within each partition.

You can use these reports to analyze the location of the critical timing paths in the design in relation to
partitions. If a certain partition contains many failing paths, or failing inter-partition paths, you might be
able to change your partitioning scheme and improve timing performance.

Related Information
Quartus Prime TimeQuest Timing Analyzer documentation
Information about the TimeQuest report_timing command and reports

Check if Partition Assignments Impact the Quality of Results
You can ensure that you limit negative effect on the quality of results by following an iterative
methodology during the partitioning process. In any incremental compilation flow where you can
compile the source code for every partition during the partition planning phase, Altera recommends the
following iterative flow:

1. Start with a complete design that is not partitioned and has no location or LogicLock region
assignments.

14-30 Partition Statistics Report
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_part_merge_summary.htm
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To run a full compilation, use the Start Compilation command.
2. Record the quality of results from the Compilation report (timing slack or fMAX, area and any other

relevant results).
3. Create design partitions following the guidelines described in this manual.
4. Recompile the design.
5. Record the quality of results from the Compilation report. If the quality of results is significantly worse

than those obtained in the previous compilation, repeat step 3 through step 5 to change your partition
assignments and use a different partitioning scheme.

6. Even if the quality of results is acceptable, you can repeat step 3 through step 5 by further dividing a
large partition into several smaller partitions, which can improve compilation time in subsequent
incremental compilations. You can repeat these steps until you achieve a good trade-off point (that is,
all critical paths are localized within partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

You can also remove or disable partition assignments defined in the top-level design at any time during
the design flow to compile the design as one flat compilation and get all possible design optimizations to
assess the results. To disable the partitions without deleting the assignments, use the Ignore partition
assignments during compilation option on the Incremental Compilation page of the Settings dialog
box in the Quartus Prime software. This option disables all design partition assignments in your project
and runs a full compilation, ignoring all partition boundaries and netlists. This option can be useful if you
are using partitions to reduce compilation time as you develop various parts of the design, but can run a
long compilation near the end of the design cycle to ensure the design meets its timing requirements.

Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery

When exported partitions are compiled in a separate Quartus Prime project, such as when a third-party
designer is delivering IP, the project lead must transfer the top-level project framework information and
constraints to the partitions, so that each designer has a consistent view of the constraints that apply to the
entire design. If the independent partition designers make any changes or add any constraints, they might
have to transfer new constraints back to the project lead, so that these constraints are included in final
timing sign-off of the entire design. Many assignments from the partition are carried with the partition
into the top-level design; however, SDC format constraints for the TimeQuest analyzer are not copied
into the top-level design automatically.

Passing additional timing constraints from a partition to the top-level design must be managed carefully.
You can design within a single Quartus Prime project or a copy of the top-level design to simplify
constraint management.

To ensure that there are no conflicts between the project lead’s top-level constraints and those added by
the third-party IP designer, use two .sdc files for each separate Quartus Prime project: an .sdc created by
the project lead that includes project-wide constraints, and an .sdc created by the IP designer that includes
partition-specific constraints.

The example design shown in the figure below is used to illustrate recommendations for managing the
timing constraints in a third-party IP delivery flow. The top-level design instantiates a lower-level design
block called module_A that is set as a design partition and developed by an IP designer in a separate
Quartus Prime project.

QPS5V1
2015.11.02 Including SDC Constraints from Lower-Level Partitions for

Third-Party...
14-31

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14-22: Example Design to Illustrate SDC Constraints

In this top-level design, there is a single clock setting called clk associated with the FPGA input called
top_level_clk. The top-level .sdc contains the following constraint for the clock:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } \
[get_ports {TOP_LEVEL_CLK}]

Creating an .sdc File with Project-Wide Constraints
The .sdc with project-wide constraints for the separate Quartus Prime project should contain all
constraints that are not completely localized to the partition. The .sdc should be maintained by the project
lead. The project lead must ensure that these timing constraints are delivered to the individual partition
owners and that they are syntactically correct for each of the separate Quartus Prime projects. This
communication can be challenging when the design is in flux and hierarchies change. The project lead can
use design partition scripts to automatically pass some of these constraints to the separate Quartus Prime
projects.

The .sdc with project-wide constraints is used in the partition, but is not exported back to the top-level
design. The partition designer should not modify this file. If changes are necessary, they should be
communicated to the project lead, who can then update the SDC constraints and distribute new files to all
partition designers as required.

The .sdc should include clock creation and clock constraints for any clock used by more than one
partition. These constraints are particularly important when working with complex clocking structures,
such as the following:

• Cascaded clock multiplexers
• Cascaded PLLs
• Multiple independent clocks on the same clock pin
• Redundant clocking structures required for secure applications
• Virtual clocks and generated clocks that are consistently used for source synchronous interfaces
• Clock uncertainties

14-32 Creating an .sdc File with Project-Wide Constraints
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Additionally, the .sdc with project-wide constraints should contain all project-wide timing exception
assignments, such as the following:

• Multicycle assignments, set_multicycle_path
• False path assignments, set_false_path
• Maximum delay assignments, set_max_delay
• Minimum delay assignments, set_min_delay

The project-wide .sdc can also contain any set_input_delay or set_output_delay constraints that are
used for ports in separate Quartus Prime projects, because these represent delays external to a given
partition. If the partition designer wants to set these constraints within the separate Quartus Prime
projects, the team must ensure that the I/O port names are identical in all projects so that the assignments
can be integrated successfully without changes.

Similarly, a constraint on a path that crosses a partition boundary should be in the project-wide .sdc,
because it is not completely localized in a separate Quartus Prime project.

Example Step 1—Project Lead Produces .sdc with Project-Wide Constraints for Lower-Level
Partitions

The device input top_level_clk in Figure 14-22 drives the input_clk port of module_A. To make sure
the clock constraint is passed correctly to the partition, the project lead creates an .sdc with project-wide
constraints for module_A that contains the following command:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } [get_ports
{INPUT_CLK}]

The designer of module_A includes this .sdc as part of the separate Quartus Prime project.

Creating an .sdc with Partition-Specific Constraints
The .sdc with partition-specific constraints should contain all constraints that affect only the partition.
For example, a set_false_path or set_multicycle_path constraint for a path entirely within the
partition should be in the partition-specific .sdc. These constraints are required for correct compilation of
the partition, but do not need to be present in any other separate Quartus Prime projects.

The partition-specific .sdc should be maintained by the partition designer; they must add any constraints
required to properly compile and analyze their partition.

The partition-specific .sdc is used in the separate Quartus Prime project and must be exported back to the
project lead for the top-level design. The project lead must use the partition-specific constraints to
properly constrain the placement, routing, or both, if the partition logic is fit at the top level, and to

QPS5V1
2015.11.02 Example Step 1—Project Lead Produces .sdc with Project-Wide Constraints... 14-33

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ensure that final timing sign-off is accurate. Use the following guidelines in the partition-specific .sdc to
simplify these export and integration steps:

• Create a hierarchy variable for the partition (such as module_A_hierarchy) and set it to an empty
string because the partition is the top-level instance in the separate Quartus Prime project. The project
lead modifies this variable for the top-level hierarchy, reducing the effort of translating constraints on
lower-level design hierarchies into constraints that apply in the top-level hierarchy. Use the following
Tcl command first to check if the variable is already defined in the project, so that the top-level design
does not use this empty hierarchy path: if {![info exists module_A_hierarchy]}.

• Use the hierarchy variable in the partition-specific .sdc as a prefix for assignments in the project. For
example, instead of naming a particular instance of a register reg:inst, use $
{module_A_hierarchy}reg:inst. Also, use the hierarchy variable as a prefix to any wildcard
characters (such as ” * ”).

• Pay attention to the location of the assignments to I/O ports of the partition. In most cases, these
assignments should be specified in the .sdc with project-wide constraints, because the partition
interface depends on the top-level design. If you want to set I/O constraints within the partition, the
team must ensure that the I/O port names are identical in all projects so that the assignments can be
integrated successfully without changes.

• Use caution with the derive_clocks and derive_pll_clocks commands. In most cases, the .sdc with
project-wide constraints should call these commands. Because these commands impact the entire
design, integrating them unexpectedly into the top-level design might cause problems.

If the design team follows these recommendations, the project lead should be able to include the .sdc with
the partition-specific constraints provided by the partition designer directly in the top-level design.

Example Step 2—Partition Designer Creates .sdc with Partition-Specific Constraints
The partition designer compiles the design with the .sdc with project-wide constraints and might want to
add some additional constraints. In this example, the designer realizes that he or she must specify a false
path between the register called reg_in_1 and all destinations in this design block with the wildcard
character (such as ” * ”). This constraint applies entirely within the partition and must be exported to the
top-level design, so it qualifies for inclusion in the .sdc with partition-specific constraints. The designer
first defines the module_A_hierarchy variable and uses it when writing the constraint as follows:

if {![info exists module_A_hierarchy]} {
 set module_A_hierarchy ""
}
set_false_path -from [get_registers ${module_A_hierarchy}reg_in_1] \
-to [get_registers ${module_A_hierarchy}*]

Consolidating the .sdc in the Top-Level Design
When the partition designers complete their designs, they export the results to the project lead. The
project lead receives the exported .qxp files and a copy of the .sdc with partition-specific constraints.

To set up the top-level .sdc constraint file to accept the .sdc files from the separate Quartus Prime
projects, the top-level .sdc should define the hierarchy variables specified in the partition .sdc files. List the
variable for each partition and set it to the hierarchy path, up to and including the instantiation of the
partition in the top-level design, including the final hierarchy character ”|”.

To ensure that the .sdc files are used in the correct order, the project lead can use the Tcl Source
command to load each .sdc.

14-34 Example Step 2—Partition Designer Creates .sdc with Partition-Specific...
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example Step 3—Project Lead Performs Final Timing Analysis and Sign-off
With these commands, the top-level .sdc file looks like the following example:

create_clock -name {clk} -period 3.000 -waveform { 0.000 1.500 } \
[get_ports {TOP_LEVEL_CLK}]
Include the lower-level SDC file
set module_A_hierarchy "module_A:inst|" # Note the final '|' character
source <partition-specific constraint file such as ..\module_A
\module_A_constraints>.sdc

When the project lead performs top-level timing analysis, the false path assignment from the lower-level
module_A project expands to the following:

set_false_path -from module_A:inst|reg_in_1 -to module_A:inst|*

Adding the hierarchy path as a prefix to the SDC command makes the constraint legal in the top-level
design, and ensures that the wildcard does not affect any nodes outside the partition that it was intended
to target.

Introduction to Design Floorplans
A floorplan represents the layout of the physical resources on the device. Creating a design floorplan, or
floorplanning, describes the process of mapping the logical design hierarchy onto physical regions in the
device.

In the Quartus Prime software, LogicLock regions can be used to constrain blocks of a design to a
particular region of the device. LogicLock regions represent an area on the device with a user-defined or
Fitter-defined size and location in the device layout.

Related Information
Analyzing and Optimizing the Design Floorplan with the Chip Planner documentation

The Difference between Logical Partitions and Physical Regions
Design partitions are logical entities based on the design hierarchy. LogicLock regions are physical
placement assignments that constrain logic to a particular region on the device.

A common misconception is that logic from a design partition is always grouped together on the device
when you use incremental compilation. Actually, logic from a partition can be placed anywhere in the
device if it is not constrained to a LogicLock region, although the Fitter can pack related logic together to
improve timing performance. A logical design partition does not refer to any physical area on the device
and does not directly control where instances are placed on the device.

If you want to control the placement of logic from a design partition and isolate it to a particular part of
the device, you can assign the logical design partition to a physical region in the device floorplan with a
LogicLock region assignment. Altera recommends creating a design floorplan by assigning design
partitions to LogicLock regions to improve the quality of results and avoid placement conflicts in some
situations for incremental compilation.

Another misconception is that LogicLock assignments are used to preserve placement results for
incremental compilation. Actually, LogicLock regions only constrain logic to a physical region on the
device. Incremental compilation does not use LogicLock assignments or any location assignments to

QPS5V1
2015.11.02 Example Step 3—Project Lead Performs Final Timing Analysis and Sign-off 14-35

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471303170/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

preserve the placement results; it simply reuses the results stored in the database netlist from a previous
compilation.

Why Create a Floorplan?
Creating a design floorplan is usually required if you want to preserve placement for partitions that will be
exported, to avoid resource conflicts between partitions in the top-level design. Floorplan location
planning can be important for a design that uses incremental compilation, for the following reasons:

• To avoid resource conflicts between partitions, predominantly when integrating partitions exported
from another Quartus Prime project.

• To ensure good quality of results when recompiling individual timing-critical partitions.

Location assignments for each partition ensure that there are no placement conflicts between partitions. If
there are no LogicLock region assignments, or if LogicLock regions are set to auto-size or floating
location, no device resources are specifically allocated for the logic associated with the region. If you do
not clearly define resource allocation, logic placement can conflict when you integrate the partitions in the
top-level design if you reuse the placement information from the exported netlist.

Creating a floorplan is also recommended for timing-critical partitions that have little timing margin to
maintain good quality of results when the design changes.

Floorplan assignments are not required for non-critical partitions compiled in the same Quartus Prime
project. The logic for partitions that are not timing-critical can be placed anywhere in the device on each
recompilation if that is best for your design.

Design floorplan assignments prevent the situation in which the Fitter must place a partition in an area of
the device where most resources are used by other partitions. A LogicLock region provides a reasonable
region to re-place logic after a change, so the Fitter does not have to scatter logic throughout the available
space in the device.

The figure illustrates the problems that may be associated with refitting designs that do not have floorplan
location assignments. The left floorplan shows the initial placement of a four-partition design (P1-P4)
without any floorplan location assignments. The right floorplan shows the device if a change occurs to P3.
After removing the logic for the changed partition, the Fitter must re-place and reroute the new logic for
P3 in the scattered white space. The placement of the post-fit netlists for other partitions forces the Fitter
to implement P3 with the device resources that have not been used.

Figure 14-23: Representation of Device Floorplan without Location Assignments

P1
P3

P3

P4P1

P2

P2

P1

No floorplan assignments: Device has 4 partitions
and the logic is placed throughout

P3

P1

P4P1

P2

P2

P1

Device after removing changed partition P3:
New P3 must be placed in empty areas

Change in P3

14-36 Why Create a Floorplan?
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Fitter has a more difficult task because of more difficult physical constraints, and as a result, compila‐
tion time often increases. The Fitter might not be able to find any legal placement for the logic in partition
P3, even if it could in the initial compilation. Additionally, if the Fitter can find a legal placement, the
quality of results often decreases in these cases, sometimes dramatically, because the new partition is now
scattered throughout the device.

The figure below shows the initial placement of a four-partition design with floorplan location
assignments. Each partition is assigned to a LogicLock region. The second part of the figure shows the
device after partition P3 is removed. This placement presents a much more reasonable task to the Fitter
and yields better results.

Figure 14-24: Representation of Device Floorplan with Location Assignments

P2 P3

P1 P4

With floorplan location assignments: Device has
4 partitions placed in 4 LogicLock regions

Device after removing changed partition P3:
Much easier to place new P3 partition in empty area

P2

P1 P4

Change in P3

Altera recommends that you create a LogicLock floorplan assignment for timing-critical blocks with little
timing margin that will be recompiled as you make changes to the design.

When to Create a Floorplan
It is important that you plan early to incorporate partitions into the design, and ensure that each partition
follows partitioning guidelines. You can create floorplan assignments at different stages of the design flow,
early or late in the flow. These guidelines help ensure better results as you begin creating floorplan
location assignments.

Early Floorplan
An early floorplan is created before the design stage. You can plan an early floorplan at the top level of a
design to allocate each partition a portion of the device resources. Doing so allows the designer for each
block to create the logic for their design partition without conflicting with other logic. Each partition can
be optimized in a separate Quartus Prime project if required, and the design can still be easily integrated
in the top-level design. Even within one Quartus Prime project, each partition can be locked down with a
post-fit netlist, and you can be sure there is space in the device floorplan for other partitions.

When you have compiled your complete design, or after you have integrated the first versions of
partitions developed in separate Quartus Prime projects, you can use the design information and Quartus
Prime features to tune and improve the floorplan .

Late Floorplan
A late floorplan is created or modified after the design is created, when the code is close to complete and
the design structure is likely to remain stable. Creating a late floorplan is typically necessary only if you are

QPS5V1
2015.11.02 When to Create a Floorplan 14-37

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

starting to use incremental compilation late in the design flow, or need to reserve space for a logic block
that becomes timing-critical but still has HDL changes to be integrated. When the design is complete, you
can take advantage of the Quartus Prime analysis features to check the floorplan quality. To adjust the
floorplan, you can perform iterative compilations as required and assess the results of different
assignments.

Note: It may not be possible to create a good-quality late floorplan if you do not create partitions in the
early stages of the design.

Design Floorplan Placement Guidelines
The following guidelines are key to creating a good design floorplan:

• Capture correct resources in each region.
• Use good region placement to maintain design performance compared to flat compilation.

A common misconception is that creating a floorplan enhances timing performance, as compared to a flat
compilation with no location assignments. The Fitter does not usually require guidance to get optimal
results for a full design.

Floorplan assignments can help maintain good performance when designs change incrementally.
However, poor placement assignments in an incremental compilation can often adversely affect perform‐
ance results, as compared to a flat compilation, because the assignments limit the options for the Fitter.
Investing time to find good region placement is required to match the performance of a full flat compila‐
tion.

Flow for Creating a Floorplan
Use the following general procedure to create a floorplan:

1. Divide the design into partitions.
2. Assign the partitions to LogicLock regions.
3. Compile the design.
4. Analyze the results.
5. Modify the placement and size of regions, as required.

You might have to perform these steps several times to find the best combination of design partitions and
LogicLock regions that meet the resource and timing goals of the design.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design documentation on
page 3-1

Assigning Partitions to LogicLock Regions
Before compiling a design with new LogicLock assignments, ensure that the partition netlist type is set to
Post-Synthesis or Source File, so that the Fitter does not reuse previous placement results.

In most cases, you should include logic from one partition in each LogicLock region. This organization
helps to prevent resource conflicts when partitions are exported and can lead to better performance
preservation when locking down parts of a design in a single project.

14-38 Design Floorplan Placement Guidelines
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software is flexible and allows exceptions to this rule. For example, you can place
more than one partition in the same LogicLock region if the partitions are tightly connected, but you do
not want to merge the partitions into one larger partition. For best results, ensure that you recompile all
partitions in the LogicLock region every time the logic in one partition changes. Additionally, if a
partition contains multiple lower-level entities, you can place those entities in different areas of the device
with multiple LogicLock regions, even if they are defined in the same partition.

You can use the Reserved LogicLock option to ensure that you avoid conflicts with other logic that is not
locked into a LogicLock region. This option prevents other logic from being placed in the region, and is
useful if you have empty partitions at any point during your design flow, so that you can reserve space in
the floorplan. Do not make reserved regions too large to prevent unused area because no other logic can
be placed in a region with the Reserved LogicLock option.

Related Information
LogicLock Region Properties Dialog Box online help

How to Size and Place Regions
In an early floorplan, assign physical locations based on design specifications. Use information about the
connections between partitions, the partition size, and the type of device resources required.

In a late floorplan, when the design is complete, you can use locations or regions chosen by the Fitter as a
guideline. If you have compiled the full design, you can view the location of the partition logic in the Chip
Planner. You can use the natural grouping of each unconstrained partition as a starting point for a
LogicLock region constraint. View the placement for each partition that requires a floorplan constraint,
and create a new LogicLock region by drawing a box around the area on the floorplan, and then assigning
the partition to the region to constrain the partition placement.

Instead of creating regions based on the previous compilation results, you can start with the Fitter results
for a default auto size and floating origin location for each new region when the design logic is complete.
After compilation, lock the size and origin location.

Alternatively, if the design logic is complete with auto-sized or floating location regions, you can specify
the size based on the synthesis results and use the locations chosen by the Fitter with the Set to Estimated
Size command. Like the previous option, start with floating origin location. After compilation, lock the
origin location. You can also enable the Fast Synthesis Effort setting to reduce synthesis time.

After a compilation, save the Fitter size and origin location of the Fitter with the Set Size and Origin to
Previous Fitter Results command.

Note: It is important that you use the Fitter-chosen locations only as a starting point to give the regions a
good fixed size and location. Ensure that all LogicLock regions in the design have a fixed size and
have their origin locked to a specific location on the device. On average, regions with fixed size and
location yield better timing performance than auto-sized regions.

Related Information
Checking Partition Quality on page 14-27

Modifying Region Size and Origin
After saving the Fitter results from an initial compilation for a late floorplan, modify the regions using
your knowledge of the design to set a specific size and location. If you have a good understanding of how
the design fits together, you can often improve upon the regions placed in the initial compilation. In an

QPS5V1
2015.11.02 How to Size and Place Regions 14-39

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/lock/asd_com_logiclock_properties.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

early floorplan, when the design has not yet been created, you can use the guidelines in this section to set
the size and origin, even though there is no initial Fitter placement.

The easiest way to move and resize regions is to drag the region location and borders in the Chip Planner.
Make sure that you select the User-Defined region in the floorplan (as opposed to the Fitter-Placed
region from the last compilation) so that you can change the region.

Generally, you can keep the Fitter-determined relative placement of the regions, but make adjustments if
required to meet timing performance. Performing a full compilation ensures that the Fitter can optimize
for a full placement and routing.

If two LogicLock regions have several connections between them, ensure they are placed near each other
to improve timing performance. By placing connected regions near each other, the Fitter has more
opportunity to optimize inter-region paths when both partitions are recompiled. Reducing the criticality
of inter-region paths also allows the Fitter more flexibility when placing other logic in each region.

If resource utilization is low in the overall device, enlarge the regions. Doing so usually improves the final
results because it gives the Fitter more freedom to place additional or modified logic added to the
partition during subsequent incremental compilations. It also allows room for optimizations such as
pipelining and physical synthesis logic duplication.

Try to have each region evenly full, with the same ”fullness” that the complete design would have without
LogicLock regions; Altera recommends approximately 75% full.

Allow more area for regions that are densely populated, because overly congested regions can lead to poor
results. Allow more empty space for timing-critical partitions to improve results. However, do not make
regions too large for their logic. Regions that are too large can result in wasted resources and also lead to
suboptimal results.

Ideally, almost the entire device should be covered by LogicLock regions if all partitions are assigned to
regions.

Regions should not overlap in the device floorplan. If two partitions are allocated on an overlapping
portion of the chip, each may independently claim common resources in this region. This leads to
resource conflicts when integrating results into a top-level design. In a single project, overlapping regions
give more difficult constraints to the Fitter and can lead to reduced quality of results.

You can create hierarchical LogicLock regions to ensure that the logic in a child partition is physically
placed inside the LogicLock region for its parent partition. This can be useful when the parent partition
does not contain registers at the boundary with the lower-level child partition and has a lot of signal
connectivity. To create a hierarchical relationship between regions in the LogicLock Regions window,
drag and drop the child region to the parent region.

I/O Connections
Consider I/O timing when placing regions. Using I/O registers can minimize I/O timing problems, and
using boundary registers on partitions can minimize problems connecting regions or partitions. However,
I/O timing might still be a concern. It is most important for flows where each partition is compiled
independently, because the Fitter can optimize the placement for paths between partitions if the partitions
are compiled at the same time.

Place regions close to the appropriate I/O, if necessary. For example, DDR memory interfaces have very
strict placement rules to meet timing requirements. Incorporate any specific placement requirements into
your floorplan as required. You should create LogicLock regions for internal logic only, and provide pin

14-40 I/O Connections
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

location assignments for external device I/O pins (instead of including the I/O cells in a LogicLock region
to control placement).

LogicLock Resource Exclusions
You can exclude certain resource types from a LogicLock region to manage the ratio of logic to dedicated
DSP and RAM resources in the region.

If your design contains memory or Digital Signal Processing (DSP) elements, you may want to exclude
these elements from the LogicLock region. LogicLock resource exceptions prevent certain types of
elements from being assigned to a region. Therefore, those elements are not required to be placed inside
the region boundaries. The option does not prevent them from being placed inside the region boundaries
unless the Reserved property of the region is turned on.

Resource exceptions are useful in cases where it is difficult to place rectangular regions for design blocks
that contain memory and DSP elements, due to their placement in columns throughout the device
floorplan. Exclude RAMs, DSPs, or logic cells to give the Fitter more flexibility with region sizing and
placement. Excluding RAM or DSP elements can help to resolve no-fit errors that are caused by regions
spanning too many resources, especially for designs that are memory-intensive, DSP-intensive, or both.
The figure shows an example of a design with an odd-shaped region to accommodate DSP blocks for a
region that does not contain very much logic. The right side of the figure shows the result after excluding
DSP blocks from the region. The region can be placed more easily without wasting logic resources.

Figure 14-25: LogicLock Resource Exclusion Example

DSP blocks force
odd-shaped region

DS
P

M
4K

 RA
M

M
51

2 R
AM

M
RA

M

Allows better shape, easier
placement, and less unused

logic resources

DS
P

M
4K

 RA
M

M
51

2 R
AM

M
RA

M

DS
P

M
4K

 RA
M

M
51

2 R
AM

M
RA

M

Exclude DSP
blocks from
LogicLock region

To view any resource exceptions, right-click in the LogicLock Regions window, and then click LogicLock
Regions Properties. In the LogicLock Regions Properties dialog box, select the design element (module

QPS5V1
2015.11.02 LogicLock Resource Exclusions 14-41

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

or entity) in the Members box, and then click Edit. In the Edit Node dialog box, to set up a resource
exception, click the Edit button next to the Excluded element types box, and then turn on the design
element types to be excluded from the region. You can choose to exclude combinational logic or registers
from logic cells, or any of the sizes of TriMatrix memory blocks, or DSP blocks.

If the excluded logic is in its own lower-level design entity (even if it is within the same design partition),
you can assign the entity to a separate LogicLock region to constrain its placement in the device.

You can also use this feature with the LogicLock Reserved property to reserve specific resources for logic
that will be added to the design.

Creating Floorplan Location Assignments With Tcl Commands—Excluding or Filtering Certain
Device Elements (Such as RAM or DSP Blocks)

To assign a code block to a LogicLock region, with exclusions, use the following command:

set_logiclock_contents -region <LogicLock region name> \
-to <block> -exceptions \"<keyword>:<keyword>"

• <LogicLock region name>—The name of the LogicLock region to which the code block is assigned.
• <block>—A code block in a Quartus Prime project hierarchy, which can also be a design partition.
• <keyword>—The list of exceptions made during assignment. For example, if DSP was in the keyword

list, the named block of code would be assigned to the LogicLock region, except for any DSP block
within the code block. You can include the following exceptions in the set_logiclock_contents
command:

Keyword variables:

• REGISTER—Any registers in the logic cells.
• COMBINATIONAL—Any combinational elements in the logic cells.
• SMALL_MEM—Small TriMatrix memory blocks (M512 or MLAB).
• MEDIUMEM_MEM—Medium TriMatrix memory blocks (M4K or M9K).
• LARGE_MEM—Large TriMatrix memory blocks (M-RAM or M144K).
• DSP—Any DSP blocks.
• VIRTUAL_PIN—Any virtual pins.

Note: Resource filtering uses the optional Tcl argument -exclude_resources in the
set_logiclock_contents function. If left unspecified, no resource filter is created. In the .qsf,
resource filtering uses an extra LogicLock membership assignment called
LL_MEMBER_RESOURCE_EXCLUDE. For example, the following line in the .qsf is used to specify a
resource filter for the alu:alu_unit entity assigned to the ALU region.

set_instance_assignment -name LL_MEMBER_RESOURCE_EXCLUDE \
"DSP:SMALL_MEM" -to "alu:alu_unit" -section_id ALU

Creating Non-Rectangular Regions
To constrain placement to non-rectangular or non-contiguous areas of the device, you can connect
multiple rectangular regions together using the Merge command.

For devices that do not support the Merge command (MAXTM II devices), you can limit entity placement
to a sub-area of a LogicLock region to create non-rectangular constraints. In these devices, construct a
LogicLock hierarchy by creating child regions inside of parent regions, and then use the Reserved option

14-42 Creating Floorplan Location Assignments With Tcl Commands—Excluding or...
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

to control which logic can be placed inside these child regions. Setting the Reserved option for the region
prevents the Fitter from placing nodes that are not assigned to the region inside the boundary of the
region.

Related Information
Creating and Manipulating LogicLock Regions online help

Checking Floorplan Quality
The Quartus Prime software has several tools to help you create a floorplan. You can use these tools to
assess your floorplan quality and use the information to improve your design or assignments as required
to achieve the best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows the
recommendations for creating floorplan location assignments that are presented in this manual.

LogicLock Region Resource Estimates
You can view resource estimates for a LogicLock region to determine the region’s resource coverage, and
use this estimate before compilation to check region size. Using this estimate helps to ensure adequate
resources when you are sizing or moving regions.

Related Information
LogicLock Region Properties Dialog Box online help

LogicLock Region Properties Statistics Report
LogicLock region statistics are similar to design partition properties, but also include resource usage
details after compilation.

The statistics report the number of resources used and the total resources covered by the region, and also
lists the number of I/O connections and how many I/Os are registered (good), as well as the number of
internal connections and the number of inter-region connections (bad).

Locate the Quartus Prime TimeQuest Timing Analyzer Path in the Chip Planner
In the TimeQuest analyzer user interface, you can locate a specific path in the Chip Planner to view its
placement and perform a report timing operation (for example, report timing for all paths with less than 0
ns slack).

Related Information
Locate Dialog Box online help
Information about how to locate paths between the TimeQuest analyzer and the Chip Planner

Inter-Region Connection Bundles
The Chip Planner can display bundles of connections between LogicLock regions, with filtering options
that allow you to choose the relevant data for display. These bundles can help you to visualize how many
connections there are between each LogicLock region to improve floorplan assignments or to change
partition assignments, if required.

QPS5V1
2015.11.02 Checking Floorplan Quality 14-43

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/lock/flp_pro_def_logiclock_reg.htm
http://quartushelp.altera.com/current/index.htm#optimize/lock/asd_com_logiclock_properties.htm
http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_db_locate_path.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Inter-region Bundles Dialog Box online help
Information about how to display bundles of connections between LogicLock regions

Routing Utilization
The Chip Planner includes a feature to display a color map of routing congestion. This display helps
identify areas of the chip that are too tightly packed.

In the Chip Planner, red LAB blocks indicate higher routing congestion. You can position the mouse
pointer over a LAB to display a tooltip that reports the logic and routing utilization information.

Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results
The end results of design partitioning and floorplan creation differ from design to design. However, it is
important to evaluate your results to ensure that your scheme is successful. Compare your before and
after results, and consider using another scheme if any of the following guidelines are not met:

• You should see only minor degradation in fMAX after the design is partitioned and floorplan location
assignments are created. There is some performance cost associated with setting up a design for
incremental compilation; approximately 3% is typical.

• The area increase should be no more than 5% after the design is partitioned and floorplan location
assignments are created.

• The time spent in the routing stage should not significantly increase.

The amount of compilation time spent in the routing stage is reported in the Messages window with an
Info message that indicates the elapsed time for Fitter routing operations. If you notice a dramatic
increase in routing time, the floorplan location assignments may be creating substantial routing
congestion. In this case, decrease the number of LogicLock regions, which typically reduces the compila‐
tion time in subsequent incremental compilations and may also improve design performance.

Recommended Design Flows and Application Examples
Listed below are application examples with design flows for partitioning and creating a design floorplan
during common timing closure and team-based design scenarios. Each flow describes the situation in
which it should be used, and provides a step-by-step description of the commands required to implement
the flow.

Create a Floorplan for Major Design Blocks
Use this incremental compilation flow for designs when you want to assign a floorplan location for each
major block in your design. A full floorplan ensures that partitions do not interact as they are changed
and recompiled— each partition has its own area of the device floorplan.

14-44 Routing Utilization
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/ace/acv_db_generate_interregion_bundles.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To create a floorplan for major design blocks, follow this general methodology:

1. In the Design Partitions window, ensure that all partitions have their netlist type set to Source File or
Post-Synthesis. If the netlist type is set to Post-Fit, floorplan location assignments are not used when
recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which is set as a partition
by default).

3. Run a full compilation of your design to view the initial Fitter-chosen placement of the LogicLock
regions as a guideline.

4. In the Chip Planner, view the placement results of each partition and LogicLock region on the device.
5. If required, modify the size and location of the LogicLock regions in the Chip Planner. For example,

enlarge the regions to fill up the device and allow for future logic changes.You can also, if needed,
create a new LogicLock region by drawing a box around an area on the floorplan.

6. Run the Compiler with the Start Compilation command to determine the timing performance of your
design with the modified or new LogicLock regions.

7. Repeat steps 5 and 6 until you are satisfied with the quality of results for your design floorplan. Once
you are satisfied with your results, run a full compilation of your design.

Create a Floorplan Assignment for One Design Block with Difficult Timing
Use this flow when you have one timing-critical design block that requires more optimization than the
rest of your design. You can take advantage of incremental compilation to reduce your compilation time
without creating a full design floorplan.

In this scenario, you do not want to create floorplan assignments for the entire design. Instead, you can
create a region to constrain the location of your critical design block, and allow the rest of the logic to be
placed anywhere on the device. To create a region for critical design block, follow these steps:

1. Divide up your design into partitions. Ensure that you isolate the timing-critical logic in a separate
partition.

2. Define a LogicLock region for the timing-critical partition. Ensure that you capture the correct amount
of device resources in the region. Turn on the Reserved property to prevent any other logic from being
placed in the region.

• If the design block is not complete, reserve space in the design floorplan based on your knowledge
of the design specifications, connectivity between design blocks, and estimates of the size of the
partition based on any initial implementation numbers.

• If the critical design block has initial source code ready, compile the design to place the LogicLock
region. Save the Fitter-determined size and origin, and then enlarge the region to provide more
flexibility and allow for future design changes.

As the rest of the design is completed, and the device fills up, the timing-critical region reserves an area
of the floorplan. When you make changes to the design block, the logic will be re-placed in the same
part of the device, which helps ensure good quality of results.

Related Information
Design Partition Guidelines on page 14-9

QPS5V1
2015.11.02 Create a Floorplan Assignment for One Design Block with Difficult Timing 14-45

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create a Floorplan as the Project Lead in a Team-Based Flow
Use this approach when you have several designs that will be implemented in separate Quartus Prime
projects by different designers, or third-party IP designers who want to optimize their designs
independently and pass the results to the project lead.

As the project lead in this scenario, follow these steps to prepare the top-level design for a successful team-
based design methodology with early floorplan planning:

1. Create a new Quartus Prime project that will ultimately contain the full implementation of the entire
design.

2. Create a “skeleton” or framework of the design that defines the hierarchy for the subdesigns that will
be implemented by separate designers. Consider the partitioning guidelines in this manual when
determining the design hierarchy.

3. Make project-wide settings. Select the device, make global assignments for clocks and device I/O ports,
and make any global signal constraints to specify which signals can use global routing resources.

4. Make design partition assignments for each major subdesign. Set the netlist type for each partition that
will be implemented in a separate Quartus Prime project and later exported and integrated with the
top-level design set to Empty.

5. Create LogicLock regions for each partition to create a design floorplan. This floorplan should
consider the connectivity between partitions and estimates of the size of each partition based on any
initial implementation numbers and knowledge of the design specifications. Use the guidelines
described in this chapter to choose a size and location for each LogicLock region.

6. Provide the constraints from the top-level design to partition designers using one of the following
procedures:
a. Create a copy of the top-level Quartus Prime project framework by checking out the appropriate

files from a source control system, using the Copy Project command, or creating a project archive.
Provide each partition designer with the copy of the project.

b. Provide the constraints with documentation or scripts.

Document Revision History

Table 14-1: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Removed support for early timing estimate feature.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Optimization Settings to Compiler Settings.

• Updated description of Virtual Pin assingment to clarify that assigned
pins are no longer free as input pins.

14-46 Create a Floorplan as the Project Lead in a Team-Based Flow
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

June 2014 14.0.0 • Dita conversion.
• Removed obsolete devices content for Arria GX, Cyclone, Cyclone II,

Cyclone III, Stratix, Stratix GX, Stratix II, Stratix II GX,
• Replace Megafunction content with IP Catalog and Parameter Editor

content.

November
2013

13.1.0 Removed HardCopy device information.

November
2012

12.1.0 Added Turning On Supported Cross-Boundary Optimizations.

June 2012 12.0.0 Removed survey link.

November
2011

11.0.1 Template update.

May 2011 11.0.0 Updated links.

December
2010

10.1.0 • Changed to new document template.
• Moved "Creating Floorplan Location Assignments With Tcl

Commands—Excluding or Filtering Certain Device Elements (Such as
RAM or DSP Blocks)" from the Quartus Prime Incremental Compila‐
tion for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus Prime Handbook.

• Consolidated Design Partition Planner and Incremental Compilation
Advisor information between the Quartus Prime Incremental Compila‐
tion for Hierarchical and Team-Based Design and Best Practices for
Incremental Compilation Partitions and Floorplan Assignments
handbook chapters.

July 2010 10.0.0 • Removed the explanation of the “bottom-up design flow” where
designers work completely independently, and replaced with Altera’s
recommendations for team-based environments where partitions are
developed in the same top-level project framework, plus an explanation
of the bottom-up process for including independent partitions from
third-party IP designers.

• Expanded the Merge command explanation to explain how it now
accommodates cross-partition boundary optimizations.

• Restructured Altera recommendations for when to use a floorplan.

QPS5V1
2015.11.02 Document Revision History 14-47

Best Practices for Incremental Compilation Partitions and Floorplan Assignments Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

October
2009

9.1.0 • Redefined the bottom-up design flow as team-based and reorganized
previous design flow examples to include steps on how to pass top-level
design information to lower-level projects.

• Added "Including SDC Constraints from Lower-Level Partitions for
Third-Party IP Delivery" from the Quartus Prime Incremental
Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus Prime Handbook.

• Reorganized the "Recommended Design Flows and Application
Examples" section.

• Removed HardCopy APEX and HardCopy Stratix Devices section.

March 2009 9.0.0 • Added I/O register packing examples from Incremental Compilation for
Hierarchical and Team-Based Designs chapter

• Moved "Incremental Compilation Advisor" section
• Added "Viewing Design Partition Planner and Floorplan Side-by-Side"

section
• Updated Figure 15-22
• Chapter 8 was previously Chapter 7 in software release 8.1.

November
2008

8.1.0 • Changed to 8-1/2 x 11 page size. No change to content.

May 2007 8.0.0 • Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

14-48 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Best Practices for Incremental Compilation Partitions and Floorplan Assignments

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Best%20Practices%20for%20Incremental%20Compilation%20Partitions%20and%20Floorplan%C2%A0Assignments%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Mitigating Single Event Upsets 15
2015.11.02

QPS5V1 Subscribe Send Feedback

The Quartus Prime software offers several features to enable the detection and correct ion of single event
upsets (SEUs), or soft errors, as well as to characterize the effects of SEU on your designs.

Understanding SEU
SEU can affect any semiconductor device.

SEUs are rare, unintended changes in the state of internal memory elements, caused by cosmic radiation
effects. The change in state results in a soft error, so the affected device can be reset to its original value
and there is no permanent damage to the device itself. Because of the unintended memory state, the
device may operate erroneously until this upset is fixed.

The Soft Error Rate (SER) is expressed as Failure-in-Time (FIT) units, defined as one soft error
occurrence every billion hours of operation. Often SEU mitigation is not required because of the low
chance of occurrence. However, for highly complex systems, such as with multiple high-density
components, error rate may be a significant system design factor. If your system includes multiple FPGAS
and requires very high reliability and availability, you should consider the implications of soft errors, and
use the available techniques for detecting and recovering from these types of errors. If your system is
requiring high reliability and availability, consider the implications of soft errors, and use the techniques
in this document to detect and recover from these types of errors.

FPGAs use memory both in user logic (bulk memory and registers) and in Configuration Random Access
Memory (CRAM). CRAM configures the FPGA; this is the memory loaded with the contents of a .sof file
by the Quartus Prime Programmer. The CRAM configures all logic and routing in the device. If an SEU
strikes a CRAM bit, the effect can be harmless if the CRAM bit is not in use. However, the affect can be
severe if it affects critical logic internal signal routing (such as a lookup table bit).

Related Information
Introduction to Single Event Upsets

Mitigating SEU Effects in Embedded User RAM
Some Altera devices offer dedicated error correcting code (ECC) circuitry for embedded memory blocks.
The FIT rate for these memories can be reduced to near zero by enabling the ECC encode/decode blocks.
On ingress, the ECC encoder adds 8 bits of redundancy to a 32 bit word. On egress, the 40 bit word is

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Mitigating%20Single%20Event%20Upsets&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/wp/wp-01206-introduction-single-event-upsets.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

decoded back to 32 bits, and the redundant bits can be used to both detect and correct errors in the data
resulting from SEU.

The existence of hard ECC and the strength of the ECC code (number of corrected and detected bits)
varies by device family. Refer to the device handbook for details. If a device does not have a hard ECC
block you can add ECC parity or use an ECC IP core.

For more information on embedded memories and ECC, refer to the Embedded Memory (RAM: 1-PORT,
RAM:2-PORT, ROM: 1-PORT, and ROM: 2-PORT) User Guide.

Related Information
Embedded Memory (RAM: 1-PORT, RAM:2-PORT, ROM: 1-PORT, and ROM: 2-PORT) User Guide

Configuring the ECCRAM
You must configure the ECCRAM as a 2-port RAM (with independent read and write addresses). Use of
these features does not reduce the amount of available logic.

While the ECC checking function results in some additional output delay, the hard ECC has a much
higher fMAX compared with an equivalent soft ECC implemented in general logic. Additionally, the hard
IP can be pipelined in the M20K block by configuring the ECCRAM to use an output register at the
corrected data output port. This increases performance while adding latency.

For devices without dedicated circuitry, you can implement the ECC by instantiating the ECC generation
and checking functions as the IP core ALTECC.

Figure 15-1: Memory Storage

Data
Words

ECC
Values EC

C
Da

ta
 O

ut
pu

t W
or

d

ECC
Encode

Co
rre

cte
d D

at
a o

ut
pu

t

Error Detection
and Correction

Da
ta

 In
pu

t W
or

d

Memory Storage

Mitigating SEU Effects in Configuration RAM
Use EDCRC to detect and correct soft errors in CRAM. These EDCRC blocks are similar to those that
protect internal user memory.

CRAM is organized into frames. The size of the frame and the number of frames is device specific. CRAM
frames are continually checked for errors by loading each frame into a data register. The EDCRC block
checks the frame for errors. Soft errors found trigger the assertion of a CRC_ERROR pin on the device.
Monitor this pin in your system. Take appropriate actions when this pin is asserted, indicating a soft error
was detected in the configuration RAM.

15-2 Configuring the ECCRAM
QPS5V1

2015.11.02

Altera Corporation Mitigating Single Event Upsets

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_ram_rom.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mitigating%20Single%20Event%20Upsets%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-2: CRAM Frame

CRC_ERROR

CRAM
Frame

32-Bit
CRC

CRC Error
Detection/Correction

Engine

CRC Engine Steps
Through Frame by Frame

Related Information
Single Event Upsets

Scanning CRAM Frames
To enable the Quartus Prime software to scan CRAM frames, turn on Enable Error Detection
CRC_ERROR pin in the Device and Pin Options dialog box (Assignments > Device > Device and Pin
Options).

Figure 15-3: Enable Error Detection CRC_ERROR Pin

QPS5V1
2015.11.02 Scanning CRAM Frames 15-3

Mitigating Single Event Upsets Altera Corporation

Send Feedback

http://www.altera.com/support/reliability/seu/seu-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mitigating%20Single%20Event%20Upsets%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To enable the CRC_ERROR pin as an open drain output, turn on Enable open drain on CRC_ERROR
pin.

To guarantee the availability of a clock, the EDCRC function operates on an independent clock generated
internally on the FPGA itself. To enable EDCRC operation on a divided version of the clock select a value
from the Divide error check frequency by value.

Internal Scrubbing
Arria V, Cyclone V (including SoC devices), Stratix V, and later device families support automatic CRAM
error correction, without resorting to the original CRAM contents from an external copy of the original
SRAM Object File.

Automatic correction is possible because EDCRC calculates and stores redundancy fields along with the
configuration bits. This automatic correction is known as scrubbing.

To enable internal scrubbing, turn on Enable internal scrubbing option in the Device and Pin Options
dialog box.

If the Quartus Prime software finds a CRC error in a CRAM frame, the frame is reconstructed from the
error correcting code calculated for that frame, and then the corrected frame is re-written into the CRAM.

Note: If you enable internal scrubbing, you must still plan a recovery sequence. Although scrubbing can
restore the CRAM array to intended configuration, latency occurs between the soft error detection
and correction. Because of the large number of configuration bits to be scanned, this latency may
be up to 100 milliseconds for large devices. Therefore, the FPGA may operate with errors during
that period.

Related Information
Error Detection CRC Page

Understanding SEU Sensitivity
Reconfigurating a running FPGA typically has a significant impact on the system using the FPGA. When
planning for SEU recovery, account for the time required to bring the FPGA to a state consistent with the
current state of the system. For example, if an internal state machine is in an illegal state, it mayrequire
reset. Also, the surrounding logic may need to account for this unexpected operation.

Often an SEU impacts CRAM bits not used by the implemented design. Many configuration bits are not
used because they control logic and routing wires that are not used in a design. Depending on the
implementation, 40% of all CRAM bits can be used even in the most heavily utilized devices. This means
that only 40% of SEU events require intervention, and you can ignore 60% of SEU events.

You may determine that portions of the implemented design are not critical to the FPGA's function.
Examples may include test circuitry implemented but not important to the operation of the device, or
other non-critical functions that may be logged but do not need to be reprogrammed or reset.

15-4 Internal Scrubbing
QPS5V1

2015.11.02

Altera Corporation Mitigating Single Event Upsets

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_dp_error_detec.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mitigating%20Single%20Event%20Upsets%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-4: Sensitivity Processing Flow

CRAM CRC
Error?

no

yes

Normal
Operation

Notify
System

Look Up Sensitivity
of CRAM Bit

Critical Bit?
no

yes

Take Corrective
Action

The ratio of SEU strikes versus functional interrupts is the Single Event Functional Interrupt (SEFI) ratio.
Minimizing this ratio improves SEU mitigation.

Related Information
Understanding Single Event Functional Interrupts in FPGA Designs

Designating the Sensitivity of your Design Hierarchy

The design hierarchy sensitivity processing depends on the contents of the Sensitivity Map Header File
(.smf). This file determines the correct (least disruptive) recovery sequence for any CRAM bit flip.
The .smf designates the sensitivity of each portion of the FPGA's logic design.

To generate the .smf, you must designate the sensitivity of the design from a functional logic view, using
the hierarchy tagging procedure.

Hierarchy Tagging

Hierarchy tagging is the process of classifying the sensitivity of the portions of your design.

The Quartus Prime software performs hierarchy tagging by creating a design partition, and then assigning
the parameter ASD Region to that partition. The parameter can assume a value from 0 to 255, so there are

QPS5V1
2015.11.02 Designating the Sensitivity of your Design Hierarchy 15-5

Mitigating Single Event Upsets Altera Corporation

Send Feedback

http://www.altera.com/literature/wp/wp-01207-single-event-functional-interrupt.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mitigating%20Single%20Event%20Upsets%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

256 different classifications of system responses to the portions of your design. This sensitivity informa‐
tion is encoded into the .smf the running system uses to look-up the sensitivity of an SEU upset, and to
perform the appropriate action to that CRAM location.

Related Information
Altera Advanced SEU Detection IP Core User Guide

Altera Advanced SEU Detection IP Core
You must instantiate the Altera Advanced SEU Detection IP core to enable SEU detection and correction
features.

When the EDCRC function detects an SEU, the Altera Advanced SEU Detection IP core determines the
designer-designated sensitivity of that CRAM bit by looking up the sensitivity in the .smf.

When an EDCRC block detects an SEU, a sensitivity processor looks up the sensitivity of the affected
CRAM bit in the .smf.

The user determines which version of the IP core to instantiate: on-chip or external. If the Altera
Advanced SEU Detection IP core is configured for on-chip sensitivity processing, the IP core performs the
lookup with the user-supplied memory interface. If the Altera Advanced SEU Detection IP core is
configured for off-chip sensitivity processing, it notifies external logic (typically via a system CPU
interrupt request), and provides cached event message register values to the off-chip sensitivity processor.
The SMH information is stored in the external sensitivity processor's memory system.

Related Information
Altera Advanced SEU Detection IP Core User Guide

On-Chip Sensitivity Processor

You can use the Advanced SEU Detection IP core to implement an on-chip sensitivity processor. The IP
core interacts with user-supplied external memory access logic to read the Sensitivity Map Header file,
stored on external memory.

Once it determines the sensitivity of the affected CRAM bit, the IP core can assert a Critical Error signal
so the system provides an appropriate response. If the SEU is not critical, the Critical Error signal may be
left un-asserted.

On-chip sensitivity processing is autonomous: the FPGA device determines whether it is affected by an
SEU, without the need for external logic. However, this requires part of the FPGA's logic resources for the
external memory interface.

Related Information
Altera Advanced SEU Detection IP Core User Guide

External Sensitivity Processor

You can configure the Advanced SEU Detection IP core for use with an external sensitivity processor. I n
this case an external CPU, such as the ARM processor in Altera's SoC devices, receives an interrupt
request when the FPGA detects an SEU. The CPU then reads the Error Message Register, and performs

15-6 Altera Advanced SEU Detection IP Core
QPS5V1

2015.11.02

Altera Corporation Mitigating Single Event Upsets

Send Feedback

http://www.altera.com/literature/ug/ug_altadvseu.pdf
http://www.altera.com/literature/ug/ug_altadvseu.pdf
http://www.altera.com/literature/ug/ug_altadvseu.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mitigating%20Single%20Event%20Upsets%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the sensitivity lookup by referring to the Sensitivity Map Header file (.smf) stored in the CPU's memory
space.

External sensitivity processing does not require on-board memory dedicated to the SMH storage
function,. Also, this technique relieves the FPGA of external memory interface requirements, along with
the memory storage requirements for the sensitivity map itself. If a CPU is already present in the system,
external sensitivity processing may be the more hardware-efficient way to implement sensitivity lookup.

Related Information
Altera Advanced SEU Detection IP Core User Guide

Triple-Module Redundancy

If your system must suffer no downtime due to SEUs, consider Triple Module Redundancy as an SEU
mitigation strategy.

Triple-Module-Redundancy (TMR) is an established technique for improving hardware fault tolerance. In
TMR, three identical instances of hardware are supplied, along with voting hardware at the output of the
hardware. If an SEU affects one of the instances, the voting logic notes the majority in a vote of the
separate instances of the module to mask out any malfunctioning module.

The advantage of TMR is that there is no downtime in the case of a single SEU; if a module is found to be
in faulty operation, that module can be scrubbed of its error by reprogramming it. The error detection
and correction time is many orders of magnitude less than the MTBF due to SEU events. Therefore, you
can repair a soft interrupt before another SEU affects another instance in the TMR triple.

The disadvantage of TMR is its extreme cost in hardware resources: it requires three times as much
hardware, in addition to voting logic. This hardware cost can be minimized by judiciously implementing
TMR only for the most critical part of the design.

There are several automated ways to generate TMR designs by automatically replicating designated
functions and synthesizing the required voting logic. Synthesis vendors offering automated TMR
synthesis include Synopsys and Mentor Graphics.

Recovering from a Single-Event Upset

After correcting a bit flip in CRAM, the device is in its original configuration with respect to logic and
routing. However, the internal state of the FPGA may be illegal.

The state of the device may be invalid because it may have been operating while SEUs corrupted its
configuration. The errors from faulty operation may have propagated elsewhere within the FPGA or to
the system outside the FPGA.

Forcing the FPGA into a known state is system dependent. Determining the possible outcomes from SEU,
and designing a recovery response to SEU should be part of the FPGA and system design process.

QPS5V1
2015.11.02 Triple-Module Redundancy 15-7

Mitigating Single Event Upsets Altera Corporation

Send Feedback

http://www.altera.com/literature/ug/ug_altadvseu.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mitigating%20Single%20Event%20Upsets%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Evaluating Your System's Response to Functional Upsets

Because SEUs can randomly strike any memory element, system testing is especially important to ensure a
comprehensive recovery response.

The Quartus Prime software includes the Fault Injection Debugger to aid in SEU recovery response. This
feature is available for the Arria V, Cyclone V, and Stratix V device families.

The feature is available from the Quartus Prime GUI or at the command line. You must instantiate the
Altera Fault Injection IP core into your FPGA design to use this feature. The IP core flips a CRAM bit by
dynamically reconfiguring the frame containing that CRAM bit, flipping it to its opposite state.

The Fault Injection Debugger allows you to operate the FPGA in your system and inject random CRAM
bit flips to test the ability of the FPGA and the system to detect and recover fully from an SEU. You should
be able to observe your FPGA and your system recover from these simulated SEU strikes. You can then
refine your FPGA and system recovery sequence by observing these strikes.

If you have recorded an SEU in the device's Error Message Register, the Fault Injection Debugger also
allows you to specify a targeted fault to be injected (rather than inject the fault in a random location). This
feature is available only from the command line.

Related Information
Debugging Single Event Upsets Using the Fault Injection Debugger

Document Revision History
Table 15-1: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of
Quartus II to Quartus Prime.

June 2014 2014.06.30 • Updated formatting.
• Added "Mitigating SEU

Effects in Embedded User
RAM" section.

• Added "Altera Advanced SEU
Detection IP Core" section.

November 2012 2012.11.01 Preliminary release.

15-8 Evaluating Your System's Response to Functional Upsets
QPS5V1

2015.11.02

Altera Corporation Mitigating Single Event Upsets

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384859903/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mitigating%20Single%20Event%20Upsets%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Integrated Synthesis 16
2015.11.02

QPS5V1 Subscribe Send Feedback

As programmable logic designs become more complex and require increased performance, advanced
synthesis becomes an important part of a design flow. The Altera® Quartus® II software includes advanced
Integrated Synthesis that fully supports VHDL, Verilog HDL, and Altera-specific design entry languages,
and provides options to control the synthesis process. With this synthesis support, the Quartus Prime
software provides a complete, easy-to-use solution.

Related Information

• Recommended HDL Coding Styles on page 12-1
For examples of Verilog HDL and VHDL code synthesized for specific logic functions

• Designing With Low-Level Primitives User Guide
For more information about coding with primitives that describe specific low-level functions in Altera
devices

Design Flow
The Quartus Prime Analysis & Synthesis stage of the compilation flow runs Integrated Synthesis, which
fully supports Verilog HDL, VHDL, and Altera-specific languages, and major features of the SystemVer‐
ilog language.

In the synthesis stage of the compilation flow, the Quartus Prime software performs logic synthesis to
optimize design logic and performs technology mapping to implement the design logic in device
resources such as logic elements (LEs) or adaptive logic modules (ALMs), and other dedicated logic
blocks. The synthesis stage generates a single project database that integrates all your design files in a
project (including any netlists from third-party synthesis tools).

You can use Analysis & Synthesis to perform the following compilation processes:

Table 16-1: Compilation Process

Compilation Process Description

Analyze Current File Parses your current design source file to check for
syntax errors. This command does not report many
semantic errors that require further design
synthesis. To perform this analysis, on the
Processing menu, click Analyze Current File.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Quartus%20Prime%20Integrated%20Synthesis&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Compilation Process Description

Analysis & Elaboration Checks your design for syntax and semantic errors
and performs elaboration to identify your design
hierarchy. To perform Analysis & Elaboration, on
the Processing menu, point to Start, and then click
Start Analysis & Elaboration.

Hierarchy Elaboration Parses HDL designs and generates a skeleton of
hierarchies. Hierarchy Elaboration is similar to the
Analysis & Elaboration flow, but without any
elaborated logic, thus making it much faster to
generate.

Analysis & Synthesis Performs complete Analysis & Synthesis on a
design, including technology mapping. To perform
Analysis & Synthesis, on the Processing menu,
point to Start, and then click Start Analysis &
Synthesis.

Related Information

• Language Support on page 16-4
• Start Hierarchy Elaboration Command Processing Menu

For more information about the Hierarchy Elaboration flow

16-2 Design Flow
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/comp/comp/comp_com_elaborate_hierarchy.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Integrated Synthesis Design and Compilation Flow
Figure 16-1: Basic Design Flow Using Quartus Prime Integrated Synthesis

No

Gate-Level
Functional
Simulation

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Formal Verification
Using Source Code as
Golden Netlist, and VO

as Revised Netlist

Internal
Synthesis

Netlist

Configuration/
Programming
Files (.sof/.pof)

Analysis & SynthesisConstraints
& Settings

Constraints
& Settings Fitter Assembler Timing

Analyzer

Post Synthesis
Simulation File

(.vho/.vo)

Post
 Placement and Routing

Simulation Files
(.vho/.vo and .sdo)

Post
Placement and Routing
Formal Verification File

(.vo)

Verilog HDL VHDL

Altera
Hardware

Description
Language

(AHDL)

Altera
schematic

Block Design
File (.bdf)

Configure/Program Device

System Verilog

Quartus Prime
Exported

Partition File
(.qxp)

The Quartus Prime Integrated Synthesis design and compilation flow consists of the following steps:

1. Create a project in the Quartus Prime software and specify the general project information, including
the top-level design entity name.

2. Create design files in the Quartus Prime software or with a text editor.
3. On the Project menu, click Add/Remove Files in Project and add all design files to your Quartus

Prime project using the Files page of the Settings dialog box.
4. Specify Compiler settings that control the compilation and optimization of your design during

synthesis and fitting.
5. Add timing constraints to specify the timing requirements.
6. Compile your design. To synthesize your design, on the Processing menu, point to Start, and then

click Start Analysis & Synthesis. To run a complete compilation flow including placement, routing,
creation of a programming file, and timing analysis, click Start Compilation on the Processing menu.

7. After obtaining synthesis and placement and routing results that meet your requirements, program or
configure your Altera device.

Integrated Synthesis generates netlists that enable you to perform functional simulation or gate-level
timing simulation, timing analysis, and formal verification.

QPS5V1
2015.11.02 Quartus Prime Integrated Synthesis Design and Compilation Flow 16-3

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Quartus Prime Synthesis Options on page 16-20
For more information about synthesis settings

• Incremental Compilation on page 16-18
For more information about partitioning your design to reduce compilation time

• Quartus Prime Exported Partition File as Source on page 16-20
For more information about using .qxp as a design source file

• Introduction to the Quartus Prime Software
For an overall summary of features in the Quartus Prime software

• Managing Files in a Project
For more information about Quartus Prime projects

• About Compilation Flows
For more information about Quartus Prime the compilation flow

Language Support
Quartus Prime Integrated Synthesis supports HDL. You can specify the Verilog HDL or VHDL language
version in your design.

To ensure that the Quartus Prime software reads all associated project files, add each file to your Quartus
Prime project by clicking Add/Remove Files in Project on the Project menu. You can add design files to
your project. You can mix all supported languages and netlists generated by third-party synthesis tools in
a single Quartus Prime project.

Related Information

• Design Libraries on page 16-11
Describes how to compile and reference design units in custom libraries

• Using Parameters/Generics on page 16-14
Describes how to use parameters or generics and pass them between languages

• Insert Template Dialog Box
For more information about using the available templates in the Quartus Prime Text Editor for various
Verilog and VHDL features

Verilog and SystemVerilog Synthesis Support
The Analysis & Synthesis Compiler module supports the following Verilog HDL standards:

• Verilog-1995 (IEEE Standard 1364-1995)
• Verilog-2001 (IEEE Standard 1364-2001)
• SystemVerilog-2005 (IEEE Standard 1800-2005)

The Quartus Prime Compiler uses the Verilog-2001 standard by default for files that have the
extension .v, and the SystemVerilog standard for files that have the extension .sv.

If you use scripts to add design files, you can use the -HDL_VERSION command to specify the HDL version
for each design file.

16-4 Language Support
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://quartushelp.altera.com/current/index.htm#global/pjn/pjn_pro_add_delete_files.htm
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_view_flow.htm
http://quartushelp.altera.com/current/index.htm#design/ted/ted_com_insert_template.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software support for Verilog HDL is case sensitive in accordance with the Verilog
HDL standard. The Quartus Prime software supports the compiler directive `define, in accordance with
the Verilog HDL standard.

The Quartus Prime software supports the include compiler directive to include files with absolute paths
(with either “/” or “\” as the separator), or relative paths. When searching for a relative path, the Quartus
Prime software initially searches relative to the project directory. If the Quartus Prime software cannot
find the file, the software then searches relative to all user libraries and then relative to the directory
location of the current file. Spectra-Q synthesis searches for all modules or entities earlier in the synthesis
process than other Quartus software tools, which may result in more early syntax errors for undefined
entities.

Verilog HDL Configuration

Verilog HDL configuration is a set of rules that specify the source code for particular instances.

Verilog HDL configuration allows you to perform the following tasks:

• Specify a library search order for resolving cell instances (as does a library mapping file)
• Specify overrides to the logical library search order for specified instances
• Specify overrides to the logical library search order for all instances of specified cells

For more information about these tasks, refer to Types of Clauses for the config_rule_statement Keyword.

Related Information
Configuration Syntax on page 16-5

Configuration Syntax

A Verilog HDL configuration contains the following statements:

config config_identifier;
design [library_identifier.]cell_identifier;
config_rule_statement;
endconfig

QPS5V1
2015.11.02 Verilog HDL Configuration 16-5

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• config—the keyword that begins the configuration.
• config_identifier—the name you enter for the configuration.
• design—the keyword that starts a design statement for specifying the top of the design.
• [library_identifier.]cell_identifier—specifies the top-level module (or top-level

modules) in the design and the logical library for this module (modules).
• config_rule_statement—one or more of the following clauses: default, instance, or cell. For

more information, refer to Table 16-2.
• endconfig—the keyword that ends a configuration.

Table 16-2: Type of Clauses for the config_rule_statement Keyword

Clause Type Description

default Specifies the logical libraries to search to resolve a default cell instance. A default cell
instance is an instance in the design that is not specified in a subsequent instance or
cell clause in the configuration.

You specify these libraries with the liblist keyword. The following is an example of
a default clause: default liblist lib1 lib2;

Also specifies resolving default instances in the logical libraries (lib1 and lib2).

Because libraries are inherited, some simulators (for example, VCS) also search the
default (or current) library as well after the searching the logical libraries (lib1 and
lib2).

instance Specifies a specific instance. The specified instance clause depends on the use of the
following keywords:

• liblist—specifies the logical libraries to search to resolve the instance.
• use—specifies that the instance is an instance of the specified cell in the specified

logical library.

The following are examples of instance clauses:

instance top.dev1 liblist lib1 lib2;

This instance clause specifies to resolve instance top.dev1 with the cells
assigned to logical libraries lib1 and lib2;

instance top.dev1.gm1 use lib2.gizmult;

This instance clause specifies that top.dev1.gm1 is an instance of the cell named
gizmult in logical library lib2.

cell A cell clause is similar to an instance clause, except that the cell clause specifies
all instances of a cell definition instead of specifying a particular instance. What it
specifies depends on the use of the liblist or use keywords:

• liblist—specifies the logical libraries to search to resolve all instances of the cell.
• use—the specified cell’s definition is in the specified library.

Hierarchical Configurations

A design can have more than one configuration. For example, you can define a configuration that
specifies the source code you use in particular instances in a sub hierarchy, then define a configuration for
a higher level of the design.

16-6 Hierarchical Configurations
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Suppose, for example, a sub hierarchy of a design is an eight-bit adder and the RTL Verilog code describes
the adder in a logical library named rtllib and the gate-level code describes the adder in a logical library
named gatelib.

If you want to use the gate-level code for the 0 (zero) bit of the adder and the RTL level code for the other
seven bits, the configuration might appear as shown in the following example:

config cfg1;
design aLib.eight_adder;
default liblist rtllib;
instance adder.fulladd0 liblist gatelib;
endconfig

If you are instantiating this eight-bit adder eight times to create a 64-bit adder, use configuration cfg1 for
the first instance of the eight-bit adder, but not in any other instance. A configuration that would perform
this function is shown in the following example:

config cfg2;
design bLib.64_adder;
default liblist bLib;
instance top.64add0 use work.cfg1:config;
endconfig

Note: The name of the unbound module may be different than the name of the cell that is bounded to the
instance.

Suffix :config

To distinguish between a module by the same name, use the optional extension :config to refer to
configuration names. For example, you can always refer to a cfg2 configuration as cfg2:config (even if
the cfg2 module does not exist).

SystemVerilog Support

The Quartus Prime software supports the SystemVerilog constructs.

Note: Designs written to support the Verilog-2001 standard might not compile with the SystemVerilog
setting because the SystemVerilog standard has several new reserved keywords.

Related Information

• Quartus Prime Support for SystemVerilog
For more information about the supported SystemVerilog constructs

• Quartus Prime Support for Verilog 2001
For more information about the supported Verilog-2001 features

Initial Constructs and Memory System Tasks

The Quartus Prime software infers power-up conditions from the Verilog HDL initial constructs. The
Quartus Prime software also creates power-up settings for variables, including RAM blocks. If the
Quartus Prime software encounters nonsynthesizable constructs in an initial block, it generates an
error.

To avoid such errors, enclose nonsynthesizable constructs (such as those intended only for simulation) in
translate_off and translate_on synthesis directives

QPS5V1
2015.11.02 Suffix :config 16-7

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#hdl/vlog/vlog_list_sys_vlog.htm
http://quartushelp.altera.com/index.htm#current/hdl/vlog/vlog_support_2001.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synthesis of initial constructs enables the power-up state of the synthesized design to match the power-up
state of the original HDL code in simulation.

Note: Initial blocks do not infer power-up conditions in some third-party EDA synthesis tools. If you
convert between synthesis tools, you must set your power-up conditions correctly.

Quartus Prime synthesis supports the $readmemb and $readmemh system tasks to initialize memories.

This example shows an initial construct that initializes an inferred RAM with $readmemb.

Example 16-1: Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

When creating a text file to use for memory initialization, specify the address using the format
@<location> on a new line, and then specify the memory word such as 110101 or abcde on the
next line.

The following example shows a portion of a Memory Initialization File (.mif) for the RAM.

Example 16-2: Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

Related Information

• Translate Off and On / Synthesis Off and On on page 16-57
• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design on page 3-1

Verilog HDL Macros

The Quartus Prime software fully supports Verilog HDL macros, which you can define with the 'define
compiler directive in your source code. You can also define macros in the Quartus Prime software or on
the command line.

16-8 Verilog HDL Macros
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting a Verilog HDL Macro Default Value in the Quartus Prime Software

To specify a macro in the Quartus Prime software, follow these steps:

1. Click Assignments > Settings > Compiler Settings > Verilog HDL Input
2. Under Verilog HDL macro, type the macro name in the Name box and the value in the Setting box.
3. Click Add.

Setting a Verilog HDL Macro Default Value on the Command Line

To set a default value for a Verilog HDL macro on the command line, use the --verilog_macro option:

quartus_map <Design name> --verilog_macro= "<Macro name>=<Macro setting>"

The command in this example has the same effect as specifying
`define a 2 in the Verilog HDL source code:

quartus_map my_design --verilog_macro="a=2"

To specify multiple macros, you can repeat the option more than once.

quartus_map my_design --verilog_macro="a=2" --verilog_macro="b=3"

VHDL Synthesis Support
The Analysis & Synthesis Compiler module supports the following VHDL standards:

• VHDL 1987 (IEEE Standard 1076-1987)
• VHDL 1993 (IEEE Standard 1076-1993)
• VHDL 2008 (IEEE Standard 1076-2008)

The Quartus Prime Compiler uses the VHDL 1993 standard by default for files that have the
extension .vhdl or .vhd.

Note: The VHDL code samples follow the VHDL 1993 standard.

VHDL-2008 Support

The Quartus Prime software contains support for VHDL 2008 with constructs defined in the IEEE
Standard 1076-2008 version of the IEEE Standard VHDL Language Reference Manual.

Related Information
Quartus Prime Support for VHDL 2008
For more information about the Quartus Prime software support for VHDL-2008

VHDL Standard Libraries and Packages

The Quartus Prime software includes the standard IEEE libraries and several vendor-specific VHDL
libraries.

The IEEE library includes the standard VHDL packages std_logic_1164, numeric_std, numeric_bit,
and math_real. The STD library is part of the VHDL language standard and includes the packages

QPS5V1
2015.11.02 Setting a Verilog HDL Macro Default Value in the Quartus Prime Software 16-9

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#hdl/vhdl/vhdl_list_2008_vhdl_support.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

standard (included in every project by default) and textio. For compatibility with older designs, the
Quartus Prime software also supports the following vendor-specific packages and libraries:

• Synopsys packages such as std_logic_arith and std_logic_unsigned in the IEEE library
• Mentor Graphics® packages such as std_logic_arith in the ARITHMETIC library
• Altera primitive packages altera_primitives_components (for primitives such as GLOBAL and DFFE)

and maxplus2 in the ALTERA library
• Altera IP core packages altera_mf_components in the ALTERA_MF library (for Altera-specific IP

cores including LCELL), and lpm_components in the LPM library for library of parameterized
modules (LPM) functions.

Note: Altera recommends that you import component declarations for Altera primitives such as GLOBAL
and DFFE from the altera_primitives_components package and not the altera_mf_components
package.

VHDL wait Constructs

The Quartus Prime software supports one VHDL wait until statement per process block. However, the
Quartus Prime software does not support other VHDL wait constructs, such as wait for and wait on
statements, or processes with multiple wait statements.

The following shows the wait until construct example for VHDL:

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;
Qbar <= not D;
end process output;
end dff_arch;

AHDL Support
The Quartus Prime Compiler’s Analysis & Synthesis module fully supports the Altera Hardware Descrip‐
tion Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL Include Files (.inc) into a .tdf with an
AHDL include statement. Altera provides .inc files for all IP cores shipped with the Quartus Prime
software.

Note: The AHDL language does not support the synthesis directives or attributes.

Related Information
About AHDL
For more information about AHDL

Schematic Design Entry Support
The Quartus Prime Compiler’s Analysis & Synthesis module fully supports .bdf for schematic design
entry.

Note: Schematic entry methods do not support the synthesis directives or attributes.

16-10 VHDL wait Constructs
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#hdl/ahdl/ahdl_intro.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

State Machine Editor
The Quartus Prime software supports graphical state machine entry. To create a new finite state machine
(FSM) design, on the File menu, click New. In the New dialog box, expand the Design Files list, and then
select State Machine File.

Design Libraries
By default, the Quartus Prime software compiles all design files into one or more libraries.

If you do not specify a design library, if a file refers to a library that does not exist, or if the referenced
library does not contain a referenced design unit, the Quartus Prime software searches the work library.
This behavior allows the Quartus Prime software to compile most designs with minimal setup, but you
have the option of creating separate custom design libraries.

To compile your design files into specific libraries (for example, when you have two or more functionally
different design entities that share the same name), you can specify a destination library for each design
file in various ways, as described in the following:

When compiling a design instance, the Quartus Prime software initially searches for the entity in the
library associated with the instance (which is the work library if you do not specify any library). If the
Quartus Prime software could not locate the entity definition, the software searches for a unique entity
definition in all design libraries. If the Quartus Prime software finds more than one entity with the same
name, the software generates an error. If your design uses multiple entities with the same name, you must
compile the entities into separate libraries.

In VHDL, you can associate an instance with an entity in several ways, as described in Mapping a VHDL
Instance to an Entity in a Specific Library.

In Verilog HDL, BDF schematic entry, AHDL, VQM and EDIF netlists, you can use different libraries for
each of the entities that have the same name, and compile the instantiation into the same library as the
appropriate entity.

Related Information
Mapping a VHDL Instance to an Entity in a Specific Library on page 16-12

Specifying a Destination Library Name in the Settings Dialog Box

To specify a library name for one of your design files, follow these steps:

1. On the Assignments menu, click Settings.
2. In the Category list, select Files.
3. Select the file in the File Name list.
4. Click Properties.
5. In the File Properties dialog box, select the type of design file from the Type list.
6. Type the library name in the Library field.
7. Click OK.

Specifying a Destination Library Name in the Quartus Prime Settings File or with Tcl

You can specify the library name with the -library option to the <language type>_FILE assignment in
the Quartus Prime Settings File (.qsf) or with Tcl commands.

QPS5V1
2015.11.02 State Machine Editor 16-11

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, the following assignments specify that the Quartus Prime software analyzes the my_file.vhd
and stores its contents (design units) in the VHDL library my_lib, and then analyzes the Verilog HDL file
my_header_file.h and stores its contents in a library called another_lib.

set_global_assignment –name VHDL_FILE my_file.vhd –library my_lib
set_global_assignment –name VERILOG_FILE my_header_file.h –library another_lib

Related Information
Scripting Support on page 16-74
For more information about Tcl scripting

Specifying a Destination Library Name in a VHDL File

You can use the library synthesis directive to specify a library name in your VHDL source file.
This directive takes the name of the destination library as a single string argument. Specify the
library directive in a VHDL comment before the context clause for a primary design unit (that
is, a package declaration, an entity declaration, or a configuration), with one of the supported
keywords for synthesis directives, that is, altera, synthesis, pragma, synopsys, or exemplar.

The library directive overrides the default library destination work, the library setting specified
for the current file in the Settings dialog box, any existing .qsf setting, any setting made through
the Tcl interface, or any prior library directive in the current file. The directive remains effective
until the end of the file or the next library synthesis directive.

The following example uses the library synthesis directive to create a library called my_lib
containing the my_entity design unit:

-- synthesis library my_lib
library ieee;
use ieee.std_logic_1164.all;
entity my_entity(...)
end entity my_entity;

Note: You can specify a single destination library for all your design units in a given
source file by specifying the library name in the Settings dialog box, editing
the .qsf, or using the Tcl interface. To organize your design units in a single file
into different libraries rather than just a single library, you can use the library
directive to change the destination VHDL library in a source file.

The Quartus Prime software generates an error if you use the library directive in a design unit.

Related Information
Synthesis Directives on page 16-23
For more information about specifying synthesis directives

Mapping a VHDL Instance to an Entity in a Specific Library

The VHDL language provides several ways to map or bind an instance to an entity in a specific library.

Direct Entity Instantiation

In the direct entity instantiation method, the instantiation refers to an entity in a specific library.

16-12 Specifying a Destination Library Name in a VHDL File
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following shows the direct entity instantiation method for VHDL:

entity entity1 is
port(...);
end entity entity1;
architecture arch of entity1 is
begin
inst: entity lib1.foo
port map(...);
end architecture arch;

Component Instantiation—Explicit Binding Instantiation

You can bind a component to an entity in several mechanisms. In an explicit binding indication, you bind
a component instance to a specific entity.

The following shows the binding instantiation method for VHDL:

entity entity1 is
port(...);
end entity entity1;
package components is
component entity1 is
port map (...);
end component entity1;
end package components;
entity top_entity is
port(...);
end entity top_entity;
use lib1.components.all;
architecture arch of top_entity is
-- Explicitly bind instance I1 to entity1 from lib1
for I1: entity1 use entity lib1.entity1
port map(...);
end for;
begin
I1: entity1 port map(...);
end architecture arch;

Component Instantiation—Default Binding

If you do not provide an explicit binding indication, the Quartus Prime software binds a
component instance to the nearest visible entity with the same name. If no such entity is visible in
the current scope, the Quartus Prime software binds the instance to the entity in the library in
which you declare the component. For example, if you declare the component in a package in the
MY_LIB library, an instance of the component binds to the entity in the MY_LIB library.

The code examples in the following examples show this instantiation method:

Example 16-3: VHDL Code: Default Binding to the Entity in the Same Library as the Component
Declaration

use mylib.pkg.foo; -- import component declaration from package “pkg” in

 -- library “mylib”
architecture rtl of top
...
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo

QPS5V1
2015.11.02 Component Instantiation—Explicit Binding Instantiation 16-13

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

port map(...);
end architecture rtl;

Example 16-4: VHDL Code: Default Binding to the Directly Visible Entity

use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top
component foo is
generic (...)
port (...);
end component;
begin
-- This instance will be bound to entity “foo” in library “mylib”
inst: foo
port map(...);
end architecture rtl;

Using Parameters/Generics
The Quartus Prime software supports parameters (known as generics in VHDL) and you can pass these
parameters between design languages.

Click Assignments > Settings > Compiler Settings > Default Parameters to enter default parameter
values for your design. In AHDL, the Quartus Prime software inherits parameters, so any default
parameters apply to all AHDL instances in your design. You can also specify parameters for instantiated
modules in a .bdf. To specify parameters in a .bdf instance, double-click the parameter value box for the
instance symbol, or right-click the symbol and click Properties, and then click the Parameters tab.

You can specify parameters for instantiated modules in your design source files with the provided syntax
for your chosen language. Some designs instantiate entities in a different language; for example, they
might instantiate a VHDL entity from a Verilog HDL design file. You can pass parameters or generics
between VHDL, Verilog HDL, AHDL, and BDF schematic entry, and from EDIF or VQM to any of these
languages. You do not require an additional procedure to pass parameters from one language to another.
However, sometimes you must specify the type of parameter you are passing. In those cases, you must
follow certain guidelines to ensure that the Quartus Prime software correctly interprets the parameter
value.

Related Information

• Setting Default Parameter Values and BDF Instance Parameter Values on page 16-14
For more information about the GUI-based entry methods, the interpretation of parameter values, and
format recommendations

• Passing Parameters Between Two Design Languages on page 16-16
For more information about parameter type rules

Setting Default Parameter Values and BDF Instance Parameter Values

Default parameter values and BDF instance parameter values do not have an explicitly declared type.
Usually, the Quartus Prime software can correctly infer the type from the value without ambiguity. For
example, the Quartus Prime software interprets “ABC” as a string, 123 as an integer, and 15.4 as a floating-
point value. In other cases, such as when the instantiated subdesign language is VHDL, the Quartus Prime
software uses the type of the parameter, generic, or both in the instantiated entity to determine how to

16-14 Using Parameters/Generics
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

interpret the value, so that the Quartus Prime software interprets a value of 123 as a string if the VHDL
parameter is of a type string. In addition, you can set the parameter value in a format that is legal in the
language of the instantiated entity. For example, to pass an unsized bit literal value from .bdf to Verilog
HDL, you can use '1 as the parameter value, and to pass a 4-bit binary vector from .bdf to Verilog HDL,
you can use 4'b1111 as the parameter value.

In a few cases, the Quartus Prime software cannot infer the correct type of parameter value. To avoid
ambiguity, specify the parameter value in a type-encoded format in which the first or first and second
characters of the parameter indicate the type of the parameter, and the rest of the string indicates the
value in a quoted sub-string. For example, to pass a binary string 1001 from .bdf to Verilog HDL, you
cannot use the value 1001, because the Quartus Prime software interprets it as a decimal value. You also
cannot use the string "1001" because the Quartus Prime software interprets it as an ASCII string. You
must use the type-encoded string B"1001" for the Quartus Prime software to correctly interpret the
parameter value.

This table lists valid parameter strings and how the Quartus Prime software interprets the parameter
strings. Use the type-encoded format only when necessary to resolve ambiguity.

Table 16-3: Valid Parameter Strings and Interpretations

Parameter String Quartus Prime Parameter Type, Format, and
Value

S"abc", s"abc" String value abc

"abc123", "123abc" String value abc123 or 123abc

F"12.3", f"12.3" Floating point number 12.3

-5.4 Floating point number -5.4

D"123", d"123" Decimal number 123

123, -123 Decimal number 123, -123

X"ff", H"ff" Hexadecimal value FF

Q"77", O"77" Octal value 77

B"1010", b"1010" Unsigned binary value 1010

SB"1010", sb"1010" Signed binary value 1010

R"1", R"0", R"X", R"Z", r"1", r"0", r"X", r"Z" Unsized bit literal

E"apple", e"apple" Enumeration type, value name is apple

P"1 unit" Physical literal, the value is (1, unit)

A(...), a(...) Array type or record type. The string (...)
determines the array type or record type
content

You can select the parameter type for global parameters or global constants with the pull-down list in the
Parameter tab of the Symbol Properties dialog box. If you do not specify the parameter type, the Quartus
Prime software interprets the parameter value and defines the parameter type. You must specify
parameter type with the pull-down list to avoid ambiguity.

QPS5V1
2015.11.02 Setting Default Parameter Values and BDF Instance Parameter Values 16-15

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you open a .bdf in the Quartus Prime software, the software automatically updates the parameter
types of old symbol blocks by interpreting the parameter value based on the language-independent
format. If the Quartus Prime software does not recognize the parameter value type, the software
sets the parameter type as untyped.

The Quartus Prime software supports the following parameter types:

• Unsigned Integer
• Signed Integer
• Unsigned Binary
• Signed Binary
• Octal
• Hexadecimal
• Float
• Enum
• String
• Boolean
• Char
• Untyped/Auto

Passing Parameters Between Two Design Languages

When passing a parameter between two different languages, a design block that is higher in the design
hierarchy instantiates a lower-level subdesign block and provides parameter information. The subdesign
language (the design entity that you instantiate) must correctly interpret the parameter. Based on the
information provided by the higher-level design and the value format, and sometimes by the parameter
type of the subdesign entity, the Quartus Prime software interprets the type and value of the passed
parameter.

When passing a parameter whose value is an enumerated type value or literal from a language that does
not support enumerated types to one that does (for example, from Verilog HDL to VHDL), you must
ensure that the enumeration literal is in the correct spelling in the language of the higher-level design
block (block that is higher in the hierarchy). The Quartus Prime software passes the parameter value as a
string literal, and the language of the lower-level design correctly convert the string literal into the correct
enumeration literal.

If the language of the lower-level entity is SystemVerilog, you must ensure that the enum value is in the
correct case. In SystemVerilog, two enumeration literals differ in more than just case. For example, enum
{item, ITEM} is not a good choice of item names because these names can create confusion and is more
difficult to pass parameters from case-insensitive HDLs, such as VHDL.

Arrays have different support in different design languages. For details about the array parameter format,
refer to the Parameter section in the Analysis & Synthesis Report of a design that contains array
parameters or generics.

The following code shows examples of passing parameters from one design entry language to a subdesign
written in another language.

16-16 Passing Parameters Between Two Design Languages
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-4: VHDL Parameterized Subdesign Entity

This table shows a VHDL subdesign that you instantiate in a top-level Verilog HDL design in Table 16-5.
HDL Code

VHDL
type fruit is (apple, orange, grape);
entity vhdl_sub is
generic (
name : string := "default",
width : integer := 8,
number_string : string := "123",
f : fruit := apple,
binary_vector : std_logic_vector(3 downto 0) := "0101",
signed_vector : signed (3 downto 0) := "1111");

Table 16-5: Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL Entity

This table shows a Verilog HDL Top-Level Design Instantiating and Passing Parameters to VHDL Entity from
Table 16-4.

HDL Code

Verilog HDL
vhdl_sub inst (...);
defparam inst.name = "lower";
defparam inst.width = 3;
defparam inst.num_string = "321";
defparam inst.f = "grape"; // Must exactly match enum value
defparam inst.binary_vector = 4'b1010;
 defparam inst.signed_vector = 4'sb1010;

Table 16-6: Verilog HDL Parameterized Subdesign Module

This table shows a Verilog HDL subdesign that you instantiate in a top-level VHDL design in Table 16-7.
HDL Code

Verilog HDL
module veri_sub (...)
parameter name = "default";
parameter width = 8;
parameter number_string = "123";
parameter binary_vector = 4'b0101;
parameter signed_vector = 4'sb1111;

QPS5V1
2015.11.02 Passing Parameters Between Two Design Languages 16-17

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-7: VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module

This table shows a VHDL Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module
from Table 16-6.

HDL Code

VHDL
inst:veri_sub
generic map (
name => "lower",
width => 3,
number_string => "321"
binary_vector = "1010"
signed_vector = "1010")

To use an HDL subdesign such as the one shown in Table 16-6 in a top-level .bdf design, you must
generate a symbol for the HDL file, as shown in Figure 16-2. Open the HDL file in the Quartus Prime
software, and then, on the File menu, point to Create/Update, and then click Create Symbol Files for
Current File.

To specify parameters on a .bdf instance, double-click the parameter value box for the instance symbol, or
right-click the symbol and click Properties, and then click the Parameters tab. Right-click the symbol and
click Update Design File from Selected Block to pass the updated parameter to the HDL file.

Figure 16-2: BDF Top-Level Design Instantiating and Passing Parameters to the Verilog HDL Module

This figure shows BDF Top-Level Design Instantiating and Passing Parameters to the Verilog HDL
Module from Table 16-6

Incremental Compilation
Incremental compilation manages a design hierarchy for incremental design by allowing you to divide
your design into multiple partitions. Incremental compilation ensures that the Quartus Prime software
resynthesizes only the updated partitions of your design during compilation, to reduce the compilation
time and the runtime memory usage. The feature maintains node names during synthesis for all registered
and combinational nodes in unchanged partitions. You can perform incremental synthesis by setting the
netlist type for all design partitions to Post-Synthesis.

You can also preserve the placement and routing information for unchanged partitions. This feature
allows you to preserve performance of unchanged blocks in your design and reduces the time required for
placement and routing, which significantly reduces your design compilation time.

16-18 Incremental Compilation
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• About Incremental Compilation
For more information about incremental compilation

• Best Practices for Incremental Compilation Partitions and Floorplan Assignments
For more information about incremental compilation best practices and floorplan assignments

• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design on page 3-1
For more information about incremental compilation for hierarchical and team-based design

Partitions for Preserving Hierarchical Boundaries
A design partition represents a portion of your design that you want to synthesize and fit incrementally.

If you want to preserve the Optimization Technique and Restructure Multiplexers logic options in any
entity, you must create new partitions for the entity instead of using the Preserve Hierarchical Boundary
logic option. If you have settings applied to specific existing design hierarchies, particularly those created
in the Quartus Prime software versions before 9.0, you must create a design partition for the design
hierarchy so that synthesis can optimize the design instance independently and preserve the hierarchical
boundaries.

Note: The Preserve Hierarchical Boundary logic option is available only in Quartus Prime software
versions 8.1 and earlier. Altera recommends using design partitions if you want to preserve
hierarchical boundaries through the synthesis and fitting process, because incremental compilation
maintains the hierarchical boundaries of design partitions.

Parallel Synthesis
The Parallel Synthesis logic option reduces compilation time for synthesis. The option enables the
Quartus Prime software to use multiple processors to synthesize multiple partitions in parallel.

This option is available when you perform the following tasks:

• Specify the maximum number of processors allowed under Parallel Compilation options in the
Compilation Process Settings page of the Settings dialog box.

• Enable the incremental compilation feature.
• Use two or more partitions in your design.
• Turn on the Parallel Synthesis option.

By default, the Quartus Prime software enables the Parallel Synthesis option. To disable parallel
synthesis, click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis) > Parallel
Synthesis.

You can also set the Parallel Synthesis option with the following Tcl command:

set_global_assignment -name parallel_synthesis off

If you use the command line, you can differentiate among the interleaved messages by turning on the
Show partition that generated the message option in the Messages page. This option shows the partition
ID in parenthesis for each message.

You can view all the interleaved messages from different partitions in the Messages window. The
Partition column in the Messages window displays the partition ID of the partition referred to in the
message. After compilation, you can sort the messages by partition.

QPS5V1
2015.11.02 Partitions for Preserving Hierarchical Boundaries 16-19

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/increment/comp_view_qid.htm
http://www.altera.com/literature/hb/qts/qts_qii51017.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
About the Messages Window
For more information about displaying the Partition column

Quartus Prime Exported Partition File as Source
You can use a .qxp as a source file in incremental compilation. The .qxp contains the precompiled design
netlist exported as a partition from another Quartus Prime project, and fully defines the entity. Project
team members or intellectual property (IP) providers can use a .qxp to send their design to the project
lead, instead of sending the original HDL source code. The .qxp preserves the compilation results and
instance-specific assignments. Not all global assignments can function in a different Quartus Prime
project. You can override the assignments for the entity in the .qxp by applying assignments in the top-
level design.

Related Information

• Quartus Prime Exported Partition File .qxp
For more information about .qxp

• Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design on page 3-1
For more information about exporting design partitions and using .qxp files

Quartus Prime Synthesis Options
The Quartus Prime software offers several options to help you control the synthesis process and achieve
optimal results for your design.

Note: When you apply a Quartus Prime Synthesis option globally or to an entity, the option affects all
lower-level entities in the hierarchy path, including entities instantiated with Altera and third-party
IP.

Related Information
Setting Synthesis Options on page 16-20
Describes the Compiler Settings page of the Settings dialog box, in which you can set the most common
global settings and options, and defines the following types of synthesis options: Quartus Prime logic
options, synthesis attributes, and synthesis directives.

Setting Synthesis Options
You can set synthesis options in the Settings dialog box, or with logic options in the Quartus Prime
software, or you can use synthesis attributes and directives in your HDL source code.

The Compiler Settings page of the Settings dialog box allows you to set global synthesis options that
apply to the entire project. You can also use a corresponding Tcl command.

You can set some of the advanced synthesis settings in the Advanced Settings dialog box on the
Compiler Settings page.

Related Information
Netlist Optimizations and Physical Synthesis
For more information about Physical Synthesis options

16-20 Quartus Prime Exported Partition File as Source
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/msw/msw_com_msw.htm
http://quartushelp.altera.com/current/index.htm#reference/glossary/def_qxp.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471329493/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Logic Options

The Quartus Prime logic options control many aspects of the synthesis and placement and routing
process. To set logic options in the Quartus Prime software, on the Assignments menu, click Assignment
Editor. You can also use a corresponding Tcl command to set global assignments. The Quartus Prime
logic options enable you to set instance or node-specific assignments without editing the source HDL
code.

Synthesis Attributes

The Quartus Prime software supports synthesis attributes for Verilog HDL and VHDL, also commonly
called pragmas. These attributes are not standard Verilog HDL or VHDL commands. Synthesis tools use
attributes to control the synthesis process. The Quartus Prime software applies the attributes in the HDL
source code, and attributes always apply to a specific design element. Some synthesis attributes are also
available as Quartus Prime logic options via the Quartus Prime software or scripting. Each attribute
description indicates a corresponding setting or a logic option that you can set in the Quartus Prime
software. You can specify only some attributes with HDL synthesis attributes.

Attributes specified in your HDL code are not visible in the Assignment Editor or in the .qsf. Assignments
or settings made with the Quartus Prime software, the .qsf, or the Tcl interface take precedence over
assignments or settings made with synthesis attributes in your HDL code. The Quartus Prime software
generates warning messages if the software finds invalid attributes, but does not generate an error or stop
the compilation. This behavior is necessary because attributes are specific to various design tools, and
attributes not recognized in the Quartus Prime software might be for a different EDA tool. The Quartus
Prime software lists the attributes specified in your HDL code in the Source assignments table of the
Analysis & Synthesis report.

The Verilog-2001, SystemVerilog, and VHDL language definitions provide specific syntax for specifying
attributes, but in Verilog-1995, you must embed attribute assignments in comments. You can enter
attributes in your code using the syntax in Specifying Synthesis Attributes in Verilog-1995 on page 1-
22 through Synthesis Attributes in VHDL on page 1-23, in which <attribute>, <attribute type>,
<value>, <object>, and <object type> are variables, and the entry in brackets is optional. These examples
demonstrate each syntax form.

Note: Verilog HDL is case sensitive; therefore, synthesis attributes in Verilog HDL files are also case
sensitive.

In addition to the synthesis keyword shown above, the Quartus Prime software supports the pragma,
synopsys, and exemplar keywords for compatibility with other synthesis tools. The software also
supports the altera keyword, which allows you to add synthesis attributes that the Quartus Prime
Integrated Synthesis feature recognizes and not by other tools that recognize the same synthesis attribute.

Note: Because formal verification tools do not recognize the exemplar, pragma, and altera keywords,
avoid using these attribute keywords when using formal verification.

Related Information

• Maximum Fan-Out on page 16-41
For more information about maximum fan-out attribute

• Preserve Registers on page 16-36
For more information about preserve attribute

QPS5V1
2015.11.02 Quartus Prime Logic Options 16-21

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synthesis Attributes in Verilog-1995

You must use Verilog-1995 comment-embedded attributes as a suffix to the declaration of an item and
must appear before a semicolon, when a semicolon is necessary.

Note: You cannot use the open one-line comment in Verilog HDL when a semicolon is necessary after
the line, because it is not clear to which HDL element that the attribute applies. For example, you
cannot make an attribute assignment such as reg r; // synthesis <attribute> because the
Quartus Prime software could read the attribute as part of the next line.

Specifying Synthesis Attributes in Verilog-1995

The following show an example of specifying synthesis attributes in Verilog-1995:

// synthesis <attribute> [= <value>]
or
/* synthesis <attribute> [= <value>] */

Applying Multiple Attributes to the Same Instance in Verilog-1995

To apply multiple attributes to the same instance in Verilog-1995, separate the attributes with spaces.

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]

For example, to set the maxfan attribute to 16 and set the preserve attribute on a register called my_reg,
use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;

Related Information

• Maximum Fan-Out on page 16-41
For more information about maximum fan-out attribute

• Preserve Registers on page 16-36
For more information about preserve attribute

Synthesis Attributes in Verilog-2001

You must use Verilog-2001 attributes as a prefix to a declaration, module item, statement, or port
connection, and as a suffix to an operator or a Verilog HDL function name in an expression.

Note: Formal verification does not support the Verilog-2001 attribute syntax because the tools do not
recognize the syntax.

Specifying Synthesis Attributes in Verilog-2001 and SystemVerilog

(* <attribute> [= <value>] *)

Applying Multiple Attributes

To apply multiple attributes to the same instance in Verilog-2001 or SystemVerilog, separate the
attributes with commas.

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

16-22 Synthesis Attributes in Verilog-1995
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, to set the maxfan attribute to 16 and set the preserve attribute on a register called my_reg,
use the following syntax:

(* maxfan = 16, preserve *) reg my_reg;

Related Information

• Maximum Fan-Out on page 16-41
For more information about maximum fan-out attribute

• Preserve Registers on page 16-36
For more information about preserve attribute

Synthesis Attributes in VHDL

VHDL attributes declare and apply the attribute type to the object you specify.

Synthesis Attributes in VHDL

The following shows the synthesis attributes example in VHDL:

attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value>;

altera_syn_attributes

The Quartus Prime software defines and applies each attribute separately to a given node. For VHDL
designs, the software declares all supported synthesis attributes in the altera_syn_attributes package
in the Altera library. You can call this library from your VHDL code to declare the synthesis attributes:

LIBRARY altera;
USE altera.altera_syn_attributes.all;

Synthesis Directives

The Quartus Prime software supports synthesis directives, also commonly called compiler directives or
pragmas. You can include synthesis directives in Verilog HDL or VHDL code as comments. These
directives are not standard Verilog HDL or VHDL commands. Synthesis tools use directives to control
the synthesis process. Directives do not apply to a specific design node, but change the behavior of the
synthesis tool from the point in which they occur in the HDL source code. Other tools, such as simulators,
ignore these directives and treat them as comments.

QPS5V1
2015.11.02 Synthesis Attributes in VHDL 16-23

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-8: Specifying Synthesis Directives

You can enter synthesis directives in your code using the syntax in the following table, in which <directive> and
<value> are variables, and the entry in brackets are optional. For synthesis directives, no equal sign before the
value is necessary; this is different than the Verilog syntax for synthesis attributes. The examples demonstrate each
syntax form.

Language Syntax Example

Verilog
HDL(10) // synthesis <directive> [<value>]

or
/* synthesis <directive> [<value>] */

VHDL
-- synthesis <directive> [<value>]

VHDL-2008
/* synthesis <directive> [<value>] */

In addition to the synthesis keyword shown above, the software supports the pragma, synopsys, and
exemplar keywords in Verilog HDL and VHDL for compatibility with other synthesis tools. The Quartus
Prime software also supports the keyword altera, which allows you to add synthesis directives that only
Quartus Prime Integrated Synthesis feature recognizes, and not by other tools that recognize the same
synthesis directives.

Note: Because formal verification tools ignore the exemplar, pragma, and altera keywords, Altera
recommends that you avoid using these directive keywords when you use formal verification to
prevent mismatches with the Quartus Prime results.

Optimization Technique
The Optimization Technique logic option specifies the goal for logic optimization during compilation;
that is, whether to attempt to achieve maximum speed performance or minimum area usage, or a balance
between the two.

Related Information
Optimization Technique logic option
For more information about the Optimization Technique logic option

Auto Gated Clock Conversion
Clock gating is a common optimization technique in ASIC designs to minimize power consumption. You
can use the Auto Gated Clock Conversion logic option to optimize your prototype ASIC designs by
converting gated clocks into clock enables when you use FPGAs in your ASIC prototyping. The automatic
conversion of gated clocks to clock enables is more efficient than manually modifying source code. The
Auto Gated Clock Conversion logic option automatically converts qualified gated clocks (base clocks as
defined in the Synopsys Design Constraints [SDC]) to clock enables. Click
AssignmentsSettingsCompiler SettingsAdvanced Settings (Synthesis) to enable Auto Gated Clock
Conversion.

(10) Verilog HDL is case sensitive; therefore, all synthesis directives are also case sensitive.

16-24 Optimization Technique
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimization_technique.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The gated clock conversion occurs when all these conditions are met:

• Only one base clock drives a gated-clock
• For one set of gating input values, the value output of the gated clock remains constant and does not

change as the base clock changes
• For one value of the base clock, changes in the gating inputs do not change the value output for the

gated clock

The option supports combinational gates in clock gating network.

Figure 16-3: Example Gated Clock Conversion

clk
ena1

clk
ena1

ena

ena

clk

ena1

ena

ena

ena2

ena

ena

clk

ena

enaena1
ena2

Note: This option does not support registers in RAM, DSP blocks, or I/O related WYSIWYG primitives.
Because the gated-clock conversion cannot trace the base clock from the gated clock, the gated
clock conversion does not support multiple design partitions from incremental compilation in
which the gated clock and base clock are not in the same hierarchical partition. A gated clock tree,
instead of every gated clock, is the basis of each conversion. Therefore, if you cannot convert a
gated clock from a root gated clock of a multiple cascaded gated clock, the conversion of the entire
gated clock tree fails.

The Info tab in the Messages window lists all the converted gated clocks. You can view a list of converted
and nonconverted gated clocks from the Compilation Report under the Optimization Results of the
Analysis & Synthesis Report. The Gated Clock Conversion Details table lists the reasons for
nonconverted gated clocks.

Related Information
Auto Gated Clock Conversion logic option
For more information about Auto Gated Clock Conversion logic option and a list of supported devices

QPS5V1
2015.11.02 Auto Gated Clock Conversion 16-25

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synth_gated_clock_conversion.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Timing-Driven Synthesis
Timing-driven synthesis accounts for any .sdc timing constraints in optimizing the circuit during
synthesis. Timing analysis runs first to obtain timing information about the netlist. Synthesis then focuses
on performance for timing-critical design elements, while optimizing non-timing-critical portions for
area. Synthesis preserves SDC constraints and does not perform timing optimizations that conflict
with .sdc timing constraints. Duplicate registers must have compatible timing constraints.

The increased performance affects the amount of area used, specifically adaptive look-up tables (ALUTs)
and registers in your design. Depending on how much of your design is timing critical, overall area can
increase or decrease when you turn on the Timing-Driven Synthesis option. Runtime and peak memory
use increases slightly if you turn on the Timing-Driven Synthesis option.

The Timing-Driven Synthesis logic option impacts the Optimization Technique option:

• Optimization Technique Speed—optimizes timing-critical portions of your design for performance at
the cost of increasing area (logic and register utilization)

• Optimization Technique Balanced—also optimizes the timing-critical portions of your design for
performance, but the option allows only limited area increase

• Optimization Technique Area—optimizes your design only for area

Timing-Driven Synthesis prevents registers with incompatible timing constraints from merging for any
Optimization Technique setting. If your design contains multiple partitions, you can select Timing-
Driven Synthesis unique options for each partition. If you use a .qxp as a source file, or if your design
uses partitions developed in separate Quartus Prime projects, the software cannot properly compute
timing of paths that cross the partition boundaries.

Even with the Optimization Technique option set to Speed, the Timing-Driven Synthesis option still
considers the resource usage in your design when increasing area to improve timing. For example, the
Timing-Driven Synthesis option checks if a device has enough registers before deciding to implement the
shift registers in logic cells instead of RAM for better timing performance.

To turn on or turn off the Timing-Driven Synthesis option, follow these steps:

1. Click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis).
2. Turn on or turn off Timing-Driven Synthesis.

Note: Select a specific device for timing-driven synthesis to have the most accurate timing information.
When you select auto device, timing-driven synthesis uses the smallest device for the selected
family to obtain timing information.

SDC Constraint Protection
The SDC Constraint Protection option specifies whether Analysis & Synthesis should protect registers
from merging when they have incompatible timing constraints. For example, when you turn on this
option, the software does not merge two registers that are duplicates of each other but have different
multicycle constraints on them. When you turn on the Timing-Driven Synthesis option, the software
detects registers with incompatible constraints, and you do not need to turn on SDC Constraint
Protection. Click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis) to
enable the SDC constraint protection option.

16-26 Timing-Driven Synthesis
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PowerPlay Power Optimization
The PowerPlay Power Optimization logic option controls the power-driven compilation setting of
Analysis & Synthesis and determines how aggressively Analysis & Synthesis optimizes your design for
power.

Related Information

• PowerPlay Power Optimization logic option
For more information about the available settings for the PowerPlay power optimization logic option
and a list of supported devices

• Power Optimization
For more information about optimizing your design for power utilization

• PowerPlay Power Analysis
For information about analyzing your power results

Limiting Resource Usage in Partitions
Resource balancing is important when performing Analysis & Synthesis. During resource balancing,
Quartus Prime Integrated Synthesis considers the amount of used and available DSP and RAM blocks in
the device, and tries to balance these resources to prevent no-fit errors.

For DSP blocks, Resource balancing is important when performing Analysis & Synthesis. During resource
balancing, Quartus Prime Integrated Synthesis considers the amount of used and available DSP and RAM
blocks in the device, and tries to balance these resources to prevent no-fit errors. resource balancing
converts the remaining DSP blocks to equivalent logic if there are more DSP blocks in your design that
the software can place in the device. For RAM blocks, resource balancing converts RAM blocks to
different types of RAM blocks if there are not enough blocks of a certain type available in the device;
however, Quartus Prime Integrated Synthesis does not convert RAM blocks to logic.

Note: The RAM balancing feature does not support Stratix V devices because Stratix V has only M20K
memory blocks.

By default, Quartus Prime Integrated Synthesis considers the information in the targeted device to
identify the number of available DSP or RAM blocks. However, in incremental compilation, each
partition considers the information in the device independently and consequently assumes that the
partition has all the DSP and RAM blocks in the device available for use, resulting in over allocation of
DSP or RAM blocks in your design, which means that the total number of DSP or RAM blocks used by all
the partitions is greater than the number of DSP or RAM blocks available in the device, leading to a no-fit
error during the fitting process.

Related Information

• Creating LogicLock Regions on page 16-27
For more information about preventing a no-fit error during the fitting process

• Using Assignments to Limit the Number of RAM and DSP Blocks on page 16-28
For more information about preventing a no-fit error during the fitting process

Creating LogicLock Regions

The floorplan-aware synthesis feature allows you to use LogicLock regions to define resource allocation
for DSP blocks and RAM blocks. For example, if you assign a certain partition to a certain LogicLock

QPS5V1
2015.11.02 PowerPlay Power Optimization 16-27

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimize_power_during_synth.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471266057/en-us
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384023666/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

region, resource balancing takes into account that all the DSP and RAM blocks in that partition need to fit
in this LogicLock region. Resource balancing then balances the DSP and RAM blocks accordingly.

Because floorplan-aware balancing step considers only one partition at a time, it does not know that
nodes from another partition may be using the same resources. When using this feature, Altera
recommends that you do not manually assign nodes from different partitions to the same LogicLock
region.

If you do not want the software to consider the LogicLock floorplan constraints when performing DSP
and RAM balancing, you can turn off the floorplan-aware synthesis feature. Click Assignments >
Settings > Compiler Settings > Advanced Settings (Synthesis) to disable Use LogicLock Constraints
During Resource Balancing option.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design on page 3-1
For more information about using LogicLock regions to create a floorplan for incremental compilation

Using Assignments to Limit the Number of RAM and DSP Blocks

For DSP and RAM block balancing, you can use assignments to limit the maximum number of blocks that
the balancer allows. You can set these assignments globally or on individual partitions. For DSP block
balancing, the Maximum DSP Block Usage logic option allows you to specify the maximum number of
DSP blocks that the DSP block balancer assumes are available for the current partition. For RAM blocks,
the floorplan-aware logic option allows you to specify maximum resources for different RAM types, such
as Maximum Number of M4K/M9K/M20K/M10K Memory Blocks, Maximum Number of M512
Memory Blocks, Maximum Number of M-RAM/M144K Memory Blocks, or Maximum Number of
LABs.

The partition-specific assignment overrides the global assignment, if any. However, each partition that
does not have a partition-specific assignment uses the value set by the global assignment, or the value
derived from the device size if no global assignment exists. This action can also lead to over allocation.
Therefore, Altera recommends that you always set the assignment on each partition individually.

To select the Maximum Number <block type> Memory Blocks option or the Maximum DSP Block
Usage option globally, click Assignments > Settings > Compiler Settings > Advanced Settings
(Synthesis). You can use the Assignment Editor to set this assignment on a partition by selecting the
assignment, and setting it on the root entity of a partition. You can set any positive integer as the value of
this assignment. If you set this assignment on a name other than a partition root, Analysis & Synthesis
gives an error.

Related Information

• Maximum DSP Block Usage logic option
For more information about the Maximum DSP Block Usage logic option, including a list of
supported device families

• Maximum Number of M4K/M9K/M20K/M10K Memory Blocks logic option
For more information about the Maximum Number of M4K/M9K/M20K/M10K Memory Blocks
logic option, including a list of supported device families

• Maximum Number of M512 Memory Blocks logic option
For more information about the Maximum Number of M512 Memory Blocks logic option, including
a list of supported device families

• Maximum Number of M-RAM/144K Memory Blocks logic option
For more information about Maximum Number of M-RAM/144K Memory Blocks logic option,
including a list of supported device families

16-28 Using Assignments to Limit the Number of RAM and DSP Blocks
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_balancing_dsp_blocks.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_ram_blocks_m4k.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_ram_blocks_m512.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_ram_blocks_mram.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Maximum Number of LABs logic option
For more information about the Maximum Number of LABs logic option, including a list of
supported device families

Restructure Multiplexers
The Restructure Multiplexers logic option restructures multiplexers to create more efficient use of area,
allowing you to implement multiplexers with a reduced number of LEs or ALMs.

When multiplexers from one part of your design feed multiplexers in another part of your design, trees of
multiplexers form. Multiplexers may arise in different parts of your design through Verilog HDL or
VHDL constructs such as the “if,” “case,” or “?:” statements. Multiplexer buses occur most often as a
result of multiplexing together arrays in Verilog HDL, or STD_LOGIC_VECTOR signals in VHDL. The
Restructure Multiplexers logic option identifies buses of multiplexer trees that have a similar structure.
This logic option optimizes the structure of each multiplexer bus for the target device to reduce the overall
amount of logic in your design.

Results of the multiplexer optimizations are design dependent, but area reductions as high as 20% are
possible. The option can negatively affect your design’s fMAX.

Related Information

• Recommended HDL Coding Styles on page 12-1
For more information about optimizing for multiplexers

• Analysis Synthesis Optimization Results Reports
For more information about the Multiplexer Restructuring Statistics report table for each bus of
multiplexers

• Restructure Multiplexers logic option
For more information about the Restructure Multiplexers logic option, including the settings and a list
of supported device families

Synthesis Effort
The Synthesis Effort logic option specifies the overall synthesis effort level in the Quartus Prime software.

Related Information
Synthesis Effort logic option
For more information about Synthesis Effort logic option, including a list of supported device families

Fitter Intial Placement Seed
The Fitter Intial Placement Seed option specifies the seed that Synthesis uses to randomly run synthesis
in a slightly different way. You can use this seed when your design is close to meeting requirements, to get
a slightly different result. The seeds that produce the best result for a design might change if your design
changes.

To set the Synthesis Seed option, click Assignments > Settings > Compiler Settings > Advanced
Settings (Fitter). The default value is 1. You can specify a positive integer value.

QPS5V1
2015.11.02 Restructure Multiplexers 16-29

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_labs.htm
http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_analysis_optimize_results.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_mux_restructure.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synthesis_effort.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

State Machine Processing

The State Machine Processing logic option specifies the processing style to synthesize a state
machine.

The default state machine encoding, Auto, uses one-hot encoding for FPGA devices and
minimal-bits encoding for CPLDs. These settings achieve the best results on average, but another
encoding style might be more appropriate for your design, so this option allows you to control the
state machine encoding.

For one-hot encoding, the Quartus Prime software does not guarantee that each state has one bit
set to one and all other bits set to zero. Quartus Prime Integrated Synthesis creates one-hot
register encoding with standard one-hot encoding and then inverts the first bit. This results in an
initial state with all zero values, and the remaining states have two 1 values. Quartus Prime
Integrated Synthesis encodes the initial state with all zeros for the state machine power-up
because all device registers power up to a low value. This encoding has the same properties as true
one-hot encoding: the software recognizes each state by the value of one bit. For example, in a
one-hot-encoded state machine with five states, including an initial or reset state, the software
uses the following register encoding:

State 0 0 0 0 0 0
State 1 0 0 0 1 1
State 2 0 0 1 0 1
State 3 0 1 0 0 1
State 4 1 0 0 0 1

If you set the State Machine Processing logic option to User-Encoded in a Verilog HDL design,
the software starts with the original design values for the state constants. For example, a Verilog
HDL design can contain the following declaration:

parameter S0 = 4'b1010, S1 = 4'b0101, ...

If the software infers the states S0, S1,... the software uses the encoding 4'b1010,
4'b0101,... . If necessary, the software inverts bits in a user-encoded state machine to ensure
that all bits of the reset state of the state machine are zero.

Note: You can view the state machine encoding from the Compilation Report under the
State Machines of the Analysis & Synthesis Report. The State Machine Viewer
displays only a graphical representation of the state machines as interpreted from
your design.

To assign your own state encoding with the User-Encoded setting of the State Machine
Processing option in a VHDL design, you must apply specific binary encoding to the elements of
an enumerated type because enumeration literals have no numeric values in VHDL. Use the
syn_encoding synthesis attribute to apply your encoding values.

Related Information

• Manually Specifying State Assignments Using the syn_encoding Attribute on page 16-31
• Recommended HDL Coding Styles on page 12-1

For guidelines on how to correctly infer and encode your state machine

16-30 State Machine Processing
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Analyzing Designs with Quartus Prime Netlist Viewers
For more information about the State Machine Viewer

• State Machine Processing logic option
For information about the State Machine Processing logic option, including the settings and supported
devices

• Manually Specifying Enumerated Types Using the enum_encoding Attribute on page 16-32
For more information about assigning your own state encoding with the User-Encoded setting of the
State Machine Processing option in a VHDL design

Manually Specifying State Assignments Using the syn_encoding Attribute

The Quartus Prime software infers state machines from enumerated types and automatically assigns state
encoding based on State Machine Processing on page 16-30.

With this logic option, you can choose the value User-Encoded to use the encoding from your HDL code.
However, in standard VHDL code, you cannot specify user encoding in the state machine description
because enumeration literals have no numeric values in VHDL.

To assign your own state encoding for the User-Encoded State Machine Processing setting, use the
syn_encoding synthesis attribute to apply specific binary encodings to the elements of an enumerated
type or to specify an encoding style. The Quartus Prime software can implement Enumeration Types with
different encoding styles, as listed in this table.

Table 16-9: syn_encoding Attribute Values

Attribute Value Enumeration Types

"default" Use an encoding based on the number of enumeration literals in the Enumeration
Type. If the number of literals is less than five, use the "sequential" encoding. If
the number of literals is more than five, but fewer than 50, use a "one-hot"
encoding. Otherwise, use a "gray" encoding.

"sequentia

l"

Use a binary encoding in which the first enumeration literal in the Enumeration
Type has encoding 0 and the second 1.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by
exactly one bit. An N-bit gray code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson code can represent at
most 2N states, but requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, in which N is the number of enumera‐
tion literals in the Enumeration Type.

"compact" Use an encoding with the fewest bits.

"user" Encode each state using its value in the Verilog source. By changing the values of
your state constants, you can change the encoding of your state machine.

The syn_encoding attribute must follow the enumeration type definition, but precede its use.

Related Information
State Machine Processing on page 16-30

QPS5V1
2015.11.02 Manually Specifying State Assignments Using the syn_encoding Attribute 16-31

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_smp_process_type.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Manually Specifying Enumerated Types Using the enum_encoding Attribute

By default, the Quartus Prime software one-hot encodes all enumerated types you defined. With
the enum_encoding attribute, you can specify the logic encoding for an enumerated type and
override the default one-hot encoding to improve the logic efficiency.

Note: If an enumerated type represents the states of a state machine, using the
enum_encoding attribute to specify a manual state encoding prevents the Compiler
from recognizing state machines based on the enumerated type. Instead, the
Compiler processes these state machines as regular logic with the encoding
specified by the attribute, and the Report window for your project does not list
these states machines as state machines. If you want to control the encoding for a
recognized state machine, use the State Machine Processing logic option and the
syn_encoding synthesis attribute.

To use the enum_encoding attribute in a VHDL design file, associate the attribute with the
enumeration type whose encoding you want to control. The enum_encoding attribute must follow
the enumeration type definition, but precede its use. In addition, the attribute value should be a
string literal that specifies either an arbitrary user encoding or an encoding style of "default",
"sequential", "gray", "johnson", or "one-hot".

An arbitrary user encoding consists of a space-delimited list of encodings. The list must contain
as many encodings as the number of enumeration literals in your enumeration type. In addition,
the encodings should have the same length, and each encoding must consist solely of values from
the std_ulogic type declared by the std_logic_1164 package in the IEEE library.

In this example, the enum_encoding attribute specifies an arbitrary user encoding for the
enumeration type fruit.

Example 16-5: Specifying an Arbitrary User Encoding for Enumerated Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

This example shows the encoded enumeration literals:

Example 16-6: Encoded Enumeration Literals

apple = "11"
orange = "01"
pear = "10"
mango = "00"

Altera recommends that you specify an encoding style, rather than a manual user encoding,
especially when the enumeration type has a large number of enumeration literals. The Quartus
Prime software can implement Enumeration Types with the different encoding styles, as shown in
this table.

16-32 Manually Specifying Enumerated Types Using the enum_encoding Attribute
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-10: enum_encoding Attribute Values

Attribute Value Enumeration Types

"default" Use an encoding based on the number of enumeration literals in the enumeration
type. If the number of literals are fewer than five, use the "sequential" encoding.
If the number of literals are more than five, but fewer than 50 literals, use a "one-
hot" encoding. Otherwise, use a "gray" encoding.

"sequentia

l"

Use a binary encoding in which the first enumeration literal in the enumeration
type has encoding 0 and the second 1.

"gray" Use an encoding in which the encodings for adjacent enumeration literals differ by
exactly one bit. An N-bit gray code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson code can represent at
most 2N states, but requires less logic than a gray encoding.

"one-hot" The default encoding style requiring N bits, in which N is the number of enumera‐
tion literals in the enumeration type.

In Example 16-5, the enum_encoding attribute manually specified a gray encoding for the
enumeration type fruit. You can also concisely write this example by specifying the "gray"
encoding style instead of a manual encoding, as shown in the following example:

Example 16-7: Specifying the “gray” Encoding Style or Enumeration Type

type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "gray";

Safe State Machine
The Safe State Machine logic option and corresponding syn_encoding attribute value safe specify that
the software must insert extra logic to detect an illegal state, and force the transition of the state machine
to the reset state.

A finite state machine can enter an illegal state—meaning the state registers contain a value that does not
correspond to any defined state. By default, the behavior of the state machine that enters an illegal state is
undefined. However, you can set the syn_encoding attribute to safe or use the Safe State Machine logic
option if you want the state machine to recover deterministically from an illegal state. The software inserts
extra logic to detect an illegal state, and forces the transition of the state machine to the reset state. You
can use this logic option when the state machine enters an illegal state. The most common cause of an
illegal state is a state machine that has control inputs that come from another clock domain, such as the
control logic for a clock-crossing FIFO, because the state machine must have inputs from another clock
domain. This option protects only state machines (and not other registers) by forcing them into the reset
state. You can use this option if your design has asynchronous inputs. However, Altera recommends using
a synchronization register chain instead of relying on the safe state machine option.

The safe state machine value does not use any user-defined default logic from your HDL code that
corresponds to unreachable states. Verilog HDL and VHDL enable you to specify a behavior for all states
in the state machine explicitly, including unreachable states. However, synthesis tools detect if state
machine logic is unreachable and minimize or remove the logic. Synthesis tools also remove any flag
signals or logic that indicate such an illegal state. If the software implements the state machine as safe, the

QPS5V1
2015.11.02 Safe State Machine 16-33

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

recovery logic added by Quartus Prime Integrated Synthesis forces its transition from an illegal state to
the reset state.

You can set the Safe State Machine logic option globally, or on individual state machines. To set this logic
option, click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis).

Table 16-11: Setting the syn_encoding safe attribute on a State Machine in HDL

HDL Code

Verilog HDL
reg [2:0] my_fsm /* synthesis syn_encoding = "safe" */
;

Verilog-2001 and SystemVerilog
(* syn_encoding = "safe" *) reg [2:0] my_fsm;

VHDL
ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";

If you specify an encoding style, separate the encoding style value in the quotation marks with the safe
value with a comma, as follows: "safe, one-hot" or "safe, gray".

Safe state machine implementation can result in a noticeable area increase for your design. Therefore,
Altera recommends that you set this option only on the critical state machines in your design in which the
safe mode is necessary, such as a state machine that uses inputs from asynchronous clock domains. You
may not need to use this option if you correctly synchronize inputs coming from other clock domains.

Note: If you create the safe state machine assignment on an instance that the software fails to recognize
as a state machine, or an entity that contains a state machine, the software takes no action. You
must restructure the code, so that the software recognizes and infers the instance as a state
machine.

Related Information

• Manually Specifying State Assignments Using the syn_encoding Attribute on page 16-31
• Safe State Machine logic option

For more information about the Safe State Machine logic option
• Recommended HDL Coding Styles on page 12-1

For guidelines to ensure that the software correctly infers your state machine

Power-Up Level
This logic option causes a register (flipflop) to power up with the specified logic level, either high (1) or
low (0). The registers in the core hardware power up to 0 in all Altera devices. For the register to power up
with a logic level high, the Compiler performs an optimization referred to as NOT-gate push back on the
register. NOT-gate push back adds an inverter to the input and the output of the register, so that the reset
and power-up conditions appear to be high and the device operates as expected. The register itself still
powers up to 0, but the register output inverts so the signal arriving at all destinations is 1.

The Power-Up Level option supports wildcard characters, and you can apply this option to any register,
registered logic cell WYSIWYG primitive, or to a design entity containing registers, if you want to set the
power level for all registers in your design entity. If you assign this option to a registered logic cell
WYSIWYG primitive, such as an atom primitive from a third-party synthesis tool, you must turn on the

16-34 Power-Up Level
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_safe_state_machine.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Perform WYSIWYG Primitive Resynthesis logic option for the option to take effect. You can also apply
the option to a pin with the logic configurations described in the following list:

• If you turn on this option for an input pin, the option transfers to the register that the pin drives, if all
these conditions are present:

• No logic, other than inversion, between the pin and the register.
• The input pin drives the data input of the register.
• The input pin does not fan-out to any other logic.

• If you turn on this option for an output or bidirectional pin, the option transfers to the register that
feeds the pin, if all these conditions are present:

• No logic, other than inversion, between the register and the pin.
• The register does not fan out to any other logic.

Related Information
Power-Up Level logic option
For more information about the Power-Up Level logic option, including information on the supported
device families

Inferred Power-Up Levels

Quartus Prime Integrated Synthesis reads default values for registered signals defined in Verilog
HDL and VHDL code, and converts the default values into Power-Up Level settings. The
software also synthesizes variables with assigned values in Verilog HDL initial blocks into power-
up conditions. Synthesis of these default and initial constructs allows synthesized behavior of your
design to match, as closely as possible, the power-up state of the HDL code during a functional
simulation.

The following register declarations all set a power-up level of VCC or a logic value “1”, as shown in
this example:

signal q : std_logic = '1'; -- power-up to VCC

reg q = 1'b1; // power-up to VCC

reg q;
initial begin q = 1'b1; end // power-up to VCC

Related Information
Recommended HDL Coding Styles on page 12-1
For more information about NOT-gate push back, the power-up states for Altera devices, and how set and
reset control signals affect the power-up level

Power-Up Don’t Care
This logic option allows the Compiler to optimize registers in your design that do not have a defined
power-up condition.

For example, your design might have a register with its D input tied to VCC, and with no clear signal or
other secondary signals. If you turn on this option, the Compiler can choose for the register to power up
to VCC. Therefore, the output of the register is always VCC. The Compiler can remove the register and

QPS5V1
2015.11.02 Inferred Power-Up Levels 16-35

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_power_up_high.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

connect its output to VCC. If you turn this option off or if you set a Power-Up Level assignment of Low
for this register, the register transitions from GND to VCC when your design starts up on the first clock
signal. Thus, the register is at VCC and you cannot remove the register. Similarly, if the register has a clear
signal, the Compiler cannot remove the register because after asserting the clear signal, the register
transitions again to GND and back to VCC.

If the Compiler performs a Power-Up Don’t Care optimization that allows it to remove a register, it
issues a message to indicate that it is doing so.

This project-wide option does not apply to registers that have the Power-Up Level logic option set to
either High or Low.

Related Information
Power-Up Don’t Care logic option
For more information about Power-Up Don’t Care logic option and a list of supported devices

Remove Duplicate Registers
The Remove Duplicate Registers logic option removes registers that are identical to other registers.

Related Information
Remove Duplicate Registers logic option
For more information about Remove Duplicate Registers logic option and the supported devices

Preserve Registers
This attribute and logic option directs the Compiler not to minimize or remove a specified register during
synthesis optimizations or register netlist optimizations. Optimizations can eliminate redundant registers
and registers with constant drivers; this option prevents the software from reducing a register to a
constant or merging with a duplicate register. This option can preserve a register so you can observe the
register during simulation or with the SignalTap® II Logic Analyzer. Additionally, this option can
preserve registers if you create a preliminary version of your design in which you have not specified the
secondary signals. You can also use the attribute to preserve a duplicate of an I/O register so that you can
place one copy of the I/O register in an I/O cell and the second in the core.

Note: This option cannot preserve registers that have no fan-out.

The Preserve Registers logic option prevents the software from inferring a register as a state machine.

You can set the Preserve Registers logic option in the Quartus Prime software, or you can set the
preserve attribute in your HDL code. In these examples, the Quartus Prime software preserves the
my_reg register.

Table 16-12: Setting the syn_preserve attribute in HDL Code

HDL Code(11)

Verilog HDL
reg my_reg /* synthesis syn_preserve = 1 */;

(11) The = 1 after the preserve are optional, because the assignment uses a default value of 1 when you specify
the assignment.

16-36 Remove Duplicate Registers
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_allow_power_up_dont_care.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dup_reg_extraction.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code(11)

 Verilog-2001
(* syn_preserve = 1 *) reg my_reg;

Table 16-13: Setting the preserve attribute in HDL Code

In addition to preserve, the Quartus Prime software supports the syn_preserve attribute name for compatibility
with other synthesis tools.

HDL Code

VHDL
signal my_reg : stdlogic;
attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

Related Information

• Preserve Registers logic option
For more information about the Preserve Registers logic option and the supported devices

• Noprune Synthesis Attribute/Preserve Fan-out Free Register Node on page 16-38
For more information about preventing the removal of registers with no fan-out

Disable Register Merging/Don’t Merge Register
This logic option and attribute prevents the specified register from merging with other registers and
prevents other registers from merging with the specified register. When applied to a design entity, it
applies to all registers in the entity.

You can set the Disable Register Merging logic option in the Quartus Prime software, or you can set the
dont_merge attribute in your HDL code, as shown in these examples. In these examples, the logic option
or the attribute prevents the my_reg register from merging.

Table 16-14: Setting the dont_merge attribute in HDL code

HDL Code

Verilog HD
reg my_reg /* synthesis dont_merge */;

Verilog-2001 and SystemVer‐
ilog (* dont_merge *) reg my_reg;

VHDL
signal my_reg : stdlogic;
attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;

(11) The = 1 after the preserve are optional, because the assignment uses a default value of 1 when you specify
the assignment.

QPS5V1
2015.11.02 Disable Register Merging/Don’t Merge Register 16-37

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_preserve_register.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Disable Register Merging logic option
For more information about the Disable Register Merging logic option and the supported devices

Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
This synthesis attribute and corresponding logic option direct the Compiler to preserve a fan-out-free
register through the entire compilation flow. This option is different from the Preserve Registers option,
which prevents the Quartus Prime software from reducing a register to a constant or merging with a
duplicate register. Standard synthesis optimizations remove nodes that do not directly or indirectly feed a
top-level output pin. This option can retain a register so you can observe the register in the Simulator or
the SignalTap II Logic Analyzer. Additionally, this option can retain registers if you create a preliminary
version of your design in which you have not specified the fan-out logic of the register.

You can set the Preserve Fan-out Free Register Node logic option in the Quartus Prime software, or you
can set the noprune attribute in your HDL code, as shown in these examples. In these examples, the logic
option or the attribute preserves the my_reg register.

Note: You must use the noprune attribute instead of the logic option if the register has no immediate fan-
out in its module or entity. If you do not use the synthesis attribute, the software removes (or
“prunes”) registers with no fan-out during Analysis & Elaboration before the logic synthesis stage
applies any logic options. If the register has no fan-out in the full design, but has fan-out in its
module or entity, you can use the logic option to retain the register through compilation.

The software supports the attribute name syn_noprune for compatibility with other synthesis tools.

Table 16-15: Setting the noprune attribute in HDL code

HDL Code

Verilog HD
reg my_reg /* synthesis syn_noprune */;

Verilog-2001 and
SystemVerilog (* noprune *) reg my_reg;

VHDL
signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;

Related Information
Preserve Fan-out Free Register logic option
For more information about Preserve Fan-out Free Register Node logic option and a list of supported
devices

Keep Combinational Node/Implement as Output of Logic Cell
This synthesis attribute and corresponding logic option direct the Compiler to keep a wire or combina‐
tional node through logic synthesis minimizations and netlist optimizations. A wire that has a keep
attribute or a node that has the Implement as Output of Logic Cell logic option applied becomes the
output of a logic cell in the final synthesis netlist, and the name of the logic cell remains the same as the

16-38 Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dont_merge_register.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_preserve_fanout_free_node.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

name of the wire or node. You can use this directive to make combinational nodes visible to the
SignalTap II Logic Analyzer.

Note: The option cannot keep nodes that have no fan-out. You cannot maintain node names for wires
with tri-state drivers, or if the signal feeds a top-level pin of the same name (the software changes
the node name to a name such as <net name>~buf0).

You can use the Ignore LCELL Buffers logic option to direct Analysis & Synthesis to ignore logic cell
buffers that the Implement as Output of Logic Cell logic option or the LCELL primitive created. If you
apply this logic option to an entity, it affects all lower-level entities in the hierarchy path.

Note: To avoid unintended design optimizations, ensure that any entity instantiated with Altera or third-
party IP that relies on logic cell buffers for correct behavior does not inherit the Ignore LCELL
Buffers logic option. For example, if an IP core uses logic cell buffers to manage high fan-out
signals and inherits the Ignore LCELL Buffers logic option, the target device may no longer
function properly.

You can turn off the Ignore LCELL Buffers logic option for a specific entity to override any assignments
inherited from higher-level entities in the hierarchy path if logic cell buffers created by the Implement as
Output of Logic Cell logic option or the LCELL primitive are required for correct behavior.

You can set the Implement as Output of Logic Cell logic option in the Quartus Prime software, or you
can set the keep attribute in your HDL code, as shown in these tables. In these tables, the Compiler
maintains the node name my_wire.

Table 16-16: Setting the keep Attribute in HDL code

HDL Code

Verilog HD
wire my_wire /* synthesis keep = 1 */;

Verilog-2001
(* keep = 1 *) wire my_wire;

Table 16-17: Setting the syn_keep Attribute in HDL Code

In addition to keep, the Quartus Prime software supports the syn_keep attribute name for compatibility with
other synthesis tools.

HDL Code

VHDL
signal my_wire: bit;
attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;

Related Information
Implement as Output of Logic Cell logic option
For more information about the Implement as Output of Logic Cell logic option and the supported
devices

QPS5V1
2015.11.02 Keep Combinational Node/Implement as Output of Logic Cell 16-39

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_implement_as_lcell.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Disabling Synthesis Netlist Optimizations with dont_retime Attribute
This attribute disables synthesis retiming optimizations on the register you specify. When applied to a
design entity, it applies to all registers in the entity.

You can turn off retiming optimizations with this option and prevent node name changes, so that the
Compiler can correctly use your timing constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus Prime software to
disable retiming along with other synthesis netlist optimizations, or you can set the dont_retime attribute
in your HDL code, as shown in the following table. In the following table, the code prevents my_reg
register from being retimed.

Table 16-18: Setting the dont_retime Attribute in HDL Code

HDL Code

Verilog HDL
reg my_reg /* synthesis dont_retime */;

Verilog-2001 and SystemVerilo
(* dont_retime *) reg my_reg;

VHD
signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg :
signal is true;

Note: For compatibility with third-party synthesis tools, Quartus Prime Integrated Synthesis also
supports the attribute syn_allow_retiming. To disable retiming, set syn_allow_retiming to 0
(Verilog HDL) or false (VHDL). This attribute does not have any effect when you set the attribute
to 1 or true.

Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
This attribute disables synthesis replication optimizations on the register you specify. When applied to a
design entity, it applies to all registers in the entity.

You can turn off register replication (or duplication) optimizations with this option, so that the Compiler
uses your timing constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the Quartus Prime software to
disable replication along with other synthesis netlist optimizations, or you can set the dont_replicate
attribute in your HDL code, as shown in these examples. In these examples, the code prevents the replica‐
tion of the my_reg register.

Table 16-19: Setting the dont_replicate attribute in HDL Code

HDL Code

Verilog HD
reg my_reg /* synthesis dont_replicate */;

16-40 Disabling Synthesis Netlist Optimizations with dont_retime Attribute
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

Verilog-2001 and
SystemVerilog (* dont_replicate *) reg my_reg;

VHDL
signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;

Note: For compatibility with third-party synthesis tools, Quartus Prime Integrated Synthesis also
supports the attribute syn_replicate. To disable replication, set syn_replicate to 0 (Verilog
HDL) or false (VHDL). This attribute does not have any effect when you set the attribute to 1 or
true.

Maximum Fan-Out
This Maximum Fan-Out attribute and logic option direct the Compiler to control the number of destina‐
tions that a node feeds. The Compiler duplicates a node and splits its fan-out until the individual fan-out
of each copy falls below the maximum fan-out restriction. You can apply this option to a register or a
logic cell buffer, or to a design entity that contains these elements. You can use this option to reduce the
load of critical signals, which can improve performance. You can use the option to instruct the Compiler
to duplicate a register that feeds nodes in different locations on the target device. Duplicating the register
can enable the Fitter to place these new registers closer to their destination logic to minimize routing
delay.

To turn off the option for a given node if you set the option at a higher level of the design hierarchy, in the
Netlist Optimizations logic option, select Never Allow. If not disabled by the Netlist Optimizations
option, the Compiler acknowledges the maximum fan-out constraint as long as the following conditions
are met:

• The node is not part of a cascade, carry, or register cascade chain.
• The node does not feed itself.
• The node feeds other logic cells, DSP blocks, RAM blocks, and pins through data, address, clock

enable, and other ports, but not through any asynchronous control ports (such as asynchronous clear).

The Compiler does not create duplicate nodes in these cases, because there is no clear way to duplicate the
node, or to avoid the small differences in timing which could produce functional differences in the
implementation (in the third condition above in which asynchronous control signals are involved). If you
cannot apply the constraint because you do not meet one of these conditions, the Compiler issues a
message to indicate that the Compiler ignores the maximum fan-out assignment. To instruct the
Compiler not to check node destinations for possible problems such as the third condition, you can set
the Netlist Optimizations logic option to Always Allow for a given node.

Note: If you have enabled any of the Quartus Prime netlist optimizations that affect registers, add the
preserve attribute to any registers to which you have set a maxfan attribute. The preserve
attribute ensures that the netlist optimization algorithms, such as register retiming, do not affect
the registers.

You can set the Maximum Fan-Out logic option in the Quartus Prime software. This option supports
wildcard characters. You can also set the maxfan attribute in your HDL code, as shown in these examples.
In these examples, the Compiler duplicates the clk_gen register, so its fan-out is not greater than 50.

QPS5V1
2015.11.02 Maximum Fan-Out 16-41

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-20: Setting the maxfan attribute in HDL Code

HDL Code

Verilog HDL
reg clk_gen /* synthesis syn_maxfan = 50 */;

Verilog-2001
(* maxfan = 50 *) reg clk_gen;

Table 16-21: Setting the syn_maxfan attribute in HDL Code

The Quartus Prime software supports the syn_maxfan attribute for compatibility with other synthesis tools.
HDL Code

VHDL
signal clk_gen : stdlogic;
attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;

Related Information

• Netlist Optimizations and Physical Synthesis
For details about netlist optimizations

• Maximum Fan-Out logic option
For more information about the Maximum Fan-Out logic option and the supported devices

Controlling Clock Enable Signals with Auto Clock Enable Replacement and
direct_enable

The Auto Clock Enable Replacement logic option allows the software to find logic that feeds a register
and move the logic to the register’s clock enable input port. To solve fitting or performance issues with
designs that have many clock enables, you can turn off this option for individual registers or design
entities. Turning the option off prevents the software from using the register’s clock enable port. The
software implements the clock enable functionality using multiplexers in logic cells.

If the software does not move the specific logic to a clock enable input with the Auto Clock Enable
Replacement logic option, you can instruct the software to use a direct clock enable signal. The attribute
ensures that the signal drives the clock enable port, and the software does not optimize or combine the
signal with other logic.

These tables show how to set this attribute to ensure that the attribute preserves the signal and uses the
signal as a clock enable.

Table 16-22: Setting the direct_enable in HDL Code

HDL Code

Verilog HDL
wire my_enable /* synthesis direct_enable = 1 */ ;

16-42 Controlling Clock Enable Signals with Auto Clock Enable Replacement and...
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471329493/en-us
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_max_fanout.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

VHDL
attribute direct_enable: boolean;
attribute direct_enable of my_enable: signal is true;

Table 16-23: Setting the syn_direct_enable in HDL Code

The Quartus Prime software supports the syn_direct_enable attribute name for compatibility with other
synthesis tools.

HDL Code

Verilog-2001 and
SystemVerilog (* syn_direct_enable *) wire my_enable;

Related Information
Auto Clock Enable Replacement logic option
For more information about the Auto Clock Enable Replacement logic option and the supported devices

Inferring Multiplier, DSP, and Memory Functions from HDL Code
The Quartus Prime Compiler automatically recognizes multipliers, multiply-accumulators, multiply-
adders, or memory functions described in HDL code, and either converts the HDL code into respective IP
core or maps them directly to device atoms or memory atoms. If the software converts the HDL code into
an IP core, the software uses the Altera IP core code when you compile your design, even when you do
not specifically instantiate the IP core. The software infers IP cores to take advantage of logic that you
optimize for Altera devices. The area and performance of such logic can be better than the results from
inferring generic logic from the same HDL code.

Additionally, you must use IP cores to access certain architecture-specific features, such as RAM, DSP
blocks, and shift registers that provide improved performance compared with basic logic cells.

The Quartus Prime software provides options to control the inference of certain types of IP cores.

Related Information
Recommended HDL Coding Styles on page 12-1
For details about coding style recommendations when targeting IP cores in Altera devices

Multiply-Accumulators and Multiply-Adders
Use the Auto DSP Block Replacement logic option to control DSP block inference for multiply-
accumulations and multiply-adders. To disable inference, turn off this option for the entire project on the
Advanced Analysis & Synthesis dialog box of the Compiler Settings page.

Related Information
Auto DSP Block Replacement logic option
For more information about the Auto DSP Block Replacement logic option and the supported devices

QPS5V1
2015.11.02 Inferring Multiplier, DSP, and Memory Functions from HDL Code 16-43

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_clock_enable_recognition.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_dsp_recognition.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Shift Registers
Use the Auto Shift Register Replacement logic option to control shift register inference. This option has
three settings: Off, Auto and Always. Auto is the default setting in which Quartus Prime Integrated
Synthesis decides which shift registers to replace or leave in registers. Placing shift registers in memory
saves logic area, but can have a negative effect on fmax. Quartus Prime Integrated Synthesis uses the
optimization technique setting, logic and RAM utilization of your design, and timing information from
Timing-Driven Synthesis to determine which shift registers are located in memory and which are located
in registers. To disable inference, click Assignments > Settings > Compiler Settings > Advanced
Settings (Synthesis). You can also disable the option for a specific block with the Assignment Editor.
Even if you set the logic option to On or Auto, the software might not infer small shift registers because
small shift registers do not benefit from implementation in dedicated memory. However, you can use the
Allow Any Shift Register Size for Recognition logic option to instruct synthesis to infer a shift register
even when its size is too small.

You can use the Allow Shift Register Merging across Hierarchies option to prevent the Compiler from
merging shift registers in different hierarchies into one larger shift register. The option has three settings:
On, Off, and Auto. The Auto setting is the default setting, and the Compiler decides whether or not to
merge shift registers across hierarchies. When you turn on this option, the Compiler allows all shift
registers to merge across hierarchies, and when you turn off this option, the Compiler does not allow any
shift registers to merge across hierarchies. You can set this option globally or on entities or individual
nodes.

Note: The registers that the software maps to the RAM-based Shift Register IP core and places in RAM
are not available in the Simulator because their node names do not exist after synthesis.

The Compiler turns off the Auto Shift Register Replacement logic option when you select a formal
verification tool on the EDA Tool Settings page. If you do not select a formal verification tool, the
Compiler issues a warning and the compilation report lists shift registers that the logic option might infer.
To enable an IP core for the shift register in the formal verification flow, you can either instantiate a shift
register explicitly with the IP catalog or make the shift register into a black box in a separate entity or
module.

Related Information

• Auto Shift Register Replacement logic option
For more information about the Auto Shift Register Replacement logic option and the supported
devices

• RAM-Based Shift Register (ALTSHIFT_TAPS) User Guide
For more information about the RAM-based Shift Register IP core

RAM and ROM
Use the Auto RAM Replacement and Auto ROM Replacement logic options to control RAM and ROM
inference, respectively. To disable the inference, click Assignments > Settings > Compiler Settings >
Advanced Settings (Synthesis).

Note: Although the software implements inferred shift registers in RAM blocks, you cannot turn off the
Auto RAM Replacement option to disable shift register replacement. Use the Auto Shift Register
Replacement option.

16-44 Shift Registers
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_shift_register_recognition.htm
http://www.altera.com/literature/ug/ug_shift_register_ram_based.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The software might not infer very small RAM or ROM blocks because you can implement very small
memory blocks with the registers in the logic. However, you can use the Allow Any RAM Size for
Recognition and Allow Any ROM Size for Recognition logic options to instruct synthesis to infer a
memory block even when its size is too small.

Note: The software turns off the Auto ROM Replacement logic option when you select a formal verifica‐
tion tool in the EDA Tool Settings page. If you do not select a formal verification tool, the software
issues a warning and a report panel provides a list of ROMs that the logic option might infer. To
enable an IP core for the shift register in the formal verification flow, you can either instantiate a
ROM explicitly using the IP Catalog or create a black box for the ROM in a separate entity or in a
separate module.

Although formal verification tools do not support inferred RAM blocks, due to the importance of
inferring RAM in many designs, the software turns on the Auto RAM Replacement logic option when
you select a formal verification tool in the EDA Tool Settings page. The software automatically performs
black box instance for any module or entity that contains an inferred RAM block. The software issues a
warning and lists the black box created in the compilation report. This black box allows formal verifica‐
tion tools to proceed; however, the formal verification tool cannot verify the entire module or entire entity
that contains the RAM. Altera recommends that you explicitly instantiate RAM blocks in separate
modules or in separate entities so that the formal verification tool can verify as much logic as possible.

Related Information

• Shift Registers on page 16-44
• Auto RAM Replacement logic option

For more information about the Auto RAM Replacement logic option and its supported devices
• Auto ROM Replacement logic option

For more information about the Auto ROM Replacement logic option and its supported devices

Resource Aware RAM, ROM, and Shift-Register Inference
The Quartus Prime Integrated Synthesis considers resource usage when inferring RAM, ROM, and shift
registers. During RAM, ROM, and shift register inferencing, synthesis looks at the number of memories
available in the current device and does not infer more memory than is available to avoid a no-fit error.
Synthesis tries to select the memories that are not inferred in a way that aims at the smallest increase in
logic and registers.

Resource aware RAM, ROM and shift register inference is controlled by the Resource Aware Inference
for Block RAM option. To disable this option for the entire project, click Assignments > Settings >
Compiler Settings > Advanced Settings (Synthesis).

When you select the Auto setting, resource aware RAM, ROM, and shift register inference use the
resource counts from the largest device.

For designs with multiple partitions, Quartus Prime Integrated Synthesis considers one partition at a
time. Therefore, for each partition, it assumes that all RAM blocks are available to that partition. If this
causes a no-fit error, you can limit the number of RAM blocks available per partition with the Maximum
Number of M512 Memory Blocks, Maximum Number of M4K/M9K/M20K/M10K Memory Blocks,
Maximum Number of M-RAM/M144K Memory Blocks and Maximum Number of LABs settings in the
Assignment Editor. The balancer also uses these options.

QPS5V1
2015.11.02 Resource Aware RAM, ROM, and Shift-Register Inference 16-45

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_ram_recognition.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_rom_recognition.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Auto RAM to Logic Cell Conversion
The Auto RAM to Logic Cell Conversion logic option allows Quartus Prime Integrated Synthesis to
convert small RAM blocks to logic cells if the logic cell implementation gives better quality of results. The
software converts only single-port or simple-dual port RAMs with no initialization files to logic cells. You
can set this option globally or apply it to individual RAM nodes. You can enable this option by turning on
the appropriate option for the entire project in the Advanced Analysis & Synthesis Settings dialog box.

For Arria GX and Stratix family of devices, the software uses the following rules to determine the
placement of a RAM, either in logic cells or a dedicated RAM block:

• If the number of words is less than 16, use a RAM block if the total number of bits is greater than or
equal to 64.

• If the number of words is greater than or equal to 16, use a RAM block if the total number of bits is
greater than or equal to 32.

• Otherwise, implement the RAM in logic cells.

For the Cyclone family of devices, the software uses the following rules:

• If the number of words is greater than or equal to 64, use a RAM block.
• If the number of words is greater than or equal to 16 and less than 64, use a RAM block if the total

number of bits is greater than or equal to 128.
• Otherwise, implement the RAM in logic cells.

Related Information
Auto RAM to Logic Cell Conversion logic option
For more information about the Auto RAM to Logic Cell Conversion logic options and the supported
devices

RAM Style and ROM Style—for Inferred Memory
These attributes specify the implementation for an inferred RAM or ROM block. You can specify the type
of TriMatrix embedded memory block, or specify the use of standard logic cells (LEs or ALMs). The
Quartus Prime software supports the attributes only for device families with TriMatrix embedded
memory blocks.

The ramstyle and romstyle attributes take a single string value. The M512, M4K, M-RAM, MLAB, M9K, M144K,
M20K, and M10K values (as applicable for the target device family) indicate the type of memory block to
use for the inferred RAM or ROM. If you set the attribute to a block type that does not exist in the target
device family, the software generates a warning and ignores the assignment. The logic value indicates
that the Quartus Prime software implements the RAM or ROM in regular logic rather than dedicated
memory blocks. You can set the attribute on a module or entity, in which case it specifies the default
implementation style for all inferred memory blocks in the immediate hierarchy. You can also set the
attribute on a specific signal (VHDL) or variable (Verilog HDL) declaration, in which case it specifies the
preferred implementation style for that specific memory, overriding the default implementation style.

Note: If you specify a logic value, the memory appears as a RAM or ROM block in the RTL Viewer, but
Integrated Synthesis converts the memory to regular logic during synthesis.

In addition to ramstyle and romstyle, the Quartus Prime software supports the syn_ramstyle attribute
name for compatibility with other synthesis tools.

16-46 Auto RAM to Logic Cell Conversion
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_auto_ram_to_lcell_conversion.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

These tables specify that you must implement all memory in the module or the my_memory_blocks entity
with a specific type of block.

Table 16-24: Applying a romstyle Attribute to a Module Declaration

HDL Code

Verilog-1995
module my_memory_blocks (...) /* synthesis romstyle = "M4K" */
;

Table 16-25: Applying a ramstyle Attribute to a Module Declaration

HDL Code

Verilog-2001 and
SystemVerilog (* ramstyle = "M512" *) module my_memory_blocks (...);

Table 16-26: Applying a romstyle Attribute to an Architecture

HDL Code

VHDL
architecture rtl of my_ my_memory_blocks is
attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin

These tables specify that you must implement the inferred my_ram or my_rom memory with regular logic
instead of a TriMatrix memory block.

Table 16-27: Applying a syn_ramstyle Attribute to a Variable Declaration

HDL Code

Verilog-1995
reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */
;

Table 16-28: Applying a romstyle Attribute to a Variable Declaration

HDL Code

Verilog-2001 and
SystemVerilog (* romstyle = "logic" *) reg [0:7] my_rom[0:63];

QPS5V1
2015.11.02 RAM Style and ROM Style—for Inferred Memory 16-47

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-29: Applying a ramstyle Attribute to a Signal Declaration

HDL Code

VHDL
type memory_t is array (0 to 63) of std_logic_vector (0 to 7)
;
signal my_ram : memory_t;
attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "logic";

You can control the depth of an inferred memory block and optimize its usage with the max_depth
attribute. You can also optimize the usage of the memory block with this attribute.

These tables specify the depth of the inferred memory mem using the max_depth synthesis attribute.

Table 16-30: Applying a max_depth Attribute to a Variable Declaration

HDL Code

Verilog-1995
reg [7:0] mem [127:0] /* synthesis max_depth = 2048 */

Table 16-31: Applying a max_depth Attribute to a Variable Declaration

HDL Code

 Verilog-2001 and
SystemVerilog (* max_depth = 2048*) reg [7:0] mem [127:0];

Table 16-32: Applying a max_depth Attribute to a Variable Declaration

HDL Code

VHDL
type ram_block is array (0 to 31) of std_logic_vector (2
downto 0);
signal mem : ram_block;
attribute max_depth : natural;
attribute max_depth OF mem : signal is 2048;

The syntax for setting these attributes in HDL is the same as the syntax for other synthesis attributes, as
shown in Synthesis Attributes on page 16-21.

Related Information
Synthesis Attributes on page 16-21

RAM Style Attribute—For Shift Registers Inference
The RAM style attribute for shift register allows you to use the RAM style attribute for shift registers, just
as you use them for RAM or ROMs. The Quartus Prime Synthesis uses the RAM style attribute during
shift register inference. If synthesis infers the shift register to RAM, it will be sent to the requested RAM
block type. Shift registers are merged only if the RAM style attributes are compatible. If the RAM style is
set to logic, a shift register does not get inferred to RAM.

16-48 RAM Style Attribute—For Shift Registers Inference
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-33: Setting the RAM Style Attribute for Shift Registers

HDL Code

Verilog
(* ramstyle = "mlab" *)reg [N-1:0] sr;

VHDL
attribute ramstyle : string;attribute ramstyle of sr : signal is
"M20K";

Related Information
Inferring Shift Registers in HDL Code on page 12-30

Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
Use the no_rw_check value for the ramstyle attribute, or disable the Add Pass-Through Logic to
Inferred RAMs logic option assignment to indicate that your design does not depend on the behavior of
the inferred RAM, when there are reads and writes to the same address in the same clock cycle. If you
specify the attribute or disbale the logic option, the Quartus Prime software chooses a read-during-write
behavior instead of the read-during-write behavior of your HDL source code.

You disable or edit the attributes of this option by modifying the
add_pass_through_logic_to_inferred_rams option in the Quartus Prime Settings File (.qsf). There is
no corresponding GUI setting for this option.

Sometimes, you must map an inferred RAM into regular logic cells because the inferred RAM has a read-
during-write behavior that the TriMatrix memory blocks in your target device do not support. In other
cases, the Quartus Prime software must insert extra logic to mimic read-during-write behavior of the
HDL source to increase the area of your design and potentially reduce its performance. In some of these
cases, you can use the attribute to specify that the software can implement the RAM directly in a
TriMatrix memory block without using logic. You can also use the attribute to prevent a warning message
for dual-clock RAMs in the case that the inferred behavior in the device does not exactly match the read-
during-write conditions described in the HDL code.

To set the Add Pass-Through Logic to Inferred RAMs logic option with the Quartus Prime software,
click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis).

These examples use two addresses and normally require extra logic after the RAM to ensure that the read-
during-write conditions in the device match the HDL code. If your design does not require a defined
read-during-write condition, the extra logic is not necessary. With the no_rw_check attribute, Quartus
Prime Integrated Synthesis does not generate the extra logic.

QPS5V1
2015.11.02 Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute 16-49

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-34: Inferred RAM Using no_rw_check Attribute

HDL Code

Verilog HDL
module ram_infer (q, wa, ra, d, we, clk);
 output [7:0] q;
 input [7:0] d;
 input [6:0] wa;
 input [6:0] ra;
 input we, clk;
 reg [6:0] read_add;
 (* ramstyle = "no_rw_check" *) reg [7:0] mem [127:0];
 always @ (posedge clk) begin
 if (we)
 mem[wa] <= d;
 read_add <= ra;
 end
 assign q = mem[read_add];
endmodule

 VHDL
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));
END ram;
ARCHITECTURE rtl OF ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
 ATTRIBUTE ramstyle : string;
 ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check";
 SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (clock'event AND clock = '1') THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
 q <= ram_block(read_address_reg);
END rtl;

You can use a ramstyle attribute with the MLAB value, so that the Quartus Prime software can infer a
small RAM block and place it in an MLAB.

Note: You can use this attribute in cases in which some asynchronous RAM blocks might be coded with
read-during-write behavior that does not match the Stratix IV and Stratix V architectures. Thus,
the device behavior would not exactly match the behavior that the code describes. If the difference
in behavior is acceptable in your design, use the ramstyle attribute with the no_rw_check value to
specify that the software should not check the read-during-write behavior when inferring the
RAM. When you set this attribute, Quartus Prime Integrated Synthesis allows the behavior of the
output to differ when the asynchronous read occurs on an address that had a write on the most

16-50 Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

recent clock edge. That is, the functional HDL simulation results do not match the hardware
behavior if you write to an address that is being read. To include these attributes, set the value of
the ramstyle attribute to MLAB, no_rw_check.

These examples show the method of setting two values to the ramstyle attribute with a small asynchro‐
nous RAM block, with the ramstyle synthesis attribute set, so that the software can implement the
memory in the MLAB memory block and so that the read-during-write behavior is not important.
Without the attribute, this design requires 512 registers and 240 ALUTs. With the attribute, the design
requires eight memory ALUTs and only 15 registers.

Table 16-35: Inferred RAM Using no_rw_check and MLAB Attributes

HDL Code

Verilog HDL
module async_ram (
 input [5:0] addr,
 input [7:0] data_in,
 input clk,
 input write,
 output [7:0] data_out);
 (* ramstyle = "MLAB, no_rw_check" *) reg [7:0] mem[0:63];
 assign data_out = mem[addr];
 always @ (posedge clk)
 begin
 if (write)
 mem[addr] = data_in;
 end
endmodule

VHDL
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram IS
 PORT (
 clock: IN STD_LOGIC;
 data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
 write_address: IN INTEGER RANGE 0 to 31;
 read_address: IN INTEGER RANGE 0 to 31;
 we: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0));
END ram;
ARCHITECTURE rtl OF ram IS
 TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
 SIGNAL ram_block: MEM;
 ATTRIBUTE ramstyle : string;
 ATTRIBUTE ramstyle of ram_block : signal is "MLAB , no_rw_
check";
 SIGNAL read_address_reg: INTEGER RANGE 0 to 31;
BEGIN
 PROCESS (clock)
 BEGIN
 IF (clock'event AND clock = '1') THEN
 IF (we = '1') THEN
 ram_block(write_address) <= data;
 END IF;
 read_address_reg <= read_address;
 END IF;
 END PROCESS;
 q <= ram_block(read_address_reg);
END rtl;

QPS5V1
2015.11.02 Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute 16-51

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Recommended HDL Coding Styles on page 12-1
For more information about recommended styles for inferring RAM and some of the issues involved
with different read-during-write conditions

• Add Pass-Through Logic to Inferred RAMs logic option
For more information about the Add Pass-Through Logic to Inferred RAMs logic option and the
supported devices

RAM Initialization File—for Inferred Memory
The ram_init_file attribute specifies the initial contents of an inferred memory with a .mif. The
attribute takes a string value containing the name of the RAM initialization file.

The ram_init_file attribute is supported for ROM too.

Table 16-36: Applying a ram_init_file Attribute

HDL Code

Verilog-1995
reg [7:0] mem[0:255] /* synthesis ram_init_file
= " my_init_file.mif" */;

 Verilog-2001
(* ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];

VHDL(12)
type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;
attribute ram_init_file : string;
attribute ram_init_file of ram :
signal is "my_init_file.mif";

Related Information
Recommended HDL Coding Styles on page 12-1
For more information about Inferring ROM Functions from HDL Code

Multiplier Style—for Inferred Multipliers
The multstyle attribute specifies the implementation style for multiplication operations (*) in your HDL
source code. You can use this attribute to specify whether you prefer the Compiler to implement a
multiplication operation in general logic or dedicated hardware, if available in the target device.

The multstyle attribute takes a string value of "logic" or "dsp", indicating a preferred implementation
in logic or in dedicated hardware, respectively. In Verilog HDL, apply the attribute to a module declara‐
tion, a variable declaration, or a specific binary expression that contains the * operator. In VHDL, apply
the synthesis attribute to a signal, variable, entity, or architecture.

(12) You can also initialize the contents of an inferred memory by specifying a default value for the
corresponding signal. In Verilog HDL, you can use an initial block to specify the memory contents. Quartus
Prime Integrated Synthesis automatically converts the default value into a .mif for the inferred RAM.

16-52 RAM Initialization File—for Inferred Memory
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_add_pass_through_logic_to_inferred_rams.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Specifying a multstyle of "dsp" does not guarantee that the Quartus Prime software can
implement a multiplication in dedicated DSP hardware. The final implementation depends on
several conditions, including the availability of dedicated hardware in the target device, the size of
the operands, and whether or not one or both operands are constant.

In addition to multstyle, the Quartus Prime software supports the syn_multstyle attribute name for
compatibility with other synthesis tools.

When applied to a Verilog HDL module declaration, the attribute specifies the default implementation
style for all instances of the * operator in the module. For example, in the following code examples, the
multstyle attribute directs the Quartus Prime software to implement all multiplications inside module
my_module in the dedicated multiplication hardware.

Table 16-37: Applying a multstyle Attribute to a Module Declaration

HDL Code

Verilog-1995
module my_module (...) /* synthesis multstyle = "dsp" */;

 Verilog-2001
(* multstyle = "dsp" *) module my_module(...);

When applied to a Verilog HDL variable declaration, the attribute specifies the implementation style for a
multiplication operator, which has a result directly assigned to the variable. The attribute overrides the
multstyle attribute with the enclosing module, if present.

In these examples, the multstyle attribute applied to variable result directs the Quartus Prime software
to implement a * b in logic rather than the dedicated hardware.

Table 16-38: Applying a multstyle Attribute to a Variable Declaration

HDL Code

 Verilog-2001
wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be
 //directly assigned to result

Verilog-1995
wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be

 //directly assigned to result

When applied directly to a binary expression that contains the * operator, the attribute specifies the
implementation style for that specific operator alone and overrides any multstyle attribute with the
target variable or enclosing module.

In this example, the multstyle attribute indicates that you must implement a * b in the dedicated
hardware.

QPS5V1
2015.11.02 Multiplier Style—for Inferred Multipliers 16-53

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-39: Applying a multstyle Attribute to a Binary Expression

HDL Code

Verilog-2001
wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp" *) b;

Note: You cannot use Verilog-1995 attribute syntax to apply the multstyle attribute to a binary
expression.

When applied to a VHDL entity or architecture, the attribute specifies the default implementation style
for all instances of the * operator in the entity or architecture.

In this example, the multstyle attribute directs the Quartus Prime software to use dedicated hardware, if
possible, for all multiplications inside architecture rtl of entity my_entity.

Table 16-40: Applying a multstyle Attribute to an Architecture

HDL Code

VHDL
architecture rtl of my_entity is
 attribute multstyle : string;
 attribute multstyle of rtl : architecture is "dsp";
begin

When applied to a VHDL signal or variable, the attribute specifies the implementation style for all
instances of the * operator, which has a result directly assigned to the signal or variable. The attribute
overrides the multstyle attribute with the enclosing entity or architecture, if present.

In this example, the multstyle attribute associated with signal result directs the Quartus Prime software
to implement a * b in logic rather than the dedicated hardware.

Table 16-41: Applying a multstyle Attribute to a Signal or Variable

HDL Code

VHDL
signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;

Full Case Attribute
A Verilog HDL case statement is full when its case items cover all possible binary values of the case
expression or when a default case statement is present. A full_case attribute attached to a case statement
header that is not full forces synthesis to treat the unspecified states as a don’t care value. VHDL case
statements must be full, so the attribute does not apply to VHDL.

Using this attribute on a case statement that is not full allows you to avoid the latch inference problems.

16-54 Full Case Attribute
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Latches have limited support in formal verification tools. Do not infer latches unintentionally, for
example, through an incomplete case statement when using formal verification.

Formal verification tools support the full_case synthesis attribute (with limited support for attribute
syntax, as described in Synthesis Attributes on page 16-21).

Using the full_case attribute might cause a simulation mismatch between the Verilog HDL functional
and the post-Quartus Prime simulation because unknown case statement cases can still function as latches
during functional simulation. For example, a simulation mismatch can occur with the code in Table
16-42 when sel is 2'b11 because a functional HDL simulation output behaves as a latch and the Quartus
Prime simulation output behaves as a don’t care value.

Note: Altera recommends making the case statement “full” in your regular HDL code, instead of using
the full_case attribute.

Table 16-42: A full_case Attribute

The case statement in this example is not full because you do not specify some sel binary values. Because you use
the full_case attribute, synthesis treats the output as “don’t care” when the sel input is 2'b11.

HDL Code

 Verilog HDL
module full_case (a, sel, y);
 input [3:0] a;
 input [1:0] sel;
 output y;
 reg y;
 always @ (a or sel)
 case (sel) // synthesis full_case
 2'b00: y=a[0];
 2'b01: y=a[1];
 2'b10: y=a[2];
 endcase
endmodule

Verilog-2001 syntax also accepts the statements in Table 16-43 in the case header instead of the
comment form as shown in Table 16-42.

Table 16-43: Syntax for the full_case Attribute

HDL Syntax

 Verilog-2001
(* full_case *) case (sel)

Related Information

• Synthesis Attributes on page 16-21
• Recommended Design Practices on page 11-1

For more information about avoiding latch inference problems

Parallel Case
The parallel_case attribute indicates that you must consider a Verilog HDL case statement as parallel;
that is, you can match only one case item at a time. Case items in Verilog HDL case statements might

QPS5V1
2015.11.02 Parallel Case 16-55

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

overlap. To resolve multiple matching case items, the Verilog HDL language defines a priority among case
items in which the case statement always executes the first case item that matches the case expression
value. By default, the Quartus Prime software implements the extra logic necessary to satisfy this priority
relationship.

Attaching a parallel_case attribute to a case statement header allows the Quartus Prime software to
consider its case items as inherently parallel; that is, at most one case item matches the case expression
value. Parallel case items simplify the generated logic.

In VHDL, the individual choices in a case statement might not overlap, so they are always parallel and this
attribute does not apply.

Altera recommends that you use this attribute only when the case statement is truly parallel. If you use
the attribute in any other situation, the generated logic does not match the functional simulation behavior
of the Verilog HDL.

Note: Altera recommends that you avoid using the parallel_case attribute, because you may mismatch
the Verilog HDL functional and the post-Quartus Prime simulation.

If you specify SystemVerilog-2005 as the supported Verilog HDL version for your design, you can use the
SystemVerilog keyword unique to achieve the same result as the parallel_case directive without
causing simulation mismatches.

This example shows a casez statement with overlapping case items. In functional HDL simulation, the
software prioritizes the three case items by the bits in sel. For example, sel[2] takes priority over
sel[1], which takes priority over sel[0]. However, the synthesized design can simulate differently
because the parallel_case attribute eliminates this priority. If more than one bit of sel is high, more
than one output (a, b, or c) is high as well, a situation that cannot occur in functional HDL simulation.

Table 16-44: A parallel_case Attribute

HDL Code

Verilog HDL
module parallel_case (sel, a, b, c);
 input [2:0] sel;
 output a, b, c;
 reg a, b, c;
 always @ (sel)
 begin
 {a, b, c} = 3'b0;
 casez (sel) // synthesis parallel_case
 3'b1??: a = 1'b1;
 3'b?1?: b = 1'b1;
 3'b??1: c = 1'b1;
 endcase
 end
endmodule

16-56 Parallel Case
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-45: Verilog-2001 Syntax

Verilog-2001 syntax also accepts the statements as shown in the following table in the case (or casez) header
instead of the comment form, as shown in Table 16-44.

HDL Syntax

Verilog-2001
(* parallel_case *) casez (sel)

Translate Off and On / Synthesis Off and On
The translate_off and translate_on synthesis directives indicate whether the Quartus Prime software
or a third-party synthesis tool should compile a portion of HDL code that is not relevant for synthesis.
The translate_off directive marks the beginning of code that the synthesis tool should ignore; the
translate_on directive indicates that synthesis should resume. You can also use the synthesis_on and
synthesis_off directives as a synonym for translate on and off.

You can use these directives to indicate a portion of code for simulation only. The synthesis tool reads
synthesis-specific directives and processes them during synthesis; however, third-party simulation tools
read the directives as comments and ignore them.

These examples show these directives.

Table 16-46: Translate Off and On

HDL Code

Verilog HDL
// synthesis translate_off
parameter tpd = 2; // Delay for simulation
#tpd;
// synthesis translate_on

VHDL
-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

VHDL 2008
/* synthesis translate_off */
use std.textio.all;
/* synthesis translate_on */

If you want to ignore only a portion of code in Quartus Prime Integrated Synthesis, you can use the
Altera-specific attribute keyword altera. For example, use the // altera translate_off
and // altera translate_on directives to direct Quartus Prime Integrated Synthesis to ignore a portion
of code that you intend only for other synthesis tools.

Ignore translate_off and synthesis_off Directives
The Ignore translate_off and synthesis_off Directives logic option directs Quartus Prime Integrated
Synthesis to ignore the translate_off and synthesis_off directives. Turning on this logic option
allows you to compile code that you want the third-party synthesis tools to ignore; for example, IP core
declarations that the other tools treat as black boxes but the Quartus Prime software can compile. To set

QPS5V1
2015.11.02 Translate Off and On / Synthesis Off and On 16-57

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the Ignore translate_off and synthesis_off Directives logic option, click Assignments > Settings >
Compiler Settings > Advanced Settings (Synthesis).

Related Information
Ignore translate_off and synthesis_off Directives logic option
For more information about the Ignore translate_off and synthesis_off Directives logic option and the
supported devices

Read Comments as HDL
The read_comments_as_HDL synthesis directive indicates that the Quartus Prime software should compile
a portion of HDL code that you commented out. This directive allows you to comment out portions of
HDL source code that are not relevant for simulation, while instructing the Quartus Prime software to
read and synthesize that same source code. Setting the read_comments_as_HDL directive to on indicates
the beginning of commented code that the synthesis tool should read; setting the read_comments_as_HDL
directive to off indicates the end of the code.

Note: You can use this directive with translate_off and translate_on to create one HDL source file
that includes an IP core instantiation for synthesis and a behavioral description for simulation.

Formal verification tools do not support the read_comments_as_HDL directive because the tools do not
recognize the directive.

In these examples, the Compiler synthesizes the commented code enclosed by read_comments_as_HDL
because the directive is visible to the Quartus Prime Compiler. VHDL 2008 allows block comments,
which comments are also supported for synthesis directives.

Note: Because synthesis directives are case sensitive in Verilog HDL, you must match the case of the
directive, as shown in the following examples.

Table 16-47: Read Comments as HDL

HDL Code

Verilog HDL
// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

VHDL
-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

VHDL 2008
/* synthesis read_comments_as_HDL on */
/* my_rom : entity lpm_rom
 port map (
 address => address,
 data => data,); */
 synthesis read_comments_as_HDL off */

16-58 Read Comments as HDL
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_ignore_translate_off.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use I/O Flipflops
The useioff attribute directs the Quartus Prime software to implement input, output, and output enable
flipflops (or registers) in I/O cells that have fast, direct connections to an I/O pin, when possible. To
improve I/O performance by minimizing setup, clock-to-output, and clock-to-output enable times, you
can apply the useioff synthesis attribute. The Fast Input Register, Fast Output Register, and Fast
Output Enable Register logic options support this synthesis attribute. You can also set this synthesis
attribute in the Assignment Editor.

The useioff synthesis attribute takes a boolean value. You can apply the value only to the port declara‐
tions of a top-level Verilog HDL module or VHDL entity (it is ignored if applied elsewhere). Setting the
value to 1 (Verilog HDL) or TRUE (VHDL) instructs the Quartus Prime software to pack registers into I/O
cells. Setting the value to 0 (Verilog HDL) or FALSE (VHDL) prevents register packing into I/O cells.

In Table 16-48 and Table 16-49, the useioff synthesis attribute directs the Quartus Prime software to
implement the a_reg, b_reg, and o_reg registers in the I/O cells corresponding to the a, b, and o ports,
respectively.

Table 16-48: Verilog HDL Code: The useioff Attribute

HDL Code

Verilog HDL
module top_level(clk, a, b, o);
 input clk;
 input [1:0] a, b /* synthesis useioff = 1 */;
 output [2:0] o /* synthesis useioff = 1 */;
 reg [1:0] a_reg, b_reg;
 reg [2:0] o_reg;
 always @ (posedge clk)
 begin
 a_reg <= a;
 b_reg <= b;
 o_reg <= a_reg + b_reg;
 end
 assign o = o_reg;
endmodule

Table 16-49 and Table 16-50 show that the Verilog-2001 syntax also accepts the type of statements
instead of the comment form in Table 16-48.

Table 16-49: Verilog-2001 Code: the useioff Attribute

HDL Code

Verilog-2001
(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

QPS5V1
2015.11.02 Use I/O Flipflops 16-59

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-50: VHDL Code: the useioff Attribute

HDL Code

VHDL
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is
 port (
 clk : in std_logic;
 a, b : in unsigned(1 downto 0);
 o : out unsigned(1 downto 0));
 attribute useioff : boolean;
 attribute useioff of a : signal is true;
 attribute useioff of b : signal is true;
 attribute useioff of o : signal is true;
end useioff_example;
architecture rtl of useioff_example is
 signal o_reg, a_reg, b_reg : unsigned(1 downto 0);
begin
 process(clk)
 begin
 if (clk = '1' AND clk'event) then
 a_reg <= a;
 b_reg <= b;
 o_reg <= a_reg + b_reg;
 end if;
 end process;
o <= o_reg;
end rtl;

Specifying Pin Locations with chip_pin
The chip_pin attribute allows you to assign pin locations in your HDL source. You can use the attribute
only on the ports of the top-level entity or module in your design. You can assign pins only to single-bit or
one-dimensional bus ports in your design.

For single-bit ports, the value of the chip_pin attribute is the name of the pin on the target device, as
specified by the pin table of the device.

Note: In addition to the chip_pin attribute, the Quartus Prime software supports the
altera_chip_pin_lc attribute name for compatibility with other synthesis tools. When using this
attribute in other synthesis tools, some older device families require an “@” symbol in front of each
pin assignment. In the Quartus Prime software, the “@” is optional.

Table 16-51: Applying Chip Pin to a Single Pin

These examples in this table show different ways of assigning my_pin1 to Pin C1 and my_pin2 to Pin 4 on a
different target device.

HDL Code

Verilog-1995
input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

 Verilog-2001
(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

16-60 Specifying Pin Locations with chip_pin
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

VHDL
entity my_entity is
port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4";

For bus I/O ports, the value of the chip pin attribute is a comma-delimited list of pin assignments. The
order in which you declare the range of the port determines the mapping of assignments to individual bits
in the port. To leave a bit unassigned, leave its corresponding pin assignment blank.

Table 16-52: Applying Chip Pin to a Bus of Pins

The example in this table assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and my_pin[0] to Pin_6.
HDL Code

Verilog-1995
input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

Table 16-53: Applying Chip Pin to Part of a Bus

The example in this table reverses the order of the signals in the bus, assigning my_pin[0] to Pin_4 and
my_pin[2] to Pin_6 but leaves my_pin[1] unassigned.

HDL Code

Verilog-1995
input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

Table 16-54: Applying Chip Pin to Part of a Bus of Pins

The example in this table assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but leaves my_pin[1] unassigned.
HDL Code

VHDL
entity my_entity is
port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;
attribute chip_pin of my_pin: signal is "4, , 6";

Table 16-55: VHDL and Verilog-2001 Examples: Assigning Pin Location and I/O Standard

HDL Code

VHDL
attribute altera_chip_pin_lc: string;
attribute altera_attribute: string;
attribute altera_chip_pin_lc of clk: signal is "B13";
attribute altera_attribute of clk:signal is "-name IO_STANDARD ""3.3-
V LVCMOS""";

QPS5V1
2015.11.02 Specifying Pin Locations with chip_pin 16-61

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Code

 Verilog-2001
(* altera_attribute = "-name IO_STANDARD \"3.3-V LVCMOS\"" *)(* chip_
pin = "L5" *)input clk;
(* altera_attribute = "-name IO_STANDARD LVDS" *)(* chip_pin = "L4"
*)input sel;
output [3:0] data_o, input [3:0] data_i);

Using altera_attribute to Set Quartus Prime Logic Options
The altera_attribute attribute allows you to apply Quartus Prime logic options and assignments to an
object in your HDL source code. You can set this attribute on an entity, architecture, instance, register,
RAM block, or I/O pin. You cannot set it on an arbitrary combinational node such as a net. With
altera_attribute, you can control synthesis options from your HDL source even when the options lack
a specific HDL synthesis attribute. You can also use this attribute to pass entity-level settings and
assignments to phases of the Compiler flow that follow Analysis & Synthesis, such as Fitting.

Assignments or settings made through the Quartus Prime software, the .qsf, or the Tcl interface take
precedence over assignments or settings made with the altera_attribute synthesis attribute in your
HDL code.

The attribute value is a single string containing a list of .qsf variable assignments separated by semicolons:

-name <variable_1> <value_1>;-name <variable_2> <value_2>[;…]

If the Quartus Prime option or assignment includes a target, source, and section tag, you must use the
syntax in this example for each .qsf variable assignment:

-name <variable> <value>
-from <source> -to <target> -section_id <section>

This example shows the syntax for the full attribute value, including the optional target, source, and
section tags for two different .qsf assignments:

" -name <variable_1> <value_1> [-from <source_1>] [-to <target_1>] [-section_id \
<section_1>]; -name <variable_2> <value_2> [-from <source_2>] [-to <target_2>] \
[-section_id <section_2>] "

Table 16-56: Example Usage

If the assigned value of a variable is a string of text, you must use escaped quotes around the value in Verilog HDL
or double-quotes in VHDL:

HDL Code

 Assigned Value of a Variable in Verilog HDL
(With Nonexistent Variable and Value Terms) "VARIABLE_NAME \"STRING_VALUE\""

Assigned Value of a Variable in VHDL (With
Nonexistent Variable and Value Terms) "VARIABLE_NAME ""STRING_VALUE"""

To find the .qsf variable name or value corresponding to a specific Quartus Prime option or assignment,
you can set the option setting or assignment in the Quartus Prime software, and then make the changes in
the .qsf.

16-62 Using altera_attribute to Set Quartus Prime Logic Options
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Applying altera_attribute to an Instance

These examples use altera_attribute to set the power-up level of an inferred register.

Table 16-57: Applying altera_attribute to an Instance

These examples use altera_attribute to set the power-up level of an inferred register.
HDL Code

 Verilog-1995
reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL
HIGH" */;

 Verilog-2001
(* altera_attribute = "-name POWER_UP_LEVEL HIGH" *) reg my_reg;

VHDL
signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "-name POWER_UP_
LEVEL HIGH";

Note: For inferred instances, you cannot apply the attribute to the instance directly. Therefore, you must
apply the attribute to one of the output nets of the instance. The Quartus Prime software automati‐
cally moves the attribute to the inferred instance.

Applying altera_attribute to an Entity

These examples use the altera_attribute to disable the Auto Shift Register Replacement synthesis
option for an entity. To apply the Altera Attribute to a VHDL entity, you must set the attribute on its
architecture rather than on the entity itself.

Table 16-58: Applying altera_attribute to an Entity

HDL Code

 Verilog-1995
module my_entity(…) /* synthesis altera_attribute = "-name AUTO_
SHIFT_REGISTER_RECOGNITION OFF" */;

 Verilog-2001
(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF"
*) module my_entity(…) ;

 VHDL
entity my_entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
attribute altera_attribute : string;
-- Attribute set on architecture, not entity
attribute altera_attribute of rtl: architecture is "-name AUTO_
SHIFT_REGISTER_RECOGNITION OFF";
begin
-- The architecture body
end rtl;

QPS5V1
2015.11.02 Using altera_attribute to Set Quartus Prime Logic Options 16-63

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Applying altera_attribute with the -to Option

You can also use altera_attribute for more complex assignments that have more than one instance. In
Table 16-59, the altera_attribute cuts all timing paths from reg1 to reg2, equivalent to this Tcl or .qsf
command, as shown in the example below:

set_instance_assignment -name CUT ON -from reg1 -to reg2

Table 16-59: Applying altera_attribute with the -to Option

HDL Code

 Verilog-1995
reg reg2;
reg reg1 /* synthesis altera_attribute = "-name CUT ON -to reg2"
*/;

 Verilog-2001 and
SystemVerilog reg reg2;

(* altera_attribute = "-name CUT ON -to reg2" *) reg reg1;

 VHDL
signal reg1, reg2 : std_logic;
attribute altera_attribute: string;
attribute altera_attribute of reg1 : signal is "-name CUT ON -to
reg2";

You can specify either the -to option or the -from option in a single altera_attribute; Integrated
Synthesis automatically sets the remaining option to the target of the altera_attribute. You can also
specify wildcards for either option. For example, if you specify “*” for the -to option instead of reg2 in
these examples, the Quartus Prime software cuts all timing paths from reg1 to every other register in this
design entity.

You can use the altera_attribute only for entity-level settings, and the assignments (including
wildcards) apply only to the current entity.

Related Information

• Synthesis Attributes on page 16-21
• Quartus Prime Settings File Manual

Lists all variable names

Analyzing Synthesis Results
After performing synthesis, you can check your synthesis results in the Analysis & Synthesis section of
the Compilation Report and the Project Navigator.

Analysis & Synthesis Section of the Compilation Report
The Compilation Report, which provides a summary of results for the project, appears after a successful
compilation. After Analysis & Synthesis, the Summary section of the Compilation Report provides a
summary of utilization based on synthesis data, before Fitter optimizations have occurred. The Analysis
& Synthesis section lists synthesis-specific information.

16-64 Analyzing Synthesis Results
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Analysis & Synthesis includes various report sections, including a list of the source files read for the
project, the resource utilization by entity after synthesis, and information about state machines, latches,
optimization results, and parameter settings.

Related Information
Analysis Synthesis Summary Reports
For more information about each report section

Project Navigator
The Hierarchy tab of the Project Navigator provides a view of the project hierarchy and a summary of
resource and device information about the current project. After Analysis & Synthesis, before the Fitter
begins, the Project Navigator provides a summary of utilization based on synthesis data, before Fitter
optimizations have occurred.

If an entity in the Hierarchy tab contains parameter settings, a tooltip displays the settings when you hold
the pointer over the entity.

Upgrade IP Components Dialog Box

In the Quartus Prime software version 12.1 SP1 and later, the Upgrade IP Components dialog box allows
you to upgrade all outdated IP in your project after you move to a newer version of the Quartus Prime
software.

Related Information
Upgrade IP Components dialog box
For more information about the Upgrade IP Components dialog box

Analyzing and Controlling Synthesis Messages
You can analyze the generated messages during synthesis and control which messages appear during
compilation.

Quartus Prime Messages
The messages that appear during Analysis & Synthesis describe many of the optimizations during the
synthesis stage, and provide information about how the software interprets your design. Altera
recommends checking the messages to analyze Critical Warnings and Warnings, because these messages
can relate to important design problems. Read the Info messages to get more information about how the
software processes your design.

The software groups the messages by following types: Info, Warning, Critical Warning, and Error.

You can specify the type of Analysis & Synthesis messages that you want to view by selecting the Analysis
& Synthesis Message Level option. To specify the display level, click Assignments > Settings > Compiler
Settings > Advanced Settings (Synthesis)

Related Information

• About the Messages Window
For more information about the Messages window and message suppression

QPS5V1
2015.11.02 Project Navigator 16-65

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_analysis_summary.htm
http://quartushelp.altera.com/current/index.htm#global/pjn/pjn_com_regenerate_ip.htm
http://quartushelp.altera.com/current/index.htm#report/msw/msw_com_msw.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• About Message Suppression
For more information about the Messages window and message suppression

• Managing Quartus Prime Projects on page 1-1
For more information about the Messages

VHDL and Verilog HDL Messages
The Quartus Prime software issues a variety of messages when it is analyzing and elaborating the Verilog
HDL and VHDL files in your design. These HDL messages are a subset of all Quartus Prime messages that
help you identify potential problems early in the design process.

HDL messages fall into the following categories:

• Info message—lists a property of your design.
• Warning message—indicates a potential problem in your design. Potential problems come from a

variety of sources, including typos, inappropriate design practices, or the functional limitations of your
target device. Though HDL warning messages do not always identify actual problems, Altera
recommends investigating code that generates an HDL warning. Otherwise, the synthesized behavior
of your design might not match your original intent or its simulated behavior.

• Error message—indicates an actual problem with your design. Your HDL code can be invalid due to a
syntax or semantic error, or it might not be synthesizable as written.

In this example, the sensitivity list contains multiple copies of the variable i. While the Verilog HDL
language does not prohibit duplicate entries in a sensitivity list, it is clear that this design has a typing
error: Variable j should be listed on the sensitivity list to avoid a possible simulation or synthesis
mismatch.

//dup.v
module dup(input i, input j, output reg o);
always @ (i or i)
 o = i & j;
endmodule

When processing the HDL code, the Quartus Prime software generates the following warning message.

Warning: (10276) Verilog HDL sensitivity list warning at dup.v(2): sensitivity list
contains multiple entries for "i".

In Verilog HDL, variable names are case sensitive, so the variables my_reg and MY_REG below are two
different variables. However, declaring variables that have names in different cases is confusing, especially
if you use VHDL, in which variables are not case sensitive.

// namecase.v
module namecase (input i, output o);
 reg my_reg;
 reg MY_REG;
 assign o = i;
endmodule

When processing the HDL code, the Quartus Prime software generates the following informational
message:

Info: (10281) Verilog HDL information at namecase.v(3): variable name "MY_REG" and
variable name "my_reg" should not differ only in case.

16-66 VHDL and Verilog HDL Messages
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/msw/msw_view_message_suppression.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In addition, the Quartus Prime software generates additional HDL info messages to inform you that this
small design does not use neither my_reg nor MY_REG:

Info: (10035) Verilog HDL or VHDL information at namecase.v(3): object "my_reg"
declared but not used
Info: (10035) Verilog HDL or VHDL information at namecase.v(4): object "MY_REG"
declared but not used

The Quartus Prime software allows you to control how many HDL messages you can view during the
Analysis & Elaboration of your design files. You can set the HDL Message Level to enable or disable
groups of HDL messages, or you can enable or disable specific messages.

Related Information
Synthesis Directives on page 16-23
For more information about synthesis directives and their syntax

Setting the HDL Message Level

The HDL Message Level specifies the types of messages that the Quartus Prime software displays when it
is analyzing and elaborating your design files.

Table 16-60: HDL Info Message Level

Level Purpose Description

Level1 High-severity messages
only

If you want to view only the HDL messages that identify likely
problems with your design, select Level1. When you select Level1, the
Quartus Prime software issues a message only if there is an actual
problem with your design.

Level2 High-severity and
medium-severity
messages

If you want to view additional HDL messages that identify possible
problems with your design, select Level2. Level2 is the default setting.

Level3 All messages, including
low-severity messages

If you want to view all HDL info and warning messages, select Level3.
This level includes extra “LINT” messages that suggest changes to
improve the style of your HDL code.

You must address all issues reported at the Level1 setting. The default HDL message level is Level2.

To set the HDL Message Level in the Quartus Prime software, follow these steps:

1. Click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis)
2. Set the necessary message level from the pull-down menu in the HDL Message Level list, and then

click OK.

You can override this default setting in a source file with the message_level synthesis directive,
which takes the values level1, level2, and level3, as shown in the following table.

QPS5V1
2015.11.02 Setting the HDL Message Level 16-67

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-61: HDL Examples of message_level Directive

HDL Code

Verilog HDL
// altera message_level level1
or
/* altera message_level level3 */

VHDL
-- altera message_level level2

A message_level synthesis directive remains effective until the end of a file or until the next
message_level directive. In VHDL, you can use the message_level synthesis directive to set the
HDL Message Level for entities and architectures, but not for other design units. An HDL Message
Level for an entity applies to its architectures, unless overridden by another message_level directive.
In Verilog HDL, you can use the message_level directive to set the HDL Message Level for a module.

Enabling or Disabling Specific HDL Messages by Module/Entity

Message ID is in parentheses at the beginning of the message. Use the Message ID to enable or disable a
specific HDL info or warning message. Enabling or disabling a specific message overrides its HDL
Message Level. This method is different from the message suppression in the Messages window because
you can disable messages for a specific module or a specific entity. This method applies only to the HDL
messages, and if you disable a message with this method, the Quartus Prime software lists the message as a
suppressed message.

To disable specific HDL messages in the Quartus Prime software, follow these steps:

1. Click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis).
2. In the Advanced Message Settings dialog box, add the Message IDs you want to enable or disable.

To enable or disable specific HDL messages in your HDL, use the message_on and message_off
synthesis directives. These directives require a space-separated list of Message IDs. You can enable or
disable messages with these synthesis directives immediately before Verilog HDL modules, VHDL
entities, or VHDL architectures. You cannot enable or disable a message during an HDL construct.

A message enabled or disabled via a message_on or message_off synthesis directive overrides its HDL
Message Level or any message_level synthesis directive. The message remains disabled until the end
of the source file or until you use another message_on or message_off directive to change the status of
the message.

Table 16-62: HDL message_off Directive for Message with ID 10000

HDL Code

 Verilog HDL
// altera message_off 10000
or
/* altera message_off 10000 */

 VHDL
-- altera message_off 10000

16-68 Enabling or Disabling Specific HDL Messages by Module/Entity
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Node-Naming Conventions in Quartus Prime Integrated Synthesis
Whenever possible, Quartus Prime Integrated Synthesis uses wire or signal names from your source code
to name nodes such as LEs or ALMs. Some nodes, such as registers, have predictable names that do not
change when a design is resynthesized, although certain optimizations can affect register names. The
names of other nodes, particularly LEs or ALMs that contain only combinational logic, can change due to
logic optimizations that the software performs.

Hierarchical Node-Naming Conventions
To make each name in your design unique, the Quartus Prime software adds the hierarchy path to the
beginning of each name. The “|” separator indicates a level of hierarchy. For each instance in the
hierarchy, the software adds the entity name and the instance name of that entity, with the “:” separator
between each entity name and its instance name. For example, if a design defines entity A with the name
my_A_inst, the hierarchy path of that entity would be A:my_A_inst. You can obtain the full name of any
node by starting with the hierarchical instance path, followed by a “|”, and ending with the node name
inside that entity.

This example shows you the convention:

<entity 0>:<instance_name 0>|<entity 1>:<instance_name 1>|...|<instance_name n>|
<node_name>

For example, if entity A contains a register (DFF atom) called my_dff, its full hierarchy name would be
A:my_A_inst|my_dff.

To instruct the Compiler to generate node names that do not contain entity names, on the Compilation
Process Settings page of the Settings dialog box, click More Settings, and then turn off Display entity
name for node name.

With this option turned off, the node names use the convention in shown in this example:

<instance_name 0>|<instance_name 1>|...|<instance_name n> |<node_name>

Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
In Verilog HDL and VHDL, inferred registers use the names of the reg or signal connected to the
output.

Table 16-63: HDL Example of a Register that Creates my_dff_out DFF Primitive

HDL Register Code

Verilog HDL
wire dff_in, my_dff_out, clk;
always @ (posedge clk)
my_dff_out <= dff_in;

QPS5V1
2015.11.02 Node-Naming Conventions in Quartus Prime Integrated Synthesis 16-69

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Register Code

VHDL
signal dff_in, my_dff_out, clk;
process (clk)
begin
if (rising_edge(clk)) then
my_dff_out <= dff_in;
end if;
end process;

AHDL designs explicitly declare DFF registers rather than infer, so the software uses the user-declared
name for the register.

For schematic designs using a .bdf, your design names all elements when you instantiate the elements in
your design, so the software uses the name you defined for the register or DFF.

In the special case that a wire or signal (such as my_dff_out in the preceding examples) is also an output
pin of your top-level design, the Quartus Prime software cannot use that name for the register (for
example, cannot use my_dff_out) because the software requires that all logic and I/O cells have unique
names. Here, Quartus Prime Integrated Synthesis appends ~reg0 to the register name.

Table 16-64: Verilog HDL Register Feeding Output Pin

For example, the Verilog HDL code example in this table generates a register called q~reg0.
HDL Code

Verilog HDL
module my_dff (input clk, input d, output q);
always @ (posedge clk)
q <= d;
endmodule

This situation occurs only for registers driving top-level pins. If a register drives a port of a lower level of
the hierarchy, the software removes the port during hierarchy flattening and the register retains its
original name, in this case, q.

Register Changes During Synthesis
On some occasions, you might not find registers that you expect to view in the synthesis netlist. Logic
optimization might remove registers and synthesis optimizations might change the names of the registers.
Common optimizations include inference of a state machine, counter, adder-subtractor, or shift register
from registers and surrounding logic. Other common register changes occur when the software packs
these registers into dedicated hardware on the FPGA, such as a DSP block or a RAM block.

The following factors can affect register names:

• Synthesis and Fitting Optimizations on page 16-71
• State Machines on page 16-71
• Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions on page 16-72
• Packed Input and Output Registers of RAM and DSP Blocks on page 16-72

16-70 Register Changes During Synthesis
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synthesis and Fitting Optimizations

Logic optimization during synthesis might remove registers if you do not connect the registers to inputs
or outputs in your design, or if you can simplify the logic due to constant signal values. Synthesis
optimizations might change register names, such as when the software merges duplicate registers to
reduce resource utilization.

NOT-gate push back optimizations can affect registers that use preset signals. This type of optimization
can impact your timing assignments when the software uses registers as clock dividers. If this situation
occurs in your design, change the clock settings to work on the new register name.

Synthesis netlist optimizations often change node names because the software can combine or duplicate
registers to optimize your design.

The Quartus Prime Compilation Report provides a list of registers that synthesis optimizations remove,
and a brief reason for the removal. To generate the Quartus Prime Compilation Report, follow these steps:

1. In the Analysis & Synthesis folder, open Optimization Results.
2. Open Register Statistics, and then click the Registers Removed During Synthesis report.
3. Click Removed Registers Triggering Further Register Optimizations.

The second report contains a list of registers that causes synthesis optimizations to remove other registers
from your design. The report provides a brief reason for the removal, and a list of registers that synthesis
optimizations remove due to the removal of the initial register.

Quartus Prime Integrated Synthesis creates synonyms for registers duplicated with the Maximum Fan-
Out option (or maxfan attribute). Therefore, timing assignments applied to nodes that are duplicated with
this option are applied to the new nodes as well.

The Quartus Prime Fitter can also change node names after synthesis (for example, when the Fitter uses
register packing to pack a register into an I/O element, or when physical synthesis modifies logic). The
Fitter creates synonyms for duplicated registers so timing analysis can use the existing node name when
applying assignments.

You can instruct the Quartus Prime software to preserve certain nodes throughout compilation so you
can use them for verification or making assignments.

Related Information

• Netlist Optimizations and Physical Synthesis
For more information about the type of optimizations performed by synthesis netlist optimizations

• Preserving Register Names on page 16-72
For more information about preserving certain nodes throughout compilation

State Machines

If your HDL code infers a state machine, the software maps the registers that represent the states into a
new set of registers that implement the state machine. Most commonly, the software converts the state
machine into a one-hot form in which one register represents each state. In this case, for Verilog HDL or
VHDL designs, the registers take the name of the state register and the states.

For example, consider a Verilog HDL state machine in which the states are parameter state0 = 1,
state1 = 2, state2 = 3, and in which the software declares the state machine register as reg [1:0]

QPS5V1
2015.11.02 Synthesis and Fitting Optimizations 16-71

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471329493/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

my_fsm. In this example, the three one-hot state registers are my_fsm.state0, my_fsm.state1, and
my_fsm.state2.

An AHDL design explicitly specifies state machines with a state machine name. Your design names state
machine registers with synthesized names based on the state machine name, but not the state names. For
example, if a my_fsm state machine has four state bits, The software might synthesize these state bits with
names such as my_fsm~12, my_fsm~13, my_fsm~14, and my_fsm~15.

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions

The Quartus Prime software infers IP cores from Verilog HDL and VHDL code for logic that forms
adder-subtractors, shift registers, RAM, ROM, and arithmetic functions that are placed in DSP blocks.

Because adder-subtractors are part of an IP core instead of generic logic, the combinational logic exists in
the design with different names. For shift registers, memory, and DSP functions, the software implements
the registers and logic inside the dedicated RAM or DSP blocks in the device. Thus, the registers are not
visible as separate LEs or ALMs.

Related Information
Recommended HDL Coding Styles on page 12-1
For information about inferring IP cores

Packed Input and Output Registers of RAM and DSP Blocks

The software packs registers into the input registers and output registers of RAM and DSP blocks, so that
they are not visible as separate registers in LEs or ALMs.

Related Information
Recommended HDL Coding Styles on page 12-1
For information about packing registers into RAM and DSP IP cores

Preserving Register Names
Altera recommends that you preserve certain register names for verification or debugging, or to ensure
that you applied timing assignments correctly. Quartus Prime Integrated Synthesis preserves certain
nodes automatically if the software uses the nodes in a timing constraint.

Related Information

• Preserve Registers on page 16-36
Use the preserve attribute to instruct the Compiler not to minimize or remove a specified register
during synthesis optimizations or register netlist optimizations

• Noprune Synthesis Attribute/Preserve Fan-out Free Register Node on page 16-38
Use the noprune attribute to preserve a fan-out-free register through the entire compilation flow

• Disable Register Merging/Don’t Merge Register on page 16-37
Use the synthesis attribute syn_dont_merge to ensure that the Compiler does not merge registers with
other registers

Node-Naming Conventions for Combinational Logic Cells
Whenever possible for Verilog HDL, VHDL, and AHDL code, the Quartus Prime software uses wire
names that are the targets of assignments, but can change the node names due to synthesis optimizations.

16-72 Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, consider the Verilog HDL code in this example. Quartus Prime Integrated Synthesis uses the
names c, d, e, and f for the generated combinational logic cells.

wire c;
reg d, e, f;
assign c = a | b;
always @ (a or b)
d = a & b;
always @ (a or b) begin : my_label
e = a ^ b;
end
always @ (a or b)
f = ~(a | b);

For schematic designs using a .bdf, your design names all elements when you instantiate the elements in
your design and the software uses the name you defined when possible.

If logic cells are packed with registers in device architectures such as the Stratix and Cyclone device
families, those names might not appear in the netlist after fitting. In other devices, such as newer families
in the Stratix and Cyclone series device families, the register and combinational nodes are kept separate
throughout the compilation, so these names are more often maintained through fitting.

When logic optimizations occur during synthesis, it is not always possible to retain the initial names as
described. Sometimes, synthesized names are used, which are the wire names with a tilde (~) and a
number appended. For example, if a complex expression is assigned to wire w and that expression
generates several logic cells, those cells can have names such as w, w~1, and w~2. Sometimes the original
wire name w is removed, and an arbitrary name such as rtl~123 is created. Quartus Prime Integrated
Synthesis attempts to retain user names whenever possible. Any node name ending with ~<number> is a
name created during synthesis, which can change if the design is changed and re-synthesized. Knowing
these naming conventions helps you understand your post-synthesis results, helping you to debug your
design or create assignments.

During synthesis, the software maintains combinational clock logic by not changing nodes that might be
clocks. The software also maintains or protects multiplexers in clock trees, so that the TimeQuest analyzer
has information about which paths are unate, to allow complete and correct analysis of combinational
clocks. Multiplexers often occur in clock trees when the software selects between different clocks. To help
with the analysis of clock trees, the software ensures that each multiplexer encountered in a clock tree is
broken into 2:1 multiplexers, and each of those 2:1 multiplexers is mapped into one lookup table
(independent of the device family). This optimization might result in a slight increase in area, and for
some designs a decrease in timing performance. To disable the option, click Assignments > Settings >
Compiler Settings > Advanced Settings (Synthesis) > Clock MUX Protection.

Related Information
Clock MUX Protection logic option
For more information about Clock MUX Protection logic option and a list of supported devices

Preserving Combinational Logic Names
You can preserve certain combinational logic node names for verification or debugging, or to ensure that
timing assignments are applied correctly.

Use the keep attribute to keep a wire name or combinational node name through logic synthesis
minimizations and netlist optimizations.

QPS5V1
2015.11.02 Preserving Combinational Logic Names 16-73

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_synth_clock_mux_protection.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For any internal node in your design clock network, use keep to protect the name so that you can apply
correct clock settings. Also, set the attribute for combinational logic involved in cut and -through
assignments.

Note: Setting the keep attribute for combinational logic can increase the area utilization and increase the
delay of the final mapped logic because the attribute requires the insertion of extra combinational
logic. Use the attribute only when necessary.

Related Information
Keep Combinational Node/Implement as Output of Logic Cell on page 16-38

Scripting Support
You can run procedures and make settings in a Tcl script. You can also run some procedures at a
command prompt. For detailed information about scripting command options, refer to the Quartus
Prime Command-Line and Tcl API Help browser.

To run the Help browser, type the command at the command prompt shown in this example:

quartus_sh --qhelp

You can specify many of the options either on an instance, at the global level, or both.

To make a global assignment, use the Tcl command shown in this example:

set_global_assignment -name <QSF Variable Name> <Value>

To make an instance assignment, use the Tcl command shown in this example:

set_instance_assignment -name <QSF Variable Name> <Value>\ -to <Instance Name>

To set the Synthesis Effort option at the command line, use the --effort option with the quartus_map
executable shown in this example:

quartus_map <Design name> --effort= "auto | fast"

Related Information

• Tcl Scripting
For more information about Tcl scripting

• Quartus Prime Settings File Manual
For more information about all settings and constraints in the Quartus Prime software

• Command-Line Scripting
For more information about command-line scripting

• API Functions for Tcl
For more information about Tcl scripting

• Synthesis Effort on page 16-29

16-74 Scripting Support
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Adding an HDL File to a Project and Setting the HDL Version
To add an HDL or schematic entry design file to your project, use the Tcl assignments shown in this
example:

set_global_assignment –name VERILOG_FILE <file name>.<v|sv>
set_global_assignment –name SYSTEMVERILOG_FILE <file name>.sv
set_global_assignment –name VHDL_FILE <file name>.<vhd|vhdl>
set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

Note: You can use any file extension for design files, as long as you specify the correct language when
adding the design file. For example, you can use .h for Verilog HDL header files.

To specify the Verilog HDL or VHDL version, use the option shown in this example, at the end of the
VERILOG_FILE or VHDL_FILE command:

- HDL_VERSION <language version>

The variable <language version> takes one of the following values:

• VERILOG_1995

• VERILOG_2001

• SYSTEMVERILOG_2005

• VHDL_1987

• VHDL_1993

• VHDL_2008

For example, to add a Verilog HDL file called my_file.v written in Verilog-1995, use the command shown
in this example:

set_global_assignment –name VERILOG_FILE my_file.v –HDL_VERSION \ VERILOG_1995

In this example, the syn_encoding attribute associates a binary encoding with the states in the
enumerated type count_state. In this example, the states are encoded with the following values: zero =
"11", one = "01", two = "10", three = "00".

ARCHITECTURE rtl OF my_fsm IS
 TYPE count_state is (zero, one, two, three);
 ATTRIBUTE syn_encoding : STRING;
 ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
 SIGNAL present_state, next_state : count_state;
BEGIN

You can also use the syn_encoding attribute in Verilog HDL to direct the synthesis tool to use the
encoding from your HDL code, instead of using the State Machine Processing option.

The syn_encoding value "user" instructs the Quartus Prime software to encode each state with
its corresponding value from the Verilog HDL source code. By changing the values of your state
constants, you can change the encoding of your state machine.

In Example 16-8, the states are encoded as follows:

init = "00"
last = "11"

QPS5V1
2015.11.02 Adding an HDL File to a Project and Setting the HDL Version 16-75

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

next = "01"
later = "10"

Example 16-8: Verilog-2001 and SystemVerilog Code: Specifying User-Encoded States with the
syn_encoding Attribute

(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin
case (state)
init:
out = 2'b01;
next:
out = 2'b10;
later:
out = 2'b11;
last:
out = 2'b00;
endcase
end

Without the syn_encoding attribute, the Quartus Prime software encodes the state machine
based on the current value of the State Machine Processing logic option.

If you also specify a safe state machine (as described in Safe State Machine on page 16-33),
separate the encoding style value in the quotation marks from the safe value with a comma, as
follows: “safe, one-hot” or “safe, gray”.

Related Information

• Safe State Machine on page 16-33
• Manually Specifying State Assignments Using the syn_encoding Attribute on page 16-31

Assigning a Pin
To assign a signal to a pin or device location, use the Tcl command shown in this example:

set_location_assignment -to <signal name> <location>

Valid locations are pin location names. Some device families also support edge and I/O bank locations.
Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and EDGE_RIGHT. I/O bank locations include
IOBANK_1 to IOBANK_n, where n is the number of I/O banks in a device.

Creating Design Partitions for Incremental Compilation
To create a partition, use the command shown in this example:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <file name> variable is the name used for internally generated netlist files during incremental
compilation. If you create the partition in the Quartus Prime software, netlist files are named automati‐
cally by the Quartus Prime software based on the instance name. If you use Tcl to create your partitions,
you must assign a custom file name that is unique across all partitions. For the top-level partition, the
specified file name is ignored, and you can use any dummy value. To ensure the names are safe and

16-76 Assigning a Pin
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

platform independent, file names should be unique, regardless of case. For example, if a partition uses the
file name my_file, no other partition can use the file name MY_FILE. To make file naming simple, Altera
recommends that you base each file name on the corresponding instance name for the partition.

The <destination> is the short hierarchy path of the entity. A short hierarchy path is the full hierarchy
path without the top-level name, for example: "ram:ram_unit|altsyncram:altsyncram_component"
(with quotation marks). For the top-level partition, you can use the pipe (|) symbol to represent the top-
level entity.

The <partition name> is the partition name you designate, which should be unique and less than 1024
characters long. The name may only consist of alphanumeric characters, as well as pipe (|), colon (:),
and underscore (_) characters. Altera recommends enclosing the name in double quotation marks (" ").

Related Information
Node-Naming Conventions in Quartus Prime Integrated Synthesis on page 16-69
For more information about hierarchical naming conventions

Quartus Prime Synthesis Options

Related Information
Logic options
For more information about the .qsf variable names and applicable values for the settings

Document Revision History
Table 16-65: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.
2015.05.04 15.0.0 • Removed support for early timing estimate feature.

• Removed the note on the assignment of the RAM style
attributes as it is no longer relevant.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis
Settings, and Physical Optimization Settings to Compiler
Settings.

2014.06.30 14.0.0 Template update.
November
2013

13.1.0 • Added a note regarding ROM inference using the ram_init_
file in “RAM Initialization File—for Inferred Memory” on
page 16–61.

May 2013 13.0.0 • Added “Verilog HDL Configuration” on page 16–6.
• Added “RAM Style Attribute—For Shift Registers Inference”

on page 16–57.
• Added “Upgrade IP Components Dialog Box” on page 16–

75.

June 2012 12.0.0 • Updated “Design Flow” on page 16–2.

QPS5V1
2015.11.02 Quartus Prime Synthesis Options 16-77

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_list_log_op.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November
2011

11.1.0 • Updated “Language Support” on page 16–5, “Incremental
Compilation” on page 16–22, “Quartus Prime Synthesis
Options” on page 16–24.

May 2011 11.0.0 • Updated “Specifying Pin Locations with chip_pin” on
page 14–65, and “Shift Registers” on page 14–48.

• Added a link to Quartus Prime Help in “SystemVerilog
Support” on page 14–5.

• Added Example 14–106 and Example 14–107 on page 14–67.

December
2010

10.1.0 • Updated “Verilog HDL Support” on page 13–4 to include
Verilog-2001 support.

• Updated “VHDL-2008 Support” on page 13–9 to include the
condition operator (explicit and implicit) support.

• Rewrote “Limiting Resource Usage in Partitions” on
page 13–32.

• Added “Creating LogicLock Regions” on page 13–32 and
“Using Assignments to Limit the Number of RAM and DSP
Blocks” on page 13–33.

• Updated “Turning Off the Add Pass-Through Logic to
Inferred RAMs no_rw_check Attribute” on page 13–55.

• Updated “Auto Gated Clock Conversion” on page 13–28.
• Added links to Quartus Prime Help.

16-78 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

July 2010 10.0.0 • Removed Referenced Documents section.
• Added “Synthesis Seed” on page 9–36 section.
• Updated the following sections:

“SystemVerilog Support” on page 9–5

“VHDL-2008 Support” on page 9–10

“Using Parameters/Generics” on page 9–16

“Parallel Synthesis” on page 9–21

“Limiting Resource Usage in Partitions” on page 9–32

“Synthesis Effort” on page 9–35

“Synthesis Attributes” on page 9–25

“Synthesis Directives” on page 9–27

“Auto Gated Clock Conversion” on page 9–29

“State Machine Processing” on page 9–36

“Multiply-Accumulators and Multiply-Adders” on page 9–50

“Resource Aware RAM, ROM, and Shift-Register Inference”
on page 9–52

“RAM Style and ROM Style—for Inferred Memory” on
page 9–53

“Turning Off the Add Pass-Through Logic to Inferred RAMs
no_rw_check Attribute” on page 9–55

“Using altera_attribute to Set Quartus Prime Logic Options”
on page 9–68

“Adding an HDL File to a Project and Setting the HDL
Version” on page 9–83

“Creating Design Partitions for Incremental Compilation” on
page 9–85

“Inferring Multiplier, DSP, and Memory Functions from
HDL Code” on page 9–50

• Updated Table 9–9 on page 9–86.

December
2009

9.1.1 • Added information clarifying inheritance of Synthesis
settings by lower-level entities, including Altera and third-
party IP

• Updated “Keep Combinational Node/Implement as Output
of Logic Cell” on page 9–46

QPS5V1
2015.11.02 Document Revision History 16-79

Quartus Prime Integrated Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November
2009

9.1.0 • Updated the following sections:

“Initial Constructs and Memory System Tasks” on page 9–7

“VHDL Support” on page 9–9

“Parallel Synthesis” on page 9–21

“Synthesis Directives” on page 9–27

“Timing-Driven Synthesis” on page 9–31

“Safe State Machines” on page 9–40

“RAM Style and ROM Style—for Inferred Memory” on
page 9–53

“Translate Off and On / Synthesis Off and On” on page 9–62

“Read Comments as HDL” on page 9–63

“Adding an HDL File to a Project and Setting the HDL
Version” on page 9–81

• Removed “Remove Redundant Logic Cells” section
• Added “Resource Aware RAM, ROM, and Shift-Register

Inference” section
• Updated Table 9–9 on page 9–83

March 2009 9.0.0 • Updated Table 9–9.
• Updated the following sections:

“Partitions for Preserving Hierarchical Boundaries” on
page 9–20

“Analysis & Synthesis Settings Page of the Settings Dialog
Box” on page 9–24

“Timing-Driven Synthesis” on page 9–30

“Turning Off Add Pass-Through Logic to Inferred RAMs/
no_rw_check Attribute Setting” on page 9–54

• Added “Parallel Synthesis” on page 9–21
• Chapter 9 was previously Chapter 8 in software version 8.1

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

16-80 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Quartus Prime Integrated Synthesis

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Integrated%20Synthesis%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimizing the Design Netlist 17
2015.11.02

QPS5V1 Subscribe Send Feedback

This chapter describes how you can use the Quartus Prime Netlist Viewers to analyze and debug your
designs.

As FPGA designs grow in size and complexity, the ability to analyze, debug, optimize, and constrain your
design is critical. With today’s advanced designs, several design engineers are involved in coding and
synthesizing different design blocks, making it difficult to analyze and debug the design. The Quartus
Prime RTL Viewer, State Machine Viewer, and Technology Map Viewer provide powerful ways to view
your initial and fully mapped synthesis results during the debugging, optimization, and constraint entry
processes.

Related Information

• When to Use the Netlist Viewers: Analyzing Design Problems on page 17-1
• Introduction to the User Interface on page 17-6
• Quartus Prime Design Flow with the Netlist Viewers on page 17-2
• State Machine Viewer Overview on page 17-4
• RTL Viewer Overview on page 17-3
• Technology Map Viewer Overview on page 17-5
• Filtering in the Schematic View on page 17-17
• Cross-Probing to a Source Design File and Other Quartus Prime Windows on page 17-24
• Cross-Probing to the Netlist Viewers from Other Quartus Prime Windows on page 17-24
• Viewing a Timing Path on page 17-25

When to Use the Netlist Viewers: Analyzing Design Problems
You can use the Netlist Viewers to analyze and debug your design. The following simple examples show
how to use the RTL Viewer, State Machine Viewer, and Technology Map Viewer to analyze problems
encountered in the design process.

Using the RTL Viewer is a good way to view your initial synthesis results to determine whether you have
created the necessary logic, and that the logic and connections have been interpreted correctly by the
software. You can use the RTL Viewer and State Machine Viewer to check your design visually before
simulation or other verification processes. Catching design errors at this early stage of the design process
can save you valuable time.

If you see unexpected behavior during verification, use the RTL Viewer to trace through the netlist and
ensure that the connections and logic in your design are as expected. You can also view state machine

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Optimizing%20the%20Design%20Netlist&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

transitions and transition equations with the State Machine Viewer. Viewing your design helps you find
and analyze the source of design problems. If your design looks correct in the RTL Viewer, you know to
focus your analysis on later stages of the design process and investigate potential timing violations or
issues in the verification flow itself.

You can use the Technology Map Viewer to look at the results at the end of Analysis and Synthesis. If you
have compiled your design through the Fitter stage, you can view your post-mapping netlist in the
Technology Map Viewer (Post-Mapping) and your post-fitting netlist in the Technology Map Viewer. If
you perform only Analysis and Synthesis, both the Netlist Viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to locate the source of a particular
signal, which can help you debug your design. Use the navigation techniques described in this chapter to
search easily through your design. You can trace back from a point of interest to find the source of the
signal and ensure the connections are as expected.

The Technology Map Viewer can help you locate post-synthesis nodes in your netlist and make
assignments when optimizing your design. This functionality is useful when making a multicycle clock
timing assignment between two registers in your design. Start at an I/O port and trace forward or
backward through the design and through levels of hierarchy to find nodes of interest, or locate a specific
register by visually inspecting the schematic.

Throughout your FPGA design, debug, and optimization stages, you can use all of the netlist viewers in
many ways to increase your productivity while analyzing a design.

Related Information

• Quartus Prime Design Flow with the Netlist Viewers on page 17-2
• State Machine Viewer Overview on page 17-4
• RTL Viewer Overview on page 17-3
• Technology Map Viewer Overview on page 17-5

Quartus Prime Design Flow with the Netlist Viewers
When you first open one of the Netlist Viewers after compiling the design, a preprocessor stage runs
automatically before the Netlist Viewer opens.

Click the link in the preprocessor process box to go to the Settings > Compilation Process Settings page
where you can turn on the Run Netlist Viewers preprocessing during compilation option. If you turn
this option on, the preprocessing becomes part of the full project compilation flow and the Netlist Viewer
opens immediately without displaying the preprocessing dialog.

17-2 Quartus Prime Design Flow with the Netlist Viewers
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-1: Quartus Prime Design Flow Including the RTL Viewer and Technology Map Viewer

This figure shows how Netlist Viewers fit into the basic Quartus Prime design flow.

HDL or Schematic
Design Files

VQM or EDIF
Netlist Files

Analysis and
Elaboration

State Machine Viewer Preprocessor
(Once per Analysis and Elaboration)

RTL Viewer Preprocessor
(Once per Analysis and Elaboration)

State Machine Viewer

RTL Viewer

Technology Map Viewer Preprocessor
(Once per Fitting)

Technology Map Viewer Preprocessor
(Once per Synthesis)

Technology Map Viewer

Technology Map Viewer and
Technology Map Viewer (Post-Mapping)

Technology Map Viewer Preprocessor
(Once per Timing Analysis)

Technology Map Viewer

Synthesis
(Logic Synthesis and

Technology Mapping)

Fitter
(Place and Route)

Timing Analyzer

Before the Netlist Viewer can run the preprocessor stage, you must compile your design:

• To open the RTL Viewer or State Machine Viewer, first perform Analysis and Elaboration.
• To open the Technology Map Viewer (Post-Fitting) or the Technology Map Viewer (Post-Mapping),

first perform Analysis and Synthesis.

The Netlist Viewers display the results of the last successful compilation.

• Therefore, if you make a design change that causes an error during Analysis and Elaboration, you
cannot view the netlist for the new design files, but you can still see the results from the last success‐
fully compiled version of the design files.

• If you receive an error during compilation and you have not yet successfully run the appropriate
compilation stage for your project, the Netlist Viewer cannot be displayed; in this case, the Quartus
Prime software issues an error message when you try to open the Netlist Viewer.

Note: If the Netlist Viewer is open when you start a new compilation, the Netlist Viewer closes automati‐
cally. You must open the Netlist Viewer again to view the new design netlist after compilation
completes successfully.

RTL Viewer Overview
The RTL Viewer allows you to view a register transfer level (RTL) graphical representation of your
Quartus Prime integrated synthesis results or your third-party netlist file in the Quartus Prime software.

QPS5V1
2015.11.02 RTL Viewer Overview 17-3

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can view results after Analysis and Elaboration when your design uses any supported Quartus Prime
design entry method, including Verilog HDL Design Files (.v), SystemVerilog Design Files (. sv), VHDL
Design Files (. vhd), AHDL Text Design Files (.tdf), or schematic Block Design Files (.bdf). You can also
view the hierarchy of atom primitives (such as device logic cells and I/O ports) when your design uses a
synthesis tool to generate a Verilog Quartus Mapping File (.vqm) or Electronic Design Interchange
Format (.edf) file.

The RTL Viewer displays a schematic view of the design netlist after Analysis and Elaboration or netlist
extraction is performed by the Quartus Prime software, but before technology mapping and any synthesis
or fitter optimizations. This view a preliminary pre-optimization design structure and closely represents
your original source design.

• If you synthesized your design with the Quartus Prime integrated synthesis, this view shows how the
Quartus Prime software interpreted your design files.

• If you use a third-party synthesis tool, this view shows the netlist written by your synthesis tool.

While displaying your design, the RTL Viewer optimizes the netlist to maximize readability:

• Removes logic with no fan-out (unconnected output) or fan-in (unconnected inputs) from the display.
• Hides default connections such as VCC and GND.
• Groups pins, nets, wires, module ports, and certain logic into buses where appropriate.
• Groups constant bus connections are grouped.
• Displays values in hexadecimal format.
• Converts NOT gates into bubble inversion symbols in the schematic.
• Merges chains of equivalent combinational gatesinto a single gate; for example, a 2-input AND gate

feeding a 2-input AND gate is converted to a single 3-input AND gate.
• State machine logic is converted into a state diagram, state transition table, and state encoding table,

which are displayed in the State Machine Viewer.

To run the RTL Viewer for a Quartus Prime project, first analyze the design to generate an RTL netlist. To
analyze the design and generate an RTL netlist, from the Processing menu, click Start > Start Analysis &
Elaboration. You can also perform a full compilation on any process that includes the initial Analysis and
Elaboration stage of the Quartus Prime compilation flow.

To open the RTL Viewer, from the Tools menu clickNetlist Viewers > RTL Viewer.

Related Information
Introduction to the User Interface on page 17-6

State Machine Viewer Overview
The State Machine Viewer presents a high-level view of finite state machines in your design. The State
Machine Viewer provides a graphical representation of the states and their related transitions, as well as a
state transition table that displays the condition equation for each of the state transitions, and encoding
information for each state.

To run the State Machine Viewer, on the Tools menu, point to Netlist Viewers and click State
Machine Viewer. To open the State Machine Viewer for a particular state machine, double-click the state
machine instance in the RTL Viewer.

17-4 State Machine Viewer Overview
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
State Machine Viewer on page 17-22

Technology Map Viewer Overview
The Quartus Prime Technology Map Viewer provides a technology-specific, graphical representation of
your design after Analysis and Synthesis or after the Fitter has mapped your design into the target device.

The Technology Map Viewer shows the hierarchy of atom primitives (such as device logic cells and I/O
ports) in your design. For supported device families, you can also view internal registers and look-up
tables (LUTs) inside logic cells (LCELLs), and registers in I/O atom primitives.

Where possible, the Quartus Prime software maintains the port names of each hierarchy throughout
synthesis. However, the software may change or remove port names from the design. For example, if a
port is unconnected or driven by GND or VCC, the software removes it during synthesis. If a port name
changes, the software assigns a related user logic name in the design or a generic port name such as IN1 or
OUT1.

You can view your Quartus Prime technology-mapped results after synthesis, fitting, or timing analysis.
To run the Technology Map Viewer for a Quartus Prime project, on the Processing menu, point to Start
and click Start Analysis & Synthesis to synthesize and map the design to the target technology. At this
stage, the Technology Map Viewer shows the same post-mapping netlist as the Technology Map Viewer
(Post-Mapping). You can also perform a full compilation, or any process that includes the synthesis stage
in the compilation flow.

If you have completed the Fitter stage, the Technology Map Viewer shows the changes made to your
netlist by the Fitter, such as physical synthesis optimizations, while the Technology Map Viewer
(Post-Mapping) shows the post-mapping netlist. If you have completed the Timing Analysis stage, you
can locate timing paths from the Timing Analyzer report in the Technology Map Viewer.

To open the Technology Map Viewer, on the Tools menu, point to Netlist Viewers and click Technology
Map Viewer (Post-Fitting) or Technology Map Viewer (Post Mapping).

Related Information

• View Contents of Nodes in the Schematic View on page 17-17
• Viewing a Timing Path on page 17-25
• Introduction to the User Interface on page 17-6

Schematic Viewer
The Quartus Prime Schematic Viewer provides a technology-specific, graphical representation of your
design after Analysis and Synthesis, or after the Fitter has mapped your design into the target device.

The Schematic Viewer shows the hierarchy of atom primitives (such as device logic cells and I/O ports) in
your design. You can also view internal registers and look-up tables (LUTs) inside logic cells (LCELLs),
and registers in I/O atom primitives.

Where possible, the Quartus Prime software maintains the port names of each hierarchy throughout
synthesis. However, the software may change or remove port names from the design. For example, if a
port is unconnected or driven by GND or VCC, the software removes it during synthesis. If a port name

QPS5V1
2015.11.02 Technology Map Viewer Overview 17-5

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

changes, the software assigns a related user logic name in the design or a generic port name such as IN1 or
OUT1.

You can view your Quartus Prime schematic after synthesis, fitting, or timing analysis.

To open the Schematic Viewer, point to Tools > Netlist Viewers > Select Snapshot.... The Select
Snapshot... dialog box appears where you can select from a synthesized, planned, placed, routed, or
final view.

Controls and options are the same as those used by the RTL Viewer and Technology Map Viewer.

Related Information
Introduction to the User Interface on page 17-6

Introduction to the User Interface
The Netlist Viewer is a graphical user-interface for viewing and manipulating nodes and nets in the
netlist.

The RTL Viewer and Technology Map Viewer each consist of these main parts:

• The Netlist Navigator pane—displays a representation of the project hierarchy.
• The Find pane—allows you to find and locate specific design elements in the schematic view.
• The Properties pane displays the properties of the selected block when you select Properties from the

shortcut menu.
• The schematic view—displays a graphical representation of the internal structure of your design.

17-6 Introduction to the User Interface
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-2: RTL Viewer

Netlist Viewers also contain a toolbar that provides tools to use in the schematic view.

• Use the Back and Forward buttons to switch between schematic views. You can go forward only if you
have not made any changes to the view since going back. These commands do not undo an action,
such as selecting a node. The Netlist Viewer caches up to ten actions including filtering, hierarchy
navigation, netlist navigation, and zoom actions.

• The Refresh button to restore the schematic view and optimizes the layout. Refresh does not reload
the database if you change your design and recompile.

• Click the Find button opens and closes the Find pane.
• Click the Selection Tool and Zoom Tool buttons to toggle between the selection mode and zoom

mode.
• Click the Fit in Page button resets the schematic view to encompass the entire design.
• Use the Hand Tool to change the focus of the veiwer without changing the perspective.
• Click the Area Selection Tool to drag a selection box around ports, pins, and nodes in an area.
• Click the Netlist Navigator button to open or close the Netlist Navigator pane.
• Click the Color Settings button to open the Colors pane where you can customize the Netlist Viewer

color scheme.

QPS5V1
2015.11.02 Introduction to the User Interface 17-7

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click the Display Settings button to open the Display pane where you can specify the following
settings:

• Show full name or Show only <n> characters. You can specify this separately for Node name, Port
name, Pin name, or Bus name.

• Turn Show timing info on or off.
• Turn Show node type on or off.
• Turn Show constant value on or off.
• Turn Show flat nets on or off.

Figure 17-3: Display Settings

• The Bird's Eye View button opens the Bird's Eye View window which displays a miniature version of
your design and allows you to navigate within the design and adjust the magnification in the schematic
view quickly.

• The Show/Hide Instance Pins button can toggle the display of instance pins not displayed by
functions such as cross-probing between a Netlist Viewer and TimeQuest. You can also use it to hide
unconnected instance pins when filtering a node results in large numbers of unconnected or unused
pins. Instance pins are hidden by default.

• The Show Netlist on One Page button displays the netlist on a single page if the Netlist Veiwer has
split the design across several pages. This can make netlist tracing easier.

17-8 Introduction to the User Interface
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can have only one RTL Viewer, one Technology Map Viewer (Post-Fitting), one Technology Map
Viewer (Post-Mapping), and one State Machine Viewer window open at the same time, although each
window can show multiple pages, each with multiple tabs. For example, you cannot have two RTL Viewer
windows open at the same time.

Related Information

• RTL Viewer Overview on page 17-3
• Technology Map Viewer Overview on page 17-5
• Schematic Viewer on page 17-5
• Netlist Navigator Pane on page 17-9
• Netlist Viewers Find Pane on page 17-11
• Properties Pane on page 17-10

Netlist Navigator Pane
The Netlist Navigator pane displays the entire netlist in a tree format based on the hierarchical levels of
the design. In each level, similar elements are grouped into subcategories.

You can use the Netlist Navigator pane to traverse through the design hierarchy to view the logic
schematic for each level. You can also select an element in the Netlist Navigator to highlight in the
schematic view.

Note: Nodes inside atom primitives are not listed in the Netlist Navigator pane.

For each module in the design hierarchy, the Netlist Navigator pane displays the applicable elements
listed in the following table. Click the “+” icon to expand an element.

Table 17-1: Netlist Navigator Pane Elements

Elements Description

Instances Modules or instances in the design that can be expanded to lower hierarchy
levels.

State Machines State machine instances in the design that can be viewed in the State Machine
Viewer.

Primitives Low-level nodes that cannot be expanded to any lower hierarchy level. These
primitives include:

• Registers and gates that you can view in the RTL Viewer when using Quartus
Prime integrated synthesis

• Logic cell atoms in the Technology Map Viewer or in the RTL Viewer when
using a VQM or EDIF from third-party synthesis software

In the Technology Map Viewer, you can view the internal implementation of
certain atom primitives, but you cannot traverse into a lower-level of hierarchy.

QPS5V1
2015.11.02 Netlist Navigator Pane 17-9

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Elements Description

Ports The I/O ports in the current level of hierarchy.

• Pins are device I/O pins when viewing the top hierarchy level and are I/O
ports of the design when viewing the lower-levels.

• When a pin represents a bus or an array of pins, expand the pin entry in the
list view to see individual pin names.

Properties Pane
You can view the properties of an instance or primitive using the Properties pane.

Figure 17-4: Properties Pane

To view the properties of an instance or primitive in the RTL Viewer or Technology Map Viewer, right-
click the node and click Properties.

17-10 Properties Pane
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Properties pane contains tabs with the following information about the selected node:

• The Fan-in tab displays the Input port and Fan-in Node.
• The Fan-out tab displays the Output port and Fan-out Node.
• The Parameters tab displays the Parameter Name and Values of an instance.
• The Ports tab displays the Port Name and Constant value (for example, VCC or GND). The possible

value of a port are listed below.

Table 17-2: Possible Port Values

Value Description

VCC The port is not connected and has VCC value (tied to VCC)

GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected The port is not connected and has no value (hanging)

If the selected node is an atom primitive, the Properties pane displays a schematic of the internal logic.

Netlist Viewers Find Pane
You can narrow the range of the search process by setting the following options in the Find pane:

• Click Browse in the Find pane to specify the hierarchy level of the search. In the Select Hierarchy
Level dialog box, select the particular instance you want to search.

• Turn on the Include subentities option to include child hierarchies of the parent instance during the
search.

• Click Options to open the Find Options dialog box. Turn on Instances, Nodes, Ports, or any
combination of the three to further refine the parameters of the search.

When you click the List button, a progress bar appears below the Find box.

All results that match the criteria you set are listed in a table. When you double-click an item in the table,
the related node is highlighted in red in the schematic view.

Schematic View
The schematic view is shown on the right side of the RTL Viewer and Technology Map Viewer. The
schematic view contains a schematic representing the design logic in the netlist. This view is the main
screen for viewing your gate-level netlist in the RTL Viewer and your technology-mapped netlist in the
Technology Map Viewer.

The RTL Viewer and Technology Map Viewer attempt to display schematic in a single page view by
default. If the schematic crosses over to several pages, you can highlight a net and use connectors to trace
the signal in a single page.

Display Schematics in Multiple Tabbed View
The RTL Viewer and Technology Map Viewer support multiple tabbed views.

QPS5V1
2015.11.02 Netlist Viewers Find Pane 17-11

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

With multiple tabbed view, schematics can be displayed in different tabs. Selection is independent
between tabbed views, but selection in the tab in focus is synchronous with the Netlist Navigator pane.

To create a new blank tab, click the New Tab button at the end of the tab row . You can now drag a node
from the Netlist Navigator pane into the schematic view.

Right-click in a tab to see a shortcut menu to perform the following actions:

• Create a blank view with New Tab
• Create a Duplicate Tab of the tab in focus
• Choose to Cascade Tabs
• Choose to Tile Tabs
• Choose Close Tab to close the tab in focus
• Choose Close Other Tabs to close all tabs except the tab in focus

Schematic Symbols
The symbols for nodes in the schematic represent elements of your design netlist. These elements include
input and output ports, registers, logic gates, Altera primitives, high-level operators, and hierarchical
instances.

Note: The logic gates and operator primitives appear only in the RTL Viewer. Logic in the Technology
Map Viewer is represented by atom primitives, such as registers and LCELLs.

Table 17-3: Symbols in the Schematic View

This table lists and describes the primitives and basic symbols that you can display in the schematic view of the
RTL Viewer and Technology Map Viewer.

Symbol Description

I/O Ports

CLK_SEL[1:0]

RESET_N

An input, output, or bidirectional port in the
current level of hierarchy. A device input, output, or
bidirectional pin when viewing the top-level
hierarchy. The symbol can also represent a bus.
Only one wire is shown connected to the bidirec‐
tional symbol, representing the input and output
paths.

Input symbols appear on the left-most side of the
schematic. Output and bidirectional symbols appear
on the right-most side of the schematic.

I/O Connectors

MEM_OE_N
[1,15]

[1,3]

An input or output connector, representing a net
that comes from another page of the same
hierarchy. To go to the page that contains the
source or the destination, double-click on the
connector to jump to the appropriate page.

OR, AND, XOR Gates

always1

always0 C

An OR, AND, or XOR gate primitive (the number
of ports can vary). A small circle (bubble symbol)
on an input or output port indicates the port is
inverted.

17-12 Schematic Symbols
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

MULTIPLEXER

Mux5
SEL[2:0]

DATA[7:0] OUT

A multiplexer primitive with a selector port that
selects between port 0 and port 1. A multiplexer
with more than two inputs is displayed as an
operator.

BUFFER

OE

DATAIN OUT0

A buffer primitive. The figure shows the tri-state
buffer, with an inverted output enable port. Other
buffers without an enable port include LCELL,
SOFT, CARRY, and GLOBAL. The NOT gate and
EXP expander buffers use this symbol without an
enable port and with an inverted output port.

LATCH

PRE
D
ENA

Q

latch

CLR

A latch/DFF (data flipflop) primitive. A DFF has the
same ports as a latch and a clock trigger. The other
flipflop primitives are similar:

• DFFEA (data flipflop with enable and asynchro‐
nous load) primitive with additional ALOAD
asynchronous load and ADATA data signals

• DFFEAS (data flipflop with enable and synchro‐
nous and asynchronous load), which has ASDATA
as the secondary data port

Atom Primitive

DATAA
DATABCOMBOUT
DATAC

F

LOGIC_CELL_COMB (7F7F7F7F7F7F7F7F)

An atom primitive. The symbol displays the atom
name, the port names, and the atom type. The blue
shading indicates an atom primitive for which you
can view the internal details.

Other Primitive

PADIO

PADOUT

CPU_D[10]

BIDIR

PADIN

Any primitive that does not fall into the previous
categories. Primitives are low-level nodes that
cannot be expanded to any lower hierarchy. The
symbol displays the port names, the primitive or
operator type, and its name.

Instance

speed_ch:speed

get_ticket
accel_in

clk
reset

An instance in the design that does not correspond
to a primitive or operator (a user-defined hierarchy
block). The symbol displays the port name and the
instance name.

QPS5V1
2015.11.02 Schematic Symbols 17-13

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

Ecrypted Instance

streaming_cont
OUT0
OUT1
OUT2
OUT3
OUT4
OUT5

IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7
IN8

A user-defined encrypted instance in the design.
The symbol displays the instance name. You cannot
open the schematic for the lower-level hierarchy,
because the source design is encrypted.

State Machine Instance

speed

warning
accel_in
clk
reset

A finite state machine instance in the design.

RAM

my_20k_sdp

PORTBDATAOUT[35:0]

RAM

CLK0
CLK1
CLR0
PORTAADDRSTALL
PORTAADDR[8:0]
PORTABYTEENMASK[3:0]
PORTADATAIN[35:0]
PORTAWE
PORTBADDRSTALL
PORTBADDR[8:0]
PORTBRE

A synchronous memory instance with registered
inputs and optionally registered outputs. The
symbol shows the device family and the type of
memory block. This figure shows a true dual-port
memory block in a Stratix M-RAM block.

Constant

8’h80

A constant signal value that is highlighted in gray
and displayed in hexadecimal format by default
throughout the schematic.

17-14 Schematic Symbols
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 17-4: Symbol Available Only in the State Machine Viewer

The following table lists and describes the symbol open only in the State Machine Viewer.
Symbol Description

State Node The node representing a state in a finite state
machine. State transitions are indicated with arcs
between state nodes. The double circle border
indicates the state connects to logic outside the state
machine, and a single circle border indicates the
state node does not feed outside logic.

Table 17-5: Operator Symbols in the RTL Viewer Schematic View

The following lists and describes the additional higher level operator symbols in the RTL Viewer schematic view.
Symbol Description

Add0
A[3:0]

B[3:0]
OUT[3:0]

An adder operator:

OUT = A + B

Mult0
A[0]

B[0]
OUT[0]

A multiplier operator:

OUT = A ¥ B

Div0
A[0]

B[0]
OUT[0]

A divider operator:

OUT = A / B

Equal3
A[1:0]

B[1:0]
OUT

Equals

ShiftLeft0
A[0]

COUNT[0]
OUT[0]

A left shift operator:

OUT = (A << COUNT)

ShiftRight0
A[0]

COUNT[0]
OUT[0]

A right shift operator:

OUT = (A >> COUNT)

Mod0
A[0]

B[0]
OUT[0]

A modulo operator:

OUT = (A%B)

LessThan0
A[0]

B[0]
OUT

A less than comparator:

OUT = (A<:B:A>B)

QPS5V1
2015.11.02 Schematic Symbols 17-15

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Symbol Description

Mux5
SEL[2:0]

DATA[7:0] OUT
A multiplexer:

OUT = DATA [SEL]

The data range size is 2sel range size

Selector1
SEL[2:0]

DATA[2:0] OUT
A selector:

A multiplexer with one-hot select input and more
than two input signals

Decoder0

IN[5:0] OUT[63:0]
A binary number decoder:

OUT = (binary_number (IN) == x)

for x = 0 to x = 2(n+1) - 1

Related Information

• Partition the Schematic into Pages on page 17-21
• Follow Nets Across Schematic Pages on page 17-21
• State Machine Viewer on page 17-22

Select Items in the Schematic View
To select an item in the schematic view, ensure that the Selection Tool is enabled in the Netlist Viewer
toolbar (this tool is enabled by default). Click an item in the schematic view to highlight it in red.

Select multiple items by pressing the Shift key while selecting with your mouse.

Items selected in the schematic view are automatically selected in the Netlist Navigator pane. The folder
then expands automatically if it is required to show the selected entry; however, the folder does not
collapse automatically when you are not using or you have deselected the entries.

When you select a hierarchy box, node, or port in the schematic view, the item is highlighted in red but
none of the connecting nets are highlighted. When you select a net (wire or bus) in the schematic view, all
connected nets are highlighted in red.

Once you have selected an item, you can perform different actions on it based on the contents of the
shortcut menu which appears when you right-click on your selection.

Related Information
Netlist Navigator Pane on page 17-9

Shortcut Menu Commands in the Schematic View
When you right-click on an instance or primitive selected in the schematic view, the Netlist Viewer
displays a shortcut menu.

17-16 Select Items in the Schematic View
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the selected item is a node, you see the following options:

• Click Expand to Upper Hierarchy to displays the parent hierarchy of the node in focus.
• Click Copy ToolTip to copy the selected item name to the clipboard. This command does not work on

nets.
• Click Hide Selection to remove the selected item from the schematic view. This command does not

delete the item from the design, merely masks it in the current view.
• Click Filtering to display a sub-menu with options for filtering your selection.

Filtering in the Schematic View
Filtering allows you to filter out nodes and nets in your netlist to view only the logic elements of interest
to you.

You can filter your netlist by selecting hierarchy boxes, nodes, ports of a node, or states in a state machine
that are part of the path you want to see. The following filter commands are available:

• Sources—Displays the sources of the selection.
• Destinations—Displays the destinations of the selection.
• Sources & Destinations—displays the sources and destinations of the selection.
• Selected Nodes—Displays only the selected nodes.
• Between Selected Nodes—Displays nodes and connections in the path between the selected nodes .
• Bus Index—Displays the sources or destinations for one or more indices of an output or input bus

port .
• Filtering Options—Displays the Filtering Options dialog box:

• Stop filtering at register—Turning this option on directs the Netlist Viewer to filter out to the
nearest register boundary.

• Filter across hierarchies—Turning this option on directs the Netlist Viewer to filter across
hierarchies.

• Maximum number of hierarchy levels—Sets the maximium number of hierarchy levels displayed
in the schematic view.

To filter your netlist, select a hierarchy box, node, port, net, or state node, right-click in the window, point
to Filter and click the appropriate filter command. The Netlist Viewer generates a new page showing the
netlist that remains after filtering.

When filtering in a state diagram in the State Machine Viewer, sources and destinations refer to the
previous and next transition states or paths between transition states in the state diagram. The transition
table and encoding table also reflect the filtering.

View Contents of Nodes in the Schematic View
In the RTL Viewer and the Technology Map Viewer, you can view the contents of nodes to see their
underlying implementation details.

You can view LUTs, registers, and logic gates. You can also view the implementation of RAM and DSP
blocks in certain devices in the RTL Viewer or Technology Map Viewer. In the Technology Map Viewer,
you can view the contents of primitives to see their underlying implementation details.

QPS5V1
2015.11.02 Filtering in the Schematic View 17-17

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-5: Wrapping and Unwrapping Objects

If you can unwrap the contents of an instance, a plus symbol appears in the upper right corner of the
object in the schematic view. To wrap the contents (and revert to the compact format), click the minus
symbol in the upper right corner of the unwrapped instance.

Note: In the schematic view, the internal details in an atom instance cannot be selected as individual
nodes. Any mouse action on any of the internal details is treated as a mouse action on the atom
instance.

Figure 17-6: Nodes with Connections Outside the Hierarchy

In some cases, the selected instance connects to something outside the visible level of the hierarchy in the
schematic view. In this case, the net appears as a dotted line. Double-click on the dotted line to expand the
view to display the destination of the connection .

17-18 View Contents of Nodes in the Schematic View
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-7: Display Nets Across Hierarchies

In cases where the net connects to an instance outside the hierarchy, you can select the net, and unwrap
the node to see the destination ports.

Figure 17-8: Show Connectivity Details

You can select a bus port or bus pin and click Connectivity Details in the context menu for that object.

You can double-click on objects in the Connectivity Details window to navigate to them quickly. If the
plus symbol appears, you can further unwrap objects in the view. This can be very useful when tracing a
signal in a complex netlist.

Moving Nodes in the Schematic View
You can drag and drop items in the schematic view to rearrange them.

QPS5V1
2015.11.02 Moving Nodes in the Schematic View 17-19

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-9: Drag and Drop Movement of Nodes

To move a node from one area of the netlist to another, select the node and hold down the Shift key. Legal
placements appear as shaded areas within the hierarchy. Click to drop the selected node.

Right-click and click on Refresh to restore the schematic view to its default arrangement.

View LUT Representations in the Technology Map Viewer
You can view different representations of a LUT by right-clicking the selected LUT and clicking
Properties.

You can view the LUT representations in the following three tabs in the Properties dialog box:

• The Schematic tab—the equivalent gate representations of the LUT.
• The Truth Table tab—the truth table representations.

Related Information
Properties Pane on page 17-10

Zoom Controls
Use the Zoom Tool in the toolbar, or mouse gestures, to control the magnification of your schematic on
the View menu.

By default, the Netlist Viewer displays most pages sized to fit in the window. If the schematic page is very
large, the schematic is displayed at the minimum zoom level, and the view is centered on the first node.
Click Zoom In to view the image at a larger size, and click Zoom Out to view the image (when the entire
image is not displayed) at a smaller size. The Zoom command allows you to specify a magnification
percentage (100% is considered the normal size for the schematic symbols).

You can use the Zoom Tool on the Netlist Viewer toolbar to control magnification in the schematic view.
When you select the Zoom Tool in the toolbar, clicking in the schematic zooms in and centers the view on
the location you clicked. Right-click in the schematic to zoom out and center the view on the location you

17-20 View LUT Representations in the Technology Map Viewer
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

clicked. When you select the Zoom Tool, you can also zoom into a certain portion of the schematic by
selecting a rectangular box area with your mouse cursor. The schematic is enlarged to show the selected
area.

Within the schematic view, you can also use the following mouse gestures to zoom in on a specific section:

• zoom in—Dragging a box around an area starting in the upper-left and dragging to the lower right
zooms in on that area.

• zoom -0.5—Dragging a line from lower-left to upper-right zooms out 0.5 levels of magnification.
• zoom 0.5—Dragging a line from lower-right to upper-left zooms in 0.5 levels of magnification.
• zoom fit—Dragging a line from upper-right to lower-left fits the schematic view in the page.

Related Information
Filtering in the Schematic View on page 17-17

Navigating with the Bird's Eye View
To open the Bird’s Eye View, on the View menu, click Bird’s Eye View, or click on the Bird’s Eye View
icon in the toolbar.

Viewing the entire schematic can be useful when debugging and tracing through a large netlist. The
Quartus Prime software allows you to quickly navigate to a specific section of the schematic using the
Bird’s Eye View feature, which is available in the RTL Viewer and Technology Map Viewer.

The Bird’s Eye View shows the current area of interest:

• Select an area by clicking and dragging the indicator or right-clicking to form a rectangular box
around an area.

• Click and drag the rectangular box to move around the schematic.
• Resize the rectangular box to zoom-in or zoom-out in the schematic view.

Partition the Schematic into Pages
For large design hierarchies, the RTL Viewer and Technology Map Viewer partition your netlist into
multiple pages in the schematic view.

When a hierarchy level is partitioned into multiple pages, the title bar for the schematic window indicates
which page is displayed and how many total pages exist for this level of hierarchy. The schematic view
displays this as Page <current page number> of <total number of pages>.

Related Information
Introduction to the User Interface on page 17-6

Follow Nets Across Schematic Pages
Input and output connector symbols indicate nodes that connect across pages of the same hierarchy.
Double-click a connector to trace the net to the next page of the hierarchy.

Note: After you double-click to follow a connector port, the Netlist Viewer opens a new page, which
centers the view on the particular source or destination net using the same zoom factor as the
previous page. To trace a specific net to the new page of the hierarchy, Altera recommends that you
first select the necessary net, which highlights it in red, before you double-click to navigate across
pages.

Related Information
Schematic Symbols on page 17-12

QPS5V1
2015.11.02 Navigating with the Bird's Eye View 17-21

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

State Machine Viewer
The State Machine Viewer displays a graphical representation of the state machines in your design.

You can open the State Machine Viewer in any of the following ways:

• On the Tools menu, point to Netlist Viewers and click State Machine Viewer.
• Double-click a state machine instance in the RTL Viewer

Figure 17-10: The State Machine Viewer

The following figure shows an example of the State Machine Viewer for a simple state machine and lists
the components of the viewer.

State Machine Selection Box

State Diagram View

State Machine
Viewer Toolbar

Back/Forward Display
Toolbar

Highlight
Fan-in/Fan-out

Toolbar

View
Toolbar

Tool
Toolbar

State Transition Tab

State Encoding Table Tab

State Diagram View
The state diagram view appears at the top of the State Machine Viewer. It contains a diagram of the states
and state transitions.

The nodes that represent each state are arranged horizontally in the state diagram view with the initial
state (the state node that receives the reset signal) in the left-most position. Nodes that connect to logic
outside of the state machine instance are represented by a double circle. The state transition is represented
by an arc with an arrow pointing in the direction of the transition.

17-22 State Machine Viewer
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When you select a node in the state diagram view, and turn on the Highlight Fan-in or Highlight Fan-
out command from the View menu or the State Machine Viewer toolbar, the respective fan-in or fan-out
transitions from the node are highlighted in red.

Note: An encrypted block with a state machine displays encoding information in the state encoding table,
but does not display a state transition diagram or table.

State Transition Table
The state transition table on the Transitions tab at the bottom of the State Machine Viewer displays the
condition equation for each state transition.

Each row in the table represents a transition (each arc in the state diagram view). The table has the
following columns:

• Source State—the name of the source state for the transition
• Destination State—the name of the destination state for the transition
• Condition—the condition equation that causes the transition from source state to destination state

To see all of the transitions to and from each state name, click the appropriate column heading to sort on
that column.

The text in each column is left-aligned by default; to change the alignment and to make it easier to see the
relevant part of the text, right-click the column and click Align Right. To revert to left alignment, click
Align Left.

Click in any cell in the table to select it. To select all cells, right-click in the cell and click Select All; or, on
the Edit menu, click Select All. To copy selected cells to the clipboard, right-click the cells and click Copy
Table; or, on the Edit menu, point to Copy and click Copy Table. You can paste the table into any text
editor as tab-separated columns.

State Encoding Table
The state encoding table on the Encoding tab at the bottom of the State Machine Viewer displays
encoding information for each state transition.

To view state encoding information in the State Machine Viewer, you must synthesize your design with
the Start Analysis & Synthesis command. If you have only elaborated your design with the Start
Analysis & Elaboration command, the encoding information is not displayed.

Select Items in the State Machine Viewer
You can select and highlight each state node and transition in the State Machine Viewer. To select a state
transition, click the arc that represents the transition.

When you select a node or transition arc in the state diagram view, the matching state node or equation
conditions in the state transition table are highlighted; conversely, when you select a state node or
equation condition in the state transition table, the corresponding state node or transition arc is
highlighted in the state diagram view.

Switch Between State Machines
A design may contain multiple state machines. To choose which state machine to view, use the State
Machine selection box located at the top of the State Machine Viewer. Click in the drop-down box and
select the necessary state machine.

QPS5V1
2015.11.02 State Transition Table 17-23

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Cross-Probing to a Source Design File and Other Quartus Prime Windows
The RTL Viewer, Technology Map Viewer, and State Machine Viewer allow you to cross-probe to the
source design file and to various other windows in the Quartus Prime software.

You can select one or more hierarchy boxes, nodes, state nodes, or state transition arcs that interest you in
the Netlist Viewer and locate the corresponding items in another applicable Quartus Prime software
window. You can then view and make changes or assignments in the appropriate editor or floorplan.

To locate an item from the Netlist Viewer in another window, right-click the items of interest in the
schematic or state diagram, point to Locate, and click the appropriate command. The following
commands are available:

• Locate in Assignment Editor
• Locate in Pin Planner
• Locate in Chip Planner
• Locate in Resource Property Editor
• Locate in Technology Map Viewer
• Locate in RTL Viewer
• Locate in Design File

The options available for locating an item depend on the type of node and whether it exists after
placement and routing. If a command is enabled in the menu, it is available for the selected node. You can
use the Locate in Assignment Editor command for all nodes, but assignments might be ignored during
placement and routing if they are applied to nodes that do not exist after synthesis.

The Netlist Viewer automatically opens another window for the appropriate editor or floorplan and
highlights the selected node or net in the newly opened window. You can switch back to the Netlist
Viewer by selecting it in the Window menu or by closing, minimizing, or moving the new window.

Cross-Probing to the Netlist Viewers from Other Quartus Prime Windows
You can cross-probe to the RTL Viewer and Technology Map Viewer from other windows in the Quartus
Prime software. You can select one or more nodes or nets in another window and locate them in one of
the Netlist Viewers.

You can locate nodes between the RTL Viewer, State Machine Viewer, and Technology Map Viewer, and
you can locate nodes in the RTL Viewer and Technology Map Viewer from the following Quartus Prime
software windows:

• Project Navigator
• Timing Closure Floorplan
• Chip Planner
• Resource Property Editor
• Node Finder
• Assignment Editor
• Messages Window
• Compilation Report
• TimeQuest Timing Analyzer (supports the Technology Map Viewer only)

17-24 Cross-Probing to a Source Design File and Other Quartus Prime Windows
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To locate elements in the Netlist Viewer from another Quartus Prime window, select the node or nodes in
the appropriate window; for example, select an entity in the Entity list on the Hierarchy tab in the Project
Navigator, or select nodes in the Timing Closure Floorplan, or select node names in the From or To
column in the Assignment Editor. Next, right-click the selected object, point to Locate, and click Locate
in RTL Viewer or Locate in Technology Map Viewer. After you click this command, the Netlist Viewer
opens, or is brought to the foreground if the Netlist Viewer is open.

Note: The first time the window opens after a compilation, the preprocessor stage runs before the Netlist
Viewer opens.

The Netlist Viewer shows the selected nodes and, if applicable, the connections between the nodes. The
display is similar to what you see if you right-click the object, then click Filter > Selected Nodes using
Filter across hierarchy. If the nodes cannot be found in the Netlist Viewer, a message box displays the
message: Can’t find requested location.

Viewing a Timing Path
You can cross-probe from a report panel in the TimeQuest Timing Analyzer to see a visual representation
of a timing path.

To take advantage of this feature, you must complete a full compilation of your design, including the
timing analyzer stage. To see the timing results for your design, on the Processing menu, click Compila‐
tion Report. On the left side of the Compilation Report, select TimeQuest Timing Analyzer. When you
select a detailed report, the timing information is listed in a table format on the right side of the Compila‐
tion Report; each row of the table represents a timing path in the design. You can also view timing paths
in TimeQuest analyzer report panels. To view a particular timing path in the Technology Map Viewer or
RTL Viewer, right-click the appropriate row in the table, point to Locate, and click Locate in Technology
Map Viewer or Locate in RTL Viewer.

• To locate a path, on the Tasks pane clickCustom Reports > Report Timing.
• In the Report Timing dialog box, make necessary settings, and then click the Report Timing button.
• After the TimeQuest analyzer generates the report, right-click on the node in the table and select

Locate Path. In the Technology Map Viewer, the schematic page displays the nodes along the timing
path with a summary of the total delay.

When you locate the timing path from the TimeQuest analyzer to the Technology Map Viewer, the
interconnect and cell delay associated with each node is displayed on top of the schematic symbols. The
total slack of the selected timing path is displayed in the Page Title section of the schematic.

In the RTL Viewer, the schematic page displays the nodes in the paths between the source and destination
registers with a summary of the total delay.

The RTL Viewer netlist is based on an initial stage of synthesis, so the post-fitting nodes might not exist in
the RTL Viewer netlist. Therefore, the internal delay numbers are not displayed in the RTL Viewer as they
are in the Technology Map Viewer, and the timing path might not be displayed exactly as it appears in the
timing analysis report. If multiple paths exist between the source and destination registers, the RTL
Viewer might display more than just the timing path. There are also some cases in which the path cannot
be displayed, such as paths through state machines, encrypted intellectual property (IP), or registers that
are created during the fitting process. In cases where the timing path displayed in the RTL Viewer might
not be the correct path, the compiler issues messages.

QPS5V1
2015.11.02 Viewing a Timing Path 17-25

Optimizing the Design Netlist Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Date Version Changes

2015.11.02 15.1.0 Added information for the following new features and feature
updatess:

• Nets visible across hierarchies
• Connection Details
• Display Settings
• Hand Tool
• Area Selection Tool
• New default behavior for Show/Hide Instance Pins (default

is now off)

2014.06.30 14.0.0 Added Show Netlist on One Page and show/Hide Instance Pins
commands.

November 2013 13.1.0 Removed HardCopy device information.

Reorganized and migrated to new template.

Added support for new Netlist viewer.

November 2012 12.1.0 Added sections to support Global Net Routing feature.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Updated screenshots
• Updated chapter for the Quartus Prime software version

10.0, including major user interface changes

November 2009 9.1.0 • Updated devices
• Minor text edits

March 2009 9.0.0 • Chapter 13 was formerly Chapter 12 in version 8.1.0
• Updated Figure 13–2, Figure 13–3, Figure 13–4, Figure 13–

14, and Figure 13–30
• Added “Enable or Disable the Auto Hierarchy List” on

page 13–15
• Updated “Find Command” on page 13–44

November 2008 8.1.0 Changed page size to 8.5” × 11”

17-26 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Optimizing the Design Netlist

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2008 8.0.0 • Added Arria GX support
• Updated operator symbols
• Updated information about the radial menu feature
• Updated zooming feature
• Updated information about probing from schematic to

SignalTap II Analyzer
• Updated constant signal information
• Added .png and .gif to the list of supported image file

formats
• Updated several figures and tables
• Added new sections “Enabling and Disabling the Radial

Menu”, “Changing the Time Interval”, “Changing the
Constant Signal Value Formatting”, “Logic Clouds in the
RTL Viewer”, “Logic Clouds in the Technology Map
Viewer”, “Manually Group and Ungroup Logic Clouds”,
“Customizing the Shortcut Commands”

• Renamed several sections
• Removed section “Customizing the Radial Menu”
• Moved section “Grouping Combinational Logic into Logic

Clouds”
• Updated document content based on the Quartus Prime

software version 8.0

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 17-27

Optimizing the Design Netlist Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Optimizing%20the%20Design%20Netlist%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synopsys Synplify Support 18
2014.11.02

QPS5V1 Subscribe Send Feedback

About Synplify Support
This manual delineates the support for the Synopsys Synplify software in the Quartus Prime software, as
well as key design flows, methodologies, and techniques for achieving optimal results in Altera® devices.
The content in this manual applies to the Synplify, Synplify Pro, and Synplify Premier software unless
otherwise specified. This manual assumes that you have set up, licensed, and are familiar with the Synplify
software.

This manual includes the following information:

• General design flow with the Synplify and Quartus Prime software
• Exporting designs and constraints to the Quartus Prime software using NativeLink integration
• Synplify software optimization strategies, including timing-driven compilation settings, optimization

options, and Altera-specific attributes
• Guidelines for Altera IP cores and library of parameterized module (LPM) functions, instantiating

them with the IP Catalog, and tips for inferring them from hardware description language (HDL) code
• Incremental compilation and block-based design, including the MultiPoint flow in the Synplify Pro

and Synplify Premier software

Related Information

• Synplify Synthesis Techniques with the Quartus Prime Software online training
• Synplify Pro Tips and Tricks online training

Design Flow
The following steps describe a basic Quartus Prime software design flow using the Synplify software:

1. Create Verilog HDL or VHDL design files.
2. Set up a project in the Synplify software and add the HDL design files for synthesis.
3. Select a target device and add timing constraints and compiler directives in the Synplify software to

help optimize the design during synthesis.
4. Synthesize the project in the Synplify software.
5. Create a Quartus Prime project and import the following files generated by the Synplify software into

the Quartus Prime software. Use the following files for placement and routing, and for performance
evaluation:

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Synopsys%20Synplify%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/education/training/courses/OSYN1150
http://www.altera.com/education/training/courses/OSYN1100
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Verilog Quartus Mapping File (.vqm) netlist.
• The Synopsys Constraints Format (.scf) file for TimeQuest Timing Analyzer constraints.
• The .tcl file to set up your Quartus Prime project and pass constraints.

Note: Alternatively, you can run the Quartus Prime software from within the Synplify software.
6. After obtaining place-and-route results that meet your requirements, configure or program the Altera

device.

Figure 18-1: Recommended Design Flow

VHDL
(.vhd)

Verilog
HDL
(.v)

System
Verilog

(.v)

Synplify Software

Synopsys Constraints
format (.scf) File

Timing & Area
Requirements

Satisfied?

Functional/RTL
Simulation

Gate-Level Timing
Simulation

Gate-Level
Functional
Simulation

Constraints & Settings

Constraints & Settings

Program/Configure Device

Forward-Annotated
Project Constraints
(.tcl/.acf)

Configuation/Programming
Files (.sof/.pof)

Technology-
Specific Netlist

(.vqm/edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post-Place-and-Route
Simulation File

(.vho/.vo)

Quartus Prime Software

Yes

No

Related Information

• Running the Quartus Prime Software from within the Synplify Software on page 18-4
• Synplify Software Generated Files on page 18-5
• Design Constraints Support on page 18-6

18-2 Design Flow
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hardware Description Language Support
The Synplify software supports VHDL, Verilog HDL, and SystemVerilog source files. However, only the
Synplify Pro and Premier software support mixed synthesis, allowing a combination of VHDL and
Verilog HDL or SystemVerilog format source files.

The HDL Analyst that is included in the Synplify software is a graphical tool for generating schematic
views of the technology-independent RTL view netlist (.srs) and technology-view netlist (.srm) files. You
can use the Synplify HDL Analyst to analyze and debug your design visually. The HDL Analyst supports
cross-probing between the RTL and Technology views, the HDL source code, the Finite State Machine
(FSM) viewer, and between the technology view and the timing report file in the Quartus Prime software.
A separate license file is required to enable the HDL Analyst in the Synplify software. The Synplify Pro
and Premier software include the HDL Analyst.

Related Information
Guidelines for Altera IP Cores and Architecture-Specific Features on page 18-15

Altera Device Family Support
Support for newly released device families may require an overlay. Contact Synopsys for more
information.

Related Information
Synopsys Website

Tool Setup

Specifying the Quartus Prime Software Version
You can specify your version of the Quartus Prime software in Implementation Options in the Synplify
software. This option ensures that the netlist is compatible with the software version and supports the
newest features. Altera recommends using the latest version of the Quartus Prime software whenever
possible. If your Quartus Prime software version is newer than the versions available in the Quartus
Version list, check if there is a newer version of the Synplify software available that supports the current
Quartus Prime software version. Otherwise, select the latest version in the list for the best compatibility.

Note: The Quartus Version list is available only after selecting an Altera device.

Example 18-1: Specifying Quartus Prime Software Version at the Command Line

set_option -quartus_version <version number>

Exporting Designs to the Quartus Prime Software Using NativeLink Integration
The NativeLink feature in the Quartus Prime software facilitates the seamless transfer of information
between the Quartus Prime software and EDA tools, and allows you to run other EDA design entry or
synthesis, simulation, and timing analysis tools automatically from within the Quartus Prime software.

QPS5V1
2014.11.02 Hardware Description Language Support 18-3

Synopsys Synplify Support Altera Corporation

Send Feedback

http://www.synopsys.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After a design is synthesized in the Synplify software, a .vqm netlist file, an .scf file for TimeQuest Timing
Analyzer timing constraints, and .tcl files are used to import the design into the Quartus Prime software
for place-and-route. You can run the Quartus Prime software from within the Synplify software or as a
stand-alone application. After you import the design into the Quartus Prime software, you can specify
different options to further optimize the design.

Note: When you are using NativeLink integration, the path to your project must not contain empty
spaces. The Synplify software uses Tcl scripts to communicate with the Quartus Prime software,
and the Tcl language does not accept arguments with empty spaces in the path.

Use NativeLink integration to integrate the Synplify software and Quartus Prime software with a single
GUI for both synthesis and place-and-route operations. NativeLink integration allows you to run the
Quartus Prime software from within the Synplify software GUI, or to run the Synplify software from
within the Quartus Prime software GUI.

Running the Quartus Prime Software from within the Synplify Software
To run the Quartus Prime software from within the Synplify software, you must set the
QUARTUS_ROOTDIR environment variable to the Quartus Prime software installation directory located
in <Quartus Prime system directory>\altera\ <version number>\quartus. You must set this environment
variable to use the Synplify and Quartus Prime software together. Synplify also uses this variable to open
the Quartus Prime software in the background and obtain detailed information about the Altera IP cores
used in the design.

For the Windows operating system, do the following:

1. Point to Start, and click Control Panel.
2. Click System >Advanced system settings >Environment Variables.
3. Create a QUARTUS_ROOTDIR system variable.

For the Linux operating system, do the following:

• Create an environment variable QUARTUS_ROOTDIR that points to the <home directory>/altera
<version number> location.

You can create new place and route implementations with the New P&R button in the Synplify software
GUI. Under each implementation, the Synplify Pro software creates a place-and-route implementation
called pr_<number> Altera Place and Route. To run the Quartus Prime software in command-line mode
after each synthesis run, use the text box to turn on the place-and-route implementation. The results of
the place-and-route are written to a log file in the pr_ <number> directory under the current implementa‐
tion directory.

You can also use the commands in the Quartus Prime menu to run the Quartus Prime software at any
time following a successful completion of synthesis. In the Synplify software, on the Options menu, click
Quartus Prime and then choose one of the following commands:

• Launch Quartus —Opens the Quartus Prime software GUI and creates a Quartus Prime project with
the synthesized output file, forward-annotated timing constraints, and pin assignments. Use this
command to configure options for the project and to execute any Quartus Prime commands.

• Run Background Compile—Runs the Quartus Prime software in command-line mode with the
project settings from the synthesis run. The results of the place-and-route are written to a log file.

The <project_name>_cons.tcl file is used to set up the Quartus Prime project and directs the
<project_name>.tcl file to pass constraints from the Synplify software to the Quartus Prime software. By

18-4 Running the Quartus Prime Software from within the Synplify Software
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

default, the <project_name>.tcl file contains device, timing, and location assignments. The
<project_name>.tcl file contains the command to use the Synplify-generated .scf constraints file with the
TimeQuest Timing Analyzer.

Related Information
Design Flow on page 18-1

Using the Quartus Prime Software to Run the Synplify Software
You can set up the Quartus Prime software to run the Synplify software for synthesis with NativeLink
integration. This feature allows you to use the Synplify software to quickly synthesize a design as part of a
standard compilation in the Quartus Prime software. When you use this feature, the Synplify software
does not use any timing constraints or assignments that you have set in the Quartus Prime software.

Note: For best results, Synopsys recommends that you set constraints in the Synplify software and use a
Tcl script to pass these constraints to the Quartus Prime software, instead of opening the Synplify
software from within the Quartus Prime software.

To set up the Quartus Prime software to run the Synplify software, do the following:

1. On the Tools menu, click Options.
2. In the Options dialog box, click EDA Tool Options and specify the path of the Synplify or Synplify

Pro software under Location of Executable.

Running the Synplify software with NativeLink integration is supported on both floating network and
node-locked fixed PC licenses. Both types of licenses support batch mode compilation.

Related Information
About Using the Synplify Software with the Quartus Prime Software Online Help

Synplify Software Generated Files
During synthesis, the Synplify software produces several intermediate and output files.

Table 18-1: Synplify Intermediate and Output Files

File Extensions File Description

.vqm Technology-specific netlist in .vqm file format.

A .vqm file is created for all Altera device families supported by the Quartus
Prime software.

.scf(13) Synopsys Constraint Format file containing timing constraints for the
TimeQuest Timing Analyzer.

(13) If your design uses the Classic Timing Analyzer for timing analysis in the Quartus Prime software versions
10.0 and earlier, the Synplify software generates timing constraints in the Tcl Constraints File (.tcl). If you
are using the Quartus Prime software versions 10.1 and later, you must use the TimeQuest Timing Analyzer
for timing analysis.

QPS5V1
2014.11.02 Using the Quartus Prime Software to Run the Synplify Software 18-5

Synopsys Synplify Support Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/eda/synthesis/synplicity/eda_view_using_synplty.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Extensions File Description

.tcl Forward-annotated constraints file containing constraints and assignments.

A .tcl file for the Quartus Prime software is created for all devices. The .tcl file
contains the appropriate Tcl commands to create and set up a Quartus Prime
project and pass placement constraints.

.srs Technology-independent RTL netlist file that can be read only by the Synplify
software.

.srm Technology view netlist file.

.acf Assignment and Configurations file for backward compatibility with the MAX
+PLUS II software. For devices supported by the MAX+PLUS II software, the
MAX+PLUS II assignments are imported from the MAX+PLUS II .acf file.

.srr(14) Synthesis Report file.

Related Information
Design Flow on page 18-1

Design Constraints Support
You can specify timing constraints and attributes by using the SCOPE window of the Synplify software, by
editing the .sdc file, or by defining the compiler directives in the HDL source file. The Synplify software
forward-annotates many of these constraints to the Quartus Prime software.

After synthesis is complete, do the following steps:

1. Import the .vqm netlist to the Quartus Prime software for place-and-route.
2. Use the .tcl file generated by the Synplify software to forward-annotate your project constraints

including device selection. The .tcl file calls the generated .scf to foward-annotate TimeQuest Timing
Analyzer timing constraints.

Related Information

• Design Flow on page 18-1
• Synplify Optimization Strategies on page 18-8
• Netlist Optimizations and Physical Synthesis Documentation

(14) This report file includes performance estimates that are often based on pre-place-and-route information.
Use the fMAX reported by the Quartus Prime software after place-and-route—it is the only reliable source of
timing information. This report file includes post-synthesis device resource utilization statistics that might
inaccurately predict resource usage after place-and-route. The Synplify software does not account for black
box functions nor for logic usage reduction achieved through register packing performed by the Quartus
Prime software. Register packing combines a single register and look-up table (LUT) into a single logic cell,
reducing logic cell utilization below the Synplify software estimate. Use the device utilization reported by the
Quartus Prime software after place-and-route.

18-6 Design Constraints Support
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471329493/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running the Quartus Prime Software Manually With the Synplify‑Generated Tcl
Script

You can run the Quartus Prime software with a Synplify-generated Tcl script.

To run the Tcl script to set up your project assignments, perform the following steps:

1. Ensure the .vqm, .scf, and .tcl files are located in the same directory.
2. In the Quartus Prime software, on the View menu, point to Utility Windows and click Tcl Console.

The Quartus Prime Tcl Console opens.
3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl

Passing TimeQuest SDC Timing Constraints to the Quartus Prime Software
The TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that validates the timing
performance of all logic in your design using an industry standard constraints format, Synopsys Design
Constraints (SDC).

The Synplify-generated .tcl file contains constraints for the Quartus Prime software, such as the device
specification and any location constraints. Timing constraints are forward-annotated in the Synopsys
Constraints Format (.scf) file.

Note: Synopsys recommends that you modify constraints using the SCOPE constraint editor window,
rather than using the generated .sdc, .scf, or .tcl file.

The following list of Synplify constraints are converted to the equivalent Quartus Prime SDC commands
and are forward-annotated to the Quartus Prime software in the .scf file:

• define_clock

• define_input_delay

• define_output_delay

• define_multicycle_path

• define_false_path

All Synplify constraints described above are mapped to SDC commands for the TimeQuest Timing
Analyzer.

For syntax and arguments for these commands, refer to the applicable topic in this manual or refer to
Synplify Help. For a list of corresponding commands in the Quartus Prime software, refer to the Quartus
Prime Help.

Related Information

• Timing-Driven Synthesis Settings on page 18-9
• Quartus Prime TimeQuest Timing Analyzer Documentation

Individual Clocks and Frequencies
Specify clock frequencies for individual clocks in the Synplify software with the define_clock command.
This command is passed to the Quartus Prime software with the create_clock command.

QPS5V1
2014.11.02 Running the Quartus Prime Software Manually With the Synplify‑Generated... 18-7

Synopsys Synplify Support Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Input and Output Delay
Specify input delay and output delay constraints in the Synplify software with the define_input_delay
and define_output_delay commands, respectively. These commands are passed to the Quartus Prime
software with the set_input_delay and set_output_delay commands.

Multicycle Path
Specify a multicycle path constraint in the Synplify software with the define_multicycle_path
command. This command is passed to the Quartus Prime software with the set_multicycle_path
command.

False Path
Specify a false path constraint in the Synplify software with the define_false_path command. This
command is passed to the Quartus Prime software with the set_false_path command.

Simulation and Formal Verification
You can perform simulation and formal verification at various stages in the design process. You can
perform final timing analysis after placement and routing is complete.

If area and timing requirements are satisfied, use the files generated by the Quartus Prime software to
program or configure the Altera device. If your area or timing requirements are not met, you can change
the constraints in the Synplify software or the Quartus Prime software and rerun synthesis. Altera
recommends that you provide timing constraints in the Synplify software and any placement constraints
in the Quartus Prime software. Repeat the process until area and timing requirements are met.

You can also use other options and techniques in the Quartus Prime software to meet area and timing
requirements, such as WYSIWYG Primitive Resynthesis, which can perform optimizations on your .vqm
netlist within the Quartus Prime software.

Note: In some cases, you might be required to modify the source code if the area and timing require‐
ments cannot be met using options in the Synplify and Quartus Prime software.

Synplify Optimization Strategies
Combining Synplify software constraints with VHDL and Verilog HDL coding techniques and Quartus
Prime software options can help you obtain the results that you require.

For more information about applying attributes, refer to the Synopsys FPGA Synthesis Reference Manual.

Related Information

• Design Constraints Support on page 18-6
• Recommended Design Practices Documentation on page 11-1
• Timing Closure and Optimization Documentation

Using Synplify Premier to Optimize Your Design
Compared to other Synplify products, the Synplify Premier software offers additional physical synthesis
optimizations. After typical logic synthesis, the Synplify Premier software places and routes the design and
attempts to restructure the netlist based on the physical location of the logic in the Altera device. The

18-8 Input and Output Delay
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471203263/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synplify Premier software forward-annotates the design netlist to the Quartus Prime software to perform
the final placement and routing. In the default flow, the Synplify Premier software also forward-annotates
placement information for the critical path(s) in the design, which can improve the compilation time in
the Quartus Prime software.

The physical location annotation file is called <design name>_plc.tcl. If you open the Quartus Prime
software from the Synplify Premier software user interface, the Quartus Prime software automatically uses
this file for the placement information.

The Physical Analyst allows you to examine the placed netlist from the Synplify Premier software, which
is similar to the HDL Analyst for a logical netlist. You can use this display to analyze and diagnose
potential problems.

Using Implementations in Synplify Pro or Premier
You can create different synthesis results without overwriting the existing results, in the Synplify Pro or
Premier software, by creating a new implementation from the Project menu. For each implementation,
specify the target device, synthesis options, and constraint files. Each implementation generates its own
subdirectory that contains all the resulting files, including .vqm, .scf, and .tcl files, from a compilation of
the particular implementation. You can then compare the results of the different implementations to find
the optimal set of synthesis options and constraints for a design.

Timing-Driven Synthesis Settings
The Synplify software supports timing-driven synthesis with user-assigned timing constraints to optimize
the performance of the design.

The Quartus Prime NativeLink feature allows timing constraints that are applied in the Synplify software
to be forward-annotated for the Quartus Prime software with an .scf file for timing-driven place and
route.

The Synplify Synthesis Report File (.srr) contains timing reports of estimated place-and-route delays. The
Quartus Prime software can perform further optimizations on a post-synthesis netlist from third-party
synthesis tools. In addition, designs might contain black boxes or intellectual property (IP) functions that
have not been optimized by the third-party synthesis software. Actual timing results are obtained only
after the design has been fully placed and routed in the Quartus Prime software. For these reasons, the
Quartus Prime post place-and-route timing reports provide a more accurate representation of the design.
Use the statistics in these reports to evaluate design performance.

Related Information

• Passing TimeQuest SDC Timing Constraints to the Quartus Prime Software on page 18-7
• Exporting Designs to the Quartus Prime Software Using NativeLink Integration on page 18-3

Clock Frequencies
For single-clock designs, you can specify a global frequency when using the push-button flow. While this
flow is simple and provides good results, it often does not meet the performance requirements for more
advanced designs. You can use timing constraints, compiler directives, and other attributes to help
optimize the performance of a design. You can enter these attributes and directives directly in the HDL
code. Alternatively, you can enter attributes (not directives) into an .sdc file with the SCOPE window in
the Synplify software.

QPS5V1
2014.11.02 Using Implementations in Synplify Pro or Premier 18-9

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the SCOPE window to set global frequency requirements for the entire design and individual clock
settings. Use the Clocks tab in the SCOPE window to specify frequency (or period), rise times, fall times,
duty cycle, and other settings. Assigning individual clock settings, rather than over-constraining the global
frequency, helps the Quartus Prime software and the Synplify software achieve the fastest clock frequency
for the overall design. The define_clock attribute assigns clock constraints.

Multiple Clock Domains
The Synplify software can perform timing analysis on unrelated clock domains. Each clock group is a
different clock domain and is treated as unrelated to the clocks in all other clock groups. All clocks in a
single clock group are assumed to be related, and the Synplify software automatically calculates the
relationship between the clocks. You can assign clocks to a new clock group or put related clocks in the
same clock group with the Clocks tab in the SCOPE window, or with the define_clock attribute.

Input and Output Delays
Specify the input and output delays for the ports of a design in the Input/Output tab of the SCOPE
window, or with the define_input_delay and define_output_delay attributes. The Synplify software
does not allow you to assign the tCO and tSU values directly to inputs and outputs. However, a tCO value
can be inferred by setting an external output delay; a tSU value can be inferred by setting an external input
delay.

Relationship Between tCO and the Output Delay

tCO = clock period – external output delay

Relationship Between tSU and the Input Delay

tSU = clock period – external input delay

When the syn_forward_io_constraints attribute is set to 1, the Synplify software passes the external
input and output delays to the Quartus Prime software using NativeLink integration. The Quartus Prime
software then uses the external delays to calculate the maximum system frequency.

Multicycle Paths
A multicycle path is a path that requires more than one clock cycle to propagate. Specify any multicycle
paths in the design in the Multi-Cycle Paths tab of the SCOPE window, or with the
define_multicycle_path attribute. You should specify which paths are multicycle to prevent the
Quartus Prime and the Synplify compilers from working excessively on a non-critical path. Not specifying
these paths can also result in an inaccurate critical path reported during timing analysis.

False Paths
False paths are paths that should be ignored during timing analysis, or should be assigned low (or no)
priority during optimization. Some examples of false paths include slow asynchronous resets, and test
logic that has been added to the design. Set these paths in the False Paths tab of the SCOPE window, or
use the define_false_path attribute.

FSM Compiler
If the FSM Compiler is turned on, the compiler automatically detects state machines in a design, which
are then extracted and optimized. The FSM Compiler analyzes state machines and implements sequential,
gray, or one-hot encoding, based on the number of states. The compiler also performs unused-state

18-10 Multiple Clock Domains
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

analysis, optimization of unreachable states, and minimization of transition logic. Implementation is
based on the number of states, regardless of the coding style in the HDL code.

If the FSM Compiler is turned off, the compiler does not optimize logic as state machines. The state
machines are implemented as HDL code. Thus, if the coding style for a state machine is sequential, the
implementation is also sequential.

Use the syn_state_machine compiler directive to specify or prevent a state machine from being extracted
and optimized. To override the default encoding of the FSM Compiler, use the syn_encoding directive.

Table 18-2: syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flipflops. Sequential, also called
binary, state machines are useful for area-critical designs when timing is not the
primary concern.

Gray Generates state machines where only one flipflop changes during each transition.
Gray-encoded state machines tend to be glitches.

One-hot Generates state machines containing one flipflop for each state. One-hot state
machines typically provide the best performance and shortest clock-to-output delays.
However, one-hot implementations are usually larger than sequential implementa‐
tions.

Safe Generates extra control logic to force the state machine to the reset state if an invalid
state is reached. You can use the safe value in conjunction with any of the other three
values, which results in the state machine being implemented with the requested
encoding scheme and the generation of the reset logic.

Example 18-2: Sample VHDL Code for Applying syn_encoding Directive

SIGNAL current_state : STD_LOGIC_VECTOR (7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

By default, the state machine logic is optimized for speed and area, which may be potentially
undesirable for critical systems. The safe value generates extra control logic to force the state
machine to the reset state if an invalid state is reached.

FSM Explorer in Synplify Pro and Premier
The Synplify Pro and Premier software use the FSM Explorer to explore different encoding styles for a
state machine automatically, and then implement the best encoding based on the overall design
constraints. The FSM Explorer uses the FSM Compiler to identify and extract state machines from a
design. However, unlike the FSM Compiler, which chooses the encoding style based on the number of
states, the FSM Explorer attempts several different encoding styles before choosing a specific one. The
trade-off is that the compilation requires more time to analyze the state machine, but finds an optimal
encoding scheme for the state machine.

QPS5V1
2014.11.02 FSM Explorer in Synplify Pro and Premier 18-11

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimization Attributes and Options

Retiming in Synplify Pro and Premier
The Synplify Pro and Premier software can retime a design, which can improve the timing performance of
sequential circuits by moving registers (register balancing) across combinational elements. Be aware that
retimed registers incur name changes. You can retime your design from Implementation Options or you
can use the syn_allow_retiming attribute.

Maximum Fan-Out
When your design has critical path nets with high fan-out, use the syn_maxfan attribute to control the
fan-out of the net. Setting this attribute for a specific net results in the replication of the driver of the net
to reduce overall fan-out. The syn_maxfan attribute takes an integer value and applies it to inputs or
registers. The syn_maxfan attribute cannot be used to duplicate control signals. The minimum allowed
value of the attribute is 4. Using this attribute might result in increased logic resource utilization, thus
straining routing resources, which can lead to long compilation times and difficult fitting.

If you must duplicate an output register or an output enable register, you can create a register for each
output pin by using the syn_useioff attribute.

Preserving Nets
During synthesis, the compiler maintains ports, registers, and instantiated components. However, some
nets cannot be maintained to create an optimized circuit. Applying the syn_keep directive overrides the
optimization of the compiler and preserves the net during synthesis. The syn_keep directive is a Boolean
data type value and can be applied to wires (Verilog HDL) and signals (VHDL). Setting the value to true
preserves the net through synthesis.

Register Packing
Altera devices allow register packing into I/O cells. Altera recommends allowing the Quartus Prime
software to make the I/O register assignments. However, you can control register packing with the
syn_useioff attribute. The syn_useioff attribute is a Boolean data type value that can be applied to
ports or entire modules. Setting the value to 1 instructs the compiler to pack the register into an I/O cell.
Setting the value to 0 prevents register packing in both the Synplify and Quartus Prime software.

Resource Sharing
The Synplify software uses resource sharing techniques during synthesis, by default, to reduce area.
Turning off the Resource Sharing option on the Options tab of the Implementation Options dialog box
improves performance results for some designs. You can also turn off the option for a specific module
with the syn_sharing attribute. If you turn off this option, be sure to check the results to verify
improvement in timing performance. If there is no improvement, turn on Resource Sharing.

Preserving Hierarchy
The Synplify software performs cross-boundary optimization by default, which causes the design to
flatten to allow optimization. You can use the syn_hier attribute to override the default compiler settings.
The syn_hier attribute applies a string value to modules, architectures, or both. Setting the value to hard
maintains the boundaries of a module, architecture, or both, but allows constant propagation. Setting the
value to locked prevents all cross-boundary optimizations. Use the locked setting with the partition
setting to create separate design blocks and multiple output netlists.

18-12 Optimization Attributes and Options
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the Synplify software generates a hierarchical .vqm file. To flatten the file, set the
syn_netlist_hierarchy attribute to 0.

Register Input and Output Delays
Two advanced options, define_reg_input_delay and define_reg_output_delay, can speed up paths
feeding a register, or coming from a register, by a specific number of nanoseconds. The Synplify software
attempts to meet the global clock frequency goals for a design as well as the individual clock frequency
goals (set with the define_clock attribute). You can use these attributes to add a delay to paths feeding
into or out of registers to further constrain critical paths. You can slow down a path that is too highly
optimized by setting this attributes to a negative number.

The define_reg_input_delay and define_reg_output_delay options are useful to close timing if your
design does not meet timing goals, because the routing delay after placement and routing exceeds the
delay predicted by the Synplify software. Rerun synthesis using these options, specifying the actual routing
delay (from place-and-route results) so that the tool can meet the required clock frequency. Synopsys
recommends that for best results, do not make these assignments too aggressively. For example, you can
increase the routing delay value, but do not also use the full routing delay from the last compilation.

In the SCOPE constraint window, the registers panel contains the following options:

• Register—Specifies the name of the register. If you have initialized a compiled design, select the name
from the list.

• Type—Specifies whether the delay is an input or output delay.
• Route—Shrinks the effective period for the constrained registers by the specified value without

affecting the clock period that is forward-annotated to the Quartus Prime software.

Use the following Tcl command syntax to specify an input or output register delay in nanoseconds.

Example 18-3: Input and Output Register Delay

define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>

syn_direct_enable
This attribute controls the assignment of a clock-enable net to the dedicated enable pin of a register. With
this attribute, you can direct the Synplify mapper to use a particular net as the only clock enable when the
design has multiple clock enable candidates.

To use this attribute as a compiler directive to infer registers with clock enables, enter the
syn_direct_enable directive in your source code, instead of the SCOPE spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true enables net assignment to the clock-
enable pin. The following is the syntax for Verilog HDL:

object /* synthesis syn_direct_enable = 1 */ ;

I/O Standard
For certain Altera devices, specify the I/O standard type for an I/O pad in the design with the I/O
Standard panel in the Synplify SCOPE window.

QPS5V1
2014.11.02 Register Input and Output Delays 18-13

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Synplify SDC syntax for the define_io_standard constraint, in which the delay_type must be
either input_delay or output_delay.

Example 18-4: define_io_standard Constraint

define_io_standard [–disable|–enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>}
[<columnTclName>{<value>}...]

For details about supported I/O standards, refer to the Synopsys FPGA Synthesis Reference
Manual.

Altera-Specific Attributes
You can use the altera_chip_pin_lc, altera_io_powerup, and altera_io_opendrain attributes with
specific Altera device features, which are forward-annotated to the Quartus Prime project, and are used
during place-and-route.

altera_chip_pin_lc
Use the altera_chip_pin_lc attribute to make pin assignments. This attribute applies a string value to
inputs and outputs. Use the attribute only on the ports of the top-level entity in the design. Do not use this
attribute to assign pin locations from entities at lower levels of the design hierarchy.

Note: The altera_chip_pin_lc attribute is not supported for any MAX series device.

In the SCOPE window, set the value of the altera_chip_pin_lc attribute to a pin number or a list of pin
numbers.

You can use VHDL code for making location assignments for supported Altera devices. Pin location
assignments for these devices are written to the output .tcl file.

Note: The data_out signal is a 4-bit signal; data_out[3] is assigned to pin 14 and data_out[0] is
assigned to pin 15.

Example 18-5: Making Location Assignments in VHDL

ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16, 15";

altera_io_powerup
Use the altera_io_powerup attribute to define the power-up value of an I/O register that has no set or
reset. This attribute applies a string value (high|low) to ports with I/O registers. By default, the power-up
value of the I/O register is set to low.

altera_io_opendrain
Use the altera_io_opendrain attribute to specify open-drain mode I/O ports. This attribute applies a
boolean data type value to outputs or bidirectional ports for devices that support open-drain mode.

18-14 Altera-Specific Attributes
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Guidelines for Altera IP Cores and Architecture-Specific Features
Altera provides parameterizable IP cores, including LPMs, device-specific Altera IP cores, and IP available
through the Altera Megafunction Partners Program (AMPPSM). You can use IP cores by instantiating
them in your HDL code, or by inferring certain IP cores from generic HDL code.

You can instantiate an IP core in your HDL code with the IP Catalog and configure the IP core with the
Parameter Editor, or instantiate the IP core using the port and parameter definition. The IP Catalog and
Parameter Editor provide a graphical interface within the Quartus Prime software to customize any
available Altera IP core for the design.

The Synplify software also automatically recognizes certain types of HDL code, and infers the appropriate
Altera IP core when an IP core provides optimal results. The Synplify software provides options to control
inference of certain types of IP cores.

Related Information

• Hardware Description Language Support on page 18-3
• Recommended HDL Coding Styles Documentation on page 12-1
• About the IP Catalog Online Help

Instantiating Altera IP Cores with the IP Catalog
When you use the IP Catalog and Parameter Editor to set up and configure an IP core, the IP Catalog
creates a VHDL or Verilog HDL wrapper file <output file>.v|vhd that instantiates the IP core.

The Synplify software uses the Quartus Prime timing and resource estimation netlist feature to report
more accurate resource utilization and timing performance estimates, and leverages timing-driven
optimization, instead of treating the IP core as a “black box.” Including the generated IP core variation
wrapper file in your Synplify project, gives the Synplify software complete information about the IP core.

Note: There is an option in the Parameter Editor to generate a netlist for resource and timing estimation.
This option is not recommended for the Synplify software because the software automatically
generates this information in the background without a separate netlist. If you do create a separate
netlist <output file>_syn.v and use that file in your synthesis project, you must also include the
<output file>.v|vhd file in your Quartus Prime project.

Verify that the correct Quartus Prime version is specified in the Synplify software before compiling the
generated file to ensure that the software uses the correct library definitions for the IP core. The Quartus
Version setting must match the version of the Quartus Prime software used to generate the customized IP
core.

In addition, ensure that the QUARTUS_ROOTDIR environment variable specifies the installation
directory location of the correct Quartus Prime version. The Synplify software uses this information to
launch the Quartus Prime software in the background. The environment variable setting must match the
version of the Quartus Prime software used to generate the customized IP core.

Related Information

• Specifying the Quartus Prime Software Version on page 18-3
• Using the Quartus Prime Software to Run the Synplify Software on page 18-5

QPS5V1
2014.11.02 Guidelines for Altera IP Cores and Architecture-Specific Features 18-15

Synopsys Synplify Support Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/hdl/mega/mega_view_megawiz.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instantiating Altera IP Cores with IP Catalog Generated Verilog HDL Files
If you turn on the <output file>_inst.v option on the Parameter Editor, the IP Catalog generates a Verilog
HDL instantiation template file for use in your Synplify design. The instantiation template file, <output
file>_inst.v, helps to instantiate the IP core variation wrapper file, <output file>.v, in your top-level design.
Include the IP core variation wrapper file <output file>.v in your Synplify project. The Synplify software
includes the IP core information in the output .vqm netlist file. You do not need to include the generated
IP core variation wrapper file in your Quartus Prime project.

Instantiating Altera IP Cores with IP Catalog Generated VHDL Files
If you turn on the <output file>.cmp and <output file>_inst.vhd options on the Parameter Editor, the IP
catalog generates a VHDL component declaration file and a VHDL instantiation template file for use in
your Synplify design. These files can help you instantiate the IP core variation wrapper file, <output
file>.vhd, in your top-level design. Include the <output file>.vhd in your Synplify project. The Synplify
software includes the IP core information in the output .vqm netlist file. You do not need to include the
generated IP core variation wrapper file in your Quartus Prime project.

Changing Synplify’s Default Behavior for Instantiated Altera IP Cores
By default, the Synplify software automatically opens the Quartus Prime software in the background to
generate a resource and timing estimation netlist for IP cores.

You might want to change this behavior to reduce run times in the Synplify software, because generating
the netlist files can take several minutes for large designs, or if the Synplify software cannot access your
Quartus Prime software installation to generate the files. Changing this behavior might speed up the
compilation time in the Synplify software, but the Quality of Results (QoR) might be reduced.

The Synplify software directs the Quartus Prime software to generate information in two ways:

• Some IP cores provide a “clear box” model—the Synplify software fully synthesizes this model and
includes the device architecture-specific primitives in the output .vqm netlist file.

• Other IP cores provide a “grey box” model—the Synplify software reads the resource information, but
the netlist does not contain all the logic functionality.

Note: You need to turn on Generate netlist when using the grey box model. For more information,
see the Quartus Prime online help.

For these IP cores, the Synplify software uses the logic information for resource and timing estimation
and optimization, and then instantiates the IP core in the output .vqm netlist file so the Quartus Prime
software can implement the appropriate device primitives. By default, the Synplify software uses the clear
box model when available, and otherwise uses the grey box model.

Related Information

• Including Files for Quartus Prime Placement and Routing Only on page 18-19
• Synplify Synthesis Techniques with the Quartus Prime Software online training

Includes more information about design flows using clear box model and grey box model.
• Generating a Netlist for 3rd Party Synthesis Tools online help

Instantiating Intellectual Property with the IP Catalog and Parameter Editor
Many Altera IP cores include a resource and timing estimation netlist that the Synplify software uses to
report more accurate resource utilization and timing performance estimates, and leverage timing-driven
optimization rather than a black box function.

18-16 Instantiating Altera IP Cores with IP Catalog Generated Verilog HDL...
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

http://www.altera.com/education/training/courses/OSYN1150
http://quartushelp.altera.com/13.1/hdl/mega/mega_netlist.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To create this netlist file, perform the following steps:

1. Select the IP core in the IP Catalog.
2. Click Next to open the Parameter Editor.
3. Click Set Up Simulation, which sets up all the EDA options.
4. Turn on the Generate netlist option to generate a netlist for resource and timing estimation and click

OK.
5. Click Generate to generate the netlist file.

The Quartus Prime software generates a file <output file>_syn.v. This netlist contains the grey box
information for resource and timing estimation, but does not contain the actual implementation. Include
this netlist file in your Synplify project. Next, include the IP core variation wrapper file <output file>.v|
vhd in the Quartus Prime project along with your Synplify .vqm output netlist.

If your IP core does not include a resource and timing estimation netlist, the Synplify software must treat
the IP core as a black box.

Related Information
Including Files for Quartus Prime Placement and Routing Only on page 18-19

Instantiating Black Box IP Cores with Generated Verilog HDL Files
Use the syn_black_box compiler directive to declare a module as a black box. The top-level design files
must contain the IP port-mapping and a hollow-body module declaration. Apply the syn_black_box
directive to the module declaration in the top-level file or a separate file included in the project so that the
Synplify software recognizes the module is a black box. The software compiles successfully without this
directive, but reports an additional warning message. Using this directive allows you to add other
directives.

The example shows a top-level file that instantiates my_verilogIP.v, which is a simple customized
variation generated by the IP Catalog.

Example 18-6: Sample Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output [7:0] count;
 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule
// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;
 output [7:0] q;
endmodule

Instantiating Black Box IP Cores with Generated VHDL Files
Use the syn_black_box compiler directive to declare a component as a black box. The top-level design
files must contain the IP core variation component declaration and port-mapping. Apply the
syn_black_box directive to the component declaration in the top-level file. The software compiles
successfully without this directive, but reports an additional warning message. Using this directive allows
you to add other directives.

QPS5V1
2014.11.02 Instantiating Black Box IP Cores with Generated Verilog HDL Files 18-17

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The example shows a top-level file that instantiates my_vhdlIP.vhd, which is a simplified customized
variation generated by the IP Catalog.

Example 18-7: Sample Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
end COMPONENT;
attribute syn_black_box : boolean;
attribute syn_black_box of my_vhdlIP: component is true;
BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

Other Synplify Software Attributes for Creating Black Boxes
Instantiating IP as a black box does not provide visibility into the IP for the synthesis tool. Thus, it does
not take full advantage of the synthesis tool's timing-driven optimization. For better timing optimization,
especially if the black box does not have registered inputs and outputs, add timing models to black boxes
by adding the syn_tpd, syn_tsu, and syn_tco attributes.

Example 18-8: Adding Timing Models to Black Boxes in Verilog HDL

module ram32x4(z,d,addr,we,clk);
 /* synthesis syn_black_box syn_tcol="clk->z[3:0]=4.0"
 syn_tpd1="addr[3:0]->[3:0]=8.0"
 syn_tsu1="addr[3:0]->clk=2.0"
 syn_tsu2="we->clk=3.0" */
 output [3:0]z;
 input[3:0]d;
 input[3:0]addr;
 input we
 input clk
endmodule

The following additional attributes are supported by the Synplify software to communicate details
about the characteristics of the black box module within the HDL code:

• syn_resources—Specifies the resources used in a particular black box.
• black_box_pad_pin—Prevents mapping to I/O cells.
• black_box_tri_pin—Indicates a tri-stated signal.

18-18 Other Synplify Software Attributes for Creating Black Boxes
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about applying these attributes, refer to the Synopsys FPGA Synthesis
Reference Manual.

Including Files for Quartus Prime Placement and Routing Only
In the Synplify software, you can add files to your project that are used only during placement and routing
in the Quartus Prime software. This can be useful if you have grey or black boxes for Synplify synthesis
that require the full design files to be compiled in the Quartus Prime software.

You can also set the option in a script using the -job_owner par option.

The example shows how to define files for a Synplify project that includes a top-level design file, a grey
box netlist file, an IP wrapper file, and an encrypted IP file. With these files, the Synplify software writes
an empty instantiation of “core” in the .vqm file and uses the grey box netlist for resource and timing
estimation. The files core.v and core_enc8b10b.v are not compiled by the Synplify software, but are
copied into the place-and-route directory. The Quartus Prime software compiles these files to implement
the “core” IP block.

Example 18-9: Commands to Define Files for a Synplify Project

add_file -verilog -job_owner par "core_enc8b10b.v"
add_file -verilog -job_owner par "core.v"
add_file -verilog "core_gb.v"
add_file -verilog "top.v"

Inferring Altera IP Cores from HDL Code
The Synplify software uses Behavior Extraction Synthesis Technology (BEST) algorithms to infer high-
level structures such as RAMs, ROMs, operators, FSMs, and DSP multiplication operations. Then, the
Synplify software keeps the structures abstract for as long as possible in the synthesis process. This allows
the use of technology-specific resources to implement these structures by inferring the appropriate Altera
IP core when an IP core provides optimal results.

Related Information
Recommended HDL Coding Styles Documentation on page 12-1

Inferring Multipliers
The figure shows the HDL Analyst view of an unsigned 8 × 8 multiplier with two pipeline stages after
synthesis in the Synplify software. This multiplier is converted into an ALTMULT_ADD or
ALTMULT_ACCUM IP core. For devices with DSP blocks, the software might implement the function in
a DSP block instead of regular logic, depending on device utilization. For some devices, the software maps
directly to DSP block device primitives instead of instantiating an IP core in the .vqm file.

QPS5V1
2014.11.02 Including Files for Quartus Prime Placement and Routing Only 18-19

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-2: HDL Analyst View of LPM_MULT IP Core (Unsigned 8x8 Multiplier with Pipeline=2)

Resource Balancing
While mapping multipliers to DSP blocks, the Synplify software performs resource balancing for
optimum performance.

Altera devices have a fixed number of DSP blocks, which includes a fixed number of embedded
multipliers. If the design uses more multipliers than are available, the Synplify software automatically
maps the extra multipliers to logic elements (LEs), or adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the Synplify software maps the
multipliers in the critical paths to DSP blocks. Next, any wide multipliers, which might or might not be in
the critical paths, are mapped to DSP blocks. Smaller multipliers and multipliers that are not in the critical
paths might then be implemented in the logic (LEs or ALMs). This ensures that the design fits successfully
in the device.

Controlling the DSP Block Inference
You can implement multipliers in DSP blocks or in logic in Altera devices that contain DSP blocks. You
can control this implementation through attribute settings in the Synplify software.

Signal Level Attribute
You can control the implementation of individual multipliers by using the syn_multstyle attribute as
shown in the following Verilog HDL code (where <signal_name> is the name of the signal):

<signal_name> /* synthesis syn_multstyle = "logic" */;

The syn_multstyle attribute applies to wires only; it cannot be applied to registers.

18-20 Resource Balancing
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 18-3: DSP Block Attribute Setting in the Synplify Software

Attribute Name Value Description

syn_multstyle

lpm_mult LPM function inferred and
multipliers implemented in DSP
blocks.

logic LPM function not inferred and
multipliers implemented as LEs by
the Synplify software.

block_mult DSP IP core is inferred and
multipliers are mapped directly to
DSP block device primitives (for
supported devices).

Example 18-10: Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code

module mult(a,b,c,r,en);
 input [7:0] a,b;
 output [15:0] r;
 input [15:0] c;
 input en;
 wire [15:0] temp /* synthesis syn_multstyle="logic" */;

 assign temp = a*b;
 assign r = en ? temp : c;
endmodule

Example 18-11: Signal Attributes for Controlling DSP Block Inference in VHDL Code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
 r : out std_logic_vector (15 downto 0);
 en : in std_logic;
 a : in std_logic_vector (7 downto 0);
 b : in std_logic_vector (7 downto 0);
 c : in std_logic_vector (15 downto 0);
);
end onereg;

architecture beh of onereg is
signal temp : std_logic_vector (15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
 temp <= a * b;
 r <= temp when en='1' else c;
end beh;

QPS5V1
2014.11.02 Signal Level Attribute 18-21

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Inferring RAM
When a RAM block is inferred from an HDL design, the Synplify software uses an Altera IP core to target
the device memory architecture. For some devices, the Synplify software maps directly to memory block
device primitives instead of instantiating an IP core in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer RAM in a design:

• The address line must be at least two bits wide.
• Resets on the memory are not supported. Refer to the device family documentation for information

about whether read and write ports must be synchronous.
• Some Verilog HDL statements with blocking assignments might not be mapped to RAM blocks, so

avoid blocking statements when modeling RAMs in Verilog HDL.

For some device families, the syn_ramstyle attribute specifies the implementation to use for an inferred
RAM. You can apply the syn_ramstyle attribute globally to a module or a RAM instance, to specify
registers or block_ram values. To turn off RAM inference, set the attribute value to registers.

When inferring RAM for some Altera device families, the Synplify software generates additional bypass
logic. This logic is generated to resolve a half-cycle read/write behavior difference between the RTL and
post-synthesis simulations. The RTL simulation shows the memory being updated on the positive edge of
the clock; the post-synthesis simulation shows the memory being updated on the negative edge of the
clock. To eliminate bypass logic, the output of the RAM must be registered. By adding this register, the
output of the RAM is seen after a full clock cycle, by which time the update has occurred, thus eliminating
the need for bypass logic.

For devices with TriMatrix memory blocks, disable the creation of glue logic by setting the syn_ramstyle
value to no_rw_check. Set syn_ramstyle to no_rw_check to disable the creation of glue logic in dual-port
mode.

Example 18-12: VHDL Code for Inferred Dual-Port RAM

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0)
 wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we: IN STD_LOGIC);
 clk: IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECOR (7 DOWNTO 0);
SIGNAL mem; Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
 data_out <= mem (CONV_INTEGER(rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 END IF;

18-22 Inferring RAM
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 END PROCESS;
END ram_infer;

Example 18-13: VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
 we : IN STD_LOGIC;
 clk : IN STD_LOGIC);
END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR (7 DOWNTO 0); --output register

BEGIN
 tmp_out <= mem (CONV_INTEGER (rd_addr));
 PROCESS (clk, we, data_in) BEGIN
 IF (clk='1' AND clk'EVENT) THEN
 IF (we='1') THEN
 mem(CONV_INTEGER(wr_addr)) <= data_in;
 END IF;
 data_out <= tmp_out; --registers output preventing
 -- bypass logic generation
 END IF;
 END PROCESS;
END ram_infer;

RAM Initialization
Use the Verilog HDL $readmemb or $readmemh system tasks in your HDL code to initialize RAM
memories. The Synplify compiler forward-annotates the initialization values in the .srs (technology-
independent RTL netlist) file and the mapper generates the corresponding hexadecimal memory
initialization (.hex) file. One .hex file is created for each of the altsyncram IP cores that are inferred in
the design. The .hex file is associated with the altsyncram instance in the .vqm file using the init_file
attribute.

The examples show how RAM can be initialized through HDL code, and how the corresponding .hex file
is generated using Verilog HDL.

Example 18-14: Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL
Code

initial
begin
 $readmemb("mem.ini", mem);
end
always @(posedge clk)
begin
 raddr_reg <= raddr;
 if(we)

QPS5V1
2014.11.02 RAM Initialization 18-23

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 mem[waddr] <= data;
end

Example 18-15: Sample of .vqm Instance Containing Memory Initialization File

altsyncram mem_hex(.wren_a(we),.wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";

Inferring ROM
When a ROM block is inferred from an HDL design, the Synplify software uses an Altera IP core to target
the device memory architecture. For some devices, the Synplify software maps directly to memory block
device atoms instead of instantiating an IP core in the .vqm file.

Follow these guidelines for the Synplify software to successfully infer ROM in a design:

• The address line must be at least two bits wide.
• The ROM must be at least half full.
• A CASE or IF statement must make 16 or more assignments using constant values of the same width.

Inferring Shift Registers
The Synplify software infers shift registers for sequential shift components so that they can be placed in
dedicated memory blocks in supported device architectures using the ALTSHIFT_TAPS IP core.

If necessary, set the implementation style with the syn_srlstyle attribute. If you do not want the
components automatically mapped to shift registers, set the value to registers. You can set the value
globally, or on individual modules or registers.

For some designs, turning off shift register inference improves the design performance.

Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based incremental design flow is
often an effective design approach. In an incremental compilation flow, you can make changes to part of
the design while maintaining the placement and performance of unchanged parts of the design. Design
iterations are made dramatically faster by focusing new compilations on particular design partitions and
merging results with previous compilation results of other partitions. You can perform optimization on
individual subblocks and then preserve the results before you integrate the blocks into a final design and
optimize it at the top-level.

MultiPoint synthesis, which is available for certain device technologies in the Synplify Pro and Premier
software, provides an automated block-based incremental synthesis flow. The MultiPoint feature manages
a design hierarchy to let you design incrementally and synthesize designs that take too long for synthesis
of the entire project. MultiPoint synthesis allows different netlist files to be created for different sections of
a design hierarchy and supports the Quartus Prime incremental compilation methodology. This feature
also ensures that only those sections of a design that have been updated are resynthesized when the design

18-24 Inferring ROM
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

is compiled, reducing synthesis run time and preserving the results for the unchanged blocks. You can
change and resynthesize one section of a design without affecting other sections.

You can also partition your design and create different netlist files manually with the Synplify software by
creating a separate project for the logic in each partition of the design. Creating different netlist files for
each partition of the design also means that each partition can be independent of the others.

Hierarchical design methodologies can improve the efficiency of your design process, providing better
design reuse opportunities and fewer integration problems when working in a team environment. When
you use these incremental synthesis methodologies, you can take advantage of incremental compilation in
the Quartus Prime software. You can perform placement and routing on only the changed partitions of
the design, which reduces place-and-route time and preserves your fitting results.

Related Information
Power-Up Level on page 16-34

Design Flow for Incremental Compilation
The following steps describe the general incremental compilation flow when using these features of the
Quartus Prime software:

1. Create Verilog HDL or VHDL design files.
2. Determine which hierarchical blocks you want to treat as separate partitions in your design.
3. Set up your design using the MultiPoint synthesis feature or separate projects so that a separate netlist

file is created for each design partition.
4. If using separate projects, disable I/O pad insertion in the implementations for lower-level partitions.
5. Compile and map each partition in the Synplify software, making constraints as you would in a non-

incremental design flow.
6. Import the .vqm netlist and .tcl file for each partition into the Quartus Prime software and set up the

Quartus Prime project(s) for incremental compilation.
7. Compile your design in the Quartus Prime software and preserve the compilation results with the

post-fit netlist in incremental compilation.
8. When you make design or synthesis optimization changes to part of your design, resynthesize only the

partition you modified to generate a new netlist and .tcl file. Do not regenerate netlist files for the
unmodified partitions.

9. Import the new netlist and .tcl file into the Quartus Prime software and recompile the design in the
Quartus Prime software with incremental compilation.

Creating a Design with Separate Netlist Files for Incremental Compilation
The first stage of a hierarchical or incremental design flow is to ensure that different parts of your design
do not affect each other. Ensure that you have separate netlists for each partition in your design so you
can take advantage of incremental compilation in the Quartus Prime software. If the entire design is in
one netlist file, changes in one partition might affect other partitions because of possible node name
changes when you resynthesize the design.

To ensure proper functionality of the synthesis flow, create separate netlist files only for modules and
entities. In addition, each module or entity requires its own design file. If two different modules are in the
same design file, but are defined as being part of different partitions, incremental compilation cannot be
maintained since both partitions must be recompiled when one module is changed.

QPS5V1
2014.11.02 Design Flow for Incremental Compilation 18-25

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Altera recommends that you register all inputs and outputs of each partition. This makes logic synchro‐
nous, and avoids any delay penalty on signals that cross partition boundaries.

If you use boundary tri-states in a lower-level block, the Synplify software pushes, or bubbles, the tri-states
through the hierarchy to the top-level to use the tri-state drivers on output pins of Altera devices. Because
bubbling tri-states requires optimizing through hierarchies, lower-level tri-states are not supported with a
block-based compilation methodology. Use tri-state drivers only at the external output pins of the device
and in the top-level block in the hierarchy.

You can generate multiple .vqm netlist files with the MultiPoint synthesis flow in the Synplify Pro and
Premier software, or by manually creating separate Synplify projects and creating a black box for each
block that you want to designate as a separate design partition.

In the MultiPoint synthesis flow in the Synplify Pro and Premier software, you create multiple .vqm
netlist files from one easy-to-manage, top-level synthesis project. By using the manual black box method,
you have multiple synthesis projects, which might be required for certain team-based or bottom-up
designs where a single top-level project is not desired.

After you have created multiple .vqm files using one of these two methods, you must create the
appropriate Quartus Prime projects to place-and-route the design.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments on page 14-1

Using MultiPoint Synthesis with Incremental Compilation
This topic describes how to generate multiple .vqm files using the Synplify Pro and Premier software
MultiPoint synthesis flow. You must first set up your constraint file and Synplify options, then apply the
appropriate Compile Point settings to write multiple .vqm files and create design partition assignments
for incremental compilation.

Set Compile Points and Create Constraint Files
The MultiPoint flow lets you segment a design into smaller synthesis units, called Compile Points. The
synthesis software treats each Compile Point as a partition for incremental mapping, which allows you to
isolate and work on each Compile Point module as independent segments of the larger design without
impacting other design modules. A design can have any number of Compile Points, and Compile Points
can be nested. The top-level module is always treated as a Compile Point.

Compile Points are optimized in isolation from their parent, which can be another Compile Point or a
top-level design. Each block created with a Compile Point is unaffected by critical paths or constraints on
its parent or other blocks. A Compile Point is independent, with its own individual constraints. During
synthesis, any Compile Points that have not yet been synthesized are synthesized before the top level.
Nested Compile Points are synthesized before the parent Compile Points in which they are contained.
When you apply the appropriate setting for the Compile Point, a separate netlist is created for that
Compile Point, isolating that logic from any other logic in the design.

The figure shows an example of a design hierarchy that is split into multiple partitions. The top-level
block of each partition can be synthesized as a separate Compile Point.

18-26 Using MultiPoint Synthesis with Incremental Compilation
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-3: Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

In this case, modules A, B, and F are Compile Points. The top-level Compile Point consists of the top-level
block in the design (that is, block A in this example), including the logic that is not defined under another
Compile Point. In this example, the design for top-level Compile Point A also includes the logic in one of
its subblocks, C. Because block F is defined as its own Compile Point, it is not treated as part of the
top-level Compile Point A. Another separate Compile Point B contains the logic in blocks B, D, and E.
One netlist is created for the top-level module A and submodule C, another netlist is created for B and its
submodules D and E, while a third netlist is created for F.

Apply Compile Points to the module, or to the architecture in the Synplify Pro SCOPE spreadsheet, or to
the .sdc file. You cannot set a Compile Point in the Verilog HDL or VHDL source code. You can set the
constraints manually using Tcl, by editing the .sdc file, or you can use the GUI.

Defining Compile Points With .tcl or .sdc Files
To set Compile Points with a .tcl or .sdc file, use the define_compile_point command.

Example 18-16: The define_compile_point Command

define_compile_point [-disable] {<objname>} -type {locked, partition}

<objname> represents any module in the design. The Compile Point type {locked, partition}
indicates that the Compile Point represents a partition for the Quartus Prime incremental
compilation flow.

Each Compile Point has a set of constraint files that begin with the define_current_design
command to set up the SCOPE environment, as follows:

define_current_design {<my_module>}

Additional Considerations for Compile Points
To ensure that changes to a Compile Point do not affect the top-level parent module, turn off the Update
Compile Point Timing Data option in the Implementation Options dialog box. If this option is turned
on, updates to a child module can impact the top-level module.

QPS5V1
2014.11.02 Defining Compile Points With .tcl or .sdc Files 18-27

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can apply the syn_allowed_resources attribute to any Compile Point view to restrict the number of
resources for a particular module.

When using Compile Points with incremental compilation, be aware of the following restrictions:

• To use Compile Points effectively, you must provide timing constraints (timing budgeting) for each
Compile Point; the more accurate the constraints, the better your results are. Constraints are not
automatically budgeted, so manual time budgeting is essential. Altera recommends that you register all
inputs and outputs of each partition. This avoids any logic delay penalty on signals that cross-partition
boundaries.

• When using the Synplify attribute syn_useioff to pack registers in the I/O Elements (IOEs) of Altera
devices, these registers must be in the top-level module. Otherwise, you must direct the Quartus Prime
software to perform I/O register packing instead of the syn_useioff attribute. You can use the Fast
Input Register or Fast Output Register options, or set I/O timing constraints and turn on Optimize
I/O cell register placement for timing on the Advanced Settings (Fitter) dialog box in the Quartus
Prime software.

• There is no incremental synthesis support for top-level logic; any logic in the top-level is resynthesized
during every compilation in the Synplify software.

For more information about using Compile Points and setting Synplify attributes and constraints for both
top-level and lower-level Compile Points, refer to the Synopsys FPGA Synthesis User Guide and the
Synopsys FPGA Synthesis Reference Manual.

Creating a Quartus Prime Project for Compile Points and Multiple .vqm Files
During compilation, the Synplify Pro and Premier software creates a <top-level project>.tcl file that
provides the Quartus Prime software with the appropriate constraints and design partition assignments,
creating a partition for each .vqm file along with the information to set up a Quartus Prime project.

Depending on your design methodology, you can create one Quartus Prime project for all netlists or a
separate Quartus Prime project for each netlist. In the standard incremental compilation design flow, you
create design partition assignments and optional LogicLock™ floorplan location assignments for each
partition in the design within a single Quartus Prime project. This methodology allows for the best quality
of results and performance preservation during incremental changes to your design.

You might require a bottom-up design flow if each partition must be optimized separately, such as for
third-party IP delivery. If you use this flow, Altera recommends you create a design floorplan to avoid
placement conflicts between each partition. To follow this design flow in the Quartus Prime software,
create separate Quartus Prime projects, export each design partition and incorporate them into a top-level
design using the incremental compilation features to maintain placement results.

Related Information
Running the Quartus Prime Software Manually With the Synplify-Generated Tcl Script on page 18-7

Creating a Single Quartus Prime Project for a Standard Incremental Compilation Flow
Use the <top-level project>.tcl file that contains the Synplify assignments for all partitions within the
project. This method allows you to import all the partitions into one Quartus Prime project and optimize
all modules within the project at once, while taking advantage of the performance preservation and
compilation-time reduction that incremental compilation offers.

18-28 Creating a Quartus Prime Project for Compile Points and Multiple .vqm...
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-4: Design Flow Using Multiple .vqm Files with One Quartus Prime Project

a.vqm

b.vqm f.vqm

Quartus Prime Project

Use the top-level Tcl file a.tcl
to import Synplify Pro assignments.

Creating Multiple Quartus Prime Projects for a Bottom-Up Incremental Compilation Flow
Use the <lower-level compile point>.tcl files that contain the Synplify assignments for each Compile Point.
Generate multiple Quartus Prime projects, one for each partition and netlist in the design. The designers
in the project can optimize their own partitions separately within the Quartus Prime software and export
the results for their own partitions. You can export the optimized subdesigns and then import them into
one top-level Quartus Prime project using incremental compilation to complete the design.

Figure 18-5: Design Flow Using Multiple .vqm Files with Multiple Quartus Prime Projects

Quartus Prime Project Quartus Prime Project

a.vqm

b.vqm f.vqm

Quartus Prime Project

Use the top-level Tcl file a.tcl to Import
Synplify Pro Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Pro Assignments

 Use the lower-level
Tcl file b.tcl to Import

Synplify Pro Assignments

Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate
Synplify Projects

You can manually generate multiple .vqm files for a incremental compilation flow with black boxes and
separate Synplify projects for each design partition. This manual flow is supported by versions of the
Synplify software without the MultiPoint Synthesis feature.

QPS5V1
2014.11.02 Creating Multiple Quartus Prime Projects for a Bottom-Up Incremental... 18-29

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Manually Creating Multiple .vqm Files With Black Boxes
To create multiple .vqm files manually in the Synplify software, create a separate project for each lower-
level module and top-level design that you want to maintain as a separate .vqm file for an incremental
compilation partition. Implement black box instantiations of lower-level partitions in your top-level
project.

Figure 18-6: Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

The partition top contains the top-level block in the design (block A) and the logic that is not defined as
part of another partition. In this example, the partition for top-level block A also includes the logic in one
of its sub-blocks, block C. Because block F is contained in its own partition, it is not treated as part of the
top-level partition A. Another separate partition, partition B, contains the logic in blocks B, D, and E. In a
team-based design, engineers can work independently on the logic in different partitions. One netlist is
created for the top-level module A and its submodule C, another netlist is created for module B and its
submodules D and E, while a third netlist is created for module F.

Creating Multiple .vqm Files for this Design
To create multiple .vqm files for this design, follow these steps:

1. Generate a .vqm file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the source files.
2. Generate a .vqm file for module F. Use F.v/.vhd as the source files.
3. Generate a top-level .vqm file for module A. Use A.v/.vhd and C.v/.vhd as the source files. Ensure that

you use black box modules B and F, which were optimized separately in the previous steps.

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project, or included in the list of files to be read for a project, is
treated as a black box by the software. Use the syn_black_box attribute to indicate that you intend to
create a black box for the module. In Verilog HDL, you must provide an empty module declaration for a
module that is treated as a black box.

The example shows the A.v top-level file. Follow the same procedure for lower-level files that also contain
a black box for any module beneath the current level hierarchy.

Example 18-17: Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
 input data_in, clk, e, ld;

18-30 Manually Creating Multiple .vqm Files With Black Boxes
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 output [15:0] data_out;

 wire [15:0] cnt_out;

 B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
 F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

 // Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black boxes.

module B (data_in, clk, ld, data_out) /* synthesis syn_black_box */ ;
 input data_in, clk, ld;
 output [15:0} data_out;
endmodule

module F (d, clk, e, q) /* synthesis syn_black_box */ ;
 input [15:0] d;
 input clk, e;
 output [15:0] q;
endmodule

Creating Black Boxes in VHDL
Any design that is not defined in the project, or included in the list of files to be read for a project, is
treated as a black box by the software. Use the syn_black_box attribute to indicate that you intend to
treat the component as a black box. In VHDL, you must have a component declaration for the black box.

Although VHDL is not case-sensitive, a .vqm (a subset of Verilog HDL) file is case-sensitive. Entity names
and their port declarations are forwarded to the .vqm file. Black box names and port declarations are also
passed to the .vqm file. To prevent case-based mismatches, use the same capitalization for black box and
entity declarations in VHDL designs.

The example shows the A.vhd top-level file. Follow this same procedure for any lower-level files that
contain a black box for any block beneath the current level of hierarchy.

Example 18-18: VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
USE synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;
 clk, e, ld : IN STD_LOGIC;
 data_out : OUT INTEGER RANGE 0 TO 15);
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
 data_in : IN INTEGER RANGE 0 TO 15;
 clk, ld : IN STD_LOGIC;
 d_out : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

COMPONENT F PORT(
 d : IN INTEGER RANGE 0 TO 15;
 clk, e: IN STD_LOGIC;
 q : OUT INTEGER RANGE 0 TO 15);

QPS5V1
2014.11.02 Creating Black Boxes in VHDL 18-31

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

END COMPONENT;

attribute syn_black_box of B: component is true;
atrribute syn_black_box of F: component is true;

-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN

U1 : B
PORT MAP (
 data_in => data_in,
 clk => clk,
 ld => ld,
 d_out => cnt_out);

U2 : F
PORT MAP (
 d => cnt_out,
 clk => clk,
 e => e,
 q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

After you complete the steps above, you have a netlist for each partition of the design. These files
are ready for use with the incremental compilation flow in the Quartus Prime software.

Creating a Quartus Prime Project for Multiple .vqm Files
The Synplify software creates a .tcl file for each .vqm file that provides the Quartus Prime software with
the appropriate constraints and information to set up a project.

Depending on your design methodology, you can create one Quartus Prime project for all netlists or a
separate Quartus Prime project for each netlist. In the standard incremental compilation design flow, you
create design partition assignments and optional LogicLock floorplan location assignments for each
partition in the design within a single Quartus Prime project. This methodology allows for the best quality
of results and performance preservation during incremental changes to your design. You might require a
bottom-up design flow where each partition must be optimized separately, such as for third-party IP
delivery.

To perform this design flow in the Quartus Prime software, create separate Quartus Prime projects, export
each design partition and incorporate it into a top-level design using the incremental compilation features
to maintain the results.

Related Information
Running the Quartus Prime Software Manually With the Synplify-Generated Tcl Script on page 18-7

Creating a Single Quartus Prime Project for a Standard Incremental Compilation Flow
Use the <top-level project>.tcl file that contains the Synplify assignments for the top-level design. This
method allows you to import all of the partitions into one Quartus Prime project and optimize all
modules within the project at once, taking advantage of the performance preservation and compilation
time reduction offered by incremental compilation.

18-32 Creating a Quartus Prime Project for Multiple .vqm Files
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

All of the constraints from the top-level project are passed to the Quartus Prime software in the top-
level .tcl file, but constraints made in the lower-level projects within the Synplify software are not
forward-annotated. Enter these constraints manually in your Quartus Prime project.

Figure 18-7: Design Flow Using Multiple .vqm Files with One Quartus Prime Project

a.vqm

b.vqm f.vqm

Quartus Prime Project

Use a.tcl to import top-level
Synplify Pro assignments.

Enter any lower-level
assignments manually.

Creating Multiple Quartus Prime Projects for a Bottom-Up Incremental Compilation Flow
Use the .tcl file that is created for each .vqm file by the Synplify software for each Synplify project. This
method generates multiple Quartus Prime projects, one for each block in the design. The designers in the
project can optimize their own blocks separately within the Quartus Prime software and export the
placement of their own blocks.

Designers should create a LogicLock region to create a design floorplan for each block to avoid conflicts
between partitions. The top-level designer then imports all the blocks and assignments into the top-level
project. This method allows each block in the design to be optimized separately and then imported into
one top-level project.

Figure 18-8: Design Flow Using Multiple Synplify Projects and Multiple Quartus Prime Projects

Quartus Prime Project Quartus Prime Project

a.vqm

b.vqm f.vqm

Quartus Prime Project

Use the top-level
Tcl file a.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file f.tcl to Import
Synplify Assignments

Use the lower-level
Tcl file b.tcl to Import
Synplify Assignments

QPS5V1
2014.11.02 Creating Multiple Quartus Prime Projects for a Bottom-Up Incremental... 18-33

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Performing Incremental Compilation in the Quartus Prime Software
In a standard design flow using Multipoint Synthesis, the Synplify software uses the Quartus Prime top-
level .tcl file to ensure that the two tools databases stay synchronized. The Tcl file creates, changes, or
deletes partition assignments in the Quartus Prime software for Compile Points that you create, change,
or delete in the Synplify software. However, if you create, change, or delete a partition in the Quartus
Prime software, the Synplify software does not change your Compile Point settings. Make any
corresponding change in your Synplify project to ensure that you create the correct .vqm files.

Note: If you use the NativeLink integration feature, the Synplify software does not use any information
about design partition assignments that you have set in the Quartus Prime software.

If you create netlist files with multiple Synplify projects, or if you do not use the Synplify Pro or Premier-
generated .tcl files to update constraints in your Quartus Prime project, you must ensure that your
Synplify .vqm netlists align with your Quartus Prime partition settings.

After you have set up your Quartus Prime project with .vqm netlist files as separate design partitions, set
the appropriate Quartus Prime options to preserve your compilation results. On the Assignments menu,
click Design Partitions Window. Change the Netlist Type to Post-Fit to preserve the previous compila‐
tion’s post-fit placement results. If you do not make these settings, the Quartus Prime software does not
reuse the placement or routing results from the previous compilation.

You can take advantage of incremental compilation with your Synplify design to reduce compilation time
in the Quartus Prime software and preserve the results for unchanged design blocks.

Related Information

• Power-Up Level on page 16-34
• Using the Quartus Prime Software to Run the Synplify Software on page 18-5

Document Revision History

Table 18-4: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of
Quartus II to Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter
Settings, Analysis & Synthesis
Settings, and Physical Optimiza‐
tion Settings to Compiler
Settings.

November 2013 13.1.0 Dita conversion. Restructured
content.

June 2012 12.0.0 Removed survey link.

November 2011 10.1.1 Template update.

18-34 Performing Incremental Compilation in the Quartus Prime Software
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

December 2010 10.1.0 • Changed to new document
template.

• Removed Classic Timing
Analyzer support.

• Removed the “altera_
implement_in_esb or altera_
implement_in_eab” section.

• Edited the “Creating a
Quartus Prime Project for
Compile Points and
Multiple .vqm Files” on
page 14–33 section for
changes with the incremental
compilation flow.

• Edited the “Creating a
Quartus Prime Project for
Multiple .vqm Files” on
page 14–39 section for
changes with the incremental
compilation flow.

• Editorial changes.

July 2010 10.0.0 • Minor updates for the
Quartus Prime software
version 10.0 release.

November 2009 9.1.0 • Minor updates for the
Quartus Prime software
version 9.1 release.

March 2009 9.0.0 • Added new section
“Exporting Designs to the
Quartus Prime Software
Using NativeLink Integra‐
tion” on page 14–14.

• Minor updates for the
Quartus Prime software
version 9.0 release.

• Chapter 10 was previously
Chapter 9 in software version
8.1.

QPS5V1
2014.11.02 Document Revision History 18-35

Synopsys Synplify Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November 2008 8.1.0 • Changed to 8-1/2 x 11 page
size

• Changed the chapter title
from “Synplicity Synplify &
Synplify Pro Support” to
“Synopsys Synplify Support”

• Replaced references to
Synplicity with references to
Synopsys

• Added information about
Synplify Premier

• Updated supported device list
• Added SystemVerilog

information to Figure 14–1

18-36 Document Revision History
QPS5V1

2014.11.02

Altera Corporation Synopsys Synplify Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2008 8.0.0 • Updated supported device list
• Updated constraint

annotation information for
the TimeQuest Timing
Analyzer

• Updated RAM and MAC
constraint limitations

• Revised Table 9–1
• Added new section

“Changing Synplify’s Default
Behavior for Instantiated
Altera Megafunctions”

• Added new section “Instanti‐
ating Intellectual Property
Using the MegaWizard Plug-
In Manager and IP
Toolbench”

• Added new section
“Including Files for Quartus
Prime Placement and
Routing Only”

• Added new section
“Additional Considerations
for Compile Points”

• Removed section “Apply the
LogicLock Attributes”

• Modified Figure 9–4, 9–43,
9–47. and 9–48

• Added new section
“Performing Incremental
Compilation in the Quartus
Prime Software”

• Numerous text changes and
additions throughout the
chapter

• Renamed several sections
• Updated “Referenced

Documents” section

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2014.11.02 Document Revision History 18-37

Synopsys Synplify Support Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20Synplify%20Support%20(QPS5V1%202014.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Mentor Graphics Precision Synthesis Support 19
2015.11.02

QPS5V1 Subscribe Send Feedback

About Precision RTL Synthesis Support
This manual delineates the support for the Mentor Graphics® Precision RTL Synthesis and Precision RTL
Plus Synthesis software in the Quartus Prime software, as well as key design flows, methodologies and
techniques for improving your results for Altera® devices. This manual assumes that you have set up,
licensed, and installed the Precision Synthesis software and the Quartus Prime software.

Note: You must set up, license, and install the Precision RTL Plus Synthesis software if you want to use
the incremental synthesis feature for incremental compilation and block-based design.

To obtain and license the Precision Synthesis software, refer to the Mentor Graphics website. To install
and run the Precision Synthesis software and to set up your work environment, refer to the Precision
Synthesis Installation Guide in the Precision Manuals Bookcase. To access the Manuals Bookcase in the
Precision Synthesis software, click Help and select Open Manuals Bookcase.

Related Information
Mentor Graphics website

Design Flow
The following steps describe a basic Quartus Prime design flow using the Precision Synthesis software:

1. Create Verilog HDL or VHDL design files.
2. Create a project in the Precision Synthesis software that contains the HDL files for your design, select

your target device, and set global constraints.
3. Compile the project in the Precision Synthesis software.
4. Add specific timing constraints, optimization attributes, and compiler directives to optimize the design

during synthesis. With the design analysis and cross-probing capabilities of the Precision Synthesis
software, you can identify and improve circuit area and performance issues using prelayout timing
estimates.

Note: For best results, Mentor Graphics recommends specifying constraints that are as close as
possible to actual operating requirements. Properly setting clock and I/O constraints, assigning
clock domains, and indicating false and multicycle paths guide the synthesis algorithms more
accurately toward a suitable solution in the shortest synthesis time.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V1
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V1%202016.02.09)%20Mentor%20Graphics%20Precision%20Synthesis%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.mentor.com
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

5. Synthesize the project in the Precision Synthesis software.
6. Create a Quartus Prime project and import the following files generated by the Precision Synthesis

software into the Quartus Prime project:

• The Verilog Quartus Mapping File (.vqm) netlist
• Synopsys Design Constraints File (.sdc) for TimeQuest Timing Analyzer constraints
• Tcl Script Files (.tcl) to set up your Quartus Prime project and pass constraints

Note: If your design uses the Classic Timing Analyzer for timing analysis in the Quartus Prime
software versions 10.0 and earlier, the Precision Synthesis software generates timing constraints
in the Tcl Constraints File (.tcl). If you are using the Quartus Prime software versions 10.1 and
later, you must use the TimeQuest Timing Analyzer for timing analysis.

7. After obtaining place-and-route results that meet your requirements, configure or program the Altera
device.

You can run the Quartus Prime software from within the Precision Synthesis software, or run the
Precision Synthesis software using the Quartus Prime software.

19-2 Design Flow
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19-1: Design Flow Using the Precision Synthesis Software and Quartus Prime Software

Functional/RTL
Si m ulation

VHDL V erilog HDL

Constraints and
Settings

Constraints and
Settings

Precision Synthesis

Gate-Level
Functional
Si m ulation

Gate-Level Timing
Si m ulation

Timing and Area
Requirements

Satisfied?

Fo r ward-Annotated Project
Configuration
(.tcl /.acf)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.vho /.vo)

Post Place-and-Route
Simulation File

(.vho /.vo)

Configuration/Programming Files
(.sof /.pof)

Program/Configure Device

Quartus Prime Software

Quartus Prime Timing Constraints
in SDC format (.sdc)

System
V erilog

Design Specifications

No

Yes

Related Information

• Running the Quartus Prime Software from within the Precision Synthesis Software on page 19-9
• Using the Quartus Prime Software to Run the Precision Synthesis Software on page 19-10

Timing Optimization
If your area or timing requirements are not met, you can change the constraints and resynthesize the
design in the Precision Synthesis software, or you can change the constraints to optimize the design
during place-and-route in the Quartus Prime software. Repeat the process until the area and timing
requirements are met.

QPS5V1
2015.11.02 Timing Optimization 19-3

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use other options and techniques in the Quartus Prime software to meet area and timing require‐
ments. For example, the WYSIWYG Primitive Resynthesis option can perform optimizations on your
EDIF netlist in the Quartus Prime software.

While simulation and analysis can be performed at various points in the design process, final timing
analysis should be performed after placement and routing is complete.

Related Information

• Netlist Optimizations and Physical Synthesis documentation
• Timing Closure and Optimization documentation

Altera Device Family Support
The Precision Synthesis software supports active devices available in the current version of the Quartus
Prime software. Support for newly released device families may require an overlay. Contact Mentor
Graphics for more information.

Precision Synthesis Generated Files
During synthesis, the Precision Synthesis software produces several intermediate and output files.

Table 19-1: Precision Synthesis Software Intermediate and Output Files

File Extension File Description

.psp Precision Synthesis Project File.

.xdb Mentor Graphics Design Database File.

.rep(15) Synthesis Area and Timing Report File.

.vqm(16) Technology-specific netlist in .vqm file format.

By default, the Precision Synthesis software creates .vqm files for Arria series,
Cyclone series, and Stratix series devices. The Precision Synthesis software
defaults to creating .vqm files when the device is supported.

(15) The timing report file includes performance estimates that are based on pre-place-and-route information.
Use the fMAX reported by the Quartus Prime software after place-and-route for accurate post-place-and-
route timing information. The area report file includes post-synthesis device resource utilization statistics
that can differ from the resource usage after place-and-route due to black boxes or further optimizations
performed during placement and routing. Use the device utilization reported by the Quartus Prime software
after place-and-route for final resource utilization results.

(16) The Precision Synthesis software-generated VQM file is supported by the Quartus Prime software version
10.1 and later.

19-4 Altera Device Family Support
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471329493/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471203263/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Extension File Description

.tcl Forward-annotated Tcl assignments and constraints file. The <project name>.tcl
file is generated for all devices. The .tcl file acts as the Quartus Prime Project
Configuration file and is used to make basic project and placement assignments,
and to create and compile a Quartus Prime project.

.acf Assignment and Configurations file for backward compatibility with the MAX
+PLUS II software. For devices supported by the MAX+PLUS II software, the
MAX+PLUS II assignments are imported from the MAX+PLUS II .acf file.

.sdc Quartus Prime timing constraints file in Synopsys Design Constraints format.

This file is generated automatically if the device uses the TimeQuest Timing
Analyzer by default in the Quartus Prime software, and has the naming
convention <project name>_pnr_constraints .sdc.

Related Information

• Exporting Designs to the Quartus Prime Software Using NativeLink Integration on page 19-9
• Synthesizing the Design and Evaluating the Results on page 19-8

Creating and Compiling a Project in the Precision Synthesis Software
After creating your design files, create a project in the Precision Synthesis software that contains the basic
settings for compiling the design.

Mapping the Precision Synthesis Design
In the next steps, you set constraints and map the design to technology-specific cells. The Precision
Synthesis software maps the design by default to the fastest possible implementation that meets your
timing constraints. To accomplish this, you must specify timing requirements for the automatically
determined clock sources. With this information, the Precision Synthesis software performs static timing
analysis to determine the location of the critical timing paths. The Precision Synthesis software achieves
the best results for your design when you set as many realistic constraints as possible. Be sure to set
constraints for timing, mapping, false paths, multicycle paths, and other factors that control the structure
of the implemented design.

Mentor Graphics recommends creating an .sdc file and adding this file to the Constraint Files section of
the Project Files list. You can create this file with a text editor, by issuing command-line constraint
parameters, or by directing the Precision Synthesis software to generate the file automatically the first
time you synthesize your design. By default, the Precision Synthesis software saves all timing constraints
and attributes in two files: precision_rtl.sdc and precision_tech.sdc. The precision_rtl.sdc file contains
constraints set on the RTL-level database (post-compilation) and the precision_tech.sdc file contains
constraints set on the gate-level database (post- synthesis) located in the current implementation
directory.

QPS5V1
2015.11.02 Creating and Compiling a Project in the Precision Synthesis Software 19-5

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also enter constraints at the command line. After adding constraints at the command line, update
the .sdc file with the update constraint file command. You can add constraints that change
infrequently directly to the HDL source files with HDL attributes or pragmas.

Note: The Precision .sdc file contains all the constraints for the Precision Synthesis project. For the
Quartus Prime software, placement constraints are written in a .tcl file and timing constraints for
the TimeQuest Timing Analyzer are written in the Quartus Prime .sdc file.

For details about the syntax of Synopsys Design Constraint commands, refer to the Precision RTL
Synthesis User’s Manual and the Precision Synthesis Reference Manual. For more details and examples of
attributes, refer to the Attributes chapter in the Precision Synthesis Reference Manual.

Setting Timing Constraints
The Precision Synthesis software uses timing constraints, based on the industry-standard .sdc file format,
to deliver optimal results. Missing timing constraints can result in incomplete timing analysis and might
prevent timing errors from being detected. The Precision Synthesis software provides constraint analysis
prior to synthesis to ensure that designs are fully and accurately constrained. The
<project name>_pnr_constraints.sdc file, which contains timing constraints in SDC format, is generated
in the Quartus Prime software.

Note: Because the .sdc file format requires that timing constraints be set relative to defined clocks, you
must specify your clock constraints before applying any other timing constraints.

You also can use multicycle path and false path assignments to relax requirements or exclude nodes from
timing requirements, which can improve area utilization and allow the software optimizations to focus on
the most critical parts of the design.

For details about the syntax of Synopsys Design Constraint commands, refer to the Precision RTL
Synthesis User’s Manual and the Precision Synthesis Reference Manual.

Setting Mapping Constraints
Mapping constraints affect how your design is mapped into the target Altera device. You can set mapping
constraints in the user interface, in HDL code, or with the set_attribute command in the constraint
file.

Assigning Pin Numbers and I/O Settings
The Precision Synthesis software supports assigning device pin numbers, I/O standards, drive strengths,
and slew-rate settings to top-level ports of the design. You can set these timing constraints with the
set_attribute command, the GUI, or by specifying synthesis attributes in your HDL code. These
constraints are forward-annotated in the <project name>.tcl file that is read by the Quartus Prime
software during place-and-route and do not affect synthesis.

You can use the set_attribute command in the Precision Synthesis software .sdc file to specify pin
number constraints, I/O standards, drive strengths, and slow slew-rate settings. The table below describes
the format to use for entries in the Precision Synthesis software constraint file.

19-6 Setting Timing Constraints
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 19-2: Constraint File Settings

Constraint Entry Format for Precision Constraint File

Pin
number

set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O
standard

set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive
strength

set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

You also can use synthesis attributes or pragmas in your HDL code to make these assignments.

Example 19-1: Verilog HDL Pin Assignment

//pragma attribute clk pin_number P10;

Example 19-2: VHDL Pin Assignment

attribute pin_number : string
attribute pin_number of clk : signal is "P10";

You can use the same syntax to assign the I/O standard using the IOSTANDARD attribute, drive
strength using the attribute DRIVE, and slew rate using the SLEW attribute.

For more details about attributes and how to set these attributes in your HDL code, refer to the
Precision Synthesis Reference Manual.

Assigning I/O Registers
The Precision Synthesis software performs timing-driven I/O register mapping by default. You can force a
register to the device IO element (IOE) using the Complex I/O constraint. This option does not apply if
you turn off I/O pad insertion.

Note: You also can make the assignment by right-clicking on the pin in the Schematic Viewer.

For the Stratix series, Cyclone series, and the MAX II device families, the Precision Synthesis software can
move an internal register to an I/O register without any restrictions on design hierarchy.

For more mature devices, the Precision Synthesis software can move an internal register to an I/O register
only when the register exists in the top-level of the hierarchy. If the register is buried in the hierarchy, you
must flatten the hierarchy so that the buried registers are moved to the top-level of the design.

Disabling I/O Pad Insertion
The Precision Synthesis software assigns I/O pad atoms (device primitives used to represent the I/O pins
and I/O registers) to all ports in the top-level of a design by default. In certain situations, you might not

QPS5V1
2015.11.02 Assigning I/O Registers 19-7

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

want the software to add I/O pads to all I/O pins in the design. The Quartus Prime software can compile a
design without I/O pads; however, including I/O pads provides the Precision Synthesis software with
more information about the top-level pins in the design.

Preventing the Precision Synthesis Software from Adding I/O Pads
If you are compiling a subdesign as a separate project, I/O pins cannot be primary inputs or outputs of the
device; therefore, the I/O pins should not have an I/O pad associated with them.

To prevent the Precision Synthesis software from adding I/O pads:

• You can use the Precision Synthesis GUI or add the following command to the project file:

setup_design -addio=false

Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin

To prevent I/O pad insertion on an individual pin when you are using a black box, such as DDR or a
phase-locked loop (PLL), at the external ports of the design, perform the following steps:

1. Compile your design.
2. Use the Precision Synthesis GUI to select the individual pin and turn off I/O pad insertion.

Note: You also can make this assignment by attaching the nopad attribute to the port in the HDL source
code.

Controlling Fan-Out on Data Nets
Fan-out is defined as the number of nodes driven by an instance or top-level port. High fan-out nets can
cause significant delays that result in an unroutable net. On a critical path, high fan-out nets can cause
longer delays in a single net segment that result in the timing constraints not being met. To prevent this
behavior, each device family has a global fan-out value set in the Precision Synthesis software library. In
addition, the Quartus Prime software automatically routes high fan-out signals on global routing lines in
the Altera device whenever possible.

To eliminate routability and timing issues associated with high fan-out nets, the Precision Synthesis
software also allows you to override the library default value on a global or individual net basis. You can
override the library value by setting a max_fanout attribute on the net.

Synthesizing the Design and Evaluating the Results
During synthesis, the Precision Synthesis software optimizes the compiled design, and then writes out
netlists and reports to the implementation subdirectory of your working directory after the
implementation is saved, using the following naming convention:

<project name>_impl_<number>

After synthesis is complete, you can evaluate the results for area and timing. The Precision RTL Synthesis
User’s Manual describes different results that can be evaluated in the software.

There are several schematic viewers available in the Precision Synthesis software: RTL schematic,
Technology-mapped schematic, and Critical Path schematic. These analysis tools allow you to quickly and
easily isolate the source of timing or area issues, and to make additional constraint or code changes to
optimize the design.

19-8 Preventing the Precision Synthesis Software from Adding I/O Pads
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Obtaining Accurate Logic Utilization and Timing Analysis Reports
Historically, designers have relied on post-synthesis logic utilization and timing reports to determine the
amount of logic their design requires, the size of the device required, and how fast the design runs.
However, today’s FPGA devices provide a wide variety of advanced features in addition to basic registers
and look-up tables (LUTs). The Quartus Prime software has advanced algorithms to take advantage of
these features, as well as optimization techniques to increase performance and reduce the amount of logic
required for a given design. In addition, designs can contain black boxes and functions that take
advantage of specific device features. Because of these advances, synthesis tool reports provide
post-synthesis area and timing estimates, but you should use the place-and-route software to obtain final
logic utilization and timing reports.

Exporting Designs to the Quartus Prime Software Using NativeLink
Integration

The NativeLink feature in the Quartus Prime software facilitates the seamless transfer of information
between the Quartus Prime software and EDA tools, which allows you to run other EDA design entry/
synthesis, simulation, and timing analysis tools automatically from within the Quartus Prime software.

After a design is synthesized in the Precision Synthesis software, the technology-mapped design is written
to the current implementation directory as an EDIF netlist file, along with a Quartus Prime Project
Configuration File and a place-and-route constraints file. You can use the Project Configuration script,
<project name>.tcl, to create and compile a Quartus Prime project for your EDIF or VQM netlist. This
script makes basic project assignments, such as assigning the target device specified in the Precision
Synthesis software. If you select a newer Altera device, the constraints are written in SDC format to the
<project name>_ pnr_constraints.sdc file by default, which is used by the Fitter and the TimeQuest
Timing Analyzer in the Quartus Prime software.

Use the following Precision Synthesis software command before compilation to generate the <project
name>_pnr_constraints.sdc:

setup_design -timequest_sdc

With this command, the file is generated after synthesis.

Running the Quartus Prime Software from within the Precision Synthesis Software
The Precision Synthesis software also has a built-in place-and-route environment that allows you to run
the Quartus Prime Fitter and view the results in the Precision Synthesis GUI. This feature is useful when
performing an initial compilation of your design to view post-place-and-route timing and device
utilization results. Not all the advanced Quartus Prime options that control the compilation process are
available when you use this feature.

Two primary Precision Synthesis software commands control the place-and-route process. Use the
setup_place_and_route command to set the place-and-route options. Start the process with the
place_and_route command.

Precision Synthesis software uses individual Quartus Prime executables, such as analysis and synthesis,
Fitter, and the TimeQuest Timing Analyzer for improved runtime and memory utilization during place
and route. This flow is referred to as the Quartus Prime Modular flow option in the Precision Synthesis
software. By default, the Precision Synthesis software generates a Quartus Prime Project Configuration

QPS5V1
2015.11.02 Obtaining Accurate Logic Utilization and Timing Analysis Reports 19-9

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File (.tcl file) for current device families. Timing constraints that you set during synthesis are exported to
the Quartus Prime place-and-route constraints file <project name>_pnr_constraints.sdc.

After you compile the design in the Quartus Prime software from within the Precision Synthesis software,
you can invoke the Quartus Prime GUI manually and then open the project using the generated Quartus
Prime project file. You can view reports, run analysis tools, specify options, and run the various
processing flows available in the Quartus Prime software.

For more information about running the Quartus Prime software from within the Precision Synthesis
software, refer to the Altera Quartus Prime Integration chapter in the Precision Synthesis Reference
Manual.

Running the Quartus Prime Software Manually Using the Precision
Synthesis‑Generated Tcl Script

You can run the Quartus Prime software using a Tcl script generated by the Precision Synthesis software.
To run the Tcl script generated by the Precision Synthesis software to set up your project and start a full
compilation, perform the following steps:

1. Ensure the .vqm file, .tcl files, and .sdc file are located in the same directory. The files should be located
in the implementation directory by default.

2. In the Quartus Prime software, on the View menu, point to Utility Windows and click Tcl Console.
3. At the Tcl Console command prompt, type the command:

source <path>/<project name>.tcl

4. On the File menu, click Open Project. Browse to the project name and click Open.
5. Compile the project in the Quartus Prime software.

Using the Quartus Prime Software to Run the Precision Synthesis Software
With NativeLink integration, you can set up the Quartus Prime software to run the Precision Synthesis
software. This feature allows you to use the Precision Synthesis software to synthesize a design as part of a
standard compilation. When you use this feature, the Precision Synthesis software does not use any
timing constraints or assignments that you have set in the Quartus Prime software.

Related Information

• Exporting Designs to the Quartus Prime Software Using NativeLink Integration on page 19-9
• Using the NativeLink Feature with Other EDA Tools online help

Passing Constraints to the Quartus Prime Software
The place-and-route constraints script forward-annotates timing constraints that you made in the
Precision Synthesis software. This integration allows you to enter these constraints once in the Precision
Synthesis software, and then pass them automatically to the Quartus Prime software.

The following constraints are translated by the Precision Synthesis software and are applicable to the
TimeQuest Timing Analyzer:

• create_clock

• set_input_delay

• set_output_delay

• set_max_delay

19-10 Running the Quartus Prime Software Manually Using the Precision...
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

http://quartushelp.altera.com/current/index.htm#eda/quartus2/eda_pro_using_nativelink.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• set_min_delay

• set_false_path

• set_multicycle_path

create_clock
You can specify a clock in the Precision Synthesis software.

Example 19-3: Specifying a Clock Using create_clock

create_clock -name <clock_name> -period <period in ns> \
-waveform {<edge_list>} -domain <ClockDomain> <pin>

The period is specified in units of nanoseconds (ns). If no clock domain is specified, the clock
belongs to a default clock domain main. All clocks in the same clock domain are treated as
synchronous (related) clocks. If no <clock_name> is provided, the default name
virtual_default is used. The <edge_list> sets the rise and fall edges of the clock signal over an
entire clock period. The first value in the list is a rising transition, typically the first rising
transition after time zero. The waveform can contain any even number of alternating edges, and
the edges listed should alternate between rising and falling. The position of any edge can be equal
to or greater than zero but must be equal to or less than the clock period.

If -waveform <edge_list> is not specified and -period <period in ns> is specified, the
default waveform has a rising edge of 0.0 and a falling edge of <period_value>/2.

The Precision Synthesis software maps the clock constraint to the TimeQuest create_clock
setting in the Quartus Prime software.

The Quartus Prime software supports only clock waveforms with two edges in a clock cycle. If the
Precision Synthesis software finds a multi-edge clock, it issues an error message when you
synthesize your design in the Precision Synthesis software.

set_input_delay
This port-specific input delay constraint is specified in the Precision Synthesis software.

Example 19-4: Specifying set_input_delay

set_input_delay {<delay_value> <port_pin_list>} \
-clock <clock_name> -rise -fall -add_delay

This constraint is mapped to the set_input_delay setting in the Quartus Prime software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be the
reference clocks for this assignment. The input pin name for the assignment can be an input pin
name of a time group. The software can use the clock_fall option to specify delay relative to the
falling edge of the clock.

Note: Although the Precision Synthesis software allows you to set input delays on pins
inside the design, these constraints are not sent to the Quartus Prime software, and
a message is displayed.

QPS5V1
2015.11.02 create_clock 19-11

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_output_delay

This port-specific output delay constraint is specified in the Precision Synthesis software.

Example 19-5: Using the set_output_delay Constraint

set_output_delay {<delay_value> <port_pin_list>} \
-clock <clock_name> -rise -fall -add_delay

This constraint is mapped to the set_output_delay setting in the Quartus Prime software.

When the reference clock <clock_name> is not specified, all clocks are assumed to be the
reference clocks for this assignment. The output pin name for the assignment can be an output
pin name of a time group.

Note: Although the Precision Synthesis software allows you to set output delays on pins
inside the design, these constraints are not sent to the Quartus Prime software.

set_max_delay and set_min_delay

The maximum delay and minimum delay for a point-to-point timing path constraint is specified in the
Precision Synthesis software.

Example 19-6: Using the set_max_delay Constraint

set_max_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Example 19-7: Using the set_min_delay Constraint

set_min_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

The set_max_delay and set_min_delay commands specify that the maximum and minimum
respectively, required delay for any start point in <from_node_list> to any endpoint in
<to_node_list> must be less than or greater than <delay_value>. Typically, you use these
commands to override the default setup constraint for any path with a specific maximum or
minimum time value for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or cells. The -from and -to
parameters specify the source (start point) and the destination (endpoint) of the timing path,
respectively. The source list (<from_node_list>) cannot include output ports, and the destination
list (<to_node_list>) cannot include input ports. If you include more than one node on a list, you
must enclose the nodes in quotes or in braces ({ }).

If you specify a clock in the source list, you must specify a clock in the destination list. Applying
set_max_delay or set_min_delay setting between clocks applies the exception from all registers
or ports driven by the source clock to all registers or ports driven by the destination clock.
Applying exceptions between clocks is more efficient than applying them for specific node-to-
node, or node-to-clock paths. If you want to specify pin names in the list, the source must be a
clock pin and the destination must be any non-clock input pin to a register. Assignments from
clock pins, or to and from cells, apply to all registers in the cell or for those driven by the clock
pin.

19-12 set_output_delay
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_false_path

The false path constraint is specified in the Precision Synthesis software.

Example 19-8: Using the set_false_path Constraint

set_false_path -to <to_node_list> -from <from_node_list> -reset_path

The node lists can be a list of clocks, ports, instances, and pins. Multiple elements in the list can be
represented using wildcards such as * and ?.

In a place-and-route Tcl constraints file, this false path setting in the Precision Synthesis software
is mapped to a set_false_path setting. The Quartus Prime software supports setup, hold, rise,
or fall options for this assignment.

The node lists for this assignment represents top-level ports and/or nets connected to instances
(end points of timing assignments).

Any false path setting in the Precision Synthesis software can be mapped to a setting in the
Quartus Prime software with a through path specification.

set_multicycle_path

The multicycle path constraint is specified in the Precision Synthesis software.

Example 19-9: Using the set_multicycle_path Constraint

set_multicycle_path <multiplier_value> [-start] [-end] \
-to <to_node_list> -from <from_node_list> -reset_path

The node list can contain clocks, ports, instances, and pins. Multiple elements in the list can be
represented using wildcards such as * and ?. Paths without multicycle path definitions are
identical to paths with multipliers of 1. To add one additional cycle to the datapath, use a
multiplier value of 2. The option start indicates that source clock cycles should be considered for
the multiplier. The option end indicates that destination clock cycles should be considered for the
multiplier. The default is to reference the end clock.

In the place-and-route Tcl constraints file, the multicycle path setting in the Precision Synthesis
software is mapped to a set_multicycle_path setting. The Quartus Prime software supports the
rise or fall options on this assignment.

The node lists represent top-level ports and/or nets connected to instances (end points of timing
assignments). The node lists can contain wildcards (such as *); the Quartus Prime software
automatically expands all wildcards.

Any multicycle path setting in Precision Synthesis software can be mapped to a setting in the
Quartus Prime software with a -through specification.

QPS5V1
2015.11.02 set_false_path 19-13

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Guidelines for Altera IP Cores and Architecture-Specific Features
Altera provides parameterizable IP cores, including the LPMs, device-specific Altera IP cores, and IP
available through the Altera Megafunction Partners Program (AMPPSM). You can use IP cores by
instantiating them in your HDL code or by inferring certain functions from generic HDL code.

If you want to instantiate an IP core such as a PLL in your HDL code, you can instantiate and
parameterize the function using the port and parameter definitions, or you can customize a function with
the Parameter Editor. Altera recommends using the IP Catalog and Parameter Editor, which provides a
graphical interface within the Quartus Prime software for customizing and parameterizing any available
IP core for the design.

The Precision Synthesis software automatically recognizes certain types of HDL code and infers the
appropriate IP core.

Related Information

• Inferring Altera IP Cores from HDL Code on page 19-16
• Recommended HDL Coding Styles documentation on page 12-1
• Introduction to Altera IP Cores documentation

Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files
The IP Catalog generates a Verilog HDL instantiation template file <output file>_inst.v and a hollow-
body black box module declaration <output file>_bb.v for use in your Precision Synthesis design.
Incorporate the instantiation template file, <output file>_inst.v, into your top-level design to instantiate
the IP core wrapper file, <output file>.v.

Include the hollow-body black box module declaration <output file>_bb.v in your Precision Synthesis
project to describe the port connections of the black box. Adding the IP core wrapper file <output file>.v
in your Precision Synthesis project is optional, but you must add it to your Quartus Prime project along
with the Precision Synthesis-generated EDIF or VQM netlist.

Alternatively, you can include the IP core wrapper file <output file>.v in your Precision Synthesis project
and turn on the Exclude file from Compile Phase option in the Precision Synthesis software to exclude
the file from compilation and to copy the file to the appropriate directory for use by the Quartus Prime
software during place-and-route.

Instantiating IP Cores With IP Catalog-Generated VHDL Files
The IP Catalog generates a VHDL component declaration file <output file>.cmp and a VHDL
instantiation template file <output file>_inst.vhd for use in your Precision Synthesis design. Incorporate
the component declaration and instantiation template into your top-level design to instantiate the IP core
wrapper file, <output file>.vhd.

Adding the IP core wrapper file <output file>.vhd in your Precision Synthesis project is optional, but you
must add the file to your Quartus Prime project along with the Precision Synthesis-generated EDIF or
VQM netlist.

Alternatively, you can include the IP core wrapper file <output file>.v in your Precision Synthesis project
and turn on the Exclude file from Compile Phase option in the Precision Synthesis software to exclude
the file from compilation and to copy the file to the appropriate directory for use by the Quartus Prime
software during place-and-route.

19-14 Guidelines for Altera IP Cores and Architecture-Specific Features
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

http://www.altera.com/literature/ug/ug_intro_to_megafunctions.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Instantiating Intellectual Property With the IP Catalog and Parameter Editor
Many Altera IP functions include a resource and timing estimation netlist that the Precision Synthesis
software can use to synthesize and optimize logic around the IP efficiently. As a result, the Precision
Synthesis software provides better timing correlation, area estimates, and Quality of Results (QoR) than a
black box approach.

To create this netlist file, perform the following steps:

1. Select the IP function in the IP Catalog.
2. Click Next to open the Parameter Editor.
3. Click Set Up Simulation, which sets up all the EDA options.
4. Turn on the Generate netlist option to generate a netlist for resource and timing estimation and click

OK.
5. Click Generate to generate the netlist file.

The Quartus Prime software generates a file <output file>_syn.v. This netlist contains the “grey box”
information for resource and timing estimation, but does not contain the actual implementation. Include
this netlist file into your Precision Synthesis project as an input file. Then include the IP core wrapper file
<output file>.v|vhd in the Quartus Prime project along with your EDIF or VQM output netlist.

The generated “grey box” netlist file, <output file>_syn.v , is always in Verilog HDL format, even if you
select VHDL as the output file format.

Note: For information about creating a grey box netlist file from the command line, search Altera's
Knowledge Database.

Related Information
Altera Knowledge Center website

Instantiating Black Box IP Functions With Generated Verilog HDL Files
You can use the syn_black_box or black_box compiler directives to declare a module as a black box. The
top-level design files must contain the IP port mapping and a hollow-body module declaration. You can
apply the directive to the module declaration in the top-level file or a separate file included in the project
so that the Precision Synthesis software recognizes the module is a black box.

Note: The syn_black_box and black_box directives are supported only on module or entity definitions.

The example below shows a sample top-level file that instantiates my_verilogIP.v, which is a simplified
customized variation generated by the IP Catalog and Parameter Editor.

Example 19-10: Top-Level Verilog HDL Code with Black Box Instantiation of IP

module top (clk, count);
 input clk;
 output[7:0] count;

 my_verilogIP verilogIP_inst (.clock (clk), .q (count));
endmodule

// Module declaration
// The following attribute is added to create a
// black box for this module.
module my_verilogIP (clock, q) /* synthesis syn_black_box */;
 input clock;

QPS5V1
2015.11.02 Instantiating Intellectual Property With the IP Catalog and Parameter... 19-15

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

http://www.altera.com/support/kdb/kdb-index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 output[7:0] q;
endmodule

Instantiating Black Box IP Functions With Generated VHDL Files
You can use the syn_black_box or black_box compiler directives to declare a component as a black box.
The top-level design files must contain the IP core variation component declaration and port mapping.
Apply the directive to the component declaration in the top-level file.

Note: The syn_black_box and black_box directives are supported only on module or entity definitions.

The example below shows a sample top-level file that instantiates my_vhdlIP.vhd, which is a simplified
customized variation generated by the IP Catalog and Parameter Editor.

Example 19-11: Top-Level VHDL Code with Black Box Instantiation of IP

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY top IS
 PORT (
 clk: IN STD_LOGIC ;
 count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END top;

ARCHITECTURE rtl OF top IS
 COMPONENT my_vhdlIP
 PORT (
 clock: IN STD_LOGIC ;
 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
 end COMPONENT;
 attribute syn_black_box : boolean;
 attribute syn_black_box of my_vhdlIP: component is true;
 BEGIN
 vhdlIP_inst : my_vhdlIP PORT MAP (
 clock => clk,
 q => count
);
END rtl;

Inferring Altera IP Cores from HDL Code
The Precision Synthesis software automatically recognizes certain types of HDL code and maps
arithmetical operators, relational operators, and memory (RAM and ROM), to technology-specific
implementations. This functionality allows technology-specific resources to implement these structures by
inferring the appropriate Altera function to provide optimal results. In some cases, the Precision Synthesis
software has options that you can use to disable or control inference.

For coding style recommendations and examples for inferring technology-specific architecture in Altera
devices, refer to the Precision Synthesis Style Guide.

Related Information
Recommended HDL Coding Styles documentation on page 12-1

19-16 Instantiating Black Box IP Functions With Generated VHDL Files
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Multipliers
The Precision Synthesis software detects multipliers in HDL code and maps them directly to device atoms
to implement the multiplier in the appropriate type of logic. The Precision Synthesis software also allows
you to control the device resources that are used to implement individual multipliers.

Controlling DSP Block Inference for Multipliers
By default, the Precision Synthesis software uses DSP blocks available in Stratix series devices to
implement multipliers. The default setting is AUTO, which allows the Precision Synthesis software to
map to logic look-up tables (LUTs) or DSP blocks, depending on the size of the multiplier. You can use
the Precision Synthesis GUI or HDL attributes for direct mapping to only logic elements or to only DSP
blocks.

Table 19-3: Options for dedicated_mult Parameter to Control Multiplier Implementation in Precision
Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers, regardless of the size of the multiplier.

AUTO Use logic (LUTs) or DSP blocks to implement multipliers, depending on the size of the
multipliers.

Setting the Use Dedicated Multiplier Option
To set the Use Dedicated Multiplier option in the Precision Synthesis GUI, compile the design, and
then in the Design Hierarchy browser, right-click the operator for the desired multiplier and click Use
Dedicated Multiplier.

Setting the dedicated_mult Attribute
To control the implementation of a multiplier in your HDL code, use the dedicated_mult attribute with
the appropriate value as shown in the examples below.

Example 19-12: Setting the dedicated_mult Attribute in Verilog HDL

//synthesis attribute <signal name> dedicated_mult <value>

Example 19-13: Setting the dedicated_mult Attribute in VHDL

ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

The dedicated_mult attribute can be applied to signals and wires; it does not work when applied
to a register. This attribute can be applied only to simple multiplier code, such as a = b * c.

Some signals for which the dedicated_mult attribute is set can be removed during synthesis by
the Precision Synthesis software for design optimization. In such cases, if you want to force the

QPS5V1
2015.11.02 Multipliers 19-17

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

implementation, you should preserve the signal by setting the preserve_signal attribute to
TRUE.

Example 19-14: Setting the preserve_signal Attribute in Verilog HDL

//synthesis attribute <signal name> preserve_signal TRUE

Example 19-15: Setting the preserve_signal Attribute in VHDL

ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

Example 19-16: Verilog HDL Multiplier Implemented in Logic

module unsigned_mult (result, a, b);
 output [15:0] result;
 input [7:0] a;
 input [7:0} b;
 assign result = a * b;
 //synthesis attribute result dedicated_mult OFF
endmodule

Example 19-17: VHDL Multiplier Implemented in Logic

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
 PORT(
 a: IN std_logic_vector (7 DOWNTO 0);
 b: IN std_logic_vector (7 DOWNTO 0);
 result: OUT std_logic_vector (15 DOWNTO 0));
ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
 SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
 SIGNAL pdt_int: UNSIGNED (15 downto 0);
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF;
BEGIN
 a_int <= UNSIGNED (a);
 b_int <= UNSIGNED (b);
 pdt_int <= a_int * b_int;
 result <= std_logic_vector(pdt_int);
END rtl;

Multiplier-Accumulators and Multiplier-Adders
The Precision Synthesis software also allows you to control the device resources used to implement
multiply-accumulators or multiply-adders in your project or in a particular module.

19-18 Multiplier-Accumulators and Multiplier-Adders
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Precision Synthesis software detects multiply-accumulators or multiply-adders in HDL code and
infers an ALTMULT_ACCUM or ALTMULT_ADD IP cores so that the logic can be placed in DSP
blocks, or the software maps these functions directly to device atoms to implement the multiplier in the
appropriate type of logic.

Note: The Precision Synthesis software supports inference for these functions only if the target device
family has dedicated DSP blocks.

For more information about DSP blocks in Altera devices, refer to the appropriate Altera device family
handbook and device-specific documentation. For details about which functions a given DSP block can
implement, refer to the DSP Solutions Center on the Altera website.

For more information about inferring multiply-accumulator and multiply-adder IP cores in HDL code,
refer to the Altera Recommended HDL Coding Styles and the Mentor GraphicsPrecision Synthesis Style
Guide.

Related Information

• Altera DSP Solutions website
• Recommended HDL Coding Styles documentation on page 12-1

Controlling DSP Block Inference
By default, the Precision Synthesis software infers the ALTMULT_ADD or ALTMULT_ACCUM IP cores
appropriately in your design. These IP cores allow the Quartus Prime software to select either logic or
DSP blocks, depending on the device utilization and the size of the function.

You can use the extract_mac attribute to prevent inference of an ALTMULT_ADD or
ALTMULT_ACCUM IP cores in a certain module or entity.

Table 19-4: Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The ALTMULT_ADD or ALTMULT_ACCUM IP core is inferred.

FALSE The ALTMULT_ADD or ALTMULT_ACCUM IP core is not inferred.

To control inference, use the extract_mac attribute with the appropriate value from the examples below
in your HDL code.

Example 19-18: Setting the extract_mac Attribute in Verilog HDL

//synthesis attribute <module name> extract_mac <value>

Example 19-19: Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

QPS5V1
2015.11.02 Controlling DSP Block Inference 19-19

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

http://www.altera.com/technology/dsp/dsp-index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To control the implementation of the multiplier portion of a multiply-accumulator or multiply-
adder, you must use the dedicated_mult attribute.

You can use the extract_mac, dedicated_mult, and preserve_signal attributes (in Verilog
HDL and VHDL) to implement the given DSP function in logic in the Quartus Prime software.

Example 19-20: Using extract_mac, dedicated_mult, and preserve_signal in Verilog HDL

module unsig_altmult_accuml (dataout, dataa, datab, clk, aclr, clken);
 input [7:0} dataa, datab;
 input clk, aclr, clken;
 output [31:0] dataout;

 reg [31:0] dataout;
 wire [15:0] multa;
 wire [31:0] adder_out;

 assign multa = dataa * datab;

 //synthesis attribute multa preserve_signal TRUE
 //synthesis attribute multa dedicated_mult OFF
 assign adder_out = multa + dataout;

 always @ (posedge clk or posedge aclr)
 begin
 if (aclr)
 dataout <= 0;
 else if (clken)
 dataout <= adder_out;
 end

 //synthesis attribute unsig_altmult_accuml extract_mac FALSE
endmodule

Example 19-21: Using extract_mac, dedicated_mult, and preserve_signal in VHDL

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;
ENTITY signedmult_add IS
 PORT(
 a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0));
 ATTRIBUTE preserve_signal: BOOLEANS;
 ATTRIBUTE dedicated_mult: STRING;
 ATTRIBUTE extract_mac: BOOLEAN;
 ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;
END signedmult_add;
ARCHITECTURE rtl OF signedmult_add IS
 SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
 SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
 SIGNAL result_int: signed (15 DOWNTO 0);
 ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
 ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
 ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
 ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";

19-20 Controlling DSP Block Inference
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

BEGIN
 a_int <= signed (a);
 b_int <= signed (b);
 c_int <= signed (c);
 d_int <= signed (d);
 pdt_int <= a_int * b_int;
 pdt2_int <= c_int * d_int;
 result_int <= pdt_int + pdt2_int;
 result <= STD_LOGIC_VECTOR(result_int);
END rtl;

RAM and ROM
The Precision Synthesis software detects memory structures in HDL code and converts them to an
operator that infers an ALTSYNCRAM or LPM_RAM_DP IP cores, depending on the device family. The
software then places these functions in memory blocks.

The software supports inference for these functions only if the target device family has dedicated memory
blocks.

For more information about inferring RAM and ROM IP cores in HDL code, refer to the Precision
Synthesis Style Guide.

Related Information
Recommended HDL Coding Styles documentation on page 12-1

Incremental Compilation and Block-Based Design
As designs become more complex and designers work in teams, a block-based incremental design flow is
often an effective design approach. In an incremental compilation flow, you can make changes to one part
of the design while maintaining the placement and performance of unchanged parts of the design. Design
iterations can be made dramatically faster by focusing new compilations on particular design partitions
and merging results with the results of previous compilations of other partitions. You can perform
optimization on individual blocks and then integrate them into a final design and optimize the design at
the top-level.

The first step in an incremental design flow is to make sure that different parts of your design do not
affect each other. You must ensure that you have separate netlists for each partition in your design. If the
whole design is in one netlist file, changes in one partition affect other partitions because of possible node
name changes when you resynthesize the design.

You can create different implementations for each partition in your Precision Synthesis project, which
allows you to switch between partitions without leaving the current project file. You can also create a
separate project for each partition if you require separate projects for a team-based design flow. Alterna‐
tively, you can use the incremental synthesis capability in the Precision RTL Plus software.

Creating a Design with Precision RTL Plus Incremental Synthesis
The Precision RTL Plus incremental synthesis flow for Quartus Prime incremental compilation uses a
partition-based approach to achieve faster design cycle time.

Using the incremental synthesis feature, you can create different netlist files for different partitions of a
design hierarchy within one partition implementation, which makes each partition independent of the

QPS5V1
2015.11.02 RAM and ROM 19-21

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

others in an incremental compilation flow. Only the portions of a design that have been updated must be
recompiled during design iterations. You can make changes and resynthesize one partition in a design to
create a new netlist without affecting the synthesis results or fitting of other partitions.

The following steps show a general flow for partition-based incremental synthesis with Quartus Prime
incremental compilation:

1. Create Verilog HDL or VHDL design files.
2. Determine which hierarchical blocks you want to treat as separate partitions in your design, and

designate the partitions with the incr_partition attribute.
3. Create a project in the Precision RTL Plus Synthesis software and add the HDL design files to the

project.
4. Enable incremental synthesis in the Precision RTL Plus Synthesis software using one of these methods:

• Use the Precision RTL Plus Synthesis GUI to turn on Enable Incremental Synthesis.
• Run the following command in the Transcript Window:

setup_design -enable_incr_synth

5. Run the basic Precision Synthesis flow of compilation, synthesis, and place-and-route on your design.
In subsequent runs, the Precision RTL Plus Synthesis software processes only the parts of the design
that have changed, resulting in a shorter iteration than the initial run. The performance of the
unchanged partitions is preserved.

The Precision RTL Plus Synthesis software sets the netlist types of the unchanged partitions to Post Fit
and the changed partitions to Post Synthesis. You can change the netlist type during timing closure in
the Quartus Prime software to obtain the best QoR.

6. Import the EDIF or VQM netlist for each partition and the top-level .tcl file into the Quartus Prime
software, and set up the Quartus Prime project to use incremental compilation.

7. Compile your Quartus Prime project.
8. If you want, you can change the Quartus Prime incremental compilation netlist type for a partition

with the Design Partitions Window. You can change the Netlist Type to one of the following options:

• To preserve the previous post-fit placement results, change the Netlist Type of the partition to
Post-Fit.

• To preserve the previous routing results, set the Fitter Preservation Level of the partition to
Placement and Routing.

Creating Partitions with the incr_partition Attribute
Partitions are set using the HDL incr_partition attribute. The Precision Synthesis software creates or
deletes partitions by reading this attribute during compilation iterations. The attribute can be attached to
either the design unit definition or an instance.

To delete partitions, you can remove the attribute or set the attribute value to false.

Note: The Precision Synthesis software ignores partitions set in a black box.

Example 19-22: Using incr_partition Attribute to Create a Partition in Verilog HDL

Design unit partition:

module my_block(
 input clk;
 output reg [31:0] data_out) /* synthesis incr_partition */ ;

Instance partition:

19-22 Creating Partitions with the incr_partition Attribute
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

my_block my_block_inst(.clk(clk), .data_out(data_out));
// synthesis attribute my_block_inst incr_partition true

Example 19-23: Using incr_partition Attribute to a Create Partition in VHDL

Design unit partition:

entity my_block is
 port(
 clk : in std_logic;
 data_out : out std_logic_vector(31 downto 0)
);
 attribute incr_partition : boolean;
 attribute incr_partition of my_block : entity is true;
end entity my_block;

Instance partition:

component my_block is
 port(
 clk : in std_logic;
 data_out : out std_logic_vector(31 downto 0)
);
end component;

attribute incr_partition : boolean;
attribute incr_partition of my_block_inst : label is true;

my_block_inst my_block
 port map(clk, data_out);

Creating Multiple Mapped Netlist Files With Separate Precision Projects or
Implementations

You can manually generate multiple netlist files, which can be VQM or EDIF files, for incremental
compilation using black boxes and separate Precision projects or implementations for each design
partition. This manual flow is supported in versions of the Precision software that do not include the
incremental synthesis feature. You might also use this feature if you perform synthesis in a team-based
environment without a top-level synthesis project that includes all of the lower-level design blocks.

In the Precision Synthesis software, create a separate implementation, or a separate project, for each
lower-level module and for the top-level design that you want to maintain as a separate netlist file.
Implement black box instantiations of lower-level modules in your top-level implementation or project.

For more information about managing implementations and projects, refer to the Precision RTL Synthesis
User’s Manual.
Note: In a standard Quartus Prime incremental compilation flow, Precision Synthesis software

constraints made on lower-level modules are not passed to the Quartus Prime software. Ensure
that appropriate constraints are made in the top-level Precision Synthesis project, or in the Quartus
Prime project.

Creating Black Boxes to Create Netlists
In the figure below, the top-level partition contains the top-level block in the design (block A) and the
logic that is not defined as part of another partition. In this example, the partition for top-level block A
also includes the logic in the sub-block C. Because block F is contained in its own partition, it is not

QPS5V1
2015.11.02 Creating Multiple Mapped Netlist Files With Separate Precision Projects... 19-23

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

treated as part of the top-level partition A. Another separate partition, B, contains the logic in blocks B, D,
and E. In a team-based design, different engineers may work on the logic in different partitions. One
netlist is created for the top-level module A and its submodule C, another netlist is created for module B
and its submodules D and E, while a third netlist is created for module F.

Figure 19-2: Partitions in a Hierarchical Design

Partition Top

Partition B Partition F

D E

B

A

F

C

To create multiple EDIF netlist files for this design, follow these steps:

1. Generate a netlist file for module B. Use B.v/.vhd, D.v/.vhd, and E.v/.vhd as the source files.
2. Generate a netlist file for module F. Use F.v/.vhd as the source file.
3. Generate a top-level netlist file for module A. Use A.v/.vhd and C.v/.vhd as the source files. Ensure

that you create black boxes for modules B and F, which were optimized separately in the previous
steps.

The goal is to individually synthesize and generate a netlist file for each lower-level module and then
instantiate these modules as black boxes in the top-level file. You can then synthesize the top-level file to
generate the netlist file for the top-level design. Finally, both the lower-level and top-level netlist files are
provided to your Quartus Prime project.

Note: When you make design or synthesis optimization changes to part of your design, resynthesize only
the changed partition to generate the new netlist file. Do not resynthesize the implementations or
projects for the unchanged partitions.

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project or included in the list of files to be read for a project is
treated as a black box by the software. In Verilog HDL, you must provide an empty module declaration
for any module that is treated as a black box.

A black box for the top-level file A.v is shown in the following example. Provide an empty module
declaration for any lower-level files, which also contain a black box for any module beneath the current
level of hierarchy.

Example 19-24: Verilog HDL Black Box for Top-Level File A.v

module A (data_in, clk, e, ld, data_out);
 input data_in, clk, e, ld;
 output [15:0] data_out;
 wire [15:0] cnt_out;

19-24 Creating Black Boxes in Verilog HDL
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
 F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));
 // Any other code in A.v goes here.
endmodule
//Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
boxes.
module B (data_in, clk, ld, data_out);
 input data_in, clk, ld;
 output [15:0] data_out;
endmodule
module F (d, clk, e, q);
 input [15:0] d;
 input clk, e;
 output [15:0] q;
endmodule

Creating Black Boxes in VHDL
Any design block that is not defined in the project or included in the list of files to be read for a project is
treated as a black box by the software. In VHDL, you must provide a component declaration for the black
box.

A black box for the top-level file A.vhd is shown in the example below. Provide a component declaration
for any lower-level files that also contain a black box or for any block beneath the current level of
hierarchy.

Example 19-25: VHDL Black Box for Top-Level File A.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS
 PORT (data_in : IN INTEGER RANGE 0 TO 15;
 clk, e, ld : IN STD_LOGIC;
 data_out : OUT INTEGER RANGE 0 TO 15);
END A;
ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(
 data_in : IN INTEGER RANGE 0 TO 15;
 clk, ld : IN STD_LOGIC;
 d_out : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;
COMPONENT F PORT(
 d : IN INTEGER RANGE 0 TO 15;
 clk, e: IN STD_LOGIC;
 q : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;
-- Other component declarations in A.vhd go here
signal cnt_out : INTEGER RANGE 0 TO 15;
BEGIN
 U1 : B
 PORT MAP (
 data_in => data_in,
 clk => clk,
 ld => ld,
 d_out => cnt_out);
 U2 : F
 PORT MAP (
 d => cnt_out,
 clk => clk,
 e => e,

QPS5V1
2015.11.02 Creating Black Boxes in VHDL 19-25

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 q => data_out);
 -- Any other code in A.vhd goes here
END a_arch;

After you complete the steps outlined above, you have different netlist files for each partition of
the design. These files are ready for use with incremental compilation in the Quartus Prime
software.

Creating Quartus Prime Projects for Multiple Netlist Files
The Precision Synthesis software creates a .tcl file for each implementation, and provides the Quartus
Prime software with the appropriate constraints and information to set up a project. When using
incremental synthesis, the Precision RTL Plus Synthesis software creates only a single .tcl file, <project
name>_incr_partitions.tcl, to pass the partition information to the Quartus Prime software.

Depending on your design methodology, you can create one Quartus Prime project for all netlists, or a
separate Quartus Prime project for each netlist. In the standard incremental compilation design flow, you
create design partition assignments for each partition in the design within a single Quartus Prime project.
This methodology provides the best QoR and performance preservation during incremental changes to
your design. You might require a bottom-up design flow if each partition must be optimized separately,
such as for third-party IP delivery.

To follow this design flow in the Quartus Prime software, create separate Quartus Prime projects and
export each design partition and incorporate it into a top-level design using the incremental compilation
features to maintain placement results.

Related Information
Running the Quartus Prime Software Manually Using the Precision Synthesis-Generated Tcl Script
on page 19-10

Creating a Single Quartus Prime Project for a Standard Incremental Compilation Flow
Use the <top-level project>.tcl file generated for the top-level partition to create your Quartus Prime
project and import all the netlists into this one Quartus Prime project for an incremental compilation
flow. You can optimize all partitions within the single Quartus Prime project and take advantage of the
performance preservation and compilation time reduction that incremental compilation provides.

All the constraints from the top-level implementation are passed to the Quartus Prime software in the
top-level .tcl file, but any constraints made only in the lower-level implementations within the Precision
Synthesis software are not forward-annotated. Enter these constraints manually in your Quartus Prime
project.

Creating Multiple Quartus Prime Projects for a Bottom-Up Flow
Use the .tcl files generated by the Precision Synthesis software for each Precision Synthesis software
implementation or project to generate multiple Quartus Prime projects, one for each partition in the
design. Each designer in the project can optimize their block separately in the Quartus Prime software and
export the placement of their blocks using incremental compilation. Designers should create a LogicLock
region to provide a floorplan location assignment for each block; the top-level designer should then
import all the blocks and assignments into the top-level project.

19-26 Creating Quartus Prime Projects for Multiple Netlist Files
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hierarchy and Design Considerations
To ensure the proper functioning of the synthesis flow, you can create separate partitions only for
modules, entities, or existing netlist files. In addition, each module or entity must have its own design file.
If two different modules are in the same design file, but are defined as being part of different partitions,
incremental synthesis cannot be maintained because both regions must be recompiled when you change
one of the modules.

Altera recommends that you register all inputs and outputs of each partition. This makes logic synchro‐
nous and avoids any delay penalty on signals that cross partition boundaries.

If you use boundary tri-states in a lower-level block, the Precision Synthesis software pushes the tri-states
through the hierarchy to the top-level to make use of the tri-state drivers on output pins of Altera devices.
Because pushing tri-states requires optimizing through hierarchies, lower-level tri-states are not
supported with a block-based compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the hierarchy.

Related Information
Best Practices for Incremental Compilation Partitions and Floorplan Assignments on page 14-1

Document Revision History
Table 19-5: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of
Quartus II to Quartus Prime.

June 2014 14.0.0 • Dita conversion.
• Removed obsolete devices.
• Replaced Megafunction,

MegaWizard, and IP
Toolbench content with IP
Catalog and Parameter Editor
content.

June 2012 12.0.0 • Removed survey link.

November 2011 10.1.1 • Template update.
• Minor editorial changes.

QPS5V1
2015.11.02 Hierarchy and Design Considerations 19-27

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

December 2010 10.1.0 • Changed to new document
template.

• Removed Classic Timing
Analyzer support.

• Added support for . vqm
netlist files.

• Edited the “Creating Quartus
Prime Projects for Multiple
EDIF Files” on page 15–30
section for changes with the
incremental compilation
flow.

• Editorial changes.

July 2010 10.0.0 • Minor updates for the
Quartus Prime software
version 10.0 release

November 2009 9.1.0 • Minor updates for the
Quartus Prime software
version 9.1 release

March 2009 9.0.0 • Updated list of supported
devices for the Quartus Prime
software version 9.0 release

• Chapter 11 was previously
Chapter 10 in software
version 8.1

19-28 Document Revision History
QPS5V1

2015.11.02

Altera Corporation Mentor Graphics Precision Synthesis Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November 2008 8.1.0 • Changed to 8-1/2 x 11 page
size

• Title changed to Mentor
Graphics Precision Synthesis
Support

• Updated list of supported
devices

• Added information about the
Precision RTL Plus
incremental synthesis flow

• Updated Figure 10-1 to
include SystemVerilog

• Updated “Guidelines for
Altera Megafunctions and
Architecture-Specific
Features” on page 10–19

• Updated “Incremental
Compilation and Block-Based
Design” on page 10–28

• Added section “Creating
Partitions with the incr_
partition Attribute” on
page 10–29

May 2008 8.0.0 • Removed Mercury from the
list of supported devices

• Changed Precision version to
2007a update 3

• Added note for Stratix IV
support

• Renamed “Creating a Project
and Compiling the Design”
section to “Creating and
Compiling a Project in the
Precision RTL Synthesis
Software”

• Added information about
constraints in the Tcl file

• Updated document based on
the Quartus Prime software
version 8.0

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V1
2015.11.02 Document Revision History 19-29

Mentor Graphics Precision Synthesis Support Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20Precision%20Synthesis%20Support%20(QPS5V1%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Standard Edition Handbook Volume 2: Design
Implementation and Optimization

Subscribe

Send Feedback

QPS5V2
2015.05.04

101 Innovation Drive
San Jose, CA 95134
www.altera.com

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20Handbook%20Volume%202:%20Design%20Implementation%20and%20Optimization%20(QPS5V2%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Constraining Designs 1
2015.11.02

QPS5V2 Subscribe Send Feedback

Constraints, sometimes known as assignments or logic options, control the way the Quartus® Prime
software implements a design for an FPGA. Constraints are also central in the way that the TimeQuest
Timing Analyzer and the PowerPlay Power Analyzer inform synthesis, placement, and routing.

There are several types of constraints:

• Global design constraints and software settings, such as device family selection, package type, and pin
count.

• Entity-level constraints, such as logic options and placement assignments.
• Instance-level constraints.
• Pin assignments and I/O constraints.

User-created constraints are contained in one of two files: the Quartus Prime Settings File (.qsf) or, in
the case of timing constraints, the Synopsys Design Constraints file (.sdc). Constraints and assignments
made with the Device dialog box, Settings dialog box, Assignment Editor, Chip Planner, and Pin
Planner are contained in the Quartus Prime Settings File. The .qsf file contains project-wide and
instance-level assignments for the current revision of the project in Tcl syntax. You can create separate
revisions of your project with different settings, and there is a separate .qsf file for each revision.

The TimeQuest Timing Analyzer uses industry-standard Synopsys Design Constraints, also using Tcl
syntax, that are contained in Synopsys Design Constraints (.sdc) files. The TimeQuest Timing Analyzer
GUI is a tool for making timing constraints and viewing the results of subsequent analysis.

There are several ways to constrain a design, each potentially more appropriate than the others,
depending on your tool chain and design flow. You can constrain designs for compilation and analysis
in the Quartus Prime software using the GUI, as well as using Tcl syntax and scripting. By combining
the Tcl syntax of the .qsf files and the .sdc files with procedural Tcl, you can automate iteration over
several different settings, changing constraints and recompiling.

Constraining Designs with the GUI
In the Quartus Prime GUI, the New Project Wizard, Device dialog box, and Settings dialog box allow you
to make global constraints and software settings. The Assignment Editor and Pin Planner are spreadsheet-
style interfaces for constraining your design at the instance or entity level.

The Assignment Editor and Pin Planner make constraint types and values available based on global
design characteristics such as the targeted device. These tools help you verify that your constraints are
valid before compilation by allowing you to pick only from valid values for each constraint.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Constraining%20Designs&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

The TimeQuest Timing Analyzer GUI allows you to make timing constraints in SDC format and view the
effects of those constraints on the timing in your design. Before running the TimeQuest timing analyzer,
you must specify initial timing constraints that describe the clock characteristics, timing exceptions, and
external signal arrival and required times. The Quartus Prime Fitter optimizes the placement of logic in
the device to meet your specified constraints.

Global Constraints
Global constraints affect the entire Quartus Prime project and all of the applicable logic in the design.
Many of these constraints are simply project settings, such as the targeted device selected for the design.

Synthesis optimizations and global timing and power analysis settings can also be applied with globally.
Global constraints are often made when running the New Project Wizard, or in the Device dialog box or
the Settings dialog box, early project development.

Common Types of Global Constraints
The following are the most common types of global constraints:

• Target device specification
• Top-level entity of your design, and the names of the design files included in the project
• Operating temperature limits and conditions
• Physical synthesis optimizations
• Analysis and synthesis options and optimization techniques
• Verilog HDL and VHDL language versions used in your project
• Fitter effort and timing driven compilation settings
• .sdc files for the TimeQuest timing analyzer to use during analysis as part of a full compilation flow

Settings That Direct Compilation and Analysis Flows
Settings that direct compilation and analysis flows in the Quartus Prime software are also stored in the
Quartus Prime Settings File for your project, including the following global software settings:

• Settings for EDA tool integration such as third-party synthesis tools, simulation tools, timing analysis
tools, and formal verification tools.

• Settings and settings file specifications for the Quartus Prime Assembler, SignalTap II Logic Analyzer,
PowerPlay power analyzer, and SSN Analyzer.

Global Constraints and Software Settings
Global constraints and software settings stored in the Quartus Prime settings file are specific to each
revision of your design, allowing you to control the operation of the software differently for different
revisions. For example, different revisions can specify different operating temperatures and different
devices, so that you can compare results.

Only the valid assignments made in the Assignment Editor are saved in the Quartus Prime Settings File,
which is located in the project directory. When you make a design constraint, the new assignment is
placed on a new line at the end of the file.

When you create or update a constraint in the GUI, the Quartus Prime software displays the equivalent
Tcl command in the System tab of the Messages window. You can use the displayed messages as
references when making assignments using Tcl commands.

1-2 Global Constraints
QPS5V2

2015.11.02

Altera Corporation Constraining Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Constraining%20Designs%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Managing Quartus Prime Projects
For more information about how the Quartus Prime software uses Quartus Prime Settings Files

Node, Entity, and Instance-Level Constraints
Node, entity, and instance-level constraints constrain a particular segment of the design hierarchy, as
opposed to the entire design. In the Quartus Prime software GUI, most instance-level constraints are
made with the Assignment Editor, Pin Planner, and Chip Planner.

Both the Assignment Editor and Pin Planner aid you in correctly constraining your design, both passively,
through device-and-assignment-determined pick lists, and actively, through live I/O checking.

You can assign logic functions to physical resources on the device, using location assignments with the
Assignment Editor or the Chip Planner. Node, entity, and instance-level constraints take precedence over
any global constraints that affect the same sections of the design hierarchy. You can edit and view all node
and entity-level constraints you created in the Assignment Editor, or you can filter the assignments by
choosing to view assignments only for specific locations, such as DSP blocks.

Constraining Designs with the Pin Planner
The Pin Planner helps you visualize, plan, and assign device I/O pins to ensure compatibility with your
PCB layout. The Pin Planner provides a graphical view of the I/O resources in the target device package.
You can quickly locate various I/O pins and assign them design elements or other properties.

The Quartus Prime software uses these assignments to place and route your design during device
programming. The Pin Planner also helps with early pin planning by allowing you to plan and assign IP
interface or user nodes not yet defined in the design.

The Pin Planner Task window provides one-click access to common pin planning tasks. After clicking a
pin planning task, you view and highlight the results in the Report window by selecting or deselecting I/O
types.You can quickly identify I/O banks, VREF groups, edges, and differential pin pairings to assist you
in the pin planning process. You can verify the legality of new and existing pin assignments with the live
I/O check feature and view the results in the Live I/O Check Status window.

Constraining Designs with the Chip Planner

The Chip Planner allows you to view the device from a variety of different perspectives, and you can make
precise assignments to specific floorplan locations.

With the Chip Planner, you can adjust existing assignments to device resources, such as pins, logic cells,
and LABs using drag and drop features and a graphical interface. You can also view equations and routing
information, and demote assignments by dragging and dropping assignments to various regions in the
Regions window.

Probing Between Components of the Quartus Prime GUI
The Assignment Editor, Chip Planner, and Pin Planner let you locate nodes and instances in the source
files for your design in other Quartus Prime viewers.

You can select a cell in the Assignment Editor spreadsheet and locate the corresponding item in another
applicable Quartus Prime software window, such as the Chip Planner. To locate an item from the
Assignment Editor in another window, right-click the item of interest in the spreadsheet, point to Locate,
and click the appropriate command.

QPS5V2
2015.11.02 Node, Entity, and Instance-Level Constraints 1-3

Constraining Designs Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958212952/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Constraining%20Designs%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also locate nodes in the Assignment Editor and other constraint tools from other windows within
the Quartus Prime software. First, select the node or nodes in the appropriate window. For example, select
an entity in the Entity list in the Hierarchy tab in the Project Navigator, or select nodes in the Chip
Planner. Next, right-click the selected object, point to Locate, and click Locate in Assignment Editor.
The Assignment Editor opens, or it is brought to the foreground if it is already open.

SDC and the TimeQuest Timing Analyzer
You can make individual timing constraints for individual entities, nodes, and pins with the Constraints
menu of the TimeQuest Timing Analyzer. The TimeQuest Timing Analyzer GUI provides easy access to
timing constraints, and reporting, without requiring knowledge of SDC syntax.

As you specify commands and options in the GUI, the corresponding SDC or Tcl command appears in
the Console. This lets you know exactly what constraint you have added to your Synopsys Design
Constraints file, and also enables you to learn SDC syntax for use in scripted flows. The GUI also provides
enhanced graphical reporting features.

Individual timing assignments override project-wide requirements. You can also assign timing exceptions
to nodes and paths to avoid reporting of incorrect or irrelevant timing violations. The TimeQuest timing
analyzer supports point-to-point timing constraints, wildcards to identify specific nodes when making
constraints, and assignment groups to make individual constraints to groups of nodes.

Constraining Designs with Tcl
Because .sdc files and .qsf files are both in Tcl syntax, you can modify these files to be part of a scripted
constraint and compilation flow.

With Quartus Prime Tcl packages, Tcl scripts can open projects, make the assignments procedurally that
would otherwise be specified in a .qsf file, compile a design, and compare compilation results against
known goals and benchmarks for the design. Such a script can further automate the iterative process by
modifying design constraints and recompiling the design.

Quartus Prime Settings Files and Tcl
QSF files use Tcl syntax, but, unmodified, are not executable scripts. However, you can embed QSF
constraints in a scripted iterative compilation flow, where the script that automates compilation and
custom results reporting also contains the design constraints.

set_global_assignment -name FAMILY "Cyclone II"
set_global_assignment -name DEVICE EP2C35F672C6
set_global_assignment -name TOP_LEVEL_ENTITY chiptrip
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 10.0
set_global_assignment -name PROJECT_CREATION_TIME_DATE "11:45:02 JUNE 08, 2010"
set_global_assignment -name LAST_QUARTUS_VERSION 10.0
set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0
set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id
Top
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL
PLACEMENT_AND_ROUTING \ -section_id Top
set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
set_global_assignment -name LL_ROOT_REGION ON -section_id "Root Region"
set_global_assignment -name LL_MEMBER_STATE LOCKED -section_id "Root Region"
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_location_assignment PIN_P2 -to clk2

1-4 SDC and the TimeQuest Timing Analyzer
QPS5V2

2015.11.02

Altera Corporation Constraining Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Constraining%20Designs%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_location_assignment PIN_AE4 -to ticket[0]
set_location_assignment PIN_J23 -to ticket[2]
set_location_assignment PIN_Y12 -to timeo[1]
set_location_assignment PIN_N2 -to reset
set_location_assignment PIN_R2 -to timeo[7]
set_location_assignment PIN_P1 -to clk1
set_location_assignment PIN_M3 -to ticket[1]
set_location_assignment PIN_AE24 -to ~LVDS150p/nCEO~
set_location_assignment PIN_C2 -to accel
set_location_assignment PIN_K4 -to ticket[3]
set_location_assignment PIN_B3 -to stf
set_location_assignment PIN_T9 -to timeo[0]
set_location_assignment PIN_M5 -to timeo[6]
set_location_assignment PIN_J8 -to dir[1]
set_location_assignment PIN_C5 -to timeo[5]
set_location_assignment PIN_F6 -to gt1
set_location_assignment PIN_P24 -to timeo[2]
set_location_assignment PIN_B2 -to at_altera
set_location_assignment PIN_P3 -to timeo[4]
set_location_assignment PIN_M4 -to enable
set_location_assignment PIN_E3 -to ~ASDO~
set_location_assignment PIN_E5 -to dir[0]
set_location_assignment PIN_R25 -to timeo[3]
set_location_assignment PIN_D3 -to ~nCSO~
set_location_assignment PIN_G4 -to gt2
set_global_assignment -name MISC_FILE "D:/altera/chiptrip/chiptrip.dpf"
set_global_assignment -name USE_TIMEQUEST_TIMING_ANALYZER ON
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION \
"23 MM HEAT SINK WITH 200 LFPM AIRFLOW"
set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
set_global_assignment -name SDC_FILE chiptrip.sdc

The example shows the way that the set_global_assignment Quartus Prime Tcl command makes all
global constraints and software settings, with set_location_assignment constraining each I/O node in
the design to a physical pin on the device.

However, after you initially create the Quartus Prime Settings File for your design, you can export the
contents to a procedural, executable Tcl (.tcl) file. You can then use that generated script to restore certain
settings after experimenting with other constraints. You can also use the generated Tcl script to archive
your assignments instead of archiving the Quartus Prime Settings file itself.

To export your constraints as an executable Tcl script, on the Project menu, click Generate Tcl File for
Project.

Quartus Prime: Generate Tcl File for Project
File: chiptrip.tcl
Generated on: Tue Jun 08 13:08:48 2010
Load Quartus Prime Tcl Project package
package require ::quartus::project
set need_to_close_project 0
set make_assignments 1
Check that the right project is open
if {[is_project_open]} {
 if {[string compare $quartus(project) "chiptrip"]} {
 puts "Project chiptrip is not open"
 set make_assignments 0
 }
} else {
 # Only open if not already open
 if {[project_exists chiptrip]} {
 project_open -revision chiptrip chiptrip
 } else {
 project_new -revision chiptrip chiptrip
 }

QPS5V2
2015.11.02 Quartus Prime Settings Files and Tcl 1-5

Constraining Designs Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Constraining%20Designs%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 set need_to_close_project 1
}
Make assignments
if {$make_assignments} {
set_global_assignment -name FAMILY "Cyclone II"
set_global_assignment -name DEVICE EP2C35F672C6
set_global_assignment -name TOP_LEVEL_ENTITY chiptrip
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 10.0
set_global_assignment -name PROJECT_CREATION_TIME_DATE "11:45:02 JUNE 08, 2010"
set_global_assignment -name LAST_QUARTUS_VERSION 10.0
set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0
set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id
Top
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL
PLACEMENT_AND_ROUTING \ -section_id Top
set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
set_global_assignment -name LL_ROOT_REGION ON -section_id "Root Region"
set_global_assignment -name LL_MEMBER_STATE LOCKED -section_id "Root Region"
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_location_assignment PIN_P2 -to clk2
set_location_assignment PIN_AE4 -to ticket[0]
set_location_assignment PIN_J23 -to ticket[2]
set_location_assignment PIN_Y12 -to timeo[1]
set_location_assignment PIN_N2 -to reset
set_location_assignment PIN_R2 -to timeo[7]
set_location_assignment PIN_P1 -to clk1
set_location_assignment PIN_M3 -to ticket[1]
set_location_assignment PIN_AE24 -to ~LVDS150p/nCEO~
set_location_assignment PIN_C2 -to accel
set_location_assignment PIN_K4 -to ticket[3]
set_location_assignment PIN_B3 -to stf
set_location_assignment PIN_T9 -to timeo[0]
set_location_assignment PIN_M5 -to timeo[6]
set_location_assignment PIN_J8 -to dir[1]
set_location_assignment PIN_C5 -to timeo[5]
set_location_assignment PIN_F6 -to gt1
set_location_assignment PIN_P24 -to timeo[2]
set_location_assignment PIN_B2 -to at_altera
set_location_assignment PIN_P3 -to timeo[4]
set_location_assignment PIN_M4 -to enable
set_location_assignment PIN_E3 -to ~ASDO~
set_location_assignment PIN_E5 -to dir[0]
set_location_assignment PIN_R25 -to timeo[3]
set_location_assignment PIN_D3 -to ~nCSO~
set_location_assignment PIN_G4 -to gt2
set_global_assignment -name MISC_FILE "D:/altera/chiptrip/chiptrip.dpf"
set_global_assignment -name USE_TIMEQUEST_TIMING_ANALYZER ON
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION \
"23 MM HEAT SINK WITH 200 LFPM AIRFLOW"
set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
set_global_assignment -name SDC_FILE chiptrip.sdc
 # Commit assignments
 export_assignments
 # Close project
 if {$need_to_close_project} {
 project_close
 }
}

After setting initial values for variables to control constraint creation and whether or not the project needs
to be closed at the end of the script, the generated script checks to see if a project is open. If a project is
open but it is not the correct project, in this case, chiptrip, the script prints Project chiptrip is not
open to the console and does nothing else.

1-6 Quartus Prime Settings Files and Tcl
QPS5V2

2015.11.02

Altera Corporation Constraining Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Constraining%20Designs%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If no project is open, the script determines if chiptrip exists in the current directory. If the project exists,
the script opens the project. If the project does not exist, the script creates a new project and opens the
project.

The script then creates the constraints. After creating the constraints, the script writes the constraints to
the Quartus Prime Settings File and then closes the project.

Timing Analysis with Synopsys Design Constraints and Tcl
Timing constraints used in analysis by the Quartus Prime TimeQuest Timing Analyzer are stored in .sdc
files. Because they use Tcl syntax, the constraints in .sdc files can be incorporated into other scripts for
iterative timing analysis.

--
set_time_unit ns
set_decimal_places 3
--
#
create_clock -period 10.0 -waveform { 0 5.0 } clk2 -name clk2
create_clock -period 4.0 -waveform { 0 2.0 } clk1 -name clk1
clk1 -> dir* : INPUT_MAX_DELAY = 1 ns
set_input_delay -max 1ns -clock clk1 [get_ports dir*]
clk2 -> time* : OUTPUT_MAX_DELAY = -2 ns
set_output_delay -max -2ns -clock clk2 [get_ports time*]

Similar to the constraints in the Quartus Prime Settings File, you can make the SDC constraints part of an
executable timing analysis script.

project_open chiptrip
create_timing_netlist
#
Create Constraints
#
create_clock -period 10.0 -waveform { 0 5.0 } clk2 -name clk2
create_clock -period 4.0 -waveform { 0 2.0 } clk1 -name clk1
clk1 -> dir* : INPUT_MAX_DELAY = 1 ns
set_input_delay -max 1ns -clock clk1 [get_ports dir*]
clk2 -> time* : OUTPUT_MAX_DELAY = -2 ns
set_output_delay -max -2ns -clock clk2 [get_ports time*]
#
Perform timing analysis for several different sets of operating conditions
#
foreach_in_collection oc [get_available_operating_conditions] {
 set_operating_conditions $oc
 update_timing_netlist
 report_timing -setup -npaths 1
 report_timing -hold -npaths 1
 report_timing -recovery -npaths 1
 report_timing -removal -npaths 1
 report_min_pulse_width -nworst 1
}
delete_timing_netlist
project_close

The script opens the project, creates a timing netlist, then constrains the two clocks in the design and
applies input and output delay constraints. The clock settings and delay constraints are identical to those
in the .sdc file shown in the first example. The next section of the script updates the timing netlist for the
constraints and performs multi-corner timing analysis on the design.

QPS5V2
2015.11.02 Timing Analysis with Synopsys Design Constraints and Tcl 1-7

Constraining Designs Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Constraining%20Designs%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A Fully Iterative Scripted Flow
You can use the ::quartus::flow Tcl package and other packages in the Quartus Prime Tcl API to add flow
control to modify constraints and recompile your design in an automated flow. You can combine your
timing constraints with the other constraints for your design, and embed them in an executable Tcl script
that also iteratively compiles your design as different constraints are applied.

Each time such a modified generated script is run, it can modify the .qsf file and .sdc file for your project
based on the results of iterative compilations, effectively replacing these files for the purposes of archiving
and version control using industry-standard source control methods and practices.

This type of scripted flow can include automated compilation of a design, modification of design
constraints, and recompilation of the design, based on how you foresee results and pre-determine next-
step constraint changes in response to those results.

Related Information

• API Functions for Tcl
• About Quartus Prime Tcl Scripting

Document Revision History

Table 1-1: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 Formatting updates.

November
2012

12.1.0 Update Pin Planner description for task and report windows.

June 2012 12.0.0 Removed survey link.

November
2011

10.0.2 Template update.

December
2010

10.0.1 Template update.

July 2010 10.0.0 Rewrote chapter to more broadly cover all design constraint methods.
Removed procedural steps and user interface details, and replaced with
links to Quartus Prime Help.

November
2009

9.1.0 • Added two notes.
• Minor text edits.

1-8 A Fully Iterative Scripted Flow
QPS5V2

2015.11.02

Altera Corporation Constraining Designs

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
http://quartushelp.altera.com/current/index.htm#reference/scripting/tcl_pro_command.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Constraining%20Designs%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

March 2009 9.0.0 • Revised and reorganized the entire chapter.
• Added section “Probing to Source Design Files and Other Quartus

Prime Windows” on page1–2.
• Added description of node type icons (Table1–3).
• Added explanation of wildcard characters.

November
2008

8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated Quartus Prime software 8.0 revision and date.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 1-9

Constraining Designs Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Constraining%20Designs%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Managing Device I/O Pins 2
2015.11.02

QPS5V2 Subscribe Send Feedback

This document describes efficient planning and assignment of the I/O pins in your target device. You
should consider I/O standards, pin placement rules, and your PCB characteristics early in the design
phase.

Figure 2-1: Pin Planner GUI

Task and
Report
Windows

All Pins
List

Device
 Package
View

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Managing%20Device%20I/O%20Pins&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Table 2-1: Quartus Prime I/O Pin Planning Tools

I/O Planning Task Click to Access

Edit, validate, or export pin assignments Assignments > Pin Planner

View tailored pin planning advice Tools > Advisors > Pin Advisor

Validate pin assignments against design rules Processing > Start I/O Assignment Analysis

For more information about special pin assignment features for the Arria 10 SoC devices, refer to
Instantiating the HPS Component in the Arria 10 Hard Processor System Technical Reference Manual.

Related Information

• Instantiating the HPS Component

I/O Planning Overview
You should plan and assign I/O pins in your design for compatibility with your target device and PCB
characteristics. Plan I/O pins early to reduce design iterations and develop an accurate PCB layout sooner.
You can assign expected nodes not yet defined in design files, including interface IP core signals, and then
generate a top-level file. Specify interfaces for memory, high-speed I/O, device configuration, and
debugging tools in your top-level file. The top-level file instantiates the next level of design hierarchy and
includes interface port information.

Use the Pin Planner to view, assign, and validate device I/O pin logic and properties. Alternatively, you
can enter I/O assignments in a Tcl script, or directly in HDL code. The Pin Planner Task window provides
one-click access to I/O planning steps. You can filter and search the nodes in the design. You can define
custom groups of pins for assignment. Instantly locate and highlight specific pin types for assignment or
evaluation, such as I/O banks, VREF groups, edges, DQ/DQS pins, hard memory interface pins, PCIe
hard IP interface pins, hard processor system pins, and clock region input pins. Assign design elements,
I/O standards, interface IP, and other properties to the device I/O pins by name or by drag and drop. You
can then generate a top-level design file for I/O validation.

Use I/O assignment analysis to fully analyze I/O analysis against VCCIO, VREF, electromigration
(current density), Simultaneous Switching Output (SSO), drive strength, I/O standard, PCI_IO clamp
diode, and I/O pin direction compatibility rules.

Basic I/O Planning Flow
The following steps describe the basic flow for assigning and verifying I/O pin assignments:

1. Click Assignments > Device and select a target device that meets your logic, performance, and I/O
requirements. Consider and specify /O standards, voltage and power supply requirements, and
available I/O pins.

2. Click Assignments > Pin Planner.
3. To setup a top-level HDL wrapper file that defines early port and interface information for your

design, click Early Pin Planning in the Tasks pane.

2-2 I/O Planning Overview
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

http://www.altera.com/literature/hb/arria-10/a10_54027.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Click Import IP Core to import any defined IP core, and then assign signals to the interface IP
nodes.

b. Click Set Up Top-Level File and assign user nodes to device pins. User nodes become virtual pins
in the top-level file and are not assigned to device pins.

c. Click Generate Top-Level File. Use this file to validate I/O assignments.
4. Assign I/O properties to match your device and PCB characteristics, including assigning logic, I/O

standards, output loading, slew rate, and current strength.
5. Click Run I/O Assignment Analysis in the Tasks pane to validate assignments and generate a

synthesized design netlist. Correct any problems reported.
6. Click Processing > Start Compilation. During compilation, the Quartus Prime software runs I/O

assignment analysis.

Integrating PCB Design Tools
You can integrate PCB design tools into your work flow to help correctly map pin assignments to the
symbols your system circuit schematics and board layout. The Quartus Prime software integrates with
board layout tools by allowing import and export of pin assignment information in Quartus Prime
Settings Files (.qsf), Pin-Out File (.pin), and FPGA Xchange-Format File (.fx) files. You can integrate
PCB tools in the the following ways:

Table 2-2: Integrating PCB Design Tools

PCB Tool Integration Supported PCB Tool

Define and validate I/O assignments in the Pin Planner,
and then export the assignments to the PCB tool for
validation

Mentor Graphics® I/O DesignerCadence
Allegro

Define I/O assignments in your PCB tool, and then import
the assignments into the Pin Planner for validation

Mentor Graphics® I/O DesignerCadence
Allegro

QPS5V2
2015.11.02 Integrating PCB Design Tools 2-3

Managing Device I/O Pins Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2-2: PCB Tool Integration

Create and
Modify Pin

Assignments

PCB Tool

I/O Assignment Analysis

Validate?

Quartus Prime Software

Import Pin Assignments
Design Files
(if available)

Yes

No

Analysis & Synthesis

Pins have been Validated

FPGA Xchange
File

.fx

For more information about incorporating PCB design tools, refer to the Cadence PCB Design Tools
Support and Mentor Graphics PCB Design Tools Support chapters in volume 2 of the Quartus Prime
Handbook.

Related Information

• Mentor Graphics PCB Design Tools Support on page 7-1

2-4 Integrating PCB Design Tools
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Altera Device Terms
The following terms describe Altera device and I/O structures:

Assigning I/O Pins
Use the Pin Planner to visualize, modify, and validate I/O assignments in a graphical representation of the
target device. To assign I/O pins, locate the device I/O pin(s) for assignment, enter properties for the
pin(s), and validate the legality of the assignment.

QPS5V2
2015.11.02 Altera Device Terms 2-5

Managing Device I/O Pins Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: You can increase the accuracy of I/O assignment analysis by reserving specific device pins to
accommodate undefined but expected I/O.

To assign I/O pins in the Pin Planner, follow these steps:

1. Open a Quartus Prime project, and then click Assignments > Pin Planner.
2. (Optional) To validate I/O pin assignments in real time, click Processing > Enable Live I/O Check.
3. Click Processing > Start Analysis & Elaboration to elaborate the design and display All Pins in the

device view.
4. To locate or highlight pins for assignment, click Pin Finder or a pin type under Highlight Pins in the

Tasks pane.
5. (Optional) To define a custom group of nodes for assignment, select one or more nodes in the Groups

or All Pins list, and then click Create Group.
6. Enter assignments of logic, I/O standards, interface IP, and properties for device I/O pins in the All

Pins spreadsheet, or by drag and drop into the package view.
7. To assign properties to differential pin pairs, click Show Differential Pin Pair Connections. A red

connection line appears between positive (p) and negative (n) differential pins.
8. (Optional) To create board trace model assignments, right-click an output or bidirectional pin, and

then click Board Trace Model. For differential I/O standards, the board trace model uses a differential
pin pair with two symmetrical board trace models. Specify board trace parameters on the positive end
of the differential pin pair. The assignment applies to the corresponding value on the negative end of
the differential pin pair.

9. To run a full I/O assignment analysis, click Run I/O Assignment Analysis. The Fitter reports analysis
results. Only reserved pins are analyzed prior to design synthesis.

Assigning to Exclusive Pin Groups
You can designate groups of pins for exclusive assignment. When you assign pins to an Exclusive I/O
Group, the Fitter does not place the signals in the same I/O bank with any other exclusive I/O group. For
example, if you have a set of signals assigned exclusively to group_a, and another set of signals assigned to
group_b, the Fitter ensures placement of each group in different I/O banks.

Assigning Slew Rate and Drive Strength
You can designate the device pin slew rate and drive strength. These properties affect the pin’s outgoing
signal integrity. Use either the Slew Rate or Slow Slew Rate assignment to adjust the drive strength of a
pin with the Current Strength assignment.

Note: The slew rate and drive strength apply during I/O assignment analysis.

Assigning Differential Pins
When you use the Pin Planner to assign a differential I/O standard to a single-ended top-level pin in your
design, it automatically recognizes the negative pin as part of the differential pin pair assignment and
creates the negative pin for you. The Quartus Prime software writes the location assignment for the
negative pin to the .qsf; however, the I/O standard assignment is not added to the .qsf for the negative pin
of the differential pair.

The following example shows a design with lvds_in top-level pin, to which you assign a differential I/O
standard. The Pin Planner automatically creates the differential pin, lvds_in(n) to complete the differen‐
tial pin pair.

2-6 Assigning to Exclusive Pin Groups
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: If you have a single-ended clock that feeds a PLL, assign the pin only to the positive clock pin of a
differential pair in the target device. Single-ended pins that feed a PLL and are assigned to the
negative clock pin device cause the design to not fit.

Figure 2-3: Creating a Differential Pin Pair in the Pin Planner

If your design contains a large bus that exceeds the pins available in a particular I/O bank, you can use
edge location assignments to place the bus. Edge location assignments improve the circuit board routing
ability of large buses, because they are close together near an edge. The following shows Altera device
package edges.

Figure 2-4: Die View and Package View of the Four Edges on an Altera Device

Top Edge

Silicon Die View

Bottom Edge

Left Edge Right Edge Right Edge

Top Edge

Package View (Top)

Bottom Edge

Left Edge

QPS5V2
2015.11.02 Assigning Differential Pins 2-7

Managing Device I/O Pins Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Overriding I/O Placement Rules on Differential Pins

Each device family has predefined I/O placement rules. The I/O placement rules ensure that noisy signals
do not corrupt neighboring signals. For example, I/O placement rules define the allowed placement of
single-ended I/O with respect to differential pins, or how many output and bidirectional pins can be
placed within a VREF group when using voltage referenced input standards. You can use the
IO_MAXIMUM_TOGGLE_RATE assignment to override I/O placement rules on pins, such as for
system reset pins that do not switch during normal design activity. Setting a value of 0 MHz for this
assignment causes the Fitter to recognize the pin at a DC state throughout device operation. The Fitter
excludes the assigned pin from placement rule analysis. Do not assign an
IO_MAXIMUM_TOGGLE_RATE of 0 MHz to any actively switching pin or your design may not
function as intended.

Entering Pin Assignments with Tcl Commands
You can use Tcl scripts to apply pin assignments rather than using the GUI. Enter individual Tcl
commands in the Tcl Console, or type the following to apply the assignments contained in a Tcl script:

Example 2-1: Applying Tcl Script Assignments

quartus_sh -t <my_tcl_script>.tcl

The following example shows use of the set_location_assignment and
set_instance_assignment Tcl commands to assign a pin to a specific location, I/O standard,
and drive strength.

Example 2-2: Scripted Pin Assignment

set_location_assignment PIN M20 -to address[10]
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name
 CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]

Related Information

• Tcl Scripting on page 5-1

Entering Pin Assignments in HDL Code
You can use synthesis attributes or low-level I/O primitives to embed I/O pin assignments directly in your
HDL code. When you analyze and synthesize the HDL code, the information is converted into the
appropriate I/O pin assignments. You can use either of the following methods to specify pin-related
assignments with HDL code:

• Assigning synthesis attributes for signal names that are top-level pins
• Using low-level I/O primitives, such as ALT_BUF_IN, to specify input, output, and differential buffers,

and for setting parameters or attributes

2-8 Overriding I/O Placement Rules on Differential Pins
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using Synthesis Attributes

The Quartus Prime software translates synthesis attributes into standard assignments during compilation.
The assignments appear in the Pin Planner. If you modify or delete these assignments in the Pin Planner
and then recompile your design, the Pin Planner changes override the synthesis attributes. Quartus Prime
synthesis supports the chip_pin, useioff, and altera_attribute synthesis attributes.

Use the chip_pin and useioff synthesis attributes to create pin location assignments and to assign Fast
Input Register, Fast Output Register, and Fast Output Enable Register logic options. The following
examples use the chip_pin and useioff attributes to embed location and Fast Input Register logic
option assignments in Verilog HDL and VHDL design files.

Example 2-3: Verilog HDL Synthesis Attribute

input my_pin1 /* synthesis altera_attribute = "-name FAST_INPUT_REGISTER ON;
-name IO_STANDARD \"2.5 V\" " */ ;

Example 2-4: VHDL Synthesis Attribute

VHDL Example
entity my_entity is
 port(
 my_pin1: in std_logic
);
end my_entity;

architecture rtl of my_entity is
attribute useioff : boolean;
attribute useioff of my_pin1 : signal is true;
attribute chip_pin : string;
attribute chip_pin of my_pin1 : signal is "C1";
begin -- The architecture body
end rtl;

Use the altera_attribute synthesis attribute to create other pin-related assignments in your
HDL code. The altera_attribute attribute is understood only by Quartus Prime integrated
synthesis and supports all types of instance assignments. The following examples use the
altera_attribute attribute to embed Fast Input Register logic option assignments and I/O
standard assignments in both a Verilog HDL and a VHDL design file.

Example 2-5: Verilog HDL Synthesis Attribute

input my_pin1 /* synthesis chip_pin = "C1" useioff = 1 */;

Example 2-6: VHDL Synthesis Attribute

entity my_entity is
 port(
 my_pin1: in std_logic
);
end my_entity;

QPS5V2
2015.11.02 Using Synthesis Attributes 2-9

Managing Device I/O Pins Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

architecture rtl of my_entity is
begin

attribute altera_attribute : string;
attribute altera_attribute of my_pin1: signal is "-name FAST_INPUT_REGISTER
ON;
-- The architecture body
end rtl;

Using Low‑Level I/O Primitives

You can alternatively enter I/O pin assignments using low-level I/O primitives. You can assign pin
locations, I/O standards, drive strengths, slew rates, and on-chip termination (OCT) value assignments.
You can also use low-level differential I/O primitives to define both positive and negative pins of a
differential pair in the HDL code for your design.

Primitive-based assignments do not appear in the Pin Planner until after you perform a full compilation
and back-annotate pin assignments (Assignments > Back Annotate Assignments).

Related Information
Designing with Low Level Primitives User Guide

Importing and Exporting I/O Pin Assignments
The Quartus Prime software supports transfer of I/O pin assignments across projects, or for analysis in
third-party PCB tools. You can import or export I/O pin assignments in the following ways:

Table 2-3: Importing and Exporting I/O Pin Assignments

Import Assignments Export Assignments

Scenario • From your PCB design tool or
spreadsheet into Pin Planner during
early pin planning or after optimiza‐
tion in PCB tool

• From another Quartus Prime project
with common constraints

• From Quartus Prime project for
optimization in a PCB design tool

• From Quartus Prime project for
spreadsheet analysis or use in scripting
assignments

• From Quartus Prime project for import
into another Quartus Prime project
with similar constraints

Command Assignments > Import Assignments Assignments > Export Assignments

File formats .qsf, .esf, .acf, .csv, .txt, .sdc .pin, .fx, .csv, .tcl, .qsf

Notes N/A Exported .csv files retain column and row
order and format. Do not modify the row
of column headings if importing the .csv
file

2-10 Using Low‑Level I/O Primitives
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

http://www.altera.com/literature/ug/ug_low_level.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Importing and Exporting for PCB Tools
The Pin Planner supports import and export of assignments with PCB tools. You can export valid
assignments as a .pin file for analysis in other supported PCB tools. You can also import optimized
assignment from supported PCB tools. The .pin file contains pin name, number, and detailed properties.

Mentor Graphics I/O Designer requires you to generate and import both an .fx and a .pin file to transfer
assignments. However, the Quartus Prime software requires only the .fx to import pin assignments from
I/O Designer.

Table 2-4: Contents of .pin File

File Column Name Description

Pin Name/Usage The name of the design pin, or whether the pin is GND or VCC pin

Location The pin number of the location on the device package

Dir The direction of the pin

I/O Standard The name of the I/O standard to which the pin is configured

Voltage The voltage level that is required to be connected to the pin

I/O Bank The I/O bank to which the pin belongs

User Assignment Y or N indicating if the location assignment for the design pin was
user assigned (Y) or assigned by the Fitter (N)

Related Information
Pin-Out Files for Altera Devices

Mentor Graphics PCB Tools Support on page 7-1

Migrating Assignments to Another Target Device
You can migrate compatible pin assignments from one target device to another. You can migrate to a
different density and the same device package. You can also migrate between device packages with
different densities and pin counts. Click View > Pin Migration Window to verify whether your pin
assignments are compatible with migration to a different Altera device.

The Quartus Prime software ignores invalid assignments and generates an error message during compila‐
tion. After evaluating migration compatibility, modify any incompatible assignments, and then click
Export to export the assignments to another project.

QPS5V2
2015.11.02 Importing and Exporting for PCB Tools 2-11

Managing Device I/O Pins Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-dp.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2-5: Device Migration Compatibility (AC24 does not exist in migration device)

The migration result for the pin function of highlighted PIN_AC23 is not an NC but a voltage reference
VREFB1N2 even though the pin is an NC in the migration device. VREF standards have a higher priority
than an NC, thus the migration result display the voltage reference. Even if you do not use that pin for a
port connection in your design, you must use the VREF standard for I/O standards that require it on the
actual board for the migration device.

If one of the migration devices has pins intended for connection to VCC or GND and these same pins are
I/O pins on a different device in the migration path, the Quartus Prime software ensures these pins are
not used for I/O. Ensure that these pins are connected to the correct PCB plane.

When migrating between two devices in the same package, pins that are not connected to the smaller die
may be intended to connect to VCC or GND on the larger die. To facilitate migration, you can connect
these pins to VCC or GND in your original design because the pins are not physically connected to the
smaller die.

Related Information
AN90: SameFrame PinOut Design for FineLine BGA Packages

2-12 Migrating Assignments to Another Target Device
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

http://www.altera.com/literature/an/an090.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Validating Pin Assignments
The Quartus Prime software validates I/O pin assignments against predefined I/O rules for your target
device. You can use the following tools to validate your I/O pin assignments throughout the pin planning
process:

Table 2-5: I/O Validation Tools

I/O Validation
Tool

Description Click to Run

Live I/O
Check

Verifies preliminary, basic I/O legality as you
enter assignments

Processing > Enable Live I/O Check

I/O
Assignment
Analysis

Verifies I/O assignment legality of synthesized
design against full set of I/O rules for the target
device

Processing > Start I/O Assignment
Analysis

Advanced I/
O Timing

Fully validates I/O assignments against all I/O
and timing checks during compilation

Processing > Start Compilation

I/O Assignment Validation Rules
I/O Assignment Analysis validates your assignments against the following rules:

Table 2-6: Examples of I/O Rule Checks

Rule Description HDL Required?

I/O bank capacity Checks the number of pins assigned to an I/O bank
against the number of pins allowed in the I/O bank.

No

I/O bank VCCIO voltage compati‐
bility

Checks that no more than one VCCIO is required for
the pins assigned to the I/O bank.

No

I/O bank VREF voltage compati‐
bility

Checks that no more than one VREF is required for
the pins assigned to the I/O bank.

No

I/O standard and location
conflicts

Checks whether the pin location supports the assigned
I/O standard.

No

I/O standard and signal direction
conflicts

Checks whether the pin location supports the assigned
I/O standard and direction. For example, certain I/O
standards on a particular pin location can only
support output pins.

No

QPS5V2
2015.11.02 Validating Pin Assignments 2-13

Managing Device I/O Pins Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Rule Description HDL Required?

Differential I/O standards cannot
have open drain turned on

Checks that open drain is turned off for all pins with a
differential I/O standard.

No

I/O standard and drive strength
conflicts

Checks whether the drive strength assignments are
within the specifications of the I/O standard.

No

Drive strength and location
conflicts

Checks whether the pin location supports the assigned
drive strength.

No

BUSHOLD and location conflicts Checks whether the pin location supports BUSHOLD.
For example, dedicated clock pins do not support
BUSHOLD.

No

WEAK_PULLUP and location
conflicts

Checks whether the pin location supports WEAK_
PULLUP (for example, dedicated clock pins do not
support WEAK_PULLUP).

No

Electromigration check Checks whether combined drive strength of consecu‐
tive pads exceeds a certain limit. For example, the total
current drive for 10 consecutive pads on a Stratix II
device cannot exceed 200 mA.

No

PCI_IO clamp diode, location, and
I/O standard conflicts

Checks whether the pin location along with the I/O
standard assigned supports PCI_IO clamp diode.

No

SERDES and I/O pin location
compatibility check

Checks that all pins connected to a SERDES in your
design are assigned to dedicated SERDES pin
locations.

Yes

PLL and I/O pin location compati‐
bility check

Checks whether pins connected to a PLL are assigned
to the dedicated PLL pin locations.

Yes

Table 2-7: Signal Switching Noise Rules

Rule Description HDL Required?

I/O bank can not have single-
ended I/O when DPA exists

Checks that no single-ended I/O pin exists in the same
I/O bank as a DPA.

No

A PLL I/O bank does not support
both a single-ended I/O and a
differential signal simultaneously

Checks that there are no single-ended I/O pins present
in the PLL I/O Bank when a differential signal exists.

No

Single-ended output is required to
be a certain distance away from a
differential I/O pin

Checks whether single-ended output pins are a certain
distance away from a differential I/O pin.

No

2-14 I/O Assignment Validation Rules
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Rule Description HDL Required?

Single-ended output has to be a
certain distance away from a
VREF pad

Checks whether single-ended output pins are a certain
distance away from a VREF pad.

No

Single-ended input is required to
be a certain distance away from a
differential I/O pin

Checks whether single-ended input pins are a certain
distance away from a differential I/O pin.

No

Too many outputs or bidirectional
pins in a VREFGROUP when a
VREF is used

Checks that there are no more than a certain number
of outputs or bidirectional pins in a VREFGROUP
when a VREF is used.

No

Too many outputs in a
VREFGROUP

Checks whether too many outputs are in a
VREFGROUP.

No

Checking I/O Pin Assignments In Real-Time
Live I/O check validates I/O assignments against basic I/O buffer rules in real time. The Pin Planner
immediately reports warnings or errors about assignments as you enter them. The Live I/O Check Status
window displays the total number of errors and warnings. Use this analysis to quickly correct basic errors
before proceeding. Run full I/O assignment analysis when you are ready to validate pin assignments
against the complete set of I/O system rules.

Note: Live I/O check is supported only for Arria II, Cyclone IV, MAX II, and Stratix IV device families.

Live I/O check validates against the following basic I/O buffer rules:

• VCCIO and VREF voltage compatibility rules
• Electromigration (current density) rules
• Simultaneous Switching Output (SSO) rules
• I/O property compatibility rules, such as drive strength compatibility, I/O standard compatibility,

PCI_IO clamp diode compatibility, and I/O direction compatibility
• Illegal location assignments:

• An I/O bank or VREF group with no available pins
• The negative pin of a differential pair if the positive pin of the differential pair is assigned with a

node name with a differential I/O standard
• Pin locations that do not support the I/O standard assigned to the selected node name
• For HSTL- and SSTL-type I/O standards, VREF groups of a different VREF voltage than the selected

node name.

Running I/O Assignment Analysis
I/O assignment analysis validates I/O assignments against the complete set of I/O system and board
layout rules. Full I/O assignment analysis validates blocks that directly feed or are fed by resources such as
a PLL, LVDS, or gigabit transceiver blocks. In addition, the checker validates the legality of proper VREF
pin use, pin locations, and acceptable mixed I/O standards

QPS5V2
2015.11.02 Checking I/O Pin Assignments In Real-Time 2-15

Managing Device I/O Pins Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Run I/O assignment analysis during early pin planning to validate initial reserved pin assignments before
compilation. Once you define design files, run I/O assignment analysis to perform more thorough legality
checks with respect to the synthesized netlist. Run I/O assignment analysis whenever you modify I/O
assignments.

The Fitter assigns pins to accommodate your constraints. For example, if you assign an edge location to a
group of LVDS pins, the Fitter assigns pin locations for each LVDS pin in the specified edge location and
then performs legality checks. To display the Fitter-placed pins, click Show Fitter Placements in the Pin
Planner. To accept these suggested pin locations, you must back-annotate your pin assignments.

View the I/O Assignment Warnings report to view and resolve all assignment warnings. For example, a
warning that some design pins have undefined drive strength or slew rate. The Fitter recognizes
undefined, single-ended output and bidirectional pins as non-calibrated OCT. To resolve the warning,
assign the Current Strength, Slew Rate or Slow Slew Rate for the reported pin. Alternatively, you could
assign the Termination to the pin. You cannot assign drive strength or slew rate settings when a pin has
an OCT assignment.

Running Early I/O Assignment Analysis (without Design Files)

You can perform basic I/O legality checks before defining HDL design files. This technique produces a
preliminary board layout. For example, you can specify a target device and enter pin assignments that
correspond to PCB characteristics. You can reserve and assign an I/O standards to each pin, and then run
I/O assignment analysis to ensure that there are no I/O standard conflicts in each I/O bank.

Figure 2-6: Assigning and Analyzing Pin-Outs without Design Files

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Create a Quartus Prime Project

Pin Assignments Complete

Yes

NoAssignments
Correct?

You must reserve all pins you intend to use as I/O pins, so that the Fitter can determine each pin type.
After performing I/O assignment analysis, correct any errors reported by the Fitter and rerun I/O
assignment analysis until all errors are corrected. A complete I/O assignment analysis requires all design
files.

2-16 Running Early I/O Assignment Analysis (without Design Files)
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running I/O Assignment Analysis (with Design Files)

Use I/O assignment analysis to perform full I/O legality checks after fully defining HDL design files.
When you run I/O assignment analysis on a complete design, the tool verifies all I/O pin assignments
against all I/O rules. When you run I/O assignment analysis on a partial designs, the tool checks legality
only for defined portions of the design. The following figure shows the work flow for analyzing pin-outs
with design files.

Figure 2-7: I/O Assignment Analysis Flow

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the .qsf file)

Start I/O Assignment Analysis

Back-Annotate I/O Assignment
Analysis Pin Placements

Perform Analysis & Synthesis
to Create a Mapped Netlist

Open Quartus Prime Project or Design File

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Quartus Prime Proj ect & Design Files

.qpf .edf .vqm .v .vhd .bdf .tdf

Even if I/O assignment analysis passes on incomplete design files, you may still encounter errors during
full compilation. For example, you can assign a clock to a user I/O pin instead of assigning it to a
dedicated clock pin, or design the clock to drive a PLL that you have not yet instantiated in the design.
This occurs because I/O assignment analysis does not account for the logic that the pin drives, and does
not verify that only dedicated clock inputs can drive the a PLL clock port.

To obtain better coverage, analyze as much of the design as possible over time, especially logic that
connects to pins. For example, if your design includes PLLs or LVDS blocks, define these files prior to full
analysis. After performing I/O assignment analysis, correct any errors reported by the Fitter and rerun
I/O assignment analysis until all errors are corrected.

QPS5V2
2015.11.02 Running I/O Assignment Analysis (with Design Files) 2-17

Managing Device I/O Pins Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following figure shows the compilation time benefit of performing I/O assignment analysis before
running a full compilation.

Figure 2-8: I/O Assignment Analysis Reduces Compilation Time

Errors
Reported
and Fixed

I/O
Assignment
Analysis

First Full Compilation

First Full Compilation

Second Full Compilation

Errors Reported and Fixed

Without
Start I/O Assignment Analysis

Command

With
Start I/O Assignment Analysis

Command

Compilation T ime

Overriding Default I/O Pin Analysis

You can override the default I/O analysis of various pins to accommodate I/O rule exceptions, such as for
analyzing VREF or inactive pins.

Each device contains a number of VREF pins, each supporting a number of I/O pins. A VREF pin and its
I/O pins comprise a VREF bank. The VREF pins are typically assigned inputs with VREF I/O standards,
such as HSTL- and SSTL-type I/O standards. Conversely, VREF outputs do not require the VREF pin.
When a voltage-referenced input is present in a VREF bank, only a certain number of outputs can be
present in that VREF bank. I/O assignment analysis treats bidirectional signals controlled by different
output enables as independent output enables.

To assign the Output Enable Group option to bidirectional signals to analyze the signals as a single
output enable group, follow these steps:

1. To access this assignment in the Pin Planner, right-click the All pins list and click Customize
Columns.

2. Under Available columns, add Output Enable Group to Show these columns in this order. The
column appears in the All Pins list.

3. Enter the same integer value for the Output Enable Group assignment for all sets of signals that are
driving in the same direction.

This assignment is especially important for external memory interfaces. For example, consider a DDR2
interface in a Stratix II device. The device allows 30 pins in a VREF group. Each byte lane for a ×8 DDR2
interface includes one DQS pin and eight DQ pins, for a total of nine pins per byte lane. The DDR2
interface uses the SSTL 18 Class I VREF I/O standard. In typical interfaces, each byte lane has its own
output enable. In this example, the DDR2 interface has four byte lanes. Using 30 I/O pins in a VREF
group, there are three byte lanes and an extra byte lane that supports the three remaining pins. Without
the Output Enable Group assignment, the Fitter analyzes each byte lane as an independent group driven

2-18 Overriding Default I/O Pin Analysis
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

by a unique output enable. In this worst-case scenario the three pins are inputs, and the other 27 pins are
outputs violating the 20 output pin limit.

Because DDR2 DQS and DQ pins are always driven in the same direction, the analysis reports an error
that is not applicable to your design. The Output Enable Group assignment designates the DQS and DQ
pins as a single group driven by a common output enable for I/O assignment analysis. When you use the
Output Enable Group logic option assignment, the DQS and DQ pins are checked as all input pins or all
output pins and are not in violation of the I/O rules.

You can also use the Output Enable Group assignment to designate pins that are driven only at certain
times. For example, the data mask signal in DDR2 interfaces is an output signal, but it is driven only when
the DDR2 is writing (bidirectional signals are outputs). To avoid I/O assignment analysis errors, use the
Output Enable Group logic option assignment to assign the data mask to the same value as the DQ and
DQS signals.

You can also use the Output Enable Group to designate VREF input pins that are inactive during the
time the outputs are driving. This assignment removes the VREF input pins from the VREF analysis. For
example, the QVLD signal for an RLDRAM II interface is active only during a read. During a write, the
QVLD pin is not active and does not count as an active VREF input pin in the VREF group. Place the
QVLD pins in the same output enable group as the RLDRAM II data pins.

Related Information
TimeQuest Timing Analyzer

Understanding I/O Analysis Reports
The detailed I/O assignment analysis reports include the affected pin name and a problem description.
The Fitter section of the Compilation report contains information generated during I/O assignment
analysis, including the following reports:

• I/O Assignment Warnings—lists warnings generated for each pin
• Resource Section—quantifies use of various pin types and I/O banks
• I/O Rules Section—lists summary, details, and matrix information about the I/O rules tested

The Status column indicates whether rules passed, failed, or could not be checked. A severity rating
indicates the rule’s importance for effective analysis. “Inapplicable” rules do not apply to the target device
family.

QPS5V2
2015.11.02 Understanding I/O Analysis Reports 2-19

Managing Device I/O Pins Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2-9: I/O Rules Matrix

Verifying I/O Timing
You must verify board-level signal integrity and I/O timing when assigning I/O pins. High-speed interface
operation requires a quality signal and low propagation delay at the far end of the board route. Click
Tools > TimeQuest Timing Analyzer to confirm timing after making I/O pin assignments. For example,
if you change the slew rates or drive strengths of some I/O pins with ECOs, you can verify timing without
recompiling the design. You must understand I/O timing and what factors affect I/O timing paths in your
design. The accuracy of the output load specification of the output and bidirectional pins affects the I/O
timing results.

The Quartus Prime software supports three different methods of I/O timing analysis:

Table 2-8: I/O Timing Analysis Methods

I/O Timing Analysis Description

Advanced I/O
timing analysis

Analyze I/O timing with your board trace model to report accurate, “board-aware”
simulation models. Configures a complete board trace model for each I/O standard
or pin. TimeQuest applies simulation results of the I/O buffer, package, and board
trace model to generate accurate I/O delays and system level signal information.
Use this information to improve timing and signal integrity.

I/O timing analysis Analyze I/O timing with default or specified capacitive load without signal
integrity analysis. TimeQuest reports tCO to an I/O pin using a default or user-
specified value for a capacitive load.

2-20 Verifying I/O Timing
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I/O Timing Analysis Description

Full board routing
simulation

Use Altera-provided or Quartus Prime software-generated IBIS or HSPICE I/O
models for simulation in Mentor Graphics HyperLynx and Synopsys HSPICE.

Note: Advanced I/O timing analysis is supported only for .28nm and larger device families. For devices
that support advanced I/O timing, it is the default method of I/O timing analysis. For all other
devices, you must use a default or user-specified capacitive load assignment to determine tCO and
power measurements.

For more information about advanced I/O timing support, refer to the appropriate device handbook for
your target device. For more information about board-level signal integrity and tips on how to improve
signal integrity in your high-speed designs, refer to the Altera Signal Integrity Center page of the Altera
website.

For information about creating IBIS and HSPICE models with the Quartus Prime software and
integrating those models into HyperLynx and HSPICE simulations, refer to theSignal Integrity Analysis
with Third Party Tools chapter in volume 2 of the Quartus Prime Handbook.

Related Information

• Literature and Technical Documentation
• Altera Signal Integrity Center
• Signal Integrity Analysis with Third-Party Tools on page 6-1

Running Advanced I/O Timing
Advanced I/O timing analysis uses your board trace model and termination network specification to
report accurate output buffer-to-pin timing estimates, FPGA pin and board trace signal integrity and
delay values. Advanced I/O timing runs automatically for supported devices during compilation.

Understanding the Board Trace Models

The Quartus Prime software provides board trace model templates for various I/O standards. The
following figure shows the template for a 2.5 V I/O standard. This model consists of near-end and far-end
board component parameters.

Near-end board trace modeling includes the elements which are close to the device. Far-end modeling
includes the elements which are at the receiver end of the link, closer to the receiving device. Board trace
model topology is conceptual and does not necessarily match the actual board trace for every component.
For example, near-end model parameters can represent device-end discrete termination and breakout
traces. Far-end modeling can represent the bulk of the board trace to discrete external memory
components, and the far end termination network. You can analyze the same circuit with near-end
modeling of the entire board, including memory component termination, and far-end modeling of the
actual memory component.

QPS5V2
2015.11.02 Running Advanced I/O Timing 2-21

Managing Device I/O Pins Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-index.html
https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2-10: 2.5-V I/O Standard Board Trace Model

The following figure shows the template for the LVDS I/O standard. The far-end capacitance (Cf)
represents the external-device or multiple-device capacitive load. If you have multiple devices on the
far-end, you must find the equivalent capacitance at the far-end, taking into account all receiver
capacitances. The far-end capacitance can be the sum of all the receiver capacitances.

The Quartus Prime software models lossless transmission lines, and does not require a transmission-line
resistance value. Only distributed inductance (L) and capacitance (C) values are needed. The distributed L
and C values of transmission lines must be entered on a per-inch basis, and can be obtained from the PCB
vendor or manufacturer, the CAD Design tool, or a signal integrity tool, such as the Mentor Graphics
Hyperlynx software.

2-22 Understanding the Board Trace Models
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2-11: LVDS Differential Board Trace Model

Defining the Board Trace Model

The board trace model describes a board trace and termination network as a set of capacitive, resistive,
and inductive parameters. Advanced I/O Timing and the SSN Analyzer use the model to simulate the
output signal from the output buffer to the far end of the board trace. You can define the capacitive load,
any termination components, and trace impedances in the board routing for any output pin or bidirec‐
tional pin in output mode. You can configure an overall board trace model for each I/O standard or for
specific pins. Define an overall board trace model for each I/O standard in your design. Use that model for
all pins that use the I/O standard. You can customize the model for specific pins using the Board Trace
Model window in the Pin Planner.

1. Click Assignments > Device and then click Device and Pin Options.
2. Click Board Trace Model and define board trace model values for each I/O standard.
3. Click I/O Timing and define default I/O timing options at board trace near and far ends.
4. Click Assignments > Pin Planner and assign board trace model values to individual pins.

Example 2-7: Specifying Board Trace Model

setting the near end series resistance model of sel_p output pin to 25
ohms

QPS5V2
2015.11.02 Defining the Board Trace Model 2-23

Managing Device I/O Pins Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_instance_assignment -name BOARD_MODEL_NEAR_SERIES_R 25 -to se1_p
Setting the far end capacitance model for sel_p output signal to 6
picofarads
set_instance_assignment -name BOARD_MODEL_FAR_C 6P -to se1_p

Related Information
Board Trace Model
For more information about configuring component values for a board trace model, including a complete
list of the supported unit prefixes and setting the values with Tcl scripts, refer to Quartus Prime Help.

Modifying the Board Trace Model

To modify the board trace model, click View > Board Trace Model in the Pin Planner. You can modify
any of the board trace model parameters within a graphical representation of the board trace model.

The Board Trace Model window displays the routing and components for positive and negative signals in
a differential signal pair. Only modify the positive signal of the pair, as the setting automatically applies to
the negative signal. Use standard unit prefixes such as p, n, and k to represent pico, nano, and kilo,
respectively. Use the short or open value to designate a short or open circuit for a parallel component.

Specifying Near End vs Far End I/O Timing Analysis

You can select a nearend or far end point for I/O timing analysis. Near end timing analysis extends to the
device pin. You can apply the set_output_delay constraint during near end analysis to account for the
delay across the board.

Far end I/O timing analysis, then advanced I/O timing analysis extends to the external device input, at the
far end of the board trace. Whether you choose a near end or far end timing endpoint, the board trace
models are taken into account during timing analysis.

Understanding Advanced I/O Timing Analysis Reports

View I/O timing analysis information in the following reports:

Table 2-9: Advanced I/O Timing Reports

I/O Timing Report Description

TimeQuest Report Reports signal integrity and board delay data.

Board Trace Model
Assignments report

Summarizes the board trace model component settings for each output and
bidirectional signal.

Signal Integrity Metrics
report

Contains all the signal integrity metrics calculated during advanced I/O
timing analysis based on the board trace model settings for each output or
bidirectional pin. Includes measurements at both the FPGA pin and at the
far-end load of board delay, steady state voltages, and rise and fall times.

Note: By default, the TimeQuest analyzer generates the Slow-Corner Signal Integrity Metrics report. To
generate a Fast-Corner Signal Integrity Metrics report you must change the delay model by clicking
Tools > TimeQuest Timing Analyzer.

2-24 Modifying the Board Trace Model
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/ssn/ssn_ref_board_trace_model.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
The TimeQuest Timing Analyzer

Adjusting I/O Timing and Power with Capacitive Loading
When calculating tCO and power for output and bidirectional pins, the TimeQuest analyzer and the
PowerPlay Power Analyzer use a bulk capacitive load. You can adjust the value of the capacitive load per
I/O standard to obtain more precise tCO and power measurements, reflecting the behavior of the output
or bidirectional net on your PCB. The Quartus Prime software ignores capacitive load settings on input
pins. You can adjust the capacitive load settings per I/O standard, in picofarads (pF), for your entire
design. During compilation, the Compiler measures power and tCO measurements based on your settings.
You can also adjust the capacitive load on an individual pin with the Output Pin Load logic option.

Viewing Routing and Timing Delays
Right-click any node and click Locate > Locate in Chip Planner to visualize and adjust I/O timing delays
and routing between user I/O pads and VCC, GND, and VREF pads. The Chip Planner graphically displays
logic placement, LogicLock® regions, relative resource usage, detailed routing information, fan-in and
fan-out, register paths, and high-speed transceiver channels. You can view physical timing estimates,
routing congestion, and clock regions. Use the Chip Planner to change connections between resources
and make post-compilation changes to logic cell and I/O atom placement. When you select items in the
Pin Planner, the corresponding item is highlighted in Chip Planner.

Analyzing Simultaneous Switching Noise
Click Processing > Start > Start SSN Analyzer to estimate the voltage noise for each pin in the design.
The simultaneous switching noise (SSN) analysis accounts for the pin placement, I/O standard, board
trace, output enable group, timing constraint, and PCB characteristics that you specify. The analysis
produces a voltage noise estimate for each pin in the design. View the SSN results in the Pin Planner and
adjust your I/O assignments to optimize signal integrity.

Related Information
Simultaneous Switching Noise (SSN) Analysis and Optimization

Scripting API
You can alternatively use Tcl commands to access I/O management functions, rather than using the GUI.
For detailed information about specific scripting command options and Tcl API packages, type the
following command at a system command prompt to view the Tcl API Help browser:

quartus_sh --qhelp

Related Information

• Tcl Scripting on page 5-1
• Command Line Scripting on page 4-1

QPS5V2
2015.11.02 Adjusting I/O Timing and Power with Capacitive Loading 2-25

Managing Device I/O Pins Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generate Mapped Netlist
Enter the following in the Tcl console or in a Tcl script:

execute_module -tool map

The execute_module command is in the flow package.

Type the following at a system command prompt:

quartus_map <project name>

Reserve Pins
Use the following Tcl command to reserve a pin:

set_instance_assignment -name RESERVE_PIN <value> -to <signal name>

Use one of the following valid reserved pin values:

• "AS BIDIRECTIONAL"

• "AS INPUT TRI STATED"

• "AS OUTPUT DRIVING AN UNSPECIFIED SIGNAL"

• "AS OUTPUT DRIVING GROUND"

• "AS SIGNALPROBE OUTPUT"

Note: You must include the quotation marks when specifying the reserved pin value.

Set Location
Use the following Tcl command to assign a signal to a pin or device location:

set_location_assignment <location> -to <signal name>

Valid locations are pin locations, I/O bank locations, or edge locations. Pin locations include pin names,
such as PIN_A3. I/O bank locations include IOBANK_1 up to IOBANK_ n, where n is the number of I/O
banks in the device.

Use one of the following valid edge location values:

• EDGE_BOTTOM

• EDGE_LEFT

• EDGE_TOP

• EDGE_RIGHT

Exclusive I/O Group
Use the following Tcl command to create an exclusive I/O group assignments:

set_instance_assignment -name "EXCLUSIVE_IO_GROUP" -to pin

2-26 Generate Mapped Netlist
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Slew Rate and Current Strength
Use the following Tcl commands to create an slew rate and drive strength assignments:

set_instance_assignment -name CURRENT_STRENGTH_NEW 8MA -to e[0]
set_instance_assignment -name SLEW_RATE 2 -to e[0]

Related Information
Altera Device Package Information Data Sheet

Document Revision History
The following table shows the revision history for this chapter.

Table 2-10: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated Live I/O check device support to include only limited device
families.

2014.08.30 14.0a10.0 • Added link to information about special pin assignment features for
Arria 10 SoC devices.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager information with IP Catalog.

November 2013 13.1.0 • Reorganization and conversion to DITA.

May 2013 13.0.0 • Added information about overriding I/O placement rules.

November 2012 12.1.0 • Updated Pin Planner description for new task and report windows.

June 2012 12.0.0 • Removed survey link.

November 2011 11.1.0 • Minor updates and corrections.
• Updated the document template.

December 2010 10.0.1 Template update

QPS5V2
2015.11.02 Slew Rate and Current Strength 2-27

Managing Device I/O Pins Altera Corporation

Send Feedback

http://www.altera.com/literature/ds/dspkg.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

July 2010 10.0.0 • Reorganized and edited the chapter
• Added links to Help for procedural information previously included in

the chapter
• Added information on rules marked Inapplicable in the I/O Rules

Matrix Report
• Added information on assigning slew rate and drive strength settings

to pins to fix I/O assignment warnings

November 2009 9.1.0 • Reorganized entire chapter to include links to Help for procedural
information previously included in the chapter

• Added documentation on near-end and far-end advanced I/O timing

March 2009 9.0.0 • Updated “Pad View Window” on page 5–20
• Added new figures:
• Figure 5–15
• Figure 5–16
• Added new section “Viewing Simultaneous Switching Noise (SSN)

Results” on page 5–17
• Added new section “Creating Exclusive I/O Group Assignments” on

page 5–18

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

2-28 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Managing Device I/O Pins

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Managing%20Device%20I/O%20Pins%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simultaneous Switching Noise (SSN) Analysis
and Optimizations 3

2015.11.02

QPS5V2 Subscribe Send Feedback

Simultaneous Switching Noise (SSN) Analysis and Optimizations
FPGA design has evolved from small programmable circuits to designs that compete with multimillion-
gate ASICs. At the same time, the I/O counts on FPGAs and logic density requirements of designs have
increased exponentially.

The higher-speed interfaces in FPGAs, including high-speed serial interfaces and memory interfaces,
require careful interface design on the PCB. Designers must address the timing and signal integrity
requirements of these interfaces early in the design cycle. Simultaneous switching noise (SSN) often leads
to the degradation of signal integrity by causing signal distortion, thereby reducing the noise margin of a
system.

Today’s complex FPGA system design is incomplete without addressing the integrity of signals coming in
to and out of the FPGA. Altera recommends that you perform SSN analysis early in your FPGA design
and prior to the layout of your PCB with complete SSN analysis of your FPGA in the Quartus Prime
software. This chapter describes the Quartus Prime SSN Analyzer tool and covers the following topics:

Definitions
The terminology used in this chapter includes the following terms:

• Aggressor: An output or bidirectional signal that contributes to the noise for a victim I/O pin
• PDN: Power distribution network
• QH: Quiet high signal level on a pin
• QHN: Quiet high noise on a pin, measured in volts
• QL: Quiet low signal level on a pin
• QLN: Quiet low noise on a pin, measured in volts
• SI: Signal integrity (a superset of SSN, covering all noise sources)
• SSN: Simultaneous switching noise
• SSO: Simultaneous switching output (which are either the output or bidirectional pins)
• Victim: An input, output, or bidirectional pin that is analyzed during SSN analysis. During SSN

analysis, each pin is analyzed as a victim. If a pin is an output or bidirectional pin, the same pin acts as
an aggressor signal for other pins.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Understanding SSN
SSN is defined as a noise voltage induced onto a single victim I/O pin on a device due to the switching
behavior of other aggressor I/O pins on the device. SSN can be divided into two types of noise: voltage
noise and timing noise.

In a sample system with three pins, two of the pins (A and C) are switching, while one pin (B) is quiet. If
the pins are driven in isolation, the voltage waveforms at the output of the buffers appear without noise
interference, as shown by the solid curves at the left of the figure. However, when pins A and C are
switching simultaneously, the noise generated by the switching is injected onto other pins. This noise
manifests itself as a voltage noise on pin B and timing noise on pins A and C.

Figure 3-1: System with Three Pins

In this figure, the dotted curves show the voltage noise on pin B and timing noise on pins A and C.

Voltage noise is measured as the change in voltage of a signal due to SSN. When a signal is QH, it is
measured as the change in voltage toward 0 V. When a signal is QL, it is measured as the change in
voltage toward VCC.

In the Quartus Prime software, only voltage noise is analyzed. Voltage noise can be caused by SSOs under
two worst-case conditions:

• The victim pin is high and the aggressor pins (SSOs) are switching from low to high
• The victim pin is low and the aggressor pins (SSOs) are switching from high to low

3-2 Understanding SSN
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-2: Quiet High Output Noise Estimation on Pin B

Victim pin B

FPGA Package Vias PCB

1
0

1
0

1
0

A

B

C

E

D

Figure 3-3: Quiet Low Input Noise Estimation for Pin D

SSN can occur in any system, but the induced noise does not always result in failures. Voltage functional
errors are caused by SSN on quiet victim pins only when the voltage values on the quiet pins change by a
large voltage that the logic listening to that signal reads a change in the logic value. For QH signals, a
voltage functional error occurs when noise events cause the voltage to fall below VIH. Similarly, for QL
signals, a voltage functional error occurs when noise events cause the voltage to rise above VIL. Because
VIH and VIL of the Altera device are different for different I/O standards, and because signals have
different quiet voltage values, the absolute amount of SSN, measured in volts, cannot be used to determine
if a voltage failure occurs. Instead, to assess the level of impact by SSN in the SSN analysis, the Quartus
Prime sofware quantifies the SSN in terms of the percentage of signal margin in Altera devices.

QPS5V2
2015.11.02 Understanding SSN 3-3

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-4: Reporting Noise Margins

The figure shows four noise events, two on QH signals and two on QL signals. The two noise events on
the right-side of the figure consume 50 percent of the signal margin and do not cause voltage functional
errors. However, the two noise events on the left side of the figure consume 100 percent of the signal
margin, which can cause a voltage functional error.

Noise caused by aggressor signals are synchronously related to the victim pin outside of the sampling
window of a receiver. This noise affects the switching time of a victim pin, but are not considered an input
threshold violation failure.

Figure 3-5: Synchronous Voltage Noise with No Functional Error

Related Information
SSN Analysis Overview on page 3-5

SSN Estimation Tools
Addressing SSN early in your FPGA design and PCB layout can help you avoid costly board respins and
lost time, both of which can impact your time-to-market.

3-4 SSN Estimation Tools
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Altera provides many tools for SSN analysis and estimation, including the following tools:

• SSN characterization reports
• An early SSN estimation (ESE) tool
• The SSN Analyzer in the Quartus Prime software

The ESE tool is useful for preliminary SSN analysis of your FPGA design; for more accurate results,
however, you must use the SSN Analyzer in the Quartus Prime software.

Table 3-1: Comparison of ESE Tool and SSN Analyzer Tool

ESE Tool SSN Analyzer

Is not integrated with the Quartus Prime
software.

Integrated with the Quartus Prime software,
allowing you to perform preliminary SSN
analysis while making I/O assignment changes
in the Quartus Prime software.

QL and QH levels are computed assuming a
worst-case pattern of I/O placements.

QL and QH levels are computed based on the I/
O placements in your design.

No support for entering board information. Supports board trace models and board layer
information, resulting in a more accurate SSN
analysis.

No graphical representation. Integrated with the Quartus Prime Pin Planner,
in which an SSN map shows the QL and QH
levels on victim pins.

Good for doing an early SSN estimate. Does not
require you to use the Quartus Prime software.

Requires you to create a Quartus Prime
software project and provide the top-level port
information.

Related Information
Signal Integrity Center
For more information on the Altera website about the SSN characterization reports and the ESE tool,
including device support information.

SSN Analysis Overview
You can run the SSN Analyzer at different stages in your design cycle to obtain SSN results. The accuracy
of the results depends on the completeness of your design information.

Altera recommends that you start SSN analysis early in the design cycle to obtain preliminary results and
make adjustments to your I/O assignments, and iterate through the design cycle to finally perform a fully
constrained SSN analysis with complete information about your board.

The early pin-out flow assumes conservative design rules initially, and then lets you analyze the design
and iteratively apply tighter design rules until SSN analysis indicates your design meets SSN constraints.
You must define pass criteria for SSN analysis as a percentage of signal margin in both the early pin-out
flow and the final pin-out flow. The pass criteria you define is specific to your design requirements. For
example, a pass criterion you might define is a condition that verifies you have sufficient SSN margins in
your design. You may require that the acceptable voltage noise on a pin must be below 70% of the voltage
level for that pin. The pass criteria for the early-pin out flow may be higher than the final pin-out flow

QPS5V2
2015.11.02 SSN Analysis Overview 3-5

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

criteria, so that you do not spend too much time optimizing the on-FPGA portions of your design when
the SSN metrics for the design may improve after the design is fully specified.

Figure 3-6: Early Flow and Final Pin-Out SSN Analysis

Create Quartus Prime Project
Add # of I/Os & settings

Define avg breakout depth

Constrain signal via
breakout layers

Constrain pin placement

Define pass criteria
Early < 80%; Final < 50% (1)

Adjust I/O settings
(Drive strength, slew rate

Run Quartus Prime &
SSN Analyzer

Run Quartus Prime &
SSN Analyzer

Design PCB & Extract
board parameters

Run Quartus Prime &
SSN Analyzer

Start

Done

Design is unlikely to
pass final SSN Analysis

No

Yes

No

No

Can we further
constrain PCB?

Yes

Yes

No Noise < early pass?

Noise < final pass?

Decrease early pass
criteria

Yes

Timing margin available?

Done

No

Yes
Noise < final pass?

Manual optimization

Early pin-out flow Final pin-out flow

Note :

1. Pass criteria determined by customer requirements.

Performing Early Pin-Out SSN Analysis
In the early stages of your design cycle, before you create pin location for your design, use the early pin-
out flow to obtain preliminary SSN analysis results.

In order to obtain useful SSN results, you must define the top-level ports of your design, but your design
files do not have to be complete.

Performing Early Pin-Out SSN Analysis with the ESE Tool

If you know the I/O standards and signaling standards for your design, you can use the ESE tool to
perform an initial SSN evaluation.

Related Information
Signal Integrity Center
For more information on the Altera website about the ESE tool.

Performing Early Pin-Out SSN Analysis with the SSN Analyzer
n the early stages of your design cycle, you may not have complete board information, such as board trace
parameters, layer information, and the signal breakout layers. If you run the SSN Analyzer without this

3-6 Performing Early Pin-Out SSN Analysis
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

specific information, it uses default board trace models and board layer information for SSN analysis, and
as a result the SSN Analyzer confidence level is low. If the noise amounts are larger than the pass criteria
for early pin-out SSN analysis, verify whether the SSN noise violations are true failures or false failures.
For example, sometimes the SSN Analyzer can determine whether pins are switching synchronously and
use that information to filter false positives; however, it may not be able to determine all the synchronous
groups. You can improve the SSN analysis results by adjusting your I/O assignments and other design
settings. After you optimize your design such that it meets the pass criteria for the early pin-out flow, you
can then begin to design your PCB.

If you have complete information for the top-level ports of your design, you can use the SSN Analyzer to
perform an initial SSN evaluation. Use the following steps to perform early pin-out SSN analysis:

1. Create a project in the Quartus Prime software.
2. Specify your top-level design information either in schematic form or in HDL code.
3. Perform Analysis and Synthesis.
4. Create I/O assignments, such as I/O standard assignments, for the top-level ports in your design.

Note: Do not create pin location assignments. The Fitter automatically creates optimized pin location
assignments.

5. If you do not have completed design files and timing constraints, run I/O assignment analysis.

Note: During I/O assignment analysis, the Fitter places all the unplaced pins on the device, and checks
all the I/O placement rules.

6. Run the SSN Analyzer.

Related Information

• Optimizing Your Design for SSN Analysis on page 3-8
• Managing Quartus Prime Projects

For more information about creating and managing projects.
• I/O Management on page 2-1

For more about generating a top-level design file in the Quartus Prime software and I/O assignment
analysis.

Performing Final Pin-Out SSN Analysis
You perform final pin-out SSN analysis after you place all the pins in your design, or the Fitter places
them for you, and you have complete information about the board trace models and PCB layers.

Even if your design achieves sufficient SSN results during early pin-out SSN analysis, you should run SSN
analysis with the complete PCB information to ensure that SSN does not cause failures in your final
design.You must specify the board parameters in the Quartus Prime software, including the PCB layer
thicknesses, the signal breakout layers, and the board trace models, before you can run SSN analysis on
your final assignments.

If the SSN analysis results meet the pass criteria for final pin-out SSN analysis, SSN analysis is complete. If
the SSN analysis results do not meet the pass criteria, you must further optimize your design by changing
the board and design parameters and then rerun the SSN Analyzer. If the design still does not meet the
pass criteria, reduce the pass criteria for early pin-out SSN analysis, and restart the process. By reducing
the pass criteria for early pin-out SSN analysis, you place a greater emphasis on reducing SSN through I/O
settings and I/O placement. Changing the drive strength and slew rate of output and bidirectional pins, as
well as adjusting the placement of different SSOs, can affect SSN results. Adjusting I/O settings and
placement allows the design to meet the pass criteria for final pin-out SSN analysis after you specify the
actual PCB board parameters.

QPS5V2
2015.11.02 Performing Final Pin-Out SSN Analysis 3-7

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958212952/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Optimizing Your Design for SSN Analysis on page 3-8

Design Factors Affecting SSN Results
There are many factors that affect the SSN levels in your design. The two main factors are the drive
strength and slew rate settings of the output and bidirectional pins in your design.

Related Information
Signal Integrity Center
For more information on the Altera website about the factors that contribute to SSN voltage noise in your
FPGA design and managing SSN in your system.

Optimizing Your Design for SSN Analysis
The SSN Analyzer gives you flexibility to precisely define your system to obtain accurate SSN results.

The SSN Analyzer produces a voltage noise estimate for each input, output, and bidirectional pin in the
design. It allows you to estimate the SSN levels, comprised of QLN and QHN levels, for your FPGA pins.
Performing SSN analysis helps you optimize your design for SSN during compilation.

Because the SSN Analyzer is integrated into the Quartus Prime software, it can automatically set up a
system topology that matches your design. The SSN Analyzer accounts for different I/O standards and
slew rate settings for each buffer in the design and models different board traces for each signal. Also, it
correctly models the state of the unused pins in the design. The SSN Analyzer leverages any custom board
trace assignments you set up for use by the advanced I/O timing feature.

The SSN Analyzer also models the package and vias in the design. Models for the different packages that
Altera devices support are integrated into the Quartus Prime software. In the Quartus Prime software, you
can specify different layers on which signals break out, each with its own thickness, and then specify
which signal breaks out on which layer.

After constructing the circuit topology, the SSN Analyzer uses a simulation-based methodology to
determine the SSN for each victim pin in the design.

3-8 Design Factors Affecting SSN Results
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

http://www.altera.com/technology/signal/sgl-index.html?GSA_pos=1&WT.oss_r=1&WT.oss=signal%20integrity%20resource%20center
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-7: Circuit Topology for SSN Analysis

Optimizing Pin Placements for Signal Integrity
You can take advantage of a built-in SSN optimization feature in the Quartus Prime software with the
SSN Optimization logic option.

The I/O placements in your design may be affected when you use this option. Setting this option to
Normal compilation does not affect the fMAX of your design during compilation, however setting this
option to Extra effort level may impact your design fMAX.

Note: In order to use the SSN Optimization logic option, Altera recommends that you do not create
location assignments for your pins; instead, let the Fitter place the pins during compilation so that
it places the pins to meet the timing performance of your design. To display the Fitter-placed pins
use the Show Fitter Placements feature in the Pin Planner. To accept these suggested pin locations,
you must back-annotate your pin assignments.

The image on the left shows the placement of the pins without the SSN Optimization logic option, and
the image on the right shows the adjustments the Fitter made to pin placements to reduce the amount of
SSN in the design when the SSN Optimization logic option is turned on.

Figure 3-8: SSN Analysis Results Before and After Using the SSN Optimization Logic Option

QPS5V2
2015.11.02 Optimizing Pin Placements for Signal Integrity 3-9

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Show Commands
For more information about the Show Fitter Placements feature, refer to Quartus Prime Help.

• Area Optimization
• Compilation Time Optimization
• Timing Optimization

For more information about design optimization features, refer to the Quartus Prime Handbook.

Specifying Board Trace Model Settings
The SSN Analyzer uses circuit models to determine voltage noise during SSN analysis. The circuit
topology is incomplete without board trace information and PCB layer information.

You must describe the board trace and PCB layer parameters in your design to accurately compute the
SSN in your FPGA device. However, if you do not specify some or all of the board trace parameters and
PCB layer information, the SSN Analyzer uses default parameters during SSN analysis. When you use the
default parameters, the SSN confidence level is low.

The board trace models required for the SSN Analyzer include the board trace termination resistors, pin
loads (capacitance), and transmission line parameters. You can define the board circuit models, which are
also known as board trace models, in the Quartus Prime software. The board trace model settings are
shared with the models used during advanced I/O timing.

You can define an overall board trace model for each I/O standard in your design; this overall board trace
model is the default model for all pins that use a particular I/O standard. After configuring the overall
board trace model, you can customize the model for specific pins. The parameters you specify for the
board trace model are also used in during advanced I/O timing analysis with the TimeQuest Timing
Analyzer. If you already specified the board trace models as part of your advanced I/O timing
assignments, the same parameters are used during SSN analysis.

All the assignments for board trace models you specify are saved to the .qsf. You can also use Tcl
commands to create board trace model assignments.

 Tcl Commands for Specifying Board Trace Models

set_instance_assignment -name BOARD_MODEL_TLINE_L_PER_LENGTH "3.041E-7" -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_LENGTH 0.1391 -to e[0]
set_instance_assignment -name BOARD_MODEL_TLINE_C_PER_LENGTH "1.463E-10" -to e[0]

The best way to calculate transmission line parameters is to use a two-dimensional solver to estimate the
inductance per inch and capacitance per inch for the transmission line. The termination resistor topology
information can be obtained from the PCB schematics. The near-end and far-end pin load (capacitance)
values can be obtained from the PCB schematic and other device data sheets. For example, if you know
that an FPGA pin is driving a DIMM, you can obtain the far-end loading information in the data sheet for
your target device.

Related Information

• Understanding the SSN Reports on page 3-15
For more information about the default parameters used by the SSN Analyzer and SSN confidence
levels reported in the Confidence Metric Details Report.

• I/O Management on page 2-1
For more information about defining board trace models and advanced I/O timing , refer to the
Quartus Prime Handbook.

3-10 Specifying Board Trace Model Settings
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

http://quartushelp.altera.com/current/index.htm#assign/asd/asd_com_show.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471288350/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471192514/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471264481/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Board Trace Model
For more information about configuring component values for a board trace model, including a
complete list of the supported unit prefixes and setting the values with Tcl scripts, refer to Quartus
Prime Help.

• Literature and Technical Documentation
For more information, refer to the Device Family Data Sheet in the appropriate device handbook,
available on the Altera website.

Defining PCB Layers and PCB Layer Thickness
Every PCB is fabricated using a number of layers. To remove some of the pessimism from your SSN
results, Altera recommends that you create assignments describing your PCB layers in the Quartus Prime
software.

You can specify the number of layers on you PCB, and their thickness. The PCB layer information is used
only during SSN analysis and is not used in other processes run by the Quartus Prime software. If a
custom PCB breakout region is not described you can select the default thickness, which directs the SSN
Analyzer to use a single-layer PCB breakout region during SSN analysis.

All the assignments you create for the PCB layers are saved to the .qsf. You can also use Tcl commands to
create PCB layer assignments. You can create any number of PCB layers, however, the layers must be
consecutive.

 Tcl Commands for Specifying PCB Layer Assignments

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3

The cross-section shows the stackup information of a PCB, which tells you the number of layers used in
your PCB. The PCB shown in this example consists of various signal and circuit layers on which FPGA
pins are routed, as well as the power and ground layers.

QPS5V2
2015.11.02 Defining PCB Layers and PCB Layer Thickness 3-11

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/ssn/ssn_ref_board_trace_model.htm
http://www.altera.com/literature/lit-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3-9: Snapshot of Stackup of a PCB Shown in the Allegro Board Design Environment

In this example, each of the four signal layers are a different thickness, with the depths shown in the
Thickness (MIL) column. The layer thickness for each signal layer is computed as follows:

• Signal Layer 1 is the L4-SIGNAL, at thickness (1.9+3.6+1.2+3+1.2+4=) 14.9 mils
• Signal Layer 2 is the L5-SIGNAL, at thickness (0.6+6=) 6.6 mils
• Signal Layer 3 is the L8-SIGNAL, at thickness (0.6+4+1.2+3+1.2+4=) 14 mils
• Signal Layer 4 is the L9-SIGNAL, at thickness (0.6+6=) 6.6 mils

Figure 3-10: PCB Layers and Thickness Assignments Specified in the Quartus Prime Software

3-12 Defining PCB Layers and PCB Layer Thickness
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying Signal Breakout Layers
Each user I/O pin in your FPGA device can break out at different layers on your PCB. In the Pin Planner,
you can specify on which layers the I/O pins in your design break out.

The breakout layer information is used only during SSN analysis and is not used in other processes run by
the Quartus Prime software. To assign a pin to PCB layer, follow these steps:

1. On the Assignments menu, click Pin Planner.
2. If necessary, perform Analysis & Elaboration, Analysis & Synthesis, or fully compile the design to

populate the Pin Planner with the node names in the design.
3. Right-click anywhere in the All Pins or Groups list, and then click Customize Columns.
4. Select the PCB layer column and move it from the Available columns list to the Show these columns

in this order list.
5. Click OK.
6. In the PCB layer column, specify the PCB layer to which you want to connect the signal.
7. On the File menu, click Save Project to save the changes.

Note: When you create PCB breakout layer assignments in the Pin Planner, you can assign the pin to
any layer, even if you did not yet define the PCB layer.

Creating I/O Assignments
I/O assignments are required in FPGA design and are also used during SSN analysis to estimate voltage
noise.

Each input, output, or bidirectional signal in your design is assigned a physical pin location on the device
using pin location assignments. Each signal has a physical I/O buffer that has a specific I/O standard, pin
location, drive strength, and slew rate. The SSN Analyzer supports most I/O standards in a device family,
such as the LVTTL and LVCMOS I/O standards.

Note: The SSN Analyzer does not support differential I/O standards, such as the LVDS I/O standard and
its variations, because differential I/O standards contribute a small amount of SSN.

Related Information
Literature and Technical Documentation
For more information on the Altera website about supported I/O standards.

I/O Management on page 2-1
For more information about creating and managing I/O assignments, refer to the Quartus Prime
Handbook.

Decreasing Pessimism in SSN Analysis
In the absence of specific timing information, the SSN Analyzer analyzes your design under worst-case
conditions.

Worst-case conditions include all pins acting as aggressor signals on all possible victim pins and all
aggressor pins switching with the worst possible timing relationship. The results of SSN analysis under
worst-case conditions are very pessimistic. You can improve the results of SSN Analysis by creating group

QPS5V2
2015.11.02 Specifying Signal Breakout Layers 3-13

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

assignments for specific types of pins. Use the following group assignments to decrease the pessimism in
SSN analysis results:

• Assign pins to an output enable group—All pins in an output enable group must be either all input
pins or all output pins. If all the pins in a group are always either all inputs or all outputs, it is
impossible for an output pin in the group to cause SSN noise on an input pin in the group. You can
assign pins to an output enable group with the Output Enable Group logic option.

• Assign pins to a synchronous group—I/O pins that are part of a synchronous group (signals that
switch at the same time) may cause SSN, but do not result in any failures because the noise glitch
occurs during the switching period of the signal. The noise, therefore, does not occur in the sampling
window of that signal. You can assign pins to an output enable group with the Synchronous Group
logic option. For example, in your design you have a bus with 32 pins that all belong to the same
group. In a real operation, the bus switches at the same time, so any voltage noise induced by a pin on
its groupmates does not matter, because it does not fall in the sampling window. If you do not assign
the bus to a synchronous group, the other 31 pins can act as aggressors for the first pin in that group,
leading to higher QL and QH noise levels during SSN analysis.

In some cases, the SSN Analyzer can detect the grouping for bidirectional pins by looking at the output
enable signal of the bidirectional pins. However, Altera recommends that you explicitly specify the
bidirectional groups and output groups in your design.

Excluding Pins as Aggressor Signals
The SSN Analyzer uses the following conditions to exclude pins as aggressor signals for a specific victim
pin:

• A pin that is a complement of the victim pin. For example, any pin that is assigned a differential I/O
standard cannot be an aggressor pin.

• A programming pin or JTAG pin because these pins are not active in user mode.
• Pins that have the same output enable signal as a bidirectional victim pin that the SSN Analyzer

analyzes as an input pin. Pins with the same output enable signal also act as input pins and therefore
cannot be aggressor pins at the same time.

• Pins in the same synchronous group as a victim output pin.
• A pin assigned the I/O Maximum Toggle Rate logic option with a frequency setting of zero. The SSN

Analyzer does not consider pins with this setting as aggressor pins.

Related Information
Performing SSN Analysis and Viewing Results on page 3-14
For information about grouping output pins, orabout grouping bidirectional pins.

Performing SSN Analysis and Viewing Results
You can perform SSN analysis either on your entire design, or you can limit the analysis to specific I/O
banks.

If you know the problem area for SSN is within one I/O bank and you are changing pin assignments only
in that bank, you can run SSN analysis for just that one I/O bank to reduce analysis time.

Related Information
Literature and Technical Documentation
For more information about I/O bank numbering refer to the appropriate device handbook available on
the Altera website.

3-14 Excluding Pins as Aggressor Signals
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

http://www.altera.com/literature/lit-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Understanding the SSN Reports
When SSN analysis is complete, you can view detailed analysis reports. The detailed messages in the
reports help you understand and resolve SSN problems.

The SSN Analyzer section of the Compilation report contains information generated during SSN analysis,
including the following reports:

• Summary
• Output Pins
• Input Pins
• Unanalyzed Pins
• Confidence Metric Details

Summary Report

The Summary report summarizes the SSN Analyzer status and rates the SSN Analyzer confidence level as
low, medium, or high.

The confidence level depends on the completeness of your board trace model assignments. The more
assignments you complete, the higher the confidence level. However, the confidence level does not always
contribute to the accuracy of the QL and QH noise levels on a victim pin. The accuracy of QH and QL
noise levels depends the accuracy of your board trace model assignments.

Output Pins and Input Pins Reports

The Output Pins report lists all of the output pins and bidirectional pins that are treated as output pins
during SSN analysis.

The Input Pins report lists all of the input pins and bidirectional pins that are treated as inputs during SSN
analysis. Both reports list the location assignments for the pins treated as SSN outputs or inputs during
SSN analysis, the QL and QH noise in volts, and what percentage the QL and QH margins are for the I/O
standard used for that signal. The QH and QL noise margins that fall in the critical range (> 90%) are
shown in red. The QH and QL noise margins that fall in the range of 70% to 90% are shown in gray.

Unanalyzed Pins Report

Not all pins are analyzed for SSN analysis. The following pins are not analyzed and are reported in the
Unanalyzed Pins report:

• Pins assigned the LVDS I/O standard or any LVDS variations, such as the mini-LVDS I/O standard.
• Pins created in the migration flow that cover power and supply pins in other packages.
• The negative terminals of pseudo-differential I/O standards; the noise on differential standards is

reported as the differential noise and is reported on the positive terminal.

Confidence Metric Details

The Confidence Metric Details Report lists the values used during SSN Analysis for unspecified I/O,
board, and PCB assignments.

Viewing SSN Analysis Results in the Pin Planner
After SSN analysis completes, you can analyze the results in the Pin Planner. In the Pin Planner you can
identify the SSN hotspots in your device, as well as the QL and QH noise levels.

QPS5V2
2015.11.02 Understanding the SSN Reports 3-15

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The QL and QH results for each pin are displayed with a different color that represents whether the pin is
below the warning threshold, below the critical threshold, or above the critical threshold. This color
representation is also referred to as the SSN map of your FPGA device.

When you view the SSN map, you can customize which details to display, including input pins, output
pins, QH signals, QL signals, and noise levels. You can also adjust the threshold levels for QH and QL
noise voltages. Adjusting the threshold levels in the Pin Planner does not change the threshold levels
reported during SSN analysis and does not change the data in any of the SSN reports.

You can also you change I/O assignments and board trace information and rerun the SSN Analyzer to
view the SSN analysis results based on those modified settings.

Related Information
Show SSN Analyzer Results

Decreasing Processing Time for SSN Analysis
FPGA designs are getting larger in density, logic, and I/O count. The time it takes to complete SSN
analysis and other Quartus Prime software processes affects your development time.

Faster processing times can reduce your design cycle time. Use the following guidelines to reduce
processing time:

• Direct the Quartus Prime software to use more than one processor for parallel executables, including
the SSN Analyzer

• Perform SSN analysis after I/O assignment analysis if your design files and constraints are complete,
and you are interested in generating the SSN results early in the design process and want to adjust I/O
placements to see if you can obtain better results

• Perform SSN analysis after fitting if you want to view preliminary SSN results that do not take into
account complete I/O assignment and I/O timing results

• Perform engineering change orders (ECOs) on your design, rather than recompiling the entire design,
if you want to rerun SSN analysis after changing I/O assignments

Related Information
Compilation Process Settings Page
For more information about using parallel processors, refer to Quartus Prime Help.

Engineering Change Management with the Chip Planner on page 17-1
For more information about performing ECOs on your design, refer to the Quartus Prime Handbook.

Scripting Support
A Tcl script allows you to run procedures and determine settings. You can also run some of these
procedures at a command prompt.

The Quartus Prime software provides several packages to compile your design and create I/O assignments
for analysis and fitting. You can create a custom Tcl script that maps the design and runs SSN analysis on
your design.

3-16 Decreasing Processing Time for SSN Analysis
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

http://quartushelp.altera.com/current/index.htm#assign/asd/asd_com_show_ssn_results.htm
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_mode.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For detailed information about specific scripting command options and Tcl API packages, type the
following command at a system command prompt to run the Quartus Prime Command-Line and Tcl API
Help browser:

quartus_sh --qhelp

Related Information
Tcl Scripting on page 5-1

Command-Line Scripting on page 4-1
For more information about Quartus Prime scripting support, including examples, refer to the Quartus
Prime Handbook.

API Functions for Tcl
For more information about Quartus Prime scripting support, including examples, refer to Quartus Prime
Help.

Optimizing Pin Placements for Signal Integrity
You can create an assignment that directs the Fitter to optimize pin placements for signal integrity with a
Tcl command.

The following Tcl command directs the Fitter to optimize pin placement for signal integrity without
affecting design fMAX:

set_global_assignment -name OPTIMIZE_SIGNAL_INTEGRITY "Normal Compilation"

Related Information
Optimizing Pin Placements for Signal Integrity on page 3-9

Defining PCB Layers and PCB Layer Thickness
You can create PCB layer and thickness assignments with a Tcl command.

Tcl Commands for Specifying PCB Layer Assignments

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 0.00055372M -section_id 4
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 5
set_global_assignment -name PCB_LAYER_THICKNESS 0.00034036M -section_id 6
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7

These Tcl commands specify that there are seven PCB layers in the design, each with a different thickness.
In each assignment, the letter M indicates the unit of measurement is millimeters. When you specify PCB
layer assignments with Tcl commands, you must list the layers in consecutive order. For example, you
would receive an error during SSN Analysis if your Tcl commands created the following assignments:

set_global_assignment -name PCB_LAYER_THICKNESS 0.00099822M -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 0.00082042M -section_id 7

QPS5V2
2015.11.02 Optimizing Pin Placements for Signal Integrity 3-17

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To create assignments with the unit of measurement in mils, refer to the syntax in the following Tcl
commands.

set_global_assignment -name PCB_LAYER_THICKNESS 14.9MIL -section_id 1
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 2
set_global_assignment -name PCB_LAYER_THICKNESS 14MIL -section_id 3
set_global_assignment -name PCB_LAYER_THICKNESS 6.6MIL -section_id 4

Related Information
Defining PCB Layers and PCB Layer Thickness on page 3-11

Specifying Signal Breakout Layers
You can create signal breakout layer assignments with a Tcl command.:

set_instance_assignment -name PCB_LAYER 10 -to e[2] set_instance_assignment -name
PCB_LAYER 3 -to e[3]

When you create PCB breakout layer assignments with Tcl commands, if you do not specify a PCB layer,
or if you specify a PCB layer that does not exist, the SSN Analyzer breaks out the signal at the bottommost
PCB layer.

Note: If you create a PCB layer breakout assignment to a layer that does not exist, the SSN Analyzer will
generate a warning message.

Decreasing Pessimism in SSN Analysis
You can create output enable group and synchronous group assignments to help decrease pessimism
during SSN Analysis with a Tcl command.

The following Tcl command assigns the bidirectional bus DATAINOUT to an output enable group:

set_instance_assignment -name OUTPUT_ENABLE_GROUP 1 -to DATAINOUT

The following Tcl command assigns the bus PCI_ADD_io to a synchronous group:

set_instance_assignment -name SYNCHRONOUS_GROUP 1 -to PCI_AD_io

Related Information
Decreasing Pessimism in SSN Analysis on page 3-13

Performing SSN Analysis
You can perform SSN analysis with a command-line command. Use the quartus_si package that is
provided with the Quartus Prime software.

Type the following command at a system command prompt to start the SSN Analyzer:

quartus_si <project name>

To analyze just one I/O bank, type the following command at a system command prompt:

quartus_si <project revision> <--bank = bank id>

3-18 Specifying Signal Breakout Layers
QPS5V2

2015.11.02

Altera Corporation Simultaneous Switching Noise (SSN) Analysis and Optimizations

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, to run analyze the I/O bank 2A type the following command:

quartus_si counter --bank=2A

For more information about the quartus_si package, type quartus_si -h at a system command
prompt.

Related Information
Performing SSN Analysis and Viewing Results on page 3-14

Document Revision History
Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.
December
2014

14.1.0 • Minimal text edits for clarity in the topic about understanding SSN.

June 2014 14.0.0 Updated format.
June 2012 12.0.0 Removed survey link.
November
2011

10.0.2 Template update

December
2010

10.0.1 Template update

July 2010 10.0.0 • Reorganized and edited the chapter
• Added links to Quartus Prime Help for procedural information

previously included in the chapter

November
2009

9.1.0 • Added “Figure 6–9 shows the layout cross-section of a PCB in the
Cadence Allegro PCB tool. The cross-section shows the stackup
information of a PCB, which tells you the number of layers used in
your PCB. The PCB shown in this example consists of various signal
and circuit layers on which FPGA pins are routed, as well as the power
and ground layers.” on page 6–12

• Updated for the Quartus Prime software 9.1 release

March 2009 9.0.0 Initial release

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 3-19

Simultaneous Switching Noise (SSN) Analysis and Optimizations Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simultaneous%20Switching%20Noise%20(SSN)%20Analysis%20and%20Optimizations%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Line Scripting 4
2015.11.02

QPS5V2 Subscribe Send Feedback

FPGA design software that easily integrates into your design flow saves time and improves productivity.
The Altera Quartus Prime software provides you with a command-line executable for each step of the
FPGA design flow to make the design process customizable and flexible.

The benefits provided by command-line executables include:

• Command-line control over each step of the design flow
• Reduced memory requirements
• Improved performance

The command-line executables are also completely interchangable with the Quartus Prime GUI,
allowing you to use the exact combination of tools that you prefer.

Benefits of Command-Line Executables
The Quartus Prime command-line executables provide control over each step of the design flow. Each
executable includes options to control commonly used software settings. Each executable also provides
detailed, built-in help describing its function, available options, and settings.

Command-line executables allow for easy integration with scripted design flows. You can easily create
scripts with a series of commands. These scripts can be batch-processed, allowing for integration with
distributed computing in server farms. These scripting capabilities enhance the ease of integration
between the Quartus Prime software and other EDA synthesis, simulation, and verification software.

Command-line executables add flexibility without sacrificing the ease-of-use of the Quartus Prime GUI.
You can use the Quartus Prime GUI and command-line executables at different stages in the design flow.
For example, you might use the Quartus Prime GUI to edit the floorplan for the design, use the
command-line executables to perform place-and-route, and return to the Quartus Prime GUI to perform
debugging with the Chip Editor.

Command-line executables reduce the amount of memory required during each step in the design flow.
Because each executable targets only one step in the design flow, the executables themselves are relatively
compact, both in file size and the amount of memory used during processing. This memory usage
reduction improves performance, and is particularly beneficial in design environments where heavy usage
of computing resources results in reduced memory availability.

Related Information
Using the Quartus Prime Executables in Shell Scripts

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Command%20Line%20Scripting&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://quartushelp.altera.com/current/index.htm#reference/scripting/tcl_view_using_tcl_scripts.htm
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Introductory Example
The following introduction to command-line executables demonstrates how to create a project, fit the
design, and generate programming files.

The tutorial design included with the Quartus Prime software is used to demonstrate this functionality. If
installed, the tutorial design is found in the <Quartus Prime directory>/qdesigns/fir_filter directory.

Before making changes, copy the tutorial directory and type the four commands shown in the introduc‐
tory example below at a command prompt in the new project directory.

The <Quartus Prime directory>/quartus/bin directory must be in your PATH environment variable.

quartus_map filtref --source=filtref.bdf --family=”Cyclone V”
quartus_fit filtref --part=EP3C10F256C8 --pack_register=minimize_area
quartus_asm filtref
quartus_sta filtref

The quartus_map filtref --source=filtref.bdf --family=”Cyclone V” command creates a new
Quartus Prime project called filtref with filtref.bdf as the top-level file. It targets the Cyclone® V device
family and performs logic synthesis and technology mapping on the design files.

The quartus_fit filtref --part=EP3C10F256C8 --pack_register=minimize_area command
performs fitting on the filtref project. This command specifies an EP3C10F256C8 device, and the --
pack_register=minimize_area option causes the Fitter to pack sequential and combinational functions
into single logic cells to reduce device resource usage.

The quartus_asm filtref command creates programming files for the filtref project.

The quartus_sta filtref command performs basic timing analysis on the filtref project using the
Quartus Prime TimeQuest Timing Analyzer, reporting worst-case setup slack, worst-case hold slack, and
other measurements.

You can put the four commands from the introductory example into a batch file or script file, and run
them. For example, you can create a simple UNIX shell script called compile.sh, which includes the code
shown in the UNIX shell script example below.

#!/bin/sh
PROJECT=filtref
TOP_LEVEL_FILE=filtref.bdf
FAMILY=”Cyclone V”
PART=EP3C10F256C8
PACKING_OPTION=minimize_area
quartus_map $PROJECT --source=$TOP_LEVEL_FILE --family=$FAMILY
quartus_fit $PROJECT --part=$PART --pack_register=$PACKING_OPTION
quartus_asm $PROJECT
quartus_sta $PROJECT

Edit the script as necessary and compile your project.

Related Information
TimeQuest Timing Analyzer Quick Start Tutorial
For more information about using all of the features of the quartus_sta executable. The TimeQuest
Timing Analyzer employs Synopsys Design Constraints to fully analyze the timing of your design.

4-2 Introductory Example
QPS5V2

2015.11.02

Altera Corporation Command Line Scripting

Send Feedback

http://www.altera.com/literature/ug/ug_tq_tutorial.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command-Line Scripting Help
Help for command-line executables is available through different methods. You can access help built in to
the executables with command-line options. You can use the Quartus Prime Command-Line and Tcl API
Help browser for an easy graphical view of the help information.

To use the Quartus Prime Command-Line and Tcl API Help browser, type the following command:

quartus_sh --qhelp

This command starts the Quartus Prime Command-Line and Tcl API Help browser, a viewer for
information about the Quartus Prime Command-Line executables and Tcl API.

Use the -h option with any of the Quartus Prime Command-Line executables to get a description and list
of supported options. Use the --help=<option name> option for detailed information about each option.

Figure 4-1: Quartus Prime Command-Line and Tcl API Help Browser

Project Settings with Command-Line Options
Command-line options are provided for many common global project settings and for performing
common tasks.

You can use either of two methods to make assignments to an individual entity. If the project exists, open
the project in the Quartus Prime GUI, change the assignment, and close the project. The changed
assignment is updated in the .qsf. Any command-line executables that are run after this update use the

QPS5V2
2015.11.02 Command-Line Scripting Help 4-3

Command Line Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

updated assignment. You can also make assignments using the Quartus Prime Tcl scripting API. If you
want to completely script the creation of a Quartus Prime project, choose this method.

Related Information

• Option Precedence on page 4-4
• Tcl Scripting on page 5-1
• QSF Reference Manual

Option Precedence
If you use command-line executables, you must be aware of the precedence of various project assignments
and how to control the precedence. Assignments for a particular project exist in the Quartus Prime
Settings File (.qsf) for the project. Before the .qsf is updated after assignment changes, the updated
assignments are reflected in compiler database files that hold intermediate compilation results.

All command-line options override any conflicting assignments found in the .qsf or the compiler database
files. There are two command-line options to specify whether the .qsf or compiler database files take
precedence for any assignments not specified as command-line options.

Any assignment not specified as a command-line option or found in the .qsf or compiler database file is
set to its default value.

The file precedence command-line options are --read_settings_files and --write_settings_files.

By default, the --read_settings_files and --write_settings_files options are turned on. Turning
on the --read_settings_files option causes a command-line executable to read assignments from
the .qsf instead of from the compiler database files. Turning on the --write_settings_files option
causes a command-line executable to update the .qsf to reflect any specified options, as happens when you
close a project in the Quartus Prime GUI.

If you use command-line executables, be aware of the precedence of various project assignments and how
to control the precedence. Assignments for a particular project can exist in three places:

• The .qsf for the project
• The result of the last compilation, in the /db directory, which reflects the assignments that existed

when the project was compiled
• Command-line options

The precedence for reading assignments depends on the value of the --read_settings_files option.

Table 4-1: Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--read_settings_files = on

(Default)

Command-line options

The .qsf for the project

Project database (db directory, if it
exists)

Quartus Prime software defaults

4-4 Option Precedence
QPS5V2

2015.11.02

Altera Corporation Command Line Scripting

Send Feedback

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Specified Precedence for Reading Assignments

--read_settings_files = off Command-line options

Project database (db directory, if it
exists)

Quartus Prime software defaults

The table lists the locations to which assignments are written, depending on the value of the --
write_settings_files command-line option.

Table 4-2: Location for Writing Assignments

Option Specified Location for Writing Assignments

--write_settings_files = on

(Default)
.qsf and compiler database

--write_settings_files = off Compiler database

The example assumes that a project named fir_filter exists, and that the analysis and synthesis step has
been performed (using the quartus_map executable).

quartus_fit fir_filter --pack_register=off
quartus_sta fir_filter
mv fir_filter_sta.rpt fir_filter_1_sta.rpt
quartus_fit fir_filter --pack_register=minimize_area --write_settings_files=off
quartus_sta fir_filter
mv fir_filter_sta.rpt fir_filter_2_sta.rpt

The first command, quartus_fit fir_filter --pack_register=off, runs the quartus_fit executable
with no aggressive attempts to reduce device resource usage.

The second command, quartus_sta fir_filter, performs basic timing analysis for the results of the
previous fit.

The third command uses the UNIX mv command to copy the report file output from quartus_sta to a file
with a new name, so that the results are not overwritten by subsequent timing analysis.

The fourth command runs quartus_fit a second time, and directs it to attempt to pack logic into registers
to reduce device resource usage. With the --write_settings_files=off option, the command-line
executable does not update the .qsf to reflect the changed register packing setting. Instead, only the
compiler database files reflect the changed setting. If the --write_settings_files=off option is not
specified, the command-line executable updates the .qsf to reflect the register packing setting.

The fifth command reruns timing analysis, and the sixth command renames the report file, so that it is
not overwritten by subsequent timing anlysis.

Use the options --read_settings_files=off and --write_settings_files=off (where appropriate)
to optimize the way that the Quartus Prime software reads and updates settings files. In the following

QPS5V2
2015.11.02 Option Precedence 4-5

Command Line Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

example, the quartus_asm executable does not read or write settings files because doing so would not
change any settings for the project.

quartus_map filtref --source=filtref --part=EP3C10F256C8
quartus_fit filtref --pack_register=off --read_settings_files=off
quartus_asm filtref --read_settings_files=off --write_settings_files=off

Compilation with quartus_sh --flow
The figure shows a typical Quartus Prime FPGA design flow using command-line executables.

Figure 4-2: Typical Design Flow

TimeQuest
Timing Analyzer

quartus_sta

Quartus Shell
quartus_sh

Analysis & Synthesis
quartus_map

Fitter
quartus_fit

Assembler
quartus_asm

EDA Netlist Writer
quartus_eda

Programmer
quartus_pgm

Programming File
Converter

quartus_cpf

SignalTap II Logic
Analyzer

quartus_stp

PowerPlay Power
Analyzer

quartus_pow

Compiler Database
quartus_cdb

Design Assistant
quartus_drc

Output files for EDA tools,
including Verilog Output
Files (.vo), VDHL Output
Files (.vho), VQM Files
and Standard Delay
Format Output Files (.sdo)

Verilog Design Files (.v), VDHL Design Files (.vhd),
Verilog Quartus Mapping Files (.vqm),
Text Design Files (.tdf), Block Design Files (.bdf),
and EDIF Netlist Files (.edf) Files

Use the quartus_sh executable with the --flow option to perform a complete compilation flow with a
single command. The --flow option supports the smart recompile feature and efficiently sets command-
line arguments for each executable in the flow.

4-6 Compilation with quartus_sh --flow
QPS5V2

2015.11.02

Altera Corporation Command Line Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example runs compilation, timing analysis, and programming file generation with a single
command:

quartus_sh --flow compile filtref

Tip: For information about specialized flows, type quartus_sh --help=flow at a command prompt.

Text-Based Report Files
Each command-line executable creates a text report file when it is run. These files report success or
failure, and contain information about the processing performed by the executable.

Report file names contain the revision name and the short-form name of the executable that generated the
report file, in the format <revision>.<executable>.rpt. For example, using the quartus_fit executable to
place and route a project with the revision name design_top generates a report file named design_
top.fit.rpt. Similarly, using the quartus_sta executable to perform timing analysis on a project with the
revision name fir_filter generates a report file named fir_filter.sta.rpt.

As an alternative to parsing text-based report files, you can use the ::quartus::report Tcl package.

Related Information

• Tcl Scripting on page 5-1

Using Command-Line Executables In Scripts
You can use command-line executables in scripts that control other software in addition to the Quartus
Prime software. For example, if your design flow uses third-party synthesis or simulation software, and if
you can run the other software at a command prompt, you can include those commands with Quartus
Prime executables in a single script.

The Quartus Prime command-line executables include options for common global project settings and
operations, but you must use a Tcl script or the Quartus Prime GUI to set up a new project and apply
individual constraints, such as pin location assignments and timing requirements. Command-line
executables are very useful for working with existing projects, for making common global settings, and for
performing common operations. For more flexibility in a flow, use a Tcl script, which makes it easier to
pass data between different stages of the design flow and have more control during the flow.

For example, a UNIX shell script could run other synthesis software, then place-and-route the design in
the Quartus Prime software, then generate output netlists for other simulation software. This script shows
a script that synthesizes a design with the Synopsys Synplify software, simulates the design using the
Mentor Graphics ModelSim® software, and then compiles the design targeting a Cyclone V device.

#!/bin/sh
Run synthesis first.
This example assumes you use Synplify software
synplify -batch synthesize.tcl
If your Quartus Prime project exists already, you can just
recompile the design.
You can also use the script described in a later example to
create a new project from scratch
quartus_sh --flow compile myproject
Use the quartus_sta executable to do fast and slow-model
timing analysis

QPS5V2
2015.11.02 Text-Based Report Files 4-7

Command Line Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

quartus_sta myproject --model=slow
quartus_sta myproject --model=fast
Use the quartus_eda executable to write out a gate-level
Verilog simulation netlist for ModelSim
quartus_eda my_project --simulation --tool=modelsim --format=verilog
Perform the simulation with the ModelSim software
vlib cycloneV_ver
vlog -work cycloneV_ver /opt/quartusii/eda/sim_lib/cycloneV_atoms.v
vlib work
vlog -work work my_project.vo
vsim -L cycloneV_ver -t 1ps work.my_project

Related Information

• Tcl Scripting on page 5-1

Common Scripting Examples
You can create scripts including command line executable to control common Quartus Prime processes.

Create a Project and Apply Constraints
The command-line executables include options for common global project settings and commands. To
apply constraints such as pin locations and timing assignments, run a Tcl script with the constraints in it.
You can write a Tcl constraint file yourself, or generate one for an existing project.

From the Project menu, click Generate Tcl File for Project.

The example creates a project with a Tcl script and applies project constraints using the tutorial design
files in the Quartus Prime<installation directory>/qdesigns/fir_filter/ directory.

project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C12F256C6
set_global_assignment -name BDF_FILE filtref.bdf
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
Other assignments could follow
project_close

Save the script in a file called setup_proj.tcl and type the commands illustrated in the eample at a command
prompt to create the design, apply constraints, compile the design, and perform fast-corner and slow-
corner timing analysis. Timing analysis results are saved in two files, filtref_sta_1.rpt and filtref_sta_2.rpt.

quartus_sh -t setup_proj.tcl
quartus_map filtref
quartus_fit filtref
quartus_asm filtref
quartus_sta filtref --model=fast --export_settings=off
mv filtref_sta.rpt filtref_sta_1.rpt
quartus_sta filtref --export_settings=off
mv filtref_sta.rpt filtref_sta_2.rpt

4-8 Common Scripting Examples
QPS5V2

2015.11.02

Altera Corporation Command Line Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Type the following commands to create the design, apply constraints, and compile the design, without
performing timing analysis:

quartus_sh -t setup_proj.tcl
quartus_sh --flow compile filtref

The quartus_sh --flow compile command performs a full compilation, and is equivalent to clicking
the Start Compilation button in the toolbar.

Check Design File Syntax
The UNIX shell script example shown in the example assumes that the Quartus Prime software fir_filter
tutorial project exists in the current directory. You can find the fir_filter project in the <Quartus Prime
directory>/qdesigns/fir_filter directory unless the Quartus Prime software tutorial files are not installed.

The --analyze_file option causes the quartus_map executable to perform a syntax check on each file.
The script checks the exit code of the quartus_map executable to determine whether there is an error
during the syntax check. Files with syntax errors are added to the FILES_WITH_ERRORS variable, and when
all files are checked, the script prints a message indicating syntax errors.

When options are not specified, the executable uses the project database values. If not specified in the
project database, the executable uses the Quartus Prime software default values. For example, the
fir_filter project is set to target the Cyclone device family, so it is not necessary to specify the --family
option.

#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
Perform a syntax check on the specified file
 quartus_map fir_filter --analyze_file=$filename
 # If the exit code is non-zero, the file has a syntax error
 if [$? -ne 0]
 then
 FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
 fi
done
if [-z "$FILES_WITH_ERRORS"]
then
 echo "All files passed the syntax check"
 exit 0
else
 echo "There were syntax errors in the following file(s)"
 echo $FILES_WITH_ERRORS
 exit 1
fi

Create a Project and Synthesize a Netlist Using Netlist Optimizations
This example creates a new Quartus Prime project with a file top.edf as the top-level entity. The --
enable_register_retiming=on and --enable_wysiwyg_resynthesis=on options cause quartus_map
to optimize the design using gate-level register retiming and technology remapping.

QPS5V2
2015.11.02 Check Design File Syntax 4-9

Command Line Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The --part option causes quartus_map to target an EP3C10F256C8 device. To create the project and
synthesize it using the netlist optimizations described above, type the command shown in this example at
a command prompt.

quartus_map top --source=top.edf --enable_register_retiming=on
 --enable_wysiwyg_resynthesis=on --part=EP3C10F256C8

Archive and Restore Projects
You can archive or restore a Quartus Prime Archive File (.qar) with a single command. This makes it easy
to take snapshots of projects when you use batch files or shell scripts for compilation and project
management.

Use the --archive or --restore options for quartus_sh as appropriate. Type the command shown in
the example at a command prompt to archive your project.

quartus_sh --archive <project name>

The archive file is automatically named <project name>.qar. If you want to use a different name, type the
command with the -output option as shown in example the example.

quartus_sh --archive <project name> -output <filename>

To restore a project archive, type the command shown in the example at a command prompt.

quartus_sh --restore <archive name>

The command restores the project archive to the current directory and overwrites existing files.

Related Information
Managing Quartus Prime Projects

Perform I/O Assignment Analysis
You can perform I/O assignment analysis with a single command. I/O assignment analysis checks pin
assignments to ensure they do not violate board layout guidelines. I/O assignment analysis does not
require a complete place and route, so it can quickly verify that your pin assignments are correct.

quartus_fit --check_ios <project name> --rev=<revision name>

Update Memory Contents Without Recompiling
You can use two commands to update the contents of memory blocks in your design without
recompiling. Use the quartus_cdb executable with the --update_mif option to update memory contents
from .mif or .hexout files. Then, rerun the assembler with the quartus_asm executable to regenerate
the .sof, .pof, and any other programming files.

quartus_cdb --update_mif <project name> [--rev=<revision name>]
quartus_asm <project name> [--rev=<revision name>]

4-10 Archive and Restore Projects
QPS5V2

2015.11.02

Altera Corporation Command Line Scripting

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958212952/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The example shows the commands for a DOS batch file for this example. With a DOS batch file, you can
specify the project name and the revision name once for both commands. To create the DOS batch file,
paste the following lines into a file called update_memory.bat.

quartus_cdb --update_mif %1 --rev=%2
quartus_asm %1 --rev=%2

To run the batch file, type the following command at a command prompt:

update_memory.bat <project name> <revision name>

Create a Compressed Configuration File
You can create a compressed configuration file in two ways. The first way is to run quartus_cpf with an
option file that turns on compression.

To create an option file that turns on compression, type the following command at a command prompt:

quartus_cpf -w <filename>.opt

This interactive command guides you through some questions, then creates an option file based on your
answers. Use --option to cause quartus_cpf to use the option file. For example, the following command
creates a compressed .pof that targets an EPCS64 device:

quartus_cpf --convert --option=<filename>.opt --device=EPCS64 <file>.sof <file>.pof

Alternatively, you can use the Convert Programming Files utility in the Quartus Prime software GUI to
create a Conversion Setup File (.cof). Configure any options you want, including compression, then save
the conversion setup. Use the following command to run the conversion setup you specified.

quartus_cpf --convert <file>.cof

Fit a Design as Quickly as Possible
This example assumes that a project called top exists in the current directory, and that the name of the
top-level entity is top. The --effort=fast option causes the quartus_fit to use the fast fit algorithm to
increase compilation speed, possibly at the expense of reduced fMAX performance. The --
one_fit_attempt=on option restricts the Fitter to only one fitting attempt for the design.

To attempt to fit the project called top as quickly as possible, type the command shown at a command
prompt.

quartus_fit top --effort=fast --one_fit_attempt=on

Fit a Design Using Multiple Seeds
This shell script example assumes that the Quartus Prime software tutorial project called fir_filter exists
in the current directory (defined in the file fir_filter.qpf). If the tutorial files are installed on your system,
this project exists in the <Quartus Prime directory>/qdesigns<quartus_version_number> /fir_filter
directory.

Because the top-level entity in the project does not have the same name as the project, you must specify
the revision name for the top-level entity with the --rev option. The --seed option specifies the seeds to
use for fitting.

QPS5V2
2015.11.02 Create a Compressed Configuration File 4-11

Command Line Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A seed is a parameter that affects the random initial placement of the Quartus Prime Fitter. Varying the
seed can result in better performance for some designs.

After each fitting attempt, the script creates new directories for the results of each fitting attempt and
copies the complete project to the new directory so that the results are available for viewing and
debugging after the script has completed.

#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
if [$? -eq 0]
then
 mkdir ../fir_filter-seed_$seed
 mkdir ../fir_filter-seed_$seed/db
 cp * ../fir_filter-seed_$seed
 cp db/* ../fir_filter-seed_$seed/db
else
 ERROR_SEEDS="$ERROR_SEEDS $seed"
fi
done
if [-z "$ERROR_SEEDS"]
then
echo "Seed sweeping was successful"
exit 0
else
echo "There were errors with the following seed(s)"
echo $ERROR_SEEDS
exit 1
fi

Tip: Use Design Space Explorer II (DSE) included with the Quartus Prime software script (by typing
quartus_dse at a command prompt) to improve design performance by performing automated seed
sweeping.

The QFlow Script
A Tcl/Tk-based graphical interface called QFlow is included with the command-line executables. You can
use the QFlow interface to open projects, launch some of the command-line executables, view report files,
and make some global project assignments.

4-12 The QFlow Script
QPS5V2

2015.11.02

Altera Corporation Command Line Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The QFlow interface can run the following command-line executables:

• quartus_map (Analysis and Synthesis)
• quartus_fit (Fitter)
• quartus_sta (TimeQuest timing analyzer)
• quartus_asm (Assembler)
• quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the Quartus Prime software.

Start QFlow by typing the following command at a command prompt:

quartus_sh -g

Tip: The QFlow script is located in the <Quartus Prime directory>/common/tcl/apps/qflow/
directory.

Document Revision History

Table 4-3: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Remove descriptions of makefile support that was removed from software
in 14.0.

December
2014

14.1.0 Updated DSE II commands.

June 2014 14.0.0 Updated formatting.

November
2013

13.1.0 Removed information about -silnet qmegawiz command

June 2012 12.0.0 Removed survey link.

November
2011

11.0.1 Template update.

May 2011 11.0.0 Corrected quartus_qpf example usage.

Updated examples.

December
2010

10.1.0 Template update.

Added section on using a script to regenerate megafunction variations.

Removed references to the Classic Timing Analyzer (quartus_tan).

Removed Qflow illustration.

July 2010 10.0.0 Updated script examples to use quartus_sta instead of quartus_tan, and
other minor updates throughout document.

QPS5V2
2015.11.02 Document Revision History 4-13

Command Line Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November
2009

9.1.0 Updated Table 2–1 to add quartus_jli and quartus_jbcc executables and
descriptions, and other minor updates throughout document.

March 2009 9.0.0 No change to content.

November
2008

8.1.0 Added the following sections:

• “The MegaWizard Plug-In Manager” on page 2–11

“Command-Line Support” on page 2–12

“Module and Wizard Names” on page 2–13

“Ports and Parameters” on page 2–14

“Invalid Configurations” on page 2–15

“Strategies to Determine Port and Parameter Values” on page 2–15

“Optional Files” on page 2–15

“Parameter File” on page 2–16

“Working Directory” on page 2–17

“Variation File Name” on page 2–17
• “Create a Compressed Configuration File” on page 2–21
• Updated “Option Precedence” on page 2–5 to clarify how to control

precedence
• Corrected Example 2–5 on page 2–8
• Changed Example 2–1, Example 2–2, Example 2–4, and Example 2–7

to use the EP1C12F256C6 device
• Minor editorial updates
• Updated entire chapter using 8½” × 11” chapter template

May 2008 8.0.0 • Updated “Referenced Documents” on page 2–20.
• Updated references in document.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

4-14 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Command Line Scripting

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Command%20Line%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl Scripting 5
2015.11.02

QPS5V2 Subscribe Send Feedback

Tcl Scripting
You can use Tcl scripts to control the Altera® Quartus Prime software and to perform a wide range of
functions, such as compiling a design or scripting common tasks.

For example, use Tcl scripts to perform the following tasks:

• Manage a Quartus Prime project
• Make assignments
• Define design constraints
• Make device assignments
• Compile your design
• Perform timing analysis
• Access reports

Tcl scripts also facilitate project or assignment migration. For example, when designing in different
projects with the same prototype or development board, you can write a script to automate reassignment
of pin locations in each new project. The Quartus Prime software can also generate a Tcl script based on
all the current assignments in the project, which aids in switching assignments to another project.

The Quartus Prime software Tcl commands follow the EDA industry Tcl application programming
interface (API) standards for command-line options. This simplifies learning and using Tcl commands. If
you encounter an error with a command argument, the Tcl interpreter includes help information showing
correct usage.

This chapter includes sample Tcl scripts for automating tasks in the Quartus Prime software. You can
modify these example scripts for use with your own designs. You can find more Tcl scripts in the Design
Examples section of the Support area on the Altera website.

Related Information
Design Examples page on the Altera website

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Tcl%20Scripting&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/support/support-resources/design-examples.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Tool Command Language
Tcl (pronounced “tickle”) stands for Tool Command Language, a popular scripting language that is
similar to many shell scripting and high-level programming languages. It provides support for control
structures, variables, network socket access, and APIs.

Synopsys, Mentor Graphics®, and Altera software products support the Tcl industry-standard scripting
language. Tcl allows you to create custom commands and works seamlessly across most development
platforms.

You can create your own procedures by writing scripts combining basic Tcl commands and Quartus
Prime API functions. You can then automate your design flow, run the Quartus Prime software in batch
mode, or execute the individual Tcl commands interactively in the Quartus Prime Tcl interactive shell.

The Quartus Prime software supports Tcl/Tk version 8.5, supplied by the Tcl DeveloperXchange.

Related Information

• External References on page 5-23
For a list of recommended literature on Tcl.

• Tcl Scripting Basics on page 5-18
For more information on Tcl scripting, or if you are are a Tcl beginner.

• tcl.activestate.com/

Quartus Prime Tcl Packages
The Quartus Prime software groups Tcl commands into packages by function.

Table 5-1: Quartus Prime Tcl Packages

Package Name Package Description

backannotate Back annotate assignments
chip_planner Identify and modify resource usage and routing with the Chip Editor
database_
manager

Manage version-compatible database files

device Get device and family information from the device database
external_memif_
toolkit

Interact with external memory interfaces and debug components

fif Contains the set of Tcl functions for using the Fault Injection File (FIF)
Driver

flow Compile a project, run command-line executables, and other common flows
incremental
compilation

Manipulate design partitions and LogicLock regions, and settings related to
incremental compilation

insystem_
memory_edit

Read and edit memory contents in Altera devices

5-2 Tool Command Language
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

http://tcl.activestate.com/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Package Name Package Description

insystem_source_
probe

Interact with the In-System Sources and Probes tool in an Altera device

interactive_
synthesis
iptclgen Generate memory IP
jtag Control the JTAG chain
logic_analyzer_
interface

Query and modify the Logic Analyzer Interface output pin state

misc Perform miscellaneous tasks such as enabling natural bus naming, package
loading, and message posting

names
partial_reconfigu‐
ration

Contain the set of Tcl functions for performing partial reconfiguration

project Create and manage projects and revisions, make any project assignments
including timing assignments

report Get information from report tables, create custom reports
rtl Traverse and query the RTL netlist of your design
sdc Specify constraints and exceptions to the TimeQuest Timing Analyzer
sdc_ext Altera-specific SDC commands
simulator Configure and perform simulations
sta Contain the set of Tcl functions for obtaining advanced information from

the TimeQuest Timing Analyzer
stp Run the SignalTap® II Logic Analyzer
synthesis_report Contain the set of Tcl functions for the Dynamic Synthesis Report tool
tdc Obtain information from the TimeQuest Timing Analyzer

By default, only the minimum number of packages loads automatically with each Quartus Prime
executable. This keeps the memory requirement for each executable as low as possible. Because the
number of packages that the Quartus Prime executable loads is limited, you must load other packages
before you can run commands in those packages.

Because different packages are available in different executables, you must run your scripts with executa‐
bles that include the packages you use in the scripts. For example, if you use commands in the sdc_ext
package, you must use the quartus_sta executable to run the script because the quartus_sta executable
is the only one with support for the sdc_ext package.

The following command prints lists of the packages loaded or available to load for an executable, to the
console:

<executable name> --tcl_eval help

QPS5V2
2015.11.02 Quartus Prime Tcl Packages 5-3

Tcl Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, type the following command to list the packages loaded or available to load by the quartus_fit
executable:

quartus_fit --tcl_eval help

Loading Packages
To load a Quartus Prime Tcl package, use the load_package command as follows:

load_package [-version <version number>] <package name>

This command is similar to the package require Tcl command, but you can easily alternate between
different versions of a Quartus Prime Tcl package with the load_package command because of the -
version option.

Related Information

• Command-Line Scripting on page 4-1
For additional information about these and other Quartus Prime command-line executables.

Quartus Prime Tcl API Help
Access the Quartus Prime Tcl API Help reference by typing the following command at a system
command prompt:

quartus_sh --qhelp

This command runs the Quartus Prime Command-Line and Tcl API help browser, which documents all
commands and options in the Quartus Prime Tcl API.

Quartus Prime Tcl help allows easy access to information about the Quartus Prime Tcl commands. To
access the help information, type help at a Tcl prompt.

 Tcl Help Output

tcl> help

Available Quartus Prime Tcl Packages:

Loaded Not Loaded
------------------ ----------------------------------
::quartus::device ::quartus::external_memif_toolkit
::quartus::misc ::quartus::iptclgen
::quartus::project ::quartus::design
 ::quartus::rtm
 ::quartus::partial_reconfiguration
 ::quartus::report
 ::quartus::names
 ::quartus::incremental_compilation
 ::quartus::flow

* Type "help -tcl"
to get an overview on Quartus Prime Tcl usages.

* Type "help <package name>"

5-4 Loading Packages
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 to view a list of Tcl commands available for
 the specified Quartus Prime Tcl package.

Table 5-2: Help Options Available in the Quartus Prime Tcl Environment

Help Command Description

help To view a list of available Quartus Prime Tcl packages, loaded and
not loaded.

help -tcl To view a list of commands used to load Tcl packages and access
command-line help.

help -pkg <package_name>

[-version <version

number>]

To view help for a specified Quartus Prime package that includes
the list of available Tcl commands. For convenience, you can omit
the ::quartus:: package prefix, and type help -
pkg <package name>.

If you do not specify the -version option, help for the currently
loaded package is displayed by default. If the package for which
you want help is not loaded, help for the latest version of the
package is displayed by default.

Examples:

help -pkg ::quartus::project

help -pkg project help -pkg project -version 1.0

<command_name> -h

or

<command_name> -help

To view short help for a Quartus Prime Tcl command for which
the package is loaded.

Examples:

project_open -h

project_open -help

package

require ::quartus::<pack

age name> [<version>]

To load a Quartus Prime Tcl package with the specified version. If
<version> is not specified, the latest version of the package is
loaded by default.

Example:

package require ::quartus::project 1.0

This command is similar to the load_package command.

The advantage of the load_package command is that you can
alternate freely between different versions of the same package.

Type load_package <package name> [-version <version
number>]to load a Quartus Prime Tcl package with the specified
version. If the -version option is not specified, the latest version
of the package is loaded by default.

Example:

load_package ::quartus::project -version 1.0

QPS5V2
2015.11.02 Quartus Prime Tcl API Help 5-5

Tcl Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Help Command Description

help -cmd <command_name>
[-version <version>]

or

<command_name> -long_

help

To view complete help text for a Quartus Prime Tcl command.

If you do not specify the -version option, help for the command
in the currently loaded package version is displayed by default.

If the package version for which you want help is not loaded, help
for the latest version of the package is displayed by default.

Examples:

project_open -long_help

help -cmd project_open

help -cmd project_open -version 1.0

help -examples To view examples of Quartus Prime Tcl usage.
help -quartus To view help on the predefined global Tcl array that contains

project information and information about the Quartus Prime
executable that is currently running.

quartus_sh --qhelp To launch the Tk viewer for Quartus Prime command-line help
and display help for the command-line executables and Tcl API
packages.

help -timequestinfo To view help on the predefined global "TimeQuestInfo" Tcl array
that contains delay model information and speed grade informa‐
tion of a TimeQuest design that is currently running.

The Tcl API help is also available in Quartus Prime online help. Search for the command or package
name to find details about that command or package.

Related Information

• Command-Line Scripting on page 4-1
For more information about the Tk viewer for Quartus Prime command-line help.

Command-Line Options: -t, -s, and --tcl_eval
There are three command-line options you can use with executables that support Tcl.

Table 5-3: Command-Line Options Supporting Tcl Scripting

Command-Line Option Description

--script=<script file> [<script
args>]

Run the specified Tcl script with optional arguments.

-t <script file> [<script args>] Run the specified Tcl script with optional arguments.
The -t option is the short form of the --script option.

--shell Open the executable in the interactive Tcl shell mode.
-s Open the executable in the interactive Tcl shell mode.

The -s option is the short form of the --shell option.

5-6 Command-Line Options: -t, -s, and --tcl_eval
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command-Line Option Description

--tcl_eval <tcl command> Evaluate the remaining command-line arguments as Tcl
commands. For example, the following command
displays help for the project package: quartus_sh --
tcl_eval help -pkg project

Run a Tcl Script
Running an executable with the -t option runs the specified Tcl script. You can also specify arguments to
the script. Access the arguments through the argv variable, or use a package such as cmdline, which
supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the <Quartus Prime directory>/common/tcl/packages directory.

For example, to run a script called myscript.tcl with one argument, Stratix, type the following command
at a system command prompt:

quartus_sh -t myscript.tcl Stratix

Related Information
Accessing Command-Line Arguments on page 5-15

Interactive Shell Mode
Running an executable with the -s option starts an interactive Tcl shell. For example, to open the
Quartus Prime TimeQuest Timing Analyzer executable in interactive shell mode, type the following
command:

quartus_sta -s

Commands you type in the Tcl shell are interpreted when you press Enter. You can run a Tcl script in the
interactive shell with the following command:

source <script name>

If a command is not recognized by the shell, it is assumed to be an external command and executed with
the exec command.

Evaluate as Tcl
Running an executable with the --tcl_eval option causes the executable to immediately evaluate the
remaining command-line arguments as Tcl commands. This can be useful if you want to run simple Tcl
commands from other scripting languages.

For example, the following command runs the Tcl command that prints out the commands available in
the project package.

quartus_sh --tcl_eval help -pkg project

The Quartus Prime Tcl Console Window
You can run Tcl commands directly in the Quartus Prime Tcl Console window. On the View menu, click
Utility Windows. By default, the Tcl Console window is docked in the bottom-right corner of the

QPS5V2
2015.11.02 Run a Tcl Script 5-7

Tcl Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime GUI. All Tcl commands typed in the Tcl Console are interpreted by the Quartus Prime Tcl
shell.

Note: Some shell commands such as cd, ls, and others can be run in the Tcl Console window, with the
Tcl exec command. However, for best results, run shell commands and Quartus Prime executables
from a system command prompt outside of the Quartus Prime software GUI.

Tcl messages appear in the System tab (Messages window). Errors and messages written to stdout and
stderr also are shown in the Quartus Prime Tcl Console window.

End-to-End Design Flows
You can use Tcl scripts to control all aspects of the design flow, including controlling other software,
when the other software also includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend core language functionality with
tool-specific commands. For example, the Quartus Prime Tcl interpreter supports all core Tcl commands,
and adds numerous commands specific to the Quartus Prime software. You can include commands in
one Tcl script to run another script, which allows you to combine or chain together scripts to control
different tools. Because scripts for different tools must be executed with different Tcl interpreters, it is
difficult to pass information between the scripts unless one script writes information into a file and
another script reads it.

Within the Quartus Prime software, you can perform many different operations in a design flow (such as
synthesis, fitting, and timing analysis) from a single script, making it easy to maintain global state
information and pass data between the operations. However, there are some limitations on the operations
you can perform in a single script due to the various packages supported by each executable.

There are no limitations on running flows from any executable. Flows include operations found in the
Start section of the Processing menu in the Quartus Prime GUI, and are also documented as options for
the execute_flow Tcl command. If you can make settings in the Quartus Prime software and run a flow
to get your desired result, you can make the same settings and run the same flow in a Tcl script.

Creating Projects and Making Assignments
You can create a script that makes all the assignments for an existing project, and then use the script at
any time to restore your project settings to a known state. From the Project menu, click Generate Tcl File
for Project to automatically generate a .tcl file containing your assignments. You can source this file to
recreate your project, and you can add other commands to this file, such as commands for compiling the
design. The file is a good starting point to learn about project management commands and assignment
commands.

The following example creates a project, makes assignments, and compiles the project. The example uses
the fir_filter tutorial design files in the qdesigns installation directory. Run this script in the fir_filter
directory, with the quartus_sh executable.

 Create and Compile a Project

load_package flow
Create the project and overwrite any settings
files that exist
project_new fir_filter -revision filtref -overwrite

5-8 End-to-End Design Flows
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Set the device, the name of the top-level BDF,
and the name of the top level entity
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name BDF_FILE filtref.bdf
set_global_assignment -name TOP_LEVEL_ENTITY filtref
Add other pin assignments here
set_location_assignment -to clk Pin_G1
compile the project
execute_flow -compile
project_close

Note: The assignments created or modified while a project is open are not committed to the Quartus
Prime Settings File (.qsf) unless you explicitly call export_assignments or project_close (unless
-dont_export_assignments is specified). In some cases, such as when running execute_flow, the
Quartus Prime software automatically commits the changes.

Related Information

• Interactive Shell Mode on page 5-7
• Constraining Designs on page 1-1

For more information on making assignments.
• QSF Reference Manual

For more information on scripting for all Quartus Prime project settings and assignments.

Compiling Designs
You can run the Quartus Prime command-line executables from Tcl scripts. Use the included flow
package to run various Quartus Prime compilation flows, or run each executable directly.

The flow Package
The flow package includes two commands for running Quartus Prime command-line executables, either
individually or together in standard compilation sequence. The execute_module command allows you to
run an individual Quartus Prime command-line executable. The execute_flow command allows you to
run some or all of the executables in commonly-used combinations. Use the flow package instead of
system calls to run Quartus Prime executables from scripts or from the Quartus Prime Tcl Console.

Compile All Revisions
You can use a simple Tcl script to compile all revisions in your project. Save the following script in a file
called compile_revisions.tcl and type the following to run it:

quartus_sh -t compile_revisions.tcl <project name>

Compile All Revisions

load_package flow
project_open [lindex $quartus(args) 0]
set original_revision [get_current_revision]
foreach revision [get_project_revisions] {
 set_current_revision $revision
 execute flow -compile
}

QPS5V2
2015.11.02 Compiling Designs 5-9

Tcl Scripting Altera Corporation

Send Feedback

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_current_revision $original_revision
project_close

Reporting
You can extract information from the Compilation Report to evaluate results. The Quartus Prime Tcl API
provides easy access to report data so you do not have to write scripts to parse the text report files.

If you know the exact report cell or cells you want to access, use the get_report_panel_data command
and specify the row and column names (or x and y coordinates) and the name of the appropriate report
panel. You can often search for data in a report panel. To do this, use a loop that reads the report one row
at a time with the get_report_panel_row command.

Column headings in report panels are in row 0. If you use a loop that reads the report one row at a time,
you can start with row 1 to skip row 0 with column headings. The get_number_of_rows command
returns the number of rows in the report panel, including the column heading row. Because the number
of rows includes the column heading row, continue your loop as long as the loop index is less than the
number of rows.

Report panels are hierarchically arranged and each level of hierarchy is denoted by the string “||“ in the
panel name. For example, the name of the Fitter Settings report panel is Fitter||Fitter Settings
because it is in the Fitter folder. Panels at the highest hierarchy level do not use the “||” string. For
example, the Flow Settings report panel is named Flow Settings.

The following Tcl code prints a list of all report panel names in your project. You can run this code with
any executable that includes support for the report package.

Print All Report Panel Names

load_package report
project_open myproject
load_report
set panel_names [get_report_panel_names]
foreach panel_name $panel_names {
post_message "$panel_name"
}

Viewing Report Data in Excel
The Microsoft Excel software can be useful in viewing and manipulating timing analysis results. You can
create a Comma Separated Value (.csv) file from any Quartus Prime report to open with Excel. The
following Tcl code shows a simple way to create a .csv file with data from the Fitter panel in a report. You
could modify the script to use command-line arguments to pass in the name of the project, report panel,
and output file to use. You can run this script example with any executable that supports the report
package.

 Create .csv Files from Reports

load_package report
project_open my-project
load_report
This is the name of the report panel to save as a CSV file
set panel_name "Fitter||Fitter Settings"
set csv_file "output.csv"
set fh [open $csv_file w]
set num_rows [get_number_of_rows -name $panel_name]

5-10 Reporting
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set i 0 } { $i < $num_rows } { incr i } {
 set row_data [get_report_panel_row -name $panel_name \
 -row $i]
 puts $fh [join $row_data ","]
}
close $fh
unload_report

Timing Analysis
The Quartus Prime TimeQuest Timing Analyzer includes support for industry-standard SDC commands
in the sdc package. The Quartus Prime software includes comprehensive Tcl APIs and SDC extensions for
the TimeQuest Timing Analyzer in the sta, and sdc_ext packages. The Quartus Prime software also
includes a tdc package that obtains information from the TimeQuest Timing Analyzer.

Related Information
Quartus Prime TimeQuest Timing Analyzer
For information about how to perform timing analysis with the Quartus Prime TimeQuest Timing
Analyzer

Automating Script Execution
You can configure scripts to run automatically at various points during compilation. Use this capability to
automatically run scripts that perform custom reporting, make specific assignments, and perform many
other tasks.

The following three global assignments control when a script is run automatically:

• PRE_FLOW_SCRIPT_FILE —before a flow starts
• POST_MODULE_SCRIPT_FILE —after a module finishes
• POST_FLOW_SCRIPT_FILE —after a flow finishes

A module is another term for a Quartus Prime executable that performs one step in a flow. For example,
two modules are Analysis and Synthesis (quartus_map), and timing analysis (quartus_sta).

A flow is a series of modules that the Quartus Prime software runs with predefined options. For example,
compiling a design is a flow that typically consists of the following steps (performed by the indicated
module):

1. Analysis and synthesis (quartus_map)
2. Fitter (quartus_fit)
3. Assembler (quartus_asm)
4. Timing Analyzer (quartus_sta)

Other flows are described in the help for the execute_flow Tcl command. In addition, many commands
in the Processing menu of the Quartus Prime GUI correspond to this design flow.

To make an assignment automatically run a script, add an assignment with the following form to the .qsf
for your project:

set_global_assignment -name <assignment name> <executable>:<script name>

QPS5V2
2015.11.02 Timing Analysis 5-11

Tcl Scripting Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software runs the scripts.

<executable> -t <script name> <flow or module name> <project name> <revision name>

The first argument passed in the argv variable (or quartus(args) variable) is the name of the flow or
module being executed, depending on the assignment you use. The second argument is the name of the
project and the third argument is the name of the revision.

When you use the POST_MODULE_SCRIPT_FILE assignment, the specified script is automatically run after
every executable in a flow. You can use a string comparison with the module name (the first argument
passed in to the script) to isolate script processing to certain modules.

Execution Example
To illustrate how automatic script execution works in a complete flow, assume you have a project called
top with a current revision called rev_1, and you have the following assignments in the .qsf for your
project.

set_global_assignment -name PRE_FLOW_SCRIPT_FILE quartus_sh:first.tcl
set_global_assignment -name POST_MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST_FLOW_SCRIPT_FILE quartus_sh:last.tcl

When you compile your project, the PRE_FLOW_SCRIPT_FILE assignment causes the following command
to be run before compilation begins:

quartus_sh -t first.tcl compile top rev_1

Next, the Quartus Prime software starts compilation with analysis and synthesis, performed by the
quartus_map executable. After the Analysis and Synthesis finishes, the POST_MODULE_SCRIPT_FILE
assignment causes the following command to run:

quartus_sh -t next.tcl quartus_map top rev_1

Then, the Quartus Prime software continues compilation with the Fitter, performed by the quartus_fit
executable. After the Fitter finishes, the POST_MODULE_SCRIPT_FILE assignment runs the following
command:

quartus_sh -t next.tcl quartus_fit top rev_1

Corresponding commands are run after the other stages of the compilation. When the compilation is
over, the POST_FLOW_SCRIPT_FILE assignment runs the following command:

quartus_sh -t last.tcl compile top rev_1

Controlling Processing
The POST_MODULE_SCRIPT_FILE assignment causes a script to run after every module. Because the same
script is run after every module, you might have to include some conditional statements that restrict
processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, use a conditional test like the following
example. It checks the flow or module name passed as the first argument to the script and executes code
when the module is quartus_sta.

Restrict Processing to a Single Module

set module [lindex $quartus(args) 0]
if [string match "quartus_sta" $module] {
 # Include commands here that are run

5-12 Execution Example
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 # after timing analysis
 # Use the post-message command to display
 # messages
 post_message "Running after timing analysis"
}

Displaying Messages
Because of the way the Quartus Prime software runs the scripts automatically, you must use the
post_message command to display messages, instead of the puts command. This requirement applies
only to scripts that are run by the three assignments listed in “Automating Script Execution”.

Related Information

• The post_message Command on page 5-14
For more information about this command.

• Automating Script Execution on page 5-11
For more information on the three scripts capable of scripting-message automation.

Other Scripting Features
The Quartus Prime Tcl API includes other general-purpose commands and features described in this
section.

Natural Bus Naming
The Quartus Prime software supports natural bus naming. Natural bus naming allows you to use square
brackets to specify bus indexes in HDL without including escape characters to prevent Tcl from
interpreting the square brackets as containing commands. For example, one signal in a bus named
address can be identified as address[0] instead of address\[0\]. You can take advantage of natural bus
naming when making assignments.

set_location_assignment -to address[10] Pin_M20

The Quartus Prime software defaults to natural bus naming. You can turn off natural bus naming with the
disable_natural_bus_naming command. For more information about natural bus naming, type the
following at a Quartus Prime Tcl prompt:

enable_natural_bus_naming -h

Short Option Names
You can use short versions of command options, as long as they are unambiguous. For example, the
project_open command supports two options: -current_revision and -revision.

You can use any of the following abbreviations of the -revision option:

• -r

• -re

• -rev

• -revi

• -revis

• -revisio

QPS5V2
2015.11.02 Displaying Messages 5-13

Tcl Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use an option as short as -r because in the case of the project_open command no other option
starts with the letter r. However, the report_timing command includes the options -recovery and -
removal. You cannot use -r or -re to shorten either of those options, because the abbreviation would not
be unique to only one option.

Collection Commands
Some Quartus Prime Tcl functions return very large sets of data that would be inefficient as Tcl lists.
These data structures are referred to as collections. The Quartus Prime Tcl API uses a collection ID to
access the collection.

There are two Quartus Prime Tcl commands for working with collections, foreach_in_collection and
get_collection_size. Use the set command to assign a collection ID to a variable.

Related Information
foreach_in_collection
For information about which Quartus Prime Tcl commands return collection IDs.

The foreach_in_collection Command
The foreach_in_collection command is similar to the foreach Tcl command. Use it to iterate through
all elements in a collection. The following example prints all instance assignments in an open project.

foreach_in_collection Example

set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {
 # Information about each assignment is
 # returned in a list. For information
 # about the list elements, refer to Help
 # for the get-all-instance-assignments command.
 set to [lindex $asgn 2]
 set name [lindex $asgn 3]
 set value [lindex $asgn 4]
 puts "Assignment to $to: $name = $value"
}

The get_collection_size Command
Use the get_collection_size command to get the number of elements in a collection. The following
example prints the number of global assignments in an open project.

get_collection_size Example

set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"

The post_message Command
To print messages that are formatted like Quartus Prime software messages, use the post_message
command. Messages printed by the post_message command appear in the System tab of the Messages
window in the Quartus Prime GUI, and are written to standard at when scripts are run. Arguments for
the post_message command include an optional message type and a required message string.

5-14 Collection Commands
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_misc_ver_1.0_cmd_foreach_in_collection.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The message type can be one of the following:

• info (default)
• extra_info

• warning

• critical_warning

• error

If you do not specify a type, Quartus Prime software defaults to info.

With the Quartus Prime software in Windows, you can color code messages displayed at the system
command prompt with the post_message command. Add the following line to your quartus2.ini file:

DISPLAY_COMMAND_LINE_MESSAGES_IN_COLOR = on

The following example shows how to use the post_message command.

post_message -type warning "Design has gated clocks"

Accessing Command-Line Arguments
Many Tcl scripts are designed to accept command-line arguments, such as the name of a project or
revision. The global variable quartus(args) is a list of the arguments typed on the command-line
following the name of the Tcl script. The following Tcl example prints all of the arguments in the
quartus(args) variable.

 Simple Command-Line Argument Access

set i 0
foreach arg $quartus(args) {
 puts "The value at index $i is $arg"
 incr i
}

If you copy the script in the previous example to a file named print_args.tcl, it displays the following output
when you type the following at a command prompt.

 Passing Command-Line Arguments to Scripts

quartus_sh -t print_args.tcl my_project 100MHz
The value at index 0 is my_project
The value at index 1 is 100MHz

The cmdline Package
You can use the cmdline package included with the Quartus Prime software for more robust and self-
documenting command-line argument passing. The cmdline package supports command-line arguments
with the form -<option><value> .

 cmdline Package

package require cmdline
variable ::argv0 $::quartus(args)
set options {
 { "project.arg" "" "Project name" }
 { "frequency.arg" "" "Frequency" }

QPS5V2
2015.11.02 Accessing Command-Line Arguments 5-15

Tcl Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

}
set usage "You need to specify options and values"
array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"

If you save those commands in a Tcl script called print_cmd_args.tcl you see the following output when you
type the following command at a command prompt.

Passing Command-Line Arguments for Scripts

quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHz
The project name is my_project
The frequency is 100MHz

Virtually all Quartus Prime Tcl scripts must open a project. You can open a project, and you can
optionally specify a revision name with code like the following example. The example checks whether the
specified project exists. If it does, the example opens the current revision, or the revision you specify.

Full-Featured Method to Open Projects

package require cmdline
variable ::argv0 $::quartus(args)
set options { \
{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
}
array set optshash [::cmdline::getoptions ::argv0 $options]
Ensure the project exists before trying to open it
if {[project_exists $optshash(project)]} {
 if {[string equal "" $optshash(revision)]} {
 # There is no revision name specified, so default
 # to the current revision
 project_open $optshash(project) -current_revision
 } else {
 # There is a revision name specified, so open the
 # project with that revision
 project_open $optshash(project) -revision \
 $optshash(revision)
 }
} else {
 puts "Project $optshash(project) does not exist"
 exit 1
}
The rest of your script goes here

If you do not require this flexibility or error checking, you can use just the project_open command.

 Simple Method to Open Projects

set proj_name [lindex $argv 0]
project_open $proj_name

The quartus() Array
The scripts in the preceding examples parsed command line arguments found in quartus(args). The
global quartus() Tcl array includes other information about your project and the current Quartus Prime
executable that might be useful to your scripts. For information on the other elements of the quartus()
array, type the following command at a Tcl prompt:

5-16 The quartus() Array
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

help -quartus

The Quartus Prime Tcl Shell in Interactive Mode
This section presents how to make project assignments and then compile the finite impulse response
(FIR) filter tutorial project with the quartus_sh interactive shell. This example assumes that you already
have the fir_filter tutorial design files in a project directory.

To begin, type the following at the system command prompt to run the interactive Tcl shell:

quartus_sh -s

Create a new project called fir_filter, with a revision called filtref by typing the following command at a Tcl
prompt:

project_new -revision filtref fir_filter

Note: If the project file and project name are the same, the Quartus Prime software gives the revision the
same name as the project.

Because the revision named filtref matches the top-level file, all design files are automatically picked up
from the hierarchy tree.

Next, set a global assignment for the device with the following command:

set_global_assignment -name family <device family name>

To learn more about assignment names that you can use with the -name option, refer to Quartus Prime
Help.

Note: For assignment values that contain spaces, enclose the value in quotation marks.

To compile a design, use the ::quartus::flow package, which properly exports the new project
assignments and compiles the design with the proper sequence of the command-line executables. First,
load the package:

load_package flow

It returns the following:

1.0

To perform a full compilation of the FIR filter design, use the execute_flow command with the -
compile option:

exectue_flow -compile

This command compiles the FIR filter tutorial project, exporting the project assignments and running
quartus_map, quartus_fit, quartus_asm, and quartus_sta. This sequence of events is the same as
selecting Start Compilation from the Processing menu in the Quartus Prime GUI.

When you are finished with a project, close it with the project_close command.

To exit the interactive Tcl shell, type exit at a Tcl prompt.

QPS5V2
2015.11.02 The Quartus Prime Tcl Shell in Interactive Mode 5-17

Tcl Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The tclsh Shell
On the UNIX and Linux operating systems, the tclsh shell included with the Quartus Prime software is
initialized with a minimal PATH environment variable. As a result, system commands might not be
available within the tclsh shell because certain directories are not in the PATH environment variable.

To include other directories in the path searched by the tclsh shell, set the QUARTUS_INIT_PATH
environment variable before running the tclsh shell. Directories in the QUARTUS_INIT_PATH environment
variable are searched by the tclsh shell when you execute a system command.

Tcl Scripting Basics
The core Tcl commands support variables, control structures, and procedures. Additionally, there are
commands for accessing the file system and network sockets, and running other programs. You can create
platform-independent graphical interfaces with the Tk widget set.

Tcl commands are executed immediately as they are typed in an interactive Tcl shell. You can also create
scripts (including the examples in this chapter) in files and run them with the Quartus Prime executables
or with the tclsh shell.

Hello World Example
The following shows the basic “Hello world” example in Tcl:

puts "Hello world"

Use double quotation marks to group the words hello and world as one argument. Double quotation
marks allow substitutions to occur in the group. Substitutions can be simple variable substitutions, or the
result of running a nested command. Use curly braces {} for grouping when you want to prevent
substitutions.

Variables
Assign a value to a variable with the set command. You do not have to declare a variable before using it.
Tcl variable names are case-sensitive.

set a 1

To access the contents of a variable, use a dollar sign (“$”) before the variable name. The following
example prints "Hello world" in a different way.

set a Hello
set b world
puts "$a $b"

Substitutions
Tcl performs three types of substitution:

• Variable value substitution
• Nested command substitution
• Backslash substitution

5-18 The tclsh Shell
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Variable Value Substitution
Variable value substitution, refers to accessing the value stored in a variable with a dollar sign (“$”) before
the variable name.

Nested Command Substitution
Nested command substitution refers to how the Tcl interpreter evaluates Tcl code in square brackets. The
Tcl interpreter evaluates nested commands, starting with the innermost nested command, and commands
nested at the same level from left to right. Each nested command result is substituted in the outer
command.

set a [string length foo]

Backslash Substitution
Backslash substitution allows you to quote reserved characters in Tcl, such as dollar signs (“$”) and braces
(“[]”). You can also specify other special ASCII characters like tabs and new lines with backslash
substitutions. The backslash character is the Tcl line continuation character, used when a Tcl command
wraps to more than one line.

set this_is_a_long_variable_name [string length "Hello \
 world."]

Arithmetic
Use the expr command to perform arithmetic calculations. Use curly braces (“{ }”) to group the
arguments of this command for greater efficiency and numeric precision.

set a 5
set b [expr { $a + sqrt(2) }]

Tcl also supports boolean operators such as && (AND), || (OR), ! (NOT), and comparison operators such
as < (less than), > (greater than), and == (equal to).

Lists
A Tcl list is a series of values. Supported list operations include creating lists, appending lists, extracting
list elements, computing the length of a list, sorting a list, and more.

set a { 1 2 3 }

You can use the lindex command to extract information at a specific index in a list. Indexes are zero-
based. You can use the index end to specify the last element in the list, or the index end-<n> to count
from the end of the list. For example to print the second element (at index 1) in the list stored in a use the
following code.

puts [lindex $a 1]

The llength command returns the length of a list.

puts [llength $a]

QPS5V2
2015.11.02 Variable Value Substitution 5-19

Tcl Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The lappend command appends elements to a list. If a list does not already exist, the list you specify is
created. The list variable name is not specified with a dollar sign (“$”).

lappend a 4 5 6

Arrays
Arrays are similar to lists except that they use a string-based index. Tcl arrays are implemented as hash
tables. You can create arrays by setting each element individually or with the array set command.

To set an element with an index of Mon to a value of Monday in an array called days, use the following
command:

set days(Mon) Monday

The array set command requires a list of index/value pairs. This example sets the array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday \
 Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

set day_abbreviation Mon
puts $days($day_abbreviation)

Use the array names command to get a list of all the indexes in a particular array. The index values are
not returned in any specified order. The following example is one way to iterate over all the values in an
array.

foreach day [array names days] {
 puts "The abbreviation $day corresponds to the day \
name $days($day)"
}

Arrays are a very flexible way of storing information in a Tcl script and are a good way to build complex
data structures.

Control Structures
Tcl supports common control structures, including if-then-else conditions and for, foreach, and while
loops. The position of the curly braces as shown in the following examples ensures the control structure
commands are executed efficiently and correctly. The following example prints whether the value of
variable a positive, negative, or zero.

 If-Then-Else Structure

if { $a > 0 } {
 puts "The value is positive"
} elseif { $a < 0 } {
 puts "The value is negative"
} else {
 puts "The value is zero"
}

The following example uses a for loop to print each element in a list.

5-20 Arrays
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For Loop

set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {
 puts "The list element at index $i is [lindex $a $i]"
}

The following example uses a foreach loop to print each element in a list.

 foreach Loop

set a { 1 2 3 }
foreach element $a {
 puts "The list element is $element"
}

The following example uses a while loop to print each element in a list.

while Loop

set a { 1 2 3 }
set i 0
while { $i < [llength $a] } {
 puts "The list element at index $i is [lindex $a $i]"
 incr i
}

You do not have to use the expr command in boolean expressions in control structure commands
because they invoke the expr command automatically.

Procedures
Use the proc command to define a Tcl procedure (known as a subroutine or function in other scripting
and programming languages). The scope of variables in a procedure is local to the procedure. If the
procedure returns a value, use the return command to return the value from the procedure. The
following example defines a procedure that multiplies two numbers and returns the result.

 Simple Procedure

proc multiply { x y } {
 set product [expr { $x * $y }]
 return $product
}

The following example shows how to use the multiply procedure in your code. You must define a
procedure before your script calls it.

 Using a Procedure

proc multiply { x y } {
 set product [expr { $x * $y }]
 return $product
}
set a 1
set b 2
puts [multiply $a $b]

QPS5V2
2015.11.02 Procedures 5-21

Tcl Scripting Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Define procedures near the beginning of a script. If you want to access global variables in a procedure, use
the global command in each procedure that uses a global variable.

 Accessing Global Variables

proc print_global_list_element { i } {
 global my_data
 puts "The list element at index $i is [lindex $my_data $i]"
}
set my_data { 1 2 3}
print_global_list_element 0

File I/O
Tcl includes commands to read from and write to files. You must open a file before you can read from or
write to it, and close it when the read and write operations are done. To open a file, use the open
command; to close a file, use the close command. When you open a file, specify its name and the mode
in which to open it. If you do not specify a mode, Tcl defaults to read mode. To write to a file, specify w for
write mode.

 Open a File for Writing

set output [open myfile.txt w]

Tcl supports other modes, including appending to existing files and reading from and writing to the same
file.

The open command returns a file handle to use for read or write access. You can use the puts command
to write to a file by specifying a filehandle.

Write to a File

set output [open myfile.txt w]
puts $output "This text is written to the file."
close $output

You can read a file one line at a time with the gets command. The following example uses the gets
command to read each line of the file and then prints it out with its line number.

Read from a File

set input [open myfile.txt]
set line_num 1
while { [gets $input line] >= 0 } {
 # Process the line of text here
 puts "$line_num: $line"
 incr line_num
}
close $input

Syntax and Comments
Arguments to Tcl commands are separated by white space, and Tcl commands are terminated by a
newline character or a semicolon. You must use backslashes when a Tcl command extends more than one
line.

5-22 File I/O
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl uses the hash or pound character (#) to begin comments. The # character must begin a comment. If
you prefer to include comments on the same line as a command, be sure to terminate the command with
a semicolon before the # character. The following example is a valid line of code that includes a set
command and a comment.

set a 1;# Initializes a

Without the semicolon, it would be an invalid command because the set command would not terminate
until the new line after the comment.

The Tcl interpreter counts curly braces inside comments, which can lead to errors that are difficult to
track down. The following example causes an error because of unbalanced curly braces.

if { $x > 0 } {
if { $y > 0 } {
 # code here
}

External References
For more information about Tcl, refer to the following sources:

• Brent B. Welch and Ken Jones, and Jeffery Hobbs, Practical Programming in Tcl and Tk (Upper Saddle
River: Prentice Hall, 2003)

• John Ousterhout and Ken Jones, Tcl and the Tk Toolkit (Boston: Addison-Wesley Professional, 2009)
• Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs in Tcl

and Tk (Boston: Addison-Wesley Professional, 1997)

Related Information

• Quartus Prime Tcl Examples
For Quartus Prime Tcl example scripts

• tcl.activestate.com
Tcl Developer Xchange

Document Revision History

Table 5-4: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.
• Updated the list of Tcl packages in the Quartus Prime Tcl Packages

section.
• Updated the Quartus Prime Tcl API Help section:

• Updated the Tcl Help Output

June 2014 14.0.0 Updated the format.

June 2012 12.0.0 • Removed survey link.

QPS5V2
2015.11.02 External References 5-23

Tcl Scripting Altera Corporation

Send Feedback

http://www.altera.com/support/examples/tcl/tcl.html
http://tcl.activestate.com/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

November
2011

11.0.1 • Template update
• Updated supported version of Tcl in the section “Tool Command

Language.”
• minor editoral changes

May 2011 11.0.0 Minor updates throughout document.

December
2010

10.1.0 Template update

Updated to remove tcl packages used by the Classic Timing Analyzer

July 2010 10.0.0 Minor updates throughout document.

November
2009

9.1.0 • Removed LogicLock example.
• Added the incremental_compilation, insystem_source_probe, and rtl

packages to Table 3-1 and Table 3-2.
• Added quartus_map to table 3-2.

March 2009 9.0.0 • Removed the “EDA Tool Assignments” section
• Added the section “Compile All Revisions” on page 3–9
• Added the section “Using the tclsh Shell” on page 3–20

November
2008

8.1.0 Changed to 8½” × 11” page size. No change to content.

May 2008 8.0.0 Updated references.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus II Handbook, refer to the Quartus Handbook Archive.

5-24 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Tcl Scripting

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Tcl%20Scripting%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Integrity Analysis with Third-Party Tools 6
2015.11.02

QPS5V2 Subscribe Send Feedback

Signal Integrity Analysis with Third-Party Tools
With the ever-increasing operating speed of interfaces in traditional FPGA design, the timing and signal
integrity margins between the FPGA and other devices on the board must be within specification and
tolerance before a single PCB is built.

If the board trace is designed poorly or the route is too heavily loaded, noise in the signal can cause data
corruption, while overshoot and undershoot can potentially damage input buffers over time.

As FPGA devices are used in high-speed applications, signal integrity and timing margin between the
FPGA and other devices on the printed circuit board (PCB) are important aspects to consider to ensure
proper system operation. To avoid time-consuming redesigns and expensive board respins, the topology
and routing of critical signals must be simulated. The high-speed interfaces available on current FPGA
devices must be modeled accurately and integrated into timing models and board-level signal integrity
simulations. The tools used in the design of an FPGA and its integration into a PCB must be “board-
aware”—able to take into account properties of the board routing and the connected devices on the board.

The Quartus Prime software provides methodologies, resources, and tools to ensure good signal integrity
and timing margin between Altera FPGA devices and other components on the board. Three types of
analysis are possible with the Quartus Prime software:

• I/O timing with a default or user-specified capacitive load and no signal integrity analysis (default)
• The Quartus Prime Enable Advanced I/O Timing option utilizing a user-defined board trace model to

produce enhanced timing reports from accurate “board-aware” simulation models
• Full board routing simulation in third-party tools using Altera-provided or generated Input/Output

Buffer Information Specification (IBIS) or HSPICE I/O models

I/O timing using a specified capacitive test load requires no special configuration other than setting the
size of the load. I/O timing reports from the Quartus Prime TimeQuest or the Quartus Prime Classic
Timing Analyzer are generated based only on point-to-point delays within the I/O buffer and assume the
presence of the capacitive test load with no other details about the board specified. The default size of the
load is based on the I/O standard selected for the pin. Timing is measured to the FPGA pin with no signal
integrity analysis details.

The Enable Advanced I/O Timing option expands the details in I/O timing reports by taking board
topology and termination components into account. A complete point-to-point board trace model is
defined and accounted for in the timing analysis. This ability to define a board trace model is an example
of how the Quartus Prime software is “board-aware.”

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

In this case, timing and signal integrity metrics between the I/O buffer and the defined far end load are
analyzed and reported in enhanced reports generated by the Quartus Prime TimeQuest Timing Analyzer.

Related Information

• I/O Management on page 2-1
For more information about defining capacitive test loads or how to use the Enable Advanced I/O
Timing option to configure a board trace model.

Signal Integrity Simulations with HSPICE and IBIS Models
The Quartus Prime software can export accurate HSPICE models with the built-in HSPICE Writer. You
can run signal integrity simulations with these complete HSPICE models in Synopsys HSPICE. IBIS
models of the FPGA I/O buffers are also created easily with the Quartus Prime IBIS Writer.

You can run signal integrity simulations with these complete HSPICE models in Synopsys HSPICE.

You can integrate IBIS models into any third-party simulation tool that supports them, such as the
Mentor Graphics® Hyperlynx software. With the ability to create industry-standard model definition files
quickly, you can build accurate simulations that can provide data to help improve board-level signal
integrity.

The I/O’s IBIS and HSPICE model creation available in the Quartus Prime software can help prevent
problems before a costly board respin is required. In general, creating and running accurate simulations is
difficult and time consuming. The tools in the Quartus Prime software automate the I/O model setup and
creation process by configuring the models specifically for your design. With these tools, you can set up
and run accurate simulations quickly and acquire data that helps guide your FPGA and board design.

The information about signal integrity in this chapter refers to board-level signal integrity based on I/O
buffer configuration and board parameters, not simultaneous switching noise (SSN), also known as
ground bounce or VCC sag. SSN is a product of multiple output drivers switching at the same time,
causing an overall drop in the voltage of the chip’s power supply. This can cause temporary glitches in the
specified level of ground or VCC for the device.

This chapter is intended for FPGA and board designers and includes details about the concepts and steps
involved in getting designs simulated and how to adjust designs to improve board-level timing and signal
integrity. Also included is information about how to create accurate models from the Quartus Prime
software and how to use those models in simulation software.

The information in this chapter is meant for those who are familiar with the Quartus Prime software and
basic concepts of signal integrity and the design techniques and components in good PCB design. Finally,
you should know how to set up simulations and use your selected third-party simulation tool.

Related Information

• AN 315: Guidelines for Designing High-Speed FPGA PCBs
For a more information about SSN and ways to prevent it.

• Altera Signal Integrity Center
For information about basic signal integrity concepts and signal integrity details pertaining to Altera
FPGA devices.

6-2 Signal Integrity Simulations with HSPICE and IBIS Models
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

http://www.altera.com/literature/an/an315.pdf
https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I/O Model Selection: IBIS or HSPICE
The Quartus Prime software can export two different types of I/O models that are useful for different
simulation situations, IBIS models and HSPICE models.

IBIS models define the behavior of input or output buffers through the use of voltage-current (V-I) and
voltage-time (V-t) data tables. HSPICE models, often referred to as HSPICE decks, include complete
physical descriptions of the transistors and parasitic capacitances that make up an I/O buffer along with
all the parameter settings required to run a simulation. The HSPICE decks generated by the Quartus
Prime software are preconfigured with the I/O standard, voltage, and pin loading settings for each pin in
your design.

The choice of I/O model type is based on many factors.

Table 6-1: IBIS and HSPICE Model Comparison

Feature IBIS Model HSPICE Model

I/O Buffer
Description

Behavioral—I/O buffers are
described by voltage-current and
voltage-time tables in typical,
minimum, and maximum supply
voltage cases.

Physical—I/O buffers and all components in
a circuit are described by their physical
properties, such as transistor characteristics
and parasitic capacitances, as well as their
connections to one another.

Model
Customiza‐
tion

Simple and limited—The model
completely describes the I/O buffer
and does not usually have to be
customized.

Fully customizable—Unless connected to an
arbitrary board description, the description
of the board trace model must be customized
in the model file. All parameters of the
simulation are also adjustable.

Simulation
Set Up and
Run Time

Fast—Simulations run quickly after
set up correctly.

Slow—Simulations take time to set up and
take longer to run and complete.

Simulation
Accuracy

Good—For most simulations,
accuracy is sufficient to make useful
adjustments to the FPGA and/or
board design to improve signal
integrity.

Excellent—Simulations are highly accurate,
making HSPICE simulation almost a
requirement for any high-speed design where
signal integrity and timing margins are tight.

Third-Party
Tool
Support

Excellent—Almost all third-party
board simulation tools support IBIS.

Good—Most third-party tools that support
SPICE support HSPICE. However, Synopsys
HSPICE is required for simulations of
Altera’s encrypted HSPICE models.

Related Information
AN 283: Simulating Altera Devices with IBIS Models
For more information about IBIS files created by the Quartus Prime IBIS Writer and IBIS files in general,
as well as links to websites with detailed information.

QPS5V2
2015.11.02 I/O Model Selection: IBIS or HSPICE 6-3

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an283.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

FPGA to Board Signal Integrity Analysis Flow
Board signal integrity analysis can take place at any point in the FPGA design process and is often
performed before and after board layout. If it is performed early in the process as part of a pre-PCB layout
analysis, the models used for simulations can be more generic.

These models can be changed as much as required to see how adjustments improve timing or signal
integrity and help with the design and routing of the PCB. Simulations and the resulting changes made at
this stage allow you to analyze “what if” scenarios to plan and implement your design better. To assist
with early board signal integrity analysis, you can download generic IBIS model files for each device
family and obtain HSPICE buffer simulation kits from the “Board Level Tools” section of the EDA Tool
Support Resource Center.

Typically, if board signal integrity analysis is performed late in the design, it is used for a post-layout
verification. The inputs and outputs of the FPGA are defined, and required board routing topologies and
constraints are known. Simulations can help you find problems that might still exist in the FPGA or board
design before fabrication and assembly. In either case, a simple process flow illustrates how to create
accurate IBIS and HSPICE models from a design in the Quartus Prime software and transfer them to
third-party simulation tools.

Your design depends on the type of model, IBIS or HSPICE, that you use for your simulations. When you
understand the steps in the analysis flow, refer to the section of this chapter that corresponds to the model
type you are using.

6-4 FPGA to Board Signal Integrity Analysis Flow
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-1: Third-Party Board Signal Integrity Analysis Flow

Make I/O Assignments

Create a Quartus Prime Project

Continue Design with
Existing I/O Assignments

Enable IBIS or HSPICE
File Generation

Customize Files

Configure Board Trace Models
in supported devices

(Optional)

Compile and Generate
Files (EDA Netlist Writer)

IBIS or
HSPICE?

Apply Models to Buffers
in Board Model Simulations

Run Simulations as
Defined in HSPICE Deck

Run Simulation

Results
OK?

No Make Adjustments to
Models or Simulation Parameters

and Simulate Again

Yes

IBIS HSPICE

Changes
to FPGA I/O
required?

Yes

No

Related Information
EDA Tool Support Resource Center
For more information, generic IBIS model files for each device family, and to obtain HSPICE buffer
simulation kits.

Create I/O and Board Trace Model Assignments
You can configure a board trace model for output signals or for bidirectional signals in output mode. You
can then automatically transfer its description to HSPICE decks generated by the HSPICE Writer. This
helps improve simulation accuracy.

QPS5V2
2015.11.02 Create I/O and Board Trace Model Assignments 6-5

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

https://www.altera.com/support/support-resources/design-software/eda-tool/sof-eda-tool-support.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To configure a board trace model, in the Settings dialog box, in the TimeQuest Timing Analyzer page,
turn on the Enable Advanced I/O Timing option and configure the board trace model assignment
settings for each I/O standard used in your design. You can add series or parallel termination, specify the
transmission line length, and set the value of the far-end capacitive load. You can configure these
parameters either in the Board Trace Model view of the Pin Planner, or click SettingsDeviceDevice and
Pin Options.

The Quartus Prime software can generate IBIS models and HSPICE decks without having to configure a
board trace model with the Enable Advanced I/O Timing option. In fact, IBIS models ignore any board
trace model settings other than the far-end capacitive load. If any load value is set other than the default,
the delay given by IBIS models generated by the IBIS Writer cannot be used to account correctly for the
double counting problem. The load value mismatch between the IBIS delay and the tCO measurement of
the Quartus Prime software prevents the delays from being safely added together. Warning messages
displayed when the EDA Netlist Writer runs indicate when this mismatch occurs.

Related Information

• I/O Management on page 2-1
For information about how to use theEnable Advanced I/O Timing option and configure board trace
models for the I/O standards used in your design.

Output File Generation
IBIS and HSPICE model files are not generated by the Quartus Prime software by default. To generate or
update the files automatically during each project compilation, select the type of file to generate and a
location where to save the file in the project settings.

The IBIS and HSPICE Writers in the Quartus Prime software are run as part of the EDA Netlist Writer
during normal project compilation. If either writer is turned on in the project settings, IBIS or HSPICE
files are created and stored in the specified location. For IBIS, a single file is generated containing
information about all assigned pins. HSPICE file generation creates separate files for each assigned pin.
You can run the EDA Netlist Writer separately from a full compilation in the Quartus Prime software or
at the command line.

Note: You must fully compile the project or perform I/O Assignment Analysis at least once for the IBIS
and HSPICE Writers to have information about the I/O assignments and settings in the design.

Customize the Output Files
The files generated by either the IBIS or HSPICE Writer are text files that you can edit and customize
easily for design or experimentation purposes.

IBIS files downloaded from the Altera website must be customized with the correct RLC values for the
specific device package you have selected for your design. IBIS files generated by the IBIS Writer do not
require this customization because they are configured automatically with the RLC values for your
selected device. HSPICE decks require modification to include a detailed description of your board. With
Enable Advanced I/O Timing turned on and a board trace model defined in the Quartus Prime software,
generated HSPICE decks automatically include that model’s parameters. However, Altera recommends
that you replace that model with a more detailed model that describes your board design more accurately.
A default simulation included in the generated HSPICE decks measures delay between the FPGA and the
far-end device. You can make additions or adjustments to the default simulation in the generated files to
change the parameters of the default simulation or to perform additional measurements.

6-6 Output File Generation
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Set Up and Run Simulations in Third-Party Tools
When you have generated the files, you can use them to perform simulations in your selected simulation
tool.

With IBIS models, you can apply them to input, output, or bidirectional buffer entities and quickly set up
and run simulations. For HSPICE decks, the simulation parameters are included in the files. Open the
files in Synopsys HSPICE and run simulations for each pin as required.

With HSPICE decks generated from the HSPICE Writer, the double counting problem is accounted for,
which ensures that your simulations are accurate. Simulations that involve IBIS models created with
anything other than the default loading settings in the Quartus Prime software must take the change in
the size of the load between the IBIS delay and the Quartus Prime tCO measurement into account.
Warning messages during compilation alert you to this change.

Interpret Simulation Results
If you encounter timing or signal integrity issues with your high-speed signals after running simulations,
you can make adjustments to I/O assignment settings in the Quartus Prime software.

These could include such things as drive strength or I/O standard, or making changes to your board
routing or topology. After regenerating models in the Quartus Prime software based on the changes you
have made, rerun the simulations to check whether your changes corrected the problem.

Simulation with IBIS Models
IBIS models provide a way to run accurate signal integrity simulations quickly. IBIS models describe the
behavior of I/O buffers with voltage-current and voltage-time data curves.

Because of their behavioral nature, IBIS models do not have to include any information about the internal
circuit design of the I/O buffer. Most component manufacturers, including Altera, provide IBIS models
for free download and use in signal integrity analysis simulation tools. You can download generic device
family IBIS models from the Altera website for early design simulation or use the IBIS Writer to create
custom IBIS models for your existing design.

Elements of an IBIS Model
An IBIS model file (.ibs) is a text file that describes the behavior of an I/O buffer across minimum, typical,
and maximum temperature and voltage ranges with a specified test load.

The tables and values specified in the IBIS file describe five basic elements of the I/O buffer.

QPS5V2
2015.11.02 Set Up and Run Simulations in Third-Party Tools 6-7

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-2: Five Basic Elements of an I/O Buffer in IBIS Models

Rise
Fall L_pkg R_pkg

C_comp C_pkg
1

2

4

3

5

The following elements correspond to each numbered block.

1. Pulldown—A voltage-current table describes the current when the buffer is driven low based on a
pull-down voltage range of –VCC to 2 VCC.

2. Pullup—A voltage-current table describes the current when the buffer is driven high based on a pull-
up voltage range of –VCC to VCC.

3. Ground and Power Clamps—Voltage-current tables describe the current when clamping diodes for
electrostatic discharge (ESD) are present. The ground clamp voltage range is –VCC to VCC, and the
power clamp voltage range is –VCC to ground.

4. Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio describes the rise and fall time of
the buffer during a logic transition. Optional rising and falling waveform tables can be added to more
accurately describe the characteristics of the rising and falling transitions.

5. Total Output Capacitance and Package RLC—The total output capacitance includes the parasitic
capacitances of the output pad, clamp diodes (if present), and input transistors. The package RLC is
device package-specific and defines the resistance, inductance, and capacitance of the bond wire and
pin of the I/O.

Related Information
AN 283: Simulating Altera Devices with IBIS Models
For more information about IBIS models and Altera-specific features, including links to the official IBIS
specification.

Creating Accurate IBIS Models
There are two methods to obtain Altera device IBIS files for your board-level signal integrity simulations.
You can download generic IBIS models from the Altera website. You can also use the IBIS writer in the
Quartus Prime software to create design-specific models.

The IBIS file generated by the Quartus Prime software contains models of both input and output termina‐
tion, and is supported for IBIS model versions of 4.2 and later .Arria V, Cyclone V, and Stratix V device
families allow the use of bidirectional I/O with dynamic on-chip termination (OCT).

Dynamic OCT is used where a signal uses a series on-chip termination during output operation and a
parallel on-chip termination during input operation. Typically this is used in Altera External Memory
Interface IP.

The Quartus Prime IBIS dynamic OCT IBIS model names end in g50c_r50c. For example : sstl15i_ctnio_
g50c_r50c.

In the simulation tool, the IBIS model is attached to a buffer.

6-8 Creating Accurate IBIS Models
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

http://www.altera.com/literature/an/an283.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• When the buffer is assigned as an output, use the series termination r50c.
• When the buffer is assigned as an input, use the parallel termination g50c.

Download IBIS Models
Altera provides IBIS models for almost all FPGA and FPGA configuration devices. You can use the IBIS
models from the website to perform early simulations of the I/O buffers you expect to use in your design
as part of a pre-layout analysis.

Downloaded IBIS models have the RLC package values set to one particular device in each device family.

The .ibs file can be customized for your device package and can be used for any simulation. IBIS models
downloaded and used for simulations in this manner are generic. They describe only a certain set of
models listed for each device on the Altera IBIS Models page of the Altera website. To create customized
models for your design, use the IBIS Writer as described in the next section.

To simulate your design with the model accurately, you must adjust the RLC values in the IBIS model file
to match the values for your particular device package by performing the following steps:

1. Download and expand the ZIP file (.zip) of the IBIS model for the device family you are using for your
design. The .zip file contains the .ibs file along with an IBIS model user guide and a model data correla‐
tion report.

2. Download the Package RLC Values spreadsheet for the same device family.
3. Open the spreadsheet and locate the row that describes the device package used in your design.
4. From the package’s I/O row, copy the minimum, maximum, and typical values of resistance,

inductance, and capacitance for your device package.
5. Open the .ibs file in a text editor and locate the [Package] section of the file.
6. Overwrite the listed values copied with the values from the spreadsheet and save the file.

Related Information
Altera IBIS Models
For information about whether models for your selected device are available.

Generate Custom IBIS Models with the IBIS Writer
If you have started your FPGA design and have created custom I/O assignments, you can use the Quartus
Prime IBIS Writer to create custom IBIS models to accurately reflect your assignments.

Examples of custom assignments include drive strength settings or the enabling of clamping diodes for
ESD protection. IBIS models created with the IBIS Writer take I/O assignment settings into account.

If the Enable Advanced I/O Timing option is turned off, the generated .ibs files are based on the load
value setting for each I/O standard on the Capacitive Loading page of the Device and Pin Options dialog
box in the Device dialog box. With the Enable Advanced I/O Timing option turned on, IBIS models use
an effective capacitive load based on settings found in the board trace model on the Board Trace Model
page in the Device and Pin Options dialog box or the Board Trace Model view in the Pin Planner. The
effective capacitive load is based on the sum of the Near capacitance, Transmission line distributed
capacitance, and the Far capacitance settings in the board trace model. Resistance values and transmis‐
sion line inductance values are ignored.

Note: If you made any changes from the default load settings, the delay in the generated IBIS model
cannot safely be added to the Quartus Prime tCO measurement to account for the double counting
problem. This is because the load values between the two delay measurements do not match. When
this happens, the Quartus Prime software displays warning messages when the EDA Netlist Writer
runs to remind you about the load value mismatch.

QPS5V2
2015.11.02 Download IBIS Models 6-9

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

http://www.altera.com/download/board-layout-test/ibis/ibs-ibis_index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Generating IBIS Output Files with the Quartus Prime Software
For step-by-step instructions on how to generate IBIS models with the Quartus Prime software, refer
to Quartus Prime Help.

• AN 283: Simulating Altera Devices with IBIS Models
For more information about IBIS model generation.

Design Simulation Using the Mentor Graphics HyperLynx® Software
You must integrate IBIS models downloaded from the Altera website or created with the Quartus Prime
IBIS Writer into board design simulations to accurately model timing and signal integrity.

The HyperLynx software from Mentor Graphics is one of the most popular tools for design simulation.
The HyperLynx software makes it easy to integrate IBIS models into simulations.

The HyperLynx software is a PCB analysis and simulation tool for high-speed designs, consisting of two
products, LineSim and BoardSim. LineSim is an early simulation tool. Before any board routing takes
place, LineSim is used to simulate “what if” scenarios to assist in creating routing rules and defining board
parameters. BoardSim is a post-layout tool used to analyze existing board routing. Specific nets are
selected from a board layout file and simulated in a manner similar to LineSim. With board and routing
parameters, and surrounding signal routing known, highly accurate simulations of the final fabricated
PCB are possible. This section focuses on LineSim. Because the process of creating and running
simulations is very similar for both LineSim and BoardSim, the details of IBIS model use in LineSim
applies to simulations in BoardSim.

Simulations in LineSim are configured using a schematic GUI to create connections and topologies
between I/O buffers, route trace segments, and termination components. LineSim provides two methods
for creating routing schematics: cell-based and free-form. Cell-based schematics are based on fixed cells
consisting of typical placements of buffers, trace impedances, and components. Parts of the grid-based
cells are filled with the desired objects to create the topology. A topology in a cell-based schematic is
limited by the available connections within and between the cells.

A more robust and expandable way to create a circuit schematic for simulation is to use the free-form
schematic format in LineSim. The free-form schematic format makes it easy to place parts into any
configuration and edit them as required. This section describes the use of IBIS models with free-form
schematics, but the process is nearly identical for cell-based schematics.

6-10 Design Simulation Using the Mentor Graphics HyperLynx® Software
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

http://quartushelp.altera.com/10.1/index.htm#eda/boardlevel/ibis/eda_pro_ibis_out.htm
http://www.altera.com/literature/an/an283.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-3: HyperLynx LineSim Free-Form Schematic Editor

When you use HyperLynx software to perform simulations, you typically perform the following steps:

1. Create a new LineSim free-form schematic document and set up the board stackup for your PCB using
the Stackup Editor. In this editor, specify board layer properties including layer thickness, dielectric
constant, and trace width.

2. Create a circuit schematic for the net you want to simulate. The schematic represents all the parts of
the routed net including source and destination I/O buffers, termination components, transmission
line segments, and representations of impedance discontinuities such as vias or connectors.

3. Assign IBIS models to the source and destination I/O buffers to represent their behavior during
operation.

4. Attach probes from the digital oscilloscope that is built in to LineSim to points in the circuit that you
want to monitor during simulation. Typically, at least one probe is attached to the pin of a destination
I/O buffer. For differential signals, you can attach a differential probe to both the positive and negative
pins at the destination.

5. Configure and run the simulation. You can simulate a rising or falling edge and test the circuit under
different drive strength conditions.

6. Interpret the results and make adjustments. Based on the waveforms captured in the digital oscillo‐
scope, you can adjust anything in the circuit schematic to correct any signal integrity issues, such as
overshoot or ringing. If necessary, you can make I/O assignment changes in the Quartus Prime
software, regenerate the IBIS file with the IBIS Writer, and apply the updated IBIS model to the buffers
in your HyperLynx software schematic.

7. Repeat the simulations and circuit adjustments until you are satisfied with the results. When the
operation of the net meets your design requirements, implement changes to your I/O assignments in

QPS5V2
2015.11.02 Design Simulation Using the Mentor Graphics HyperLynx® Software 6-11

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the Quartus Prime software and/or adjust your board routing constraints, component values, and
placement to match the simulation.

Related Information
www.mentor.com
For more information about HyperLynx software, including schematic creation, simulation setup, model
usage, product support, licensing, and training.

Configuring LineSim to Use Altera IBIS Models
You must configure LineSim to find and use the downloaded or generated IBIS models for your design.
To do this, add the location of your .ibs file or files to the LineSim Model Library search path. Then you
apply a selected model to a buffer in your schematic.

To add the Quartus Prime software’s default IBIS model location, <project directory>/board/ibis, to the
HyperLynx LineSim model library search path, perform the following steps in LineSim:

1. From the Options menu, click Directories. The Set Directories dialog box appears. The Model-
library file path(s) list displays the order in which LineSim searches file directories for model files.

Figure 6-4: LineSim Set Directories Dialog Box

2. Click Edit. A dialog box appears where you can add directories and adjust the order in which LineSim
searches them.

6-12 Configuring LineSim to Use Altera IBIS Models
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

http://www.mentor.com/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-5: LineSim Select Directories Dialog Box

3. Click Add
4. Browse to the default IBIS model location, <project directory>/board/ibis. Click OK.
5. Click Up to move the IBIS model directory to the top of the list. Click Generate Model Index to

update LineSim’s model database with the models found in the added directory.
6. Click OK. The IBIS model directory for your project is added to the top of the Model-library file

path(s) list.
7. To close the Set Directories dialog box, click OK.

Integrating Altera IBIS Models into LineSim Simulations
When the location for IBIS files has been set, you can assign the downloaded or generated IBIS models to
the buffers in your schematic. To do this, perform the following steps:

1. Double-click a buffer symbol in your schematic to open the Assign Models dialog box. You can also
click Assign Models from the buffer symbol’s right-click menu.

QPS5V2
2015.11.02 Integrating Altera IBIS Models into LineSim Simulations 6-13

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-6: LineSim Assign Model Dialog Box

2. The pin of the buffer symbol you selected should be highlighted in the Pins list. If you want to assign a
model to a different symbol or pin, select it from the list.

3. Click Select. The Select IC Model dialog box appears.
Figure 6-7: LineSim Select IC Model Dialog Box

4. To filter the list of available libraries to display only IBIS models, select .IBS. Scroll through the
Libraries list, and click the name of the library for your design. By default, this is <project name>.ibs.

6-14 Integrating Altera IBIS Models into LineSim Simulations
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. The device for your design should be selected as the only item in the Devices list. If not, select your
device from the list.

6. From the Signal list, select the name of the signal you want to simulate. You can also choose to select
by device pin number.

7. Click OK. The Assign Models dialog box displays the selected .ibs file and signal.
8. If applicable to the signal you chose, adjust the buffer settings as required for the simulation.
9. Select and configure other buffer pins from the Pins list in the same manner.
10.Click OK when all I/O models are assigned.

Running and Interpreting LineSim Simulations
You can now run any desired simulations and make adjustments to the I/O assignments or simulation
parameters as required.

For example, if you see too much overshoot in the simulated signal at the destination buffer after running
a simulation, you could adjust the drive strength I/O assignment setting to a lower value. Regenerate
the .ibs file, and run the simulation again to verify whether the change fixed the problem.

Figure 6-8: Example of Overshoot in HyperLynx with IBIS Models

If you see a discontinuity or other anomalies at the destination, such as slow rise and fall times, adjust the
termination scheme or termination component values. After making these changes, rerun the simulation
to check whether your adjustments solved the problem. In this case, it is not necessary to regenerate
the .ibs file.

QPS5V2
2015.11.02 Running and Interpreting LineSim Simulations 6-15

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-9: Example of Signal Integrity Anomaly in HyperLynx with IBIS Models

Related Information
Altera Signal Integrity Center
For more information about board-level signal integrity and to learn about ways to improve it with simple
changes to your design.

Simulation with HSPICE Models
HSPICE decks are used to perform highly accurate simulations by describing the physical properties of all
aspects of a circuit precisely. HSPICE decks describe I/O buffers, board components, and all of the
connections between them, as well as defining the parameters of the simulation to be run.

By their nature, HSPICE decks are highly customizable and require a detailed description of the circuit
under simulation. For devices that support advanced I/O timing, when Enable Advanced I/O Timing is
turned on, the HSPICE decks generated by the Quartus Prime HSPICE Writer automatically include
board components and topology defined in the Board Trace Model. Configure the board components and
topology in the Pin Planner or in the Board Trace Model tab of the Device and Pin Options dialog box.
All HSPICE decks generated by the Quartus Prime software include compensation for the double count
problem. You can simulate with the default simulation parameters built in to the generated HSPICE decks
or make adjustments to customize your simulation.

Related Information
The Double Counting Problem in HSPICE Simulations on page 6-17

Supported Devices and Signaling
The HSPICE Writer in the Quartus Prime software supports Arria, Cylcone, and Stratix devices for the
creation of a board trace model in the Quartus Prime software for automatic inclusion in an HSPICE
deck.

6-16 Simulation with HSPICE Models
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The HSPICE files include the board trace description you create in the Board Trace Model view in the Pin
Planner or the Board Trace Model tab in the Device and Pin Options dialog box.

Note: Note that for Arria 10 devices, you may need to download the Encrypted HSPICE model from the
Altera website.

Related Information
I/O Management on page 2-1
For more information about the Enable Advanced I/O Timing option and configuring board trace
models for the I/O standards in your design.

SPICE Models for Altera Devices
For more information about the Encrypted HSPICE model.

Accessing HSPICE Simulation Kits
You can access the available HSPICE models with the Quartus Prime software’s HSPICE Writer tool and
also at the Spice Models for Altera Devices web page.

The Quartus Prime software HSPICE Writer tool removes many common sources of user error from the
I/O simulation process. The HSPICE Writer tool automatically creates preconfigured I/O simulation spice
decks that only require the addition of a user board model. All the difficult tasks required to configure the
I/O modes and interpret the timing results are handled automatically by the HSPICE Writer tool.

Related Information
Spice Models for Altera Devices
For more information about downloadable HSPICE models.

The Double Counting Problem in HSPICE Simulations
Simulating I/Os using accurate models is extremely helpful for finding and fixing FPGA I/O timing and
board signal integrity issues before any boards are built. However, the usefulness of such simulations is
directly related to the accuracy of the models used and whether the simulations are set up and performed
correctly. To ensure accuracy in models and simulations created for FPGA output signals, the timing
hand-off between tCO timing in the Quartus Prime software and simulation-based board delay must be
taken into account. If this hand-off is not handled correctly, the calculated delay could either count some
of the delay twice or even miss counting some of the delay entirely.

Defining the Double Counting Problem
The double counting problem is inherent to the method output timing is analyzed versus the method used
for HSPICE models. The timing analyzer tools in the Quartus Prime software measure delay timing for an
output signal from the core logic of the FPGA design through the output buffer ending at the FPGA pin
with a default capacitive load or a specified value for the selected I/O standard. This measurement is the
tCO timing variable.

QPS5V2
2015.11.02 Accessing HSPICE Simulation Kits 6-17

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

http://www.altera.com/download/board-layout-test/hspice/hsp-index.html?GSA_pos=4&WT.oss_r=1&WT.oss=hspice%20models
http://www.altera.com/support/software/download/hspice/hsp-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-10: Double Counting Problem

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin

HSPICE Reported Delay

Quartus Prime tCO

HSPICE tPD with
User Board Trace Model

Overlap (Double Counting)

Termination Network/
Trace Model

Signal
Destination

HSPICE models for board simulation measure tPD (propagation delay) from an arbitrary reference point
in the output buffer, through the device pin, out along the board routing, and ending at the signal destina‐
tion.

It is apparent immediately that if these two delays were simply added together, the delay between the
output buffer and the device pin would be counted twice in the calculation. A model or simulation that
does not account for this double count would create overly pessimistic simulation results, because the
double-counted delay can limit I/O performance artificially. To fix the problem, it might seem that simply
subtracting the overlap between tCO and tPD would account for the double count. However, this
adjustment would not be accurate because each measurement is based on a different load.

Note: Input signals do not exhibit this problem because the HSPICE models for inputs stop at the FPGA
pin instead of at the input buffer. In this case, simply adding the delays together produces an
accurate measurement of delay timing.

The Solution to Double Counting
To adjust the measurements to account for the double-counting, the delay between the arbitrary point in
the output buffer selected by the HSPICE model and the FPGA pin must be subtracted from either tCO or
tPD before adding the results together. The subtracted delay must also be based on a common load
between the two measurements. This is done by repeating the HSPICE model measurement, but with the
same load used by the Quartus Prime software for the tCO measurement.

6-18 The Solution to Double Counting
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-11: Common Test Loads Used for Output Timing

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin Quartus Prime
Test Load

HSPICE Netlist with
Quartus Prime Test Load

HSPICE tPD with User
Specified Board Trace Model

Quartus Prime tCO

HSPICE Netlist with
User Board Trace Model

Overlap (HSPICE Delay
with Test Load)

Total Delay

HSPICE tPD Adjusted by tTESTLOAD

Termination Network/
Trace Model

Signal
Destination

With tTESTLOAD known, the total delay is calculated for the output signal from the FPGA logic to the
signal destination on the board, accounting for the double count.

tdelay = tCO+(tPD-tTESTLOAD)

The preconfigured simulation files generated by the HSPICE Writer in the Quartus Prime software are
designed to account for the double-counting problem based on this calculation automatically. Performing
accurate timing simulations is easy without having to make adjustments for double counting manually.

HSPICE Writer Tool Flow
This section includes information to help you get started using the Quartus Prime software
HSPICE Writer tool. The information in this section assumes you have a basic knowledge of the standard
Quartus Prime software design flow, such as project and assignment creation, compilation, and timing
analysis.

Related Information
Quartus Prime Handbook
For additional information about standard design flows.

Applying I/O Assignments
The first step in the HSPICE Writer tool flow is to configure the I/O standards and modes for each of the
pins in your design properly. In the Quartus Prime software, these settings are represented by assignments
that map I/O settings, such as pin selection, and I/O standard and drive strength, to corresponding signals
in your design.

QPS5V2
2015.11.02 HSPICE Writer Tool Flow 6-19

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime software provides multiple methods for creating these assignments:

• Using the Pin Planner
• Using the assignment editor
• Manually editing the .qsf file
• By making assignments in a scripted Quartus Prime flow using Tcl

Enabling HSPICE Writer
You must enable the HSPICE Writer in the Settings dialog box of the Quartus Prime software to generate
the HSPICE decks from the Quartus Prime software.

Figure 6-12: EDA Tool Settings: Board Level Options Dialog Box

Enabling HSPICE Writer Using Assignments
You can also use HSPICE Writer in conjunction with a scripted Tcl flow. To enable HSPICE Writer
during a full compile, include the following lines in your Tcl script.

Enable HSPICE Writer

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_id eda_board_design_signal_integrity
set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity

As with command-line invocation, specifying the output directory is optional. If not specified, the output
directory defaults to board/hspice.

Naming Conventions for HSPICE Files
HSPICE Writer automatically generates simulation files and names them using the following naming
convention: <device>_<pin #>_<pin_name>_<in/out>.sp.

6-20 Enabling HSPICE Writer
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For bidirectional pins, two spice decks are produced; one with the I/O buffer configured as an input, and
the other with the I/O buffer configured as an output.

The Quartus Prime software supports alphanumeric pin names that contain the underscore (_) and dash
(-) characters. Any illegal characters used in file names are converted automatically to underscores.

Related Information

• Sample Output for I/O HSPICE Simulation Deck on page 6-31
• Sample Input for I/O HSPICE Simulation Deck on page 6-27

Invoking HSPICE Writer
After HSPICE Writer is enabled, the HSPICE simulation files are generated automatically each time the
project is completely compiled. The Quartus Prime software also provides an option to generate a new set
of simulation files without having to recompile manually. In the Processing menu, click Start EDA
Netlist Writer to generate new simulation files automatically.

Note: You must perform both Analysis & Synthesis and Fitting on a design before invoking the
HSPICE Writer tool.

Invoking HSPICE Writer from the Command Line
If you use a script-based flow to compile your project, you can create HSPICE model files by including the
following commands in your Tcl script (.tcl file).

Create HSPICE Model Files

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL \
"HSPICE (Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE \
-section_ideda_board_design_signal_integrity
set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> \
-section_id eda_board_design_signal_integrity

The <output_directory> option specifies the location where HSPICE model files are saved. By default, the
<project directory>/board/hspice directory is used.

 Invoke HSPICE Writer

To invoke the HSPICE Writer tool through the command line, type:

quartus_eda.exe <project_name> --board_signal_integrity=on --format=HSPICE \
--output_directory=<output_directory>

<output_directory> specifies the location where the generated spice decks will be written (relative to the
design directory). This is an optional parameter and defaults to board/hspice.

Customizing Automatically Generated HSPICE Decks
HSPICE models generated by the HSPICE Writer can be used for simulation as generated.

A default board description is included, and a default simulation is set up to measure rise and fall delays
for both input and output simulations, which compensates for the double counting problem. However,
Altera recommends that you customize the board description to more accurately represent your routing
and termination scheme.

QPS5V2
2015.11.02 Invoking HSPICE Writer 6-21

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The sample board trace loading in the generated HSPICE model files must be replaced by your actual
trace model before you can run a correct simulation. To do this, open the generated HSPICE model files
for all pins you want to simulate and locate the following section.

Sample Board Trace Section

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

You must replace the example load with a load that matches the design of your PCB board. This includes
a trace model, termination resistors, and, for output simulations, a receiver model. The spice circuit node
that represents the pin of the FPGA package is called pin. The node that represents the far pin of the
external device is called load-in (for output SPICE decks) and source-in (for input SPICE decks).

For an input simulation, you must also modify the stimulus portion of the spice file. The section of the file
that must be modified is indicated in the following comment block.

 Sample Source Stimulus Section

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Replace the sample stimulus model with a model for the device that will drive the FPGA.

Running an HSPICE Simulation
Because simulation parameters are configured directly in the HSPICE model files, running a simulation
requires only that you open an HSPICE file in the HSPICE user interface and start the simulation.

Figure 6-13: HSPICE User Interface Window

Click Open and browse to the location of the HSPICE model files generated by the Quartus Prime
HSPICE Writer. The default location for HSPICE model files is <project directory>/board/hspice. Select
the .sp file generated by the HSPICE Writer for the signal you want to simulate. Click OK.

To run the simulation, click Simulate. The status of the simulation is displayed in the window and saved
in an .lis file with the same name as the .sp file when the simulation is complete. Check the .lis file if an
error occurs during the simulation requiring a change in the .sp file to fix.

6-22 Running an HSPICE Simulation
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Interpreting the Results of an Output Simulation
By default, the automatically generated output simulation spice decks are set up to measure three delays
for both rising and falling transitions. Two of the measurements, tpd_rise and tpd_fall, measure the
double-counting corrected delay from the FPGA pin to the load pin. To determine the complete clock-
edge to load-pin delay, add these numbers to the Quartus Prime software reported default loading tCO
delay.

The remaining four measurements, tpd_uncomp_rise, tpd_uncomp_fall, t_dblcnt_rise, and
t_dblcnt_fall, are required for the double-counting compensation process and are not required for
further timing usage.

Related Information
Simulation Analysis on page 6-31

Interpreting the Results of an Input Simulation
By default, the automatically generated input simulation SPICE decks are set up to measure delays from
the source’s driver pin to the FPGA’s input pin for both rising and falling transitions.

The propagation delay is reported by HSPICE measure statements as tpd_rise and tpd_fall. To
determine the complete source driver pin-to-FPGA register delay, add these numbers to the Quartus
Prime software reported TH and TSU input timing numbers.

Viewing and Interpreting Tabular Simulation Results
The .lis file stores the collected simulation data in tabular form. The default simulation configured by the
HSPICE Writer produces delay measurements for rising and falling transitions on both input and output
simulations.

These measurements are found in the .lis file and named tpd_rise and tpd_fall. For output simulations,
these values are already adjusted for the double count. To determine the complete delay from the FPGA
logic to the load pin, add either of these measurements to the Quartus Prime tCO delay. For input
simulations, add either of these measurements to the Quartus Prime tSU and tH delay values to calculate
the complete delay from the far end stimulus to the FPGA logic. Other values found in the .lis file, such as
tpd_uncomp_rise, tpd_uncomp_fall, t_dblcnt_rise, and t_dblcnt_fall, are parts of the double
count compensation calculation. These values are not necessary for further analysis.

Viewing Graphical Simulation Results
You can view the results of the simulation quickly as a graphical waveform display using the AvanWaves
viewer included with HSPICE. With the default simulation configured by the HSPICE Writer, you can
view the simulated waveforms at both the source and destination in input and output simulations.

To see the waveforms for the simulation, in the HSPICE user interface window, click AvanWaves. The
AvanWaves viewer opens and displays the Results Browser.

QPS5V2
2015.11.02 Interpreting the Results of an Output Simulation 6-23

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-14: HSPICE AvanWaves Results Browser

The Results Browser lets you select which waveform to view quickly in the main viewing window. If
multiple simulations are run on the same signal, the list at the top of the Results Browser displays the
results of each simulation. Click the simulation description to select which simulation to view. By default,
the descriptions are derived from the first line of the HSPICE file, so the description might appear as a line
of asterisks.

Select the type of waveform to view, by performing the following steps:

1. To see the source and destination waveforms with the default simulation, from the Types list, select
Voltages.

2. On the Curves list, double-click the waveform you want to view. The waveform appears in the main
viewing window.

You can zoom in and out and adjust the view as desired.

6-24 Viewing Graphical Simulation Results
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-15: AvanWaves Waveform Viewer

Making Design Adjustments Based on HSPICE Simulations
Based on the results of your simulations, you can make adjustments to the I/O assignments or simulation
parameters if required. For example, after you run a simulation and see overshoot or ringing in the
simulated signal at the destination buffer, you can adjust the drive strength I/O assignment setting to a
lower value. Regenerate the HSPICE deck, and run the simulation again to verify that the change fixed the
problem.

QPS5V2
2015.11.02 Making Design Adjustments Based on HSPICE Simulations 6-25

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-16: Example of Overshoot in the AvanWaves Waveform Viewer

If there is a discontinuity or any other anomalies at the destination, adjust the board description in the
Quartus Prime Board Trace Model, or in the generated HSPICE model files to change the termination
scheme or adjust termination component values. After making these changes, regenerate the HSPICE files
if necessary, and rerun the simulation to verify whether your adjustments solved the problem.

6-26 Making Design Adjustments Based on HSPICE Simulations
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-17: Example of Signal Integrity Anomaly in the AvanWaves Waveform Viewer

Related Information
Altera Signal Integrity Center
For more information about board-level signal integrity and to learn about ways to improve it with simple
changes to your FPGA design.

Sample Input for I/O HSPICE Simulation Deck
The following sections examine a typical HSPICE simulation spice deck for an I/O of type input. Each
section presents the simulation file one block at a time.

Header Comment
The first block of an input simulation spice deck is the header comment. The purpose of this block is to
provide an easily readable summary of how the simulation file has been automatically configured by the
Quartus Prime software.

This block has two main components: The first component summarizes the I/O configuration relevant
information such as device, speed grade, and so on. The second component specifies the exact test
condition that the Quartus Prime software assumes for the given I/O standard.

 Sample Header Comment Block

* Quartus Prime HSPICE Writer I/O Simulation Deck*

* This spice simulation deck was automatically generated by
* Quartus for the following IO settings:
*

QPS5V2
2015.11.02 Sample Input for I/O HSPICE Simulation Deck 6-27

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

https://www.altera.com/support/support-resources/support-centers/signal-power-integrity.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus Prime’s default I/O timing delays assume the following slow
* corner simulation conditions.
*
* Specified Test Conditions For Quartus Prime Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin (no parasitics)
*
* Warnings:

Simulation Conditions
The simulation conditions block loads the appropriate process corner models for the transistors. This
condition is automatically set up for the slow timing corner and is modified only if other simulation
corners are desired.

Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * TT process corner

Simulation Options
The simulation options block configures the simulation temperature and configures HSPICE with typical
simulation options.

 Simulation Options Block

* Simulation Options

.options brief=0

.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

Note: For a detailed description of these options, consult your HSPICE manual.

6-28 Simulation Conditions
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Constant Definition
The constant definition block of the simulation file instantiates the voltage sources that controls the
configuration modes of the I/O buffer.

Constant Definition Block

* Constant Definition

voeb oeb 0 vc * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpcdp5 rpcdp5 0 rp5 * Set the IO standard
vpcdp4 rpcdp4 0 rp4
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 0

Where:

• Voltage source voeb controls the output enable of the buffer and is set to disabled for inputs.
• vopdrain controls the open drain mode for the I/O.
• vrambh controls the bus hold circuitry in the I/O.
• vrpullup controls the weak pullup.
• The next 11 voltages sources control the I/O standard of the buffer and are configured through a later

library call.
• vdin is not used on input pins because it is the data pin for the output buffer.

Buffer Netlist
The buffer netlist block of the simulation spice deck loads all the load models required for the
corresponding input pin.

 Buffer Netlist Block

* IO Buffer Netlist

.include ‘vio_buffer.inc’

Drive Strength
The drive strength block of the simulation SPICE deck loads the configuration bits necessary to configure
the I/O into the proper I/O standard and drive strengths.

Although these settings are not relevant to an input buffer, they are provided to allow the SPICE deck to
be modifiable to support bidirectional simulations.

QPS5V2
2015.11.02 Constant Definition 6-29

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

I/O Buffer Instantiation
The I/O buffer instantiation block of the simulation SPICE deck instantiates the necessary power supplies
and I/O model components that are necessary to simulate the given I/O.

 I/O Buffer Instantiation

I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies|
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xvio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp5 rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 vio_buf

* Internal Loading on Pad
* - No loading on this pad due to differential buffer/support
* circuitry

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

Board Trace and Termination
The board trace and termination block of the simulation SPICE deck is provided only as an example.
Replace this block with your own board trace and termination models.

Board Trace and Termination Block

* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description

wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

6-30 I/O Buffer Instantiation
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Stimulus Model
The stimulus model block of the simulation spice deck is provided only as a place holder example. Replace
this block with your own stimulus model. Options for this include an IBIS or HSPICE model, among
others.

Stimulus Model Block

* Sample source stimulus placeholder
* - Replace this with your I/O driver model

Vsource source 0 pulse(0 vcn 0s 0.4ns 0.4ns 8.5ns 17.4ns)

Simulation Analysis
The simulation analysis block of the simulation file is configured to measure the propagation delay from
the source to the FPGA pin. Both the source and end point of the delay are referenced against the 50%
VCCN crossing point of the waveform.

Simulation Analysis Block

* Simulation Analysis Setup

* Print out the voltage waveform at both the source and the pin
.print tran v(source) v(pin)
.tran 0.020ns 17ns

* Measure the propagation delay from the source pin to the pin
* referenced against the 50% voltage threshold crossing point

.measure TRAN tpd_rise TRIG v(source) val=’vcn*0.5’ rise=1
+ TARG v(pin) val =’vcn*0.5’ rise=1
.measure TRAN tpd_fall TRIG v(source) val=’vcn*0.5’ fall=1
+ TARG v(pin) val =’vcn*0.5’ fall=1

Sample Output for I/O HSPICE Simulation Deck
A typical HSPICE simulation SPICE deck for an I/O-type output has several sections. Each section
presents the simulation file one block at a time.

Header Comment
The first block of an output simulation SPICE deck is the header comment. The purpose of this block is to
provide a readable summary of how the simulation file has been automatically configured by the Quartus
Prime software.

This block has two main components:

• The first component summarizes the I/O configuration relevant information such as device, speed
grade, and so on.

• The second component specifies the exact test condition that the Quartus Prime software assumes
when generating tCO delay numbers. This information is used as part of the double-counting
correction circuitry contained in the simulation file.

The SPICE decks are preconfigured to calculate the slow process corner delay but can also be used to
simulate the fast process corner as well. The fast corner conditions are listed in the header under the notes
section.

QPS5V2
2015.11.02 Stimulus Model 6-31

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The final section of the header comment lists any warning messages that you must consider when you use
the SPICE decks.

 Header Comment Block

* Quartus Prime HSPICE Writer I/O Simulation Deck
*
* This spice simulation deck was automatically generated by
* Quartus Prime for the following IO settings:
*
* Device: EP2S60F1020C3
* Speed Grade: C3
* Pin: AA4 (out96)
* Bank: IO Bank 6 (Row I/O)
* I/O Standard: LVTTL, 12mA
* OCT: Off
*
* Quartus’ default I/O timing delays assume the following slow
* corner simulation conditions.
* Specified Test Conditions For Quartus Prime Tco
* Temperature: 85C (Slowest Temperature Corner)
* Transistor Model: TT (Typical Transistor Corner)
* Vccn: 3.135V (Vccn_min = Nominal - 5%)
* Vccpd: 2.97V (Vccpd_min = Nominal - 10%)
* Load: No Load
* Vtt: 1.5675V (Voltage reference is Vccn/2)
* For C3 devices, the TT transistor corner provides an
* approximation for worst case timing. However, for functionality
* simulations, it is recommended that the SS corner be simulated
* as well.
*
* Note: The I/O transistors are specified to operate at least as
* fast as the TT transistor corner, actual production
* devices can be as fast as the FF corner. Any simulations
* for hold times should be conducted using the fast process
* corner with the following simulation conditions.
* Temperature: 0C (Fastest Commercial Temperature Corner **)
* Transistor Model: FF (Fastest Transistor Corner)
* Vccn: 1.98V (Vccn_hold = Nominal + 10%)
* Vccpd: 3.63V (Vccpd_hold = Nominal + 10%)
* Vtt: 0.95V (Vtt_hold = Vccn/2 - 40mV)
* Vcc: 1.25V (Vcc_hold = Maximum Recommended)
* Package Model: Short-circuit from pad to pin
* Warnings:

Simulation Conditions
The simulation conditions block loads the appropriate process corner models for the transistors. This
condition is automatically set up for the slow timing corner and must be modified only if other simulation
corners are desired.

Simulation Conditions Block

* Process Settings

.options brief

.inc ‘sii_tt.inc’ * typical-typical process corner

Note: Two separate corners cannot be simulated at the same time. Instead, simulate the base case using
the Quartus corner as one simulation and then perform a second simulation using the desired
customer corner. The results of the two simulations can be manually added together.

6-32 Simulation Conditions
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulation Options
The simulation options block configures the simulation temperature and configures HSPICE with typical
simulation options.

Simulation Options Block

* Simulation Options
.options brief=0
.options badchr co=132 scale=1e-6 acct ingold=2 nomod dv=1.0
+ dcstep=1 absv=1e-3 absi=1e-8 probe csdf=2 accurate=1
+ converge=1
.temp 85

Note: For a detailed description of these options, consult your HSPICE manual.

Constant Definition
The constant definition block of the output simulation SPICE deck instantiates the voltage sources that
controls the configuration modes of the I/O buffer.

Constant Definition Block

* Constant Definition

voeb oeb 0 0 * Set to 0 to enable buffer output
vopdrain opdrain 0 0 * Set to vc to enable open drain
vrambh rambh 0 0 * Set to vc to enable bus hold
vrpullup rpullup 0 0 * Set to vc to enable weak pullup
vpci rpci 0 0 * Set to vc to enable pci mode
vpcdp4 rpcdp4 0 rp4 * These control bits set the IO standard
vpcdp3 rpcdp3 0 rp3
vpcdp2 rpcdp2 0 rp2
vpcdp1 rpcdp1 0 rp1
vpcdp0 rpcdp0 0 rp0
vpcdn4 rpcdn4 0 rn4
vpcdn3 rpcdn3 0 rn3
vpcdn2 rpcdn2 0 rn2
vpcdn1 rpcdn1 0 rn1
vpcdn0 rpcdn0 0 rn0
vdin din 0 pulse(0 vc 0s 0.2ns 0.2ns 8.5ns 17.4ns)

Where:

• Voltage source voeb controls the output enable of the buffer.
• vopdrain controls the open drain mode for the I/O.
• vrambh controls the bus hold circuitry in the I/O.
• vrpullup controls the weak pullup.
• vpci controls the PCI clamp.
• The next ten voltage sources control the I/O standard of the buffer and are configured through a later

library call.
• vdin is connected to the data input of the I/O buffer.
• The edge rate of the input stimulus is automatically set to the correct value by the Quartus Prime

software.

I/O Buffer Netlist
The I/O buffer netlist block loads all of the models required for the corresponding pin. These include a
model for the I/O output buffer, as well as any loads that might be present on the pin.

QPS5V2
2015.11.02 Simulation Options 6-33

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 I/O Buffer Netlist Block

*IO Buffer Netlist

.include ‘hio_buffer.inc’

.include ‘lvds_input_load.inc’

.include ‘lvds_oct_load.inc’

Drive Strength
The drive strength block of the simulation spice deck loads the configuration bits for configuring the I/O
to the proper I/O standard and drive strength. These options are set by the HSPICE Writer tool and are
not changed for expected use.

Drive Strength Block

* Drive Strength Settings

.lib ‘drive_select_hio.lib’ 3p3ttl_12ma

Slew Rate and Delay Chain
Stratix and Cyclone devices have sections for configuring the slew rate and delay chain settings.

 Slew Rate and Delay Chain Settings

* Programmable Output Delay Control Settings

.lib ‘lib/output_delay_control.lib’ no_delay

* Programmable Slew Rate Control Settings

.lib ‘lib/slew_rate_control.lib’ slow_slow

I/O Buffer Instantiation
The I/O buffer instantiation block of the output simulation spice deck instantiates the necessary power
supplies and I/O model components that are necessary to simulate the given I/O.

 I/O Buffer Instantiation Block

* I/O Buffer Instantiation

* Supply Voltages Settings
.param vcn=3.135
.param vpd=2.97
.param vc=1.15

* Instantiate Power Supplies
vvcc vcc 0 vc * FPGA core voltage
vvss vss 0 0 * FPGA core ground
vvccn vccn 0 vcn * IO supply voltage
vvssn vssn 0 0 * IO ground
vvccpd vccpd 0 vpd * Pre-drive supply voltage

* Instantiate I/O Buffer
xhio_buf din oeb opdrain die rambh
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup vccn vccpd vcpad0 hio_buf

6-34 Drive Strength
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

* Internal Loading on Pad
* - This pad has an LVDS input buffer connected to it, along
* with differential OCT circuitry. Both are disabled but
* introduce loading on the pad that is modeled below.
xlvds_input_load die vss vccn lvds_input_load
xlvds_oct_load die vss vccpd vccn vcpad0 vccn lvds_oct_load

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

Board and Trace Termination
The board trace and termination block of the simulation SPICE deck is provided only as an example.
Replace this block with your specific board loading models.

Board Trace and Termination Block

* I/O Board Trace And Termination Description
* - Replace this with your board trace and termination description
wtline pin vssn load vssn N=1 L=1 RLGCMODEL=tlinemodel
.MODEL tlinemodel W MODELTYPE=RLGC N=1 Lo=7.13n Co=2.85p
Rterm2 load vssn 1x

Double-Counting Compensation Circuitry
The double-counting compensation circuitry block of the simulation SPICE deck instantiates a second
I/O buffer that is used to measure double-counting. The buffer is configured identically to the user I/O
buffer but is connected to the Quartus Prime software test load. The simulated delay of this second buffer
can be interpreted as the amount of double-counting between the Quartus Prime software and
HSPICE Writer simulated results.

As the amount of double-counting is constant for a given I/O standard on a given pin, consider separating
the double-counting circuitry from the simulation file. In doing so, you can perform any number of I/O
simulations while referencing the delay only once.

 (Part of)Double-Counting Compensation Circuitry Block

* Double Counting Compensation Circuitry
*
* The following circuit is designed to calculate the amount of
* double counting between Quartus Prime and the HSPICE models. If
* you have not changed the default simulation temperature or
* transistor corner the double counting will be automatically
* compensated by this spice deck. In the event you wish to
* simulate an IO at a different temperature or transistor corner
* you will need to remove this section of code and manually
* account for double counting. A description of Altera’s
* recommended procedure for this process can be found in the
* Quartus Prime HSPICE Writer AppNote.
*

* Supply Voltages Settings
.param vcn_tl=3.135
.param vpd_tl=2.97

* Test Load Constant Definition
vopdrain_tl opdrain_tl 0 0
vrambh_tl rambh_tl 0 0

QPS5V2
2015.11.02 Board and Trace Termination 6-35

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

vrpullup_tl rpullup_tl 0 0

* Instantiate Power Supplies
vvccn_tl vccn_tl 0 vcn_tl
vvssn_tl vssn_tl 0 0
vvccpd_tl vccpd_tl 0 vpd_tl

* Instantiate I/O Buffer
xhio_testload din oeb opdrain_tl die_tl rambh_tl
+ rpcdn4 rpcdn3 rpcdn2 rpcdn1 rpcdn0
+ rpcdp4 rpcdp3 rpcdp2 rpcdp1 rpcdp0
+ rpullup_tl vccn_tl vccpd_tl vcpad0_tl hio_buf

* Internal Loading on Pad
xlvds_input_testload die_tl vss vccn_tl lvds_input_load
xlvds_oct_testload die_tl vss vccpd_tl vccn_tl vcpad0_tl vccn_tl
lvds_oct_load

* I/O Buffer Package Model
* - Single-ended I/O standard on a Row I/O
.lib ‘lib/package.lib’ hio
xpkg die pin hio_pkg

* Default Altera Test Load
* - 3.3V LVTTL default test condition is an open load

Related Information
The Double Counting Problem in HSPICE Simulations on page 6-17

Simulation Analysis
The simulation analysis block is set up to measure double-counting corrected delays. This is accomplished
by measuring the uncompensated delay of the I/O buffer when connected to the user load, and when
subtracting the simulated amount of double-counting from the test load I/O buffer.

Simulation Analysis Block

*Simulation Analysis Setup

* Print out the voltage waveform at both the pin and far end load
.print tran v(pin) v(load)
.tran 0.020ns 17ns

* Measure the propagation delay to the load pin. This value will
* include some double counting with Quartus Prime’s Tco
.measure TRAN tpd_uncomp_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(load) val=’vcn*0.5’ rise=1
.measure TRAN tpd_uncomp_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(load) val=’vcn*0.5’ fall=1

* The test load buffer can calculate the amount of double counting
.measure TRAN t_dblcnt_rise TRIG v(din) val=’vc*0.5’ rise=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ rise=1
.measure TRAN t_dblcnt_fall TRIG v(din) val=’vc*0.5’ fall=1
+ TARG v(pin_tl) val=’vcn_tl*0.5’ fall=1

* Calculate the true propagation delay by subtraction
.measure TRAN tpd_rise PARAM=’tpd_uncomp_rise-t_dblcnt_rise’
.measure TRAN tpd_fall PARAM=’tpd_uncomp_fall-t_dblcnt_fall’

6-36 Simulation Analysis
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Advanced Topics
The information in this section describes some of the more advanced topics and methods employed when
setting up and running HSPICE simulation files.

PVT Simulations
The automatically generated HSPICE simulation files are set up to simulate the slow process corner using
low voltage, high temperature, and slow transistors. To ensure a fully robust link, Altera recommends that
you run simulations over all process corners.

To perform process, voltage, and temperature (PVT) simulations, manually modify the spice decks in a
two step process:

1. Remove the double-counting compensation circuitry from the simulation file. This is required as the
amount of double-counting is dependant upon how the Quartus Prime software calculates delays and
is not based on which PVT corner is being simulated. By default, the Quartus Prime software provides
timing numbers using the slow process corner.

2. Select the proper corner for the PVT simulation by setting the correct HSPICE temperature, changing
the supply voltage sources, and loading the correct transistor models.

A more detailed description of HSPICE process corners can be found in the family-specific HSPICE
model documentation.

Related Information
Accessing HSPICE Simulation Kits on page 6-17

Hold Time Analysis
Altera recommends performing worst-case hold time analysis using the fast corner models, which use fast
transistors, high voltage, and low temperature. This involves modifying the SPICE decks to select the
correct temperature option, change the supply voltage sources, and load the correct fast transistor models.
The values of these parameters are located in the header comment section of the corresponding
simulation deck files.

For a truly worst-case analysis, combine the HSPICE Writer hold time analysis results with the Quartus
Prime software fast timing model. This requires that you change the double-counting compensation
circuitry in the simulations files to also simulate the fast process corners, as this is what the Quartus Prime
software uses for the fast timing model.

Note: This method of hold time analysis is recommended only for globally synchronous buses. Do not
apply this method of hold-time analysis to source synchronous buses. This is because the source
synchronous clocking scheme is designed to cancel out some of the PVT timing effects. If this is
not taken into account, the timing results will not be accurate. Proper source synchronous timing
analysis is beyond the scope of this document.

I/O Voltage Variations
Use each of the FPGA family datasheets to verify the recommended operating conditions for supply
voltages. For current FPGA families, the maximum recommended voltage corresponds to the fast corner,
while the minimum recommended voltage corresponds to the slow corner. These voltage
recommendations are specified at the power pins of the FPGA and are not necessarily the same voltage
that are seen by the I/O buffers due to package IR drops.

The automatically generated HSPICE simulation files model this IR effect pessimistically by including a
50-mV IR drop on the VCCPD supply when a high drive strength standard is being used.

QPS5V2
2015.11.02 Advanced Topics 6-37

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Correlation Report
Correlation reports for the HSPICE I/O models are located in the family-specific HSPICE I/O buffer
simulation kits.

Related Information
Accessing HSPICE Simulation Kits on page 6-17

Document Revision History

Table 6-2: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 Updated format.

December
2010

10.0.1 Template update.

July 2010 10.0.0 Updated device support.

November
2009

9.1.0 No change to content.

March 2009 9.0.0 • Was volume 3, chapter 12 in the 8.1.0 release.
• No change to content.

November
2008

8.1.0 • Changed to 8-1/2 x 11 page size.
• Added information for Stratix III devices.
• Input signals for Cyclone III devices are supported.

6-38 Correlation Report
QPS5V2

2015.11.02

Altera Corporation Signal Integrity Analysis with Third-Party Tools

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

May 2008 8.0.0 • Updated “Introduction” on page 12–1.
• Updated Figure 12–1.
• Updated Figure 12–3.
• Updated Figure 12–13.
• Updated “Output File Generation” on page 12–6.
• Updated “Simulation with HSPICE Models” on page 12–17.
• Updated “Invoking HSPICE Writer from the Command Line” on

page 12–22.
• Added “Sample Input for I/O HSPICE Simulation Deck” on page 12–

29.
• Added “Sample Output for I/O HSPICE Simulation Deck” on page 12–

33.
• Updated “Correlation Report” on page 12–41.
• Added hyperlinks to referenced documents and websites throughout

the chapter.
• Made minor editorial updates.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 6-39

Signal Integrity Analysis with Third-Party Tools Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Signal%20Integrity%20Analysis%20with%20Third-Party%20Tools%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Mentor Graphics PCB Design Tools Support 7
2015.11.02

QPS5V2 Subscribe Send Feedback

You can integrate the Mentor Graphics® I/O Designer or DxDesigner PCB design tools into the Quartus
Prime design flow. This combination provides a complete FPGA-to-board design workflow.

With today’s large, high-pin-count and high-speed FPGA devices, good and correct PCB design practices
are essential to ensure correct system operation. The PCB design takes place concurrently with the design
and programming of the FPGA. The FPGA or ASIC designer initially creates signal and pin assignments,
and the board designer must correctly transfer these assignments to the symbols in their system circuit
schematics and board layout. As the board design progresses, Altera recommends reassigning pins to
optimize the PCB layout. Ensure that you inform the FPGA designer of the pin reassignments so that the
new assignments are included in an updated placement and routing of the design.

The Mentor Graphics I/O Designer software allows you to take advantage of the full FPGA symbol design,
creation, editing, and back-annotation flow supported by the Mentor Graphics tools.

This chapter covers the following topics:

• Mentor Graphics and Altera software integration flow
• Generating supporting files
• Adding Quartus Prime I/O assignments to I/O Designer
• Updating assignment changes between the I/O Designer the Quartus Prime software
• Generating I/O Designer symbols
• Creating DxDesigner symbols from the Quartus Prime output files

This chapter is intended for board design and layout engineers who want to start the FPGA board integra‐
tion while the FPGA is still in the design phase. Alternatively, the board designer can plan the FPGA pin-
out and routing requirements in the Mentor Graphics tools and pass the information back to the Quartus
Prime software for placement and routing. Part librarians can also benefit from this chapter by learning
how to use output from the Quartus Prime software to create new library parts and symbols.

The procedures in this chapter require the following software:

• The Quartus Prime software version 5.1 or later
• DxDesigner software version 2004 or later
• Mentor Graphics I/O Designer software (optional)

Note: To obtain and license the Mentor Graphics tools and for product information, support, and
training, refer to the Mentor Graphics website.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

FPGA-to-PCB Design Flow
You can create a design flow integrating an Altera® FPGA design from the Quartus Prime software, and a
circuit schematic in the DxDesigner software.

Figure 7-1: Design Flow with and Without the I/O Designer Software

No

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create/Update I/O
 Designer Database

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File (.fx)

Compile and Run
EDA Netlist Writer

Start FPGA Design Start PCB Design

End

Quartus Prime Software

Using I/O
Designer?

Import Pin
Assignments

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

Board Layout Tool

Back-Annotate
Changes

.fx

.pin

Yes

(1)

Layout & Route
FPGA

Changes?

Yes

No

7-2 FPGA-to-PCB Design Flow
QPS5V2

2015.11.02

Altera Corporation Mentor Graphics PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Quartus Prime software generates the .fx in the output directory you specify in the Board-
Level page of the Settings dialog box. However, the Quartus Prime software and the I/O Designer
software can import pin assignments from an .fx located in any directory. Use a backup .fx to
prevent overwriting existing assignments or importing invalid assignments.

To integrate the I/O Designer into your design flow, follow these steps:

1. In the Quartus Prime software, click Assignments > Settings > EDA Tool Settings > Board-Level to
specify settings for .fx symbol file generation.

2. Compile your design to generate the .fx and Pin-Out File (.pin) in the Quartus Prime project
directory.

3. Create a board design with the DxDesigner software and the I/O Designer software by performing the
following steps:

a. Create a new I/O Designer database based on the .fx and the .pin files.
b. In the I/O Designer software, make adjustments to signal and pin assignments.
c. Regenerate the .fx in the I/O Designer software to export the I/O Designer software changes to the

Quartus Prime software.
d. Generate a single or fractured symbol for use in the DxDesigner software.
e. Add the symbol to the sym directory of a DxDesigner project, or specify a new DxDesigner project

with the new symbol.
f. Instantiate the symbol in your DxDesigner schematic and export the design to the board layout

tool.
g. Back-annotate pin changes created in the board layout tool to the DxDesigner software and back to

the I/O Designer software and the Quartus Prime software.
4. Create a board design with the DxDesigner software without the I/O Designer software by performing

the following steps:

a. Create a new DxBoardLink symbol with the Symbol wizard and reference the .pin from the
Quartus Prime software in an existing DxDesigner project.

b. Instantiate the symbol in your DxDesigner schematic and export the design to a board layout tool.

Note: You can update these symbols with design changes with or without the I/O Designer software. If
you use the Mentor Graphics I/O Designer software and you change symbols with the DxDesigner
software, you must reimport the symbols into I/O Designer to avoid overwriting your symbol
changes.

Integrating with I/O Designer
You can integrate the Mentor Graphics I/O Designer software into the Quartus Prime design flow. Pin
and signal assignment changes can be made anywhere in the design flow with either the Quartus Prime
Pin Planner or the I/O Designer software. The I/O Designer software facilitates moving these changes, as
well as synthesis, placement, and routing changes, between the Quartus Prime software, an external
synthesis tool (if used), and a schematic capture tool such as the DxDesigner software.

This section describes how to use the I/O Designer software to transfer pin and signal assignment
information to and from the Quartus Prime software with an .fx, and how to create symbols for the
DxDesigner software.

QPS5V2
2015.11.02 Integrating with I/O Designer 7-3

Mentor Graphics PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-2: I/O Designer Design Flow

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.fx

.pin

(2)

(2)

End

Board Layout Tool

Back-Annotate
Changes

Layout and Route
FPGA

Changes?

Yes

No

Note: (2) DxDesigner software-specific steps in the design flow are not part of the I/O Designer flow.

Generating Pin Assignment Files
You transfer I/O pin assignments from the Quartus Prime software to the Mentor Graphics PCB tools by
generating optional .pin and .fx files during Quartus Prime compilation. These files contain pin
assignment information for use in other tools. Click Assignments > Settings > Board-Level to specify
settings for optional PCB tool file generation. Click Processing > Start Compilation to compile the
design to generate the file(s) in the project directory.

The Quartus Prime-generated .pin contains the I/O pin name, number, location, direction, and I/O
standard for all used and unused pins in the design. Click Assignments > Pin Planner to modify I/O pin

7-4 Generating Pin Assignment Files
QPS5V2

2015.11.02

Altera Corporation Mentor Graphics PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

assignments. You cannot import pin assignment changes from a Mentor Graphics .pin into the Quartus
Prime software.

The .fx is an input or output of either the Quartus Prime or I/O Designer software. You can generate
an .fx in the Quartus Prime software for symbol generation in the Mentor Graphics I/O Designer
software. A Quartus Prime .fx contains the pin name, number, location, direction, I/O standard, drive
strength, termination, slew rate, IOB delay, and differential pins. An I/O Designer .fx additionally
includes information about unused pins and pin set groups.

The I/O Designer software can also read from or update a Quartus Prime Settings File (.qsf). You can use
the .qsf in the same way as use of the .fx, but pin swap group information does not transfer between I/O
Designer and the Quartus Prime software. Use the .fx rather than the .qsf for transferring I/O assignment
information.

Figure 7-3: Generating .pin and .fx files

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus Prime Software

Import Pin
Assignments

.fx

.pin

I/O Designer Settings
You can directly export I/O Designer symbols to the DxDesigner software. To set options for integrating
I/O Designer with Dx Designer, follow these steps:

1. Start the I/O Designer software.
2. Click Tools > Prefences.
3. Click Paths, and then double-click the DxDesigner executable file path field to select the location of

the DxDesigner application.
4. Click Apply.
5. Click Symbol Editor, and then click Export. In the Export type menu, under General, select

DxDesigner/PADS-Designer.
6. Click Apply, and then click OK.

QPS5V2
2015.11.02 I/O Designer Settings 7-5

Mentor Graphics PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Click File > Properties.
8. Click the PCB Flow tab, and then click Path to a DxDesigner project directory.
9. Click OK.

If you do not have a new DxDesigner project in the Database wizard and a DxDesigner project, you
must create a new database with the DxDesigner software, and then specify the project location in I/O
Designer.

Transferring I/O Assignments
You can transfer Quartus Prime signal and pin assignments contained in .pin and .fx files into an I/O
Designer database. Use the I/O Designer Database Wizard to create a new database incorporating the .fx
and .pin files. You can also create a new, empty database and manually add the assignment information. If
there is no available signal or pin assignment information, you can create an empty database containing
only a selection of the target device. This technique is useful if you know the signals in your design and
the pins you want to assign. You can subsequently transfer this information to the Quartus Prime
software for placement and routing.

Before you begin

You may create a very simple I/O Designer database that includes only the .pin or .fx file information.
However, when using only a .pin, you cannot import I/O assignment changes from I/O Designer back
into the Quartus Prime software without also generating an .fx. If your I/O Designer database includes
only .fx file information, the database may not contain all the available I/O assignment information. The
Quartus Prime .fx file only lists assigned pins. The .pin lists all assigned and unassigned device pins. Use
both the .pin and the .fx to produce the most complete set of I/O Designer database information.

To create a new I/O Designer database using the Database wizard, follow these steps;

1. Start the I/O Designer software. The Welcome to I/O Designer dialog box appears. Select Wizard to
create new database and click OK.
If the Welcome to I/O Designer dialog box does not appear, you can access the wizard through the
menu. To access the wizard, click File > Database Wizard.

2. Click Next. The Define HDL source file page appears
If no HDL files are available, or if the .fx contains your signal and pin assignments, you can skip Step 3
and proceed to Step 4.

3. If your design includes a Verilog HDL or VHDL file, you can add a top-level Verilog HDL or VHDL
file in the I/O Designer software. Adding a file allows you to create functional blocks or get signal
names from your design. You must create all physical pin assignments in I/O Designer if you are not
using an .fx or a .pin. Click Next. The Database Name page appears.

4. In the Database Name page, type your database file name. Click Next. The Database Location window
appears.

5. Add a path to the new or an existing database in the Location field, or browse to a database location.
Click Next. The FPGA flow page appears.

6. In the Vendor menu, click Altera.
7. In the Tool/Library menu, click Quartus Prime <version> to select your version of the Quartus Prime

software.

Note: The Quartus Prime software version listed may not match your actual software version. If your
version is not listed, select the latest version. If your target device is not available, the device may
not yet be supported by the I/O Designer software.

7-6 Transferring I/O Assignments
QPS5V2

2015.11.02

Altera Corporation Mentor Graphics PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Select the appropriate device family, device, package, and speed (if applicable), from the corresponding
menus. Click Next. The Place and route page appears.

9. In the FPGAX file name field, type or browse to the backup copy of the .fx generated by the Quartus
Prime software.

10.In the Pin report file name field, type or browse to the .pin generated by the Quartus Prime software.
Click Next.
You can also select a .qsf for update. The I/O Designer software can update the pin assignment
information in the .qsf without affecting any other information in the file.

Note: You can import a .pin without importing an .fx. The I/O Designer software does not generate
a .pin. To transfer assignment information to the Quartus Prime software, select an additional
file and file type. Altera recommends selecting an .fx in addition to a .pin for transferring all the
assignment information in the .fx and .pin files. In some versions of the I/O Designer software,
the standard file picker may incorrectly look for a .pin instead of an .fx. In this case, select All
Files (*.*) from the Save as type list and select the file from the list.

11.On the Synthesis page, specify an external synthesis tool and a synthesis constraints file for use with
the tool. If you do not use an external synthesis tool, click Next.

12.On the PCB Flow page, you can select an existing schematic project or create a new project as a symbol
information destination.

• To select an existing project, select Choose existing project and click Browse after the Project Path
field. The Select project dialog box appears. Select the project.

• To create a new project, in the Select project dialog box, select Create new empty project. Type the
project file name in the Name field and browse to the location where you want to save the file. Click
OK.

13.If you have not specified a design tool to which you can send symbol information in the I/O Designer
software, click Advanced in the PCB Flow page and select your design tool. If you select the
DxDesigner software, you have the option to specify a Hierarchical Occurrence Attributes (.oat) file to
import into the I/O Designer software. Click Next and then click Finish to create the
database.Updating

Updating I/O Designer with Quartus Prime Pin Assignments
As you fine tune your design in the Quartus Prime software, changes to design logic and pin assignments
are likely. You must transfer any pin assignment changes made during design iterations for correct
analysis in your circuit schematic and board layout tools. You transfer Quartus Prime pin assignment
changes to I/O Designer by updating the .fx and the .pin files in the Quartus Prime software. When you
update the .fx or the .pin, the I/O Designer database imports the changes automatically when configured
according to the following instructions.

QPS5V2
2015.11.02 Updating I/O Designer with Quartus Prime Pin Assignments 7-7

Mentor Graphics PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before you begin

Figure 7-4: Updating Quartus Prime Pin Assignments in I/O Designer

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

.fx

.pin

To update the .fx in your selected output directory and the .pin in your project directory after making
changes to the design, perform the following tasks:

1. In the I/O Designer software, click File > Properties.
2. Under FPGA Xchange, specify the .fx file name and location.
3. Under Place and Route, specify the .pin file name and location.

After you have set up these file locations, the I/O Designer software monitors these files for changes. If
the specified .fx or .pin is modified during design processing, three indicators flash red in the lower
right corner of the I/O Designer GUI. You can click the indicators to open the I/O Designer Update
Wizard dialog box. The I/O Designer Update Wizard dialog box lists the updated files in the
database.

4. Make logic or pin assignment changes in your design.
5. Click Processing > Start > Start I/O Assignment Analysis to validate your latest assignment changes.
6. To preserve your changes an update the corresponding the .fx and .pin files, click Processing > Start >

Start EDA Netlist Writer or Processing > Start Compilation.

Note: Your I/O Designer database should us a backup copy of the .fx generated by the Quartus Prime
software. Otherwise, updating the file in the Quartus Prime software overwrites any changes
made to the file by the I/O Designer software. If there are I/O Designer assignments in the .fx
that you want to preserve, create a backup copy of the file before updating it in the Quartus
Prime software, and verify that your I/O Designer database points to the backup copy.

Updating Quartus Prime with I/O Designer Pin Assignments
As you fine tune your board design in I/O Designer, changes to signal routing and layout are likely. You
must import any routing and layout changes into the Quartus Prime software for accurate place and route
to match the new pin-out. The I/O Designer tool supports this flow.

7-8 Updating Quartus Prime with I/O Designer Pin Assignments
QPS5V2

2015.11.02

Altera Corporation Mentor Graphics PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before you begin

Figure 7-5: Importing I/O Designer Pin Assignments

(2)

I/O Designer

Regenerate .fx

Create or Change
Pin Assignments

Create or Update
 .fpc

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
.fx

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus Prime Software

Import Pin
Assignments

.fx

(1) (1)

To import I/O Designer pin assignments, follow these steps:

1. Make pin assignment changes directly in the I/O Designer software, or the software can automatically
update changes made in a board layout tool that are back-annotated to a schematic entry program
such as the DxDesigner software.

2. To update the .fx with the changes, click Generate > FPGA Xchange File.
3. Open your Quartus Prime project.
4. Click Assignments > Import Assignments.
5. (Optional) To preserve original assignments before import, turn on Copy existing assignments into

<project name>.qsf.bak before importing before importing the .fx.
6. Select the .fx and click Open.
7. Click OK.

Generating Schematic Symbols in I/O Designer
Circuit board schematic creation is one of the first tasks required in the design of a new PCB. You can use
the I/O Designer software to generate schematic symbols for your Quartus Prime FPGA design for use in
the DXDesigner schematic entry tools. The I/O Designer software can generate symbols for use in various
Mentor Graphics schematic entry tools, and can import changes back-annotated by board layout tools to
update the database and update the Quartus Prime software with the .fx

Most FPGA devices contain hundreds of pins, requiring large schematic symbols that may not fit on a
single schematic page. Symbol designs in the I/O Designer software can be split or fractured into various
functional blocks, allowing multiple part fractures on the same schematic page or across multiple pages.
In the DxDesigner software, these part fractures join together with the use of the HETERO attribute.

QPS5V2
2015.11.02 Generating Schematic Symbols in I/O Designer 7-9

Mentor Graphics PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the I/O Designer Symbol wizard to quickly create symbols that you can subsequently refine.
Alternatively, you can import symbols from another DXDesigner project, and then assign an FPGA to the
symbol. To import symbols in the I/O Designer software, File > Import Symbol.

I/O Designer symbols are either functional, physical (PCB), or both. Signals imported into the database,
usually from Verilog HDL or VHDL files, are the basis of a functional symbol. No physical device pins
must be associated with the signals to generate a functional symbol. This section focuses on board-level
PCB symbols with signals directly mapped to physical device pins through assignments in either the
Quartus Prime Pin Planner or in the I/O Designer database.

Generating Schematic Symbols
To create a symbol based on a selected Altera FPGA device, follow these steps:

1. Start the I/O Designer software.
2. Click Symbol > Symbol Wizard.
3. In the Symbol name field, type the symbol name. The DEVICE and PKG_TYPE fields display the

device and package information.

Note: If DEVICE and PKG_TYPE are blank or incorrect, close the Symbol wizard and specify the
correct device information (File > Properties > FPGA Flow).

4. Under Symbol type, click PCB. Under Use signals, click All, then click Next.
5. Select fracturing options for your symbol. If you are using the Symbol wizard to edit a previously

created fractured symbol, you must turn on Reuse existing fractures to preserve your current
fractures. Select other options on this page as appropriate for your symbol. Click Next.

6. Select additional fracturing options for your symbol. Click Next.
7. Select the options for the appearance of the symbols. Click Next.
8. Define the information you want to label for the entire symbol and for individual pins. Click Next.
9. Add any additional signals and pins to the symbol. Click Finish.

You can view your symbol and any fractures you created with the Symbol Editor. You can edit parts of
the symbol, delete fractures, or rerun the Symbol wizard. When you modify pin assignments in I/O
Designer database, I/O Designer symbols automatically reflect these changes. Modify assignments in
the I/O Designer software by supplying and updated .fx from the Quartus Prime software, or by back-
annotating changes in your board layout tool.

Exporting Schematic Symbols to DxDesigner
You can export your I/O Designer schematic symbols for to DxDesigner for further design entry work. To
generate all fractures of a symbol, click Generate > All Symbols. To generate only the currently displayed
symbol, click Generate > Current Symbol Only. The DxDesigner project /sym directory preserves each
symbol in the database as a separate file. You can instantiate the symbols in your DxDesigner schematics.

Integrating with DxDesigner
You can integrate the Mentor Graphics DxDesigner schematic capture tool into the Quartus Prime design
flow. Use DxDesigner to create flat circuit schematics or to create hierarchical schematics that facilitate
design reuse and a team-based design for all PCB types. Use DxDesigner in conjunction with I/O
Designer software for a complete FPGA I/O and PCB design flow.

If you use DxDesigner without the I/O Designer software, the design flow is one-way, using only the .pin
generated by the Quartus Prime software. You can only make signal and pin assignment changes in the

7-10 Generating Schematic Symbols
QPS5V2

2015.11.02

Altera Corporation Mentor Graphics PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime software. You cannot back-annotate changes made in a board layout tool or in a
DxDesigner symbol to the Quartus Prime software.

Figure 7-6: DxDesigner-only Flow (without I/O Designer)

DxDesigner

Instantiate in
Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.pin

DxDesigner Project Settings
DxDesigner new projects automatically create FPGA symbols by default. However, if you are using the
I/O Designer with DxDesigner, you must enable DxBoardLink Flow options for integration with the I/O
Designer software. To enable the DxBoardLink flow design configuration when creating a new
DxDesigner project, follow these steps:

1. Start the DxDesigner software.
2. Click File > New, and then click the Project tab.
3. Click More. Turn on DxBoardLink. To enable the DxBoardLink Flow design configuration for an

existing project, click Design Configurations in the Design Configuration toolbar and turn on
DxBoardLink.

Creating Schematic Symbols in DxDesigner
You can create schematic symbols in the DxDesigner software manually or with the Symbol wizard. The
DxDesigner Symbol wizard is similar to the I/O Designer Symbol wizard, but with fewer fracturing
options. The DxDesigner Symbol wizard creates, fractures, and edits FPGA symbols based on the
specified Altera device. To create a symbol with the Symbol wizard, follow these steps;

1. Start the DxDesigner software.
2. Click Symbol Wizard in the toolbar.
3. Type the new symbol name in the name field and click OK.
4. Specify creation of a new symbol or modification of an existing symbol. To modify an existing symbol,

specify the library path or alias, and select the existing symbol. To create a new symbol, select
DxBoardLink for the symbol source. The DxDesigner block type defaults to Module because the FPGA
design does not have an underlying DxDesigner schematic. Choose whether or not to fracture the
symbol. Click Next.

5. Type a name for the symbol, an overall part name for all the symbol fractures, and a library name for
the new library created for this symbol. By default, the part and library names are the same as the
symbol name. Click Next.

QPS5V2
2015.11.02 DxDesigner Project Settings 7-11

Mentor Graphics PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Specify the appearance of the generated symbol and how itthe grid you have set in your DxDesigner
project schematic. After making your selections. Click Next.

7. In the FPGA vendor list, select Altera Quartus. In the Pin-Out file to import field, select the .pin
from your Quartus Prime project directory. You can also specify Fracturing Scheme, Bus pin, and
Power pin options. Click Next.

8. Select to create or modify symbol attributes for use in the DxDesigner software. Click Next.
9. On the Pin Settings page, make any final adjustments to pin and label location and information. Each

tabbed spreadsheet represents a fracture of your symbol. Click Save Symbol.
After creating the symbol, you can examine and place any fracture of the symbol in your schematic.
You can locate separate files of all the fractures you created in the library you specified or created in
the /sym directory in your DxDesigner project. You can add the symbols to your schematics or you
can manually edit the symbols or with the Symbol wizard.

Analyzing FPGA Simultaneous Switching Noise (SSN)
With the Quartus Prime software, you can extract pin assignment data and perform SSN analysis of your
design. Perform SSN analysis early in the board layout stage as part of your overall pin planning process.
Use the Quartus Prime SSN Analyzer to optimize the pin assignments for better SSN performance.

Scripting API
The I/O Designer software includes a command line Tcl interpreter. All commands input through the I/O
Designer GUI translate into Tcl commands run by the tool. You can run individual Tcl commands or
scripts in the I/O Designer Console window, rather than using the GUI.

You can use the following Tcl commands to control I/O Designer.

• set_fpga_xchange_file <file name>—specifies the .fx from which the I/O Designer software
updates assignments.

• update_from_fpga_xchange_file—updates the I/O Designer database with assignment updates
from the currently specified .fx.

• generate_fpga_xchange_file—updates the .fx with I/O Designer software changes for transfer back
into the Quartus Prime software.

• set_pin_report_file -quartus_pin <file name>—imports assignment data from a Quartus Prime
software .pin file.

• symbolwizard—runs the I/O Designer Symbol wizard.
• set_dx_designer_project -path <path>

Document Revision History

Table 7-1: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus
Prime.

7-12 Analyzing FPGA Simultaneous Switching Noise (SSN)
QPS5V2

2015.11.02

Altera Corporation Mentor Graphics PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager
information with IP Catalog.

• Added standard information about
upgrading IP cores.

• Added standard installation and licensing
information.

• Removed outdated device support level
information. IP core device support is now
available in IP Catalog and parameter editor.

June 2012 12.0.0 • Removed survey link.

December 2010 10.1.0 • Changed to new document template.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 7-13

Mentor Graphics PCB Design Tools Support Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Cadence PCB Design Tools Support 8
2015.11.02

QPS5V2 Subscribe Send Feedback

Cadence PCB Design Tools Support
The Quartus Prime software interacts with the following software to provide a complete FPGA-to-board
integration design workflow: the Cadence Allegro Design Entry HDL software and the Cadence Allegro
Design Entry CIS (Component Information System) software (also known as OrCAD Capture CIS). The
information is useful for board design and layout engineers who want to begin the FPGA board integra‐
tion process while the FPGA is still in the design phase. Part librarians can also benefit by learning the
method to use output from the Quartus Prime software to create new library parts and symbols.

With today’s large, high-pin-count and high-speed FPGA devices, good PCB design practices are
important to ensure the correct operation of your system. The PCB design takes place concurrently with
the design and programming of the FPGA. An FPGA or ASIC designer initially creates the signal and pin
assignments and the board designer must transfer these assignments to the symbols used in their system
circuit schematics and board layout correctly. As the board design progresses, you must perform pin
reassignments to optimize the layout. You must communicate pin reassignments to the FPGA designer to
ensure the new assignments are processed through the FPGA with updated placement and routing.

You require the following software:

• The Quartus Prime software version 5.1 or later
• The Cadence Allegro Design Entry HDL software or the Cadence Allegro Design Entry CIS software

version 15.2 or later
• The OrCAD Capture software with the optional CIS option version 10.3 or later (optional)

Note: These programs are very similar because the Cadence Allegro Design Entry CIS software is based
on the OrCAD Capture software. Any procedural information can also apply to the OrCAD
Capture software unless otherwise noted.

Related Information

• www.cadence.com
For more information about obtaining and licensing the Cadence tools and for product information,
support, and training

• www.cadence.com
For more information about the OrCAD Capture software and the CIS option

• www.ema-eda.com
For more information about Cadence and OrCAD support and training

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Cadence%20PCB%20Design%20Tools%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.cadence.com/us/pages/default.aspx
http://www.cadence.com
http://www.ema-eda.com
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Product Comparison

Table 8-1: Cadence and OrCAD Product Comparison

Description Cadence Allegro
Design Entry HDL

Cadence Allegro
Design Entry CIS

OrCAD Capture CIS

Former Name Concept HDL Expert Capture CIS Studio —

History More commonly known
by its former name,
Cadence renamed all
board design tools in
2004 under the Allegro
name.

Based directly on
OrCAD Capture CIS,
the Cadence Allegro
Design Entry CIS
software is still
developed by OrCAD
but sold and marketed
by Cadence. EMA
provides support and
training.

The basis for Design
Entry CIS is still
developed by OrCAD
for continued use by
existing OrCAD
customers. EMA
provides support and
training for all
OrCAD products.

Vendor Design Flow Cadence Allegro 600
series, formerly known as
the Expert Series, for
high-end, high-speed
design.

Cadence Allegro 200
series, formerly known
as the Studio Series, for
small- to medium-level
design.

—

Related Information

• www.cadence.com
• www.ema-eda.com

FPGA-to-PCB Design Flow
You can create a design flow integrating an Altera FPGA design from the Quartus Prime software through
a circuit schematic in the Cadence Allegro Design Entry HDL software or the Cadence Allegro Design
Entry CIS software.

8-2 Product Comparison
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

http://www.cadence.com
http://www.ema-eda.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-1: Design Flow with the Cadence Allegro Design Entry HDL Software

Project Manager

Create or Open a Project

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Part Developer

Start FPGA Design Start PCB Design
(Allegro Design Entry HDL)

End

Quartus Prime Software

.pin

Impor t or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or F racture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

F orward to Board Layout Tool

Board Layout Tool

Layout and Route FPGA

Figure 8-2: Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus Prime Software

End

.pin

Instantiate Symbol in Schematic

Create or Open Project

Board Layout Tool

Layout and Route FPGA

Start FPGA Design Start PCB Design
(Allegro Design Entry CIS

Generate or Update Schematic

Edit or Fracture Symbol

Forward to Board Developement Tool

To create FPGA symbols using the Cadence Allegro PCB Librarian Part Developer tool, you must obtain
the Cadence PCB Librarian Expert license. You can update symbols with changes made to the FPGA
design using any of these tools.

QPS5V2
2015.11.02 FPGA-to-PCB Design Flow 8-3

Cadence PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Integrating Altera FPGA Design
To integrate an Altera FPGA design starting in the Quartus Prime software through to a circuit schematic
in the Cadence Allegro Design Entry HDL software or the Cadence Allegro Design Entry CIS software,
follow these steps:

1. In the Quartus Prime software, compile your design to generate a Pin-Out File (.pin) to transfer the
assignments to the Cadence software.

2. If you are using the Cadence Allegro Design Entry HDL software for your schematic design, follow
these steps:
a. Open an existing project or create a new project in the Cadence Allegro Project Manager tool.
b. Construct a new symbol or update an existing symbol using the Cadence Allegro PCB Librarian

Part Developer tool.
c. With the Cadence Allegro PCB Librarian Part Developer tool, edit your symbol or fracture it into

smaller parts (optional).
d. Instantiate the symbol in your Cadence Allegro Design Entry HDL software schematic and transfer

the design to your board layout tool.

or

If you are using the Cadence Allegro Design Entry CIS software for your schematic design, follow
these steps:

e. Generate a new part in a new or existing Cadence Allegro Design Entry CIS project, referencing
the .pin output file from the Quartus Prime software. You can also update an existing symbol with
a new .pin.

f. Split the symbol into smaller parts as necessary.
g. Instantiate the symbol in your Cadence Allegro Design Entry CIS schematic and transfer the design

to your board layout tool.

Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA
With the Quartus Prime software, you can extract pin assignment data and perform SSN analysis of your
FPGA design for designs targeting the Stratix III device family.

You can analyze SSN in your device early in the board layout stage as part of your overall pin planning
process; however, you do not have to perform SSN analysis to generate pin assignment data from the
Quartus Prime software. You can use the SSN Analyzer tool to optimize the pin assignments for better
SSN performance of your device.

Related Information

• Simultaneous Switching Noise (SSN) Analysis and Optimizations on page 3-1

Setting Up the Quartus Prime Software
You can transfer pin and signal assignments from the Quartus Prime software to the Cadence design tools
by generating the Quartus Prime project .pin. The .pin is an output file generated by the Quartus Prime
Fitter containing pin assignment information. You can use the Quartus Prime Pin Planner to set and
change the assignments in the .pin and then transfer the assignments to the Cadence design tools. You

8-4 Integrating Altera FPGA Design
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

cannot, however, import pin assignment changes from the Cadence design tools into the Quartus Prime
software with the .pin.

The .pin lists all used and unused pins on your selected Altera device. The .pin also provides the following
basic information fields for each assigned pin on the device:

• Pin signal name and usage
• Pin number
• Signal direction
• I/O standard
• Voltage
• I/O bank
• User or Fitter-assigned

Related Information

• I/O Management on page 2-1
For more information about using the Quartus Prime Pin Planner to create or change pin assignment
details.

Generating a .pin File
To generate a .pin, follow these steps:

1. Compile your design.
2. Locate the .pin in your Quartus Prime project directory with the name <project name>.pin.

Related Information

• I/O Management on page 2-1
For more information about pin and signal assignment transfer and the files that the Quartus Prime
software can import and export.

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL
Software

The Cadence Allegro Design Entry HDL software is a schematic capture tool and is part of the Cadence
600 series design flow. Use the Cadence Allegro Design Entry HDL software to create flat circuit
schematics for all types of PCB design. The Cadence Allegro Design Entry HDL software can also create
hierarchical schematics to facilitate design reuse and team-based design. With the Cadence Allegro
Design Entry HDL software, the design flow from FPGA-to-board is one-way, using only the .pin
generated by the Quartus Prime software. You can only make signal and pin assignment changes in the
Quartus Prime software and these changes reflect as updated symbols in a Cadence Allegro Design Entry
HDL project.

For more information about the design flow with the Cadence Allegro Design Entry HDL software, refer
to Figure 8-1.

Note: Routing or pin assignment changes made in a board layout tool or a Cadence Allegro Design Entry
HDL software symbol cannot be back-annotated to the Quartus Prime software.

QPS5V2
2015.11.02 Generating a .pin File 8-5

Cadence PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
www.cadence.com
Provides information about the Cadence Allegro Design Entry HDL software and the Cadence Allegro
PCB Librarian Part Developer tool, including licensing, support, usage, training, and product updates.

Creating Symbols
In addition to circuit simulation, circuit board schematic creation is one of the first tasks required when
designing a new PCB. Schematics must understand how the PCB works, and to generate a netlist for a
board layout tool for board design and routing. The Cadence Allegro PCB Librarian Part Developer tool
allows you to create schematic symbols based on FPGA designs exported from the Quartus Prime
software.

You can create symbols for the Cadence Allegro Design Entry HDL project with the Cadence Allegro PCB
Librarian Part Developer tool, which is available in the Cadence Allegro Project Manager tool. Altera
recommends using the Cadence Allegro PCB Librarian Part Developer tool to import FPGA designs into
the Cadence Allegro Design Entry HDL software.

You must obtain a PCB Librarian Expert license from Cadence to run the Cadence Allegro PCB Librarian
Part Developer tool. The Cadence Allegro PCB Librarian Part Developer tool provides a GUI with many
options for creating, editing, fracturing, and updating symbols. If you do not use the Cadence Allegro
PCB Librarian Part Developer tool, you must create and edit symbols manually in the Symbol Schematic
View in the Cadence Allegro Design Entry HDL software.

Note: If you do not have a PCB Librarian Expert license, you can automatically create FPGA symbols
using the programmable IC (PIC) design flow found in the Cadence Allegro Project Manager tool.

Before creating a symbol from an FPGA design, you must open a Cadence Allegro Design Entry HDL
project with the Cadence Allegro Project Manager tool. If you do not have an existing Cadence Allegro
Design Entry HDL project, you can create one with the Cadence Allegro Design Entry HDL software. The
Cadence Allegro Design Entry HDL project directory with the name <project name>.cpm contains your
Cadence Allegro Design Entry HDL projects.

While the Cadence Allegro PCB Librarian Part Developer tool refers to symbol fractures as slots, the other
tools use different names to refer to symbol fractures.

Table 8-2: Symbol Fracture Naming Conventions

Cadence Allegro PCB
Librarian

Part Developer Tool

Cadence Allegro
Design Entry HDL

Software

Cadence Allegro
Design Entry
CIS Software

During symbol generation Slots — Sections

During symbol schematic
instantiation

— Versions Parts

Related Information
www.cadence.com
Provides information about using the PIC design flow.

8-6 Creating Symbols
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

http://www.cadence.com/us/pages/default.aspx
http://www.cadence.com/us/pages/default.aspx
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Cadence Allegro PCB Librarian Part Developer Tool

You can create, fracture, and edit schematic symbols for your designs using the Cadence Allegro PCB
Librarian Part Developer tool. Symbols designed in the Cadence Allegro PCB Librarian Part Developer
tool can be split or fractured into several functional blocks called slots, allowing multiple smaller part
fractures to exist on the same schematic page or across multiple pages.

Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow

.pin
Import or Update Pin

Assignments

Create or Update FPGA
Symbol

Edit or Fracture Symbol

Part Developer

Instantiate Symbol
in Schematic

Forward to Board
Layout Tool

Layout and Route FPGA

Design Entry HDL

Board Layout Tool

End

These steps are not
part of the FPGA symbol
creation or update process.

To run the Cadence Allegro PCB Librarian Part Developer tool, you must open a Cadence Allegro Design
Entry HDL project in the Cadence Allegro Project Manager tool. To open the Cadence Allegro PCB
Librarian Part Developer tool, on the Flows menu, click Library Management, and then click Part
Developer.

Related Information

• FPGA-to-PCB Design Flow on page 8-2

Import and Export Wizard

After starting the Cadence Allegro PCB Librarian Part Developer tool, use the Import and Exportwizard
to import your pin assignments from the Quartus Prime software.

Note: Altera recommends using your PCB Librarian Expert license file. To point to your PCB Librarian
Expert license file, on the File menu, click Change Product and then select the correct product
license.

To access the Import and Export wizard, follow these steps:

1. On the File menu, click Import and Export.
2. Select Import ECO-FPGA, and then click Next.
3. In the Select Source page of the Import and Export wizard, specify the following settings:

QPS5V2
2015.11.02 Cadence Allegro PCB Librarian Part Developer Tool 8-7

Cadence PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. In the Vendor list, select Altera.
b. In the PnR Tool list, select quartusII.
c. In the PR File box, browse to select the .pin in your Quartus Prime project directory.
d. Click Simulation Options to select simulation input files.
e. Click Next.

4. In the Select Destination dialog box, specify the following settings:
a. Under Select Component, click Generate Custom Component to create a new component in a

library,

or

Click Use standard component to base your symbol on an existing component.

Note: Altera recommends creating a new component if you previously created a generic
component for an FPGA device. Generic components can cause some problems with your
design. When you create a new component, you can place your pin and signal assignments
from the Quartus Prime software on this component and reuse the component as a base
when you have a new FPGA design.

b. In the Library list, select an existing library. You can select from the cells in the selected library.
Each cell represents all the symbol versions and part fractures for a particular part. In the Cell list,
select the existing cell to use as a base for your part.

c. In the Destination Library list, select a destination library for the component. Click Next.
d. Review and edit the assignments you import into the Cadence Allegro PCB Librarian Part

Developer tool based on the data in the .pin and then click Finish. The location of each pin is not
included in the Preview of Import Data page of the Import and Export wizard, but input pins are
on the left side of the created symbol, output pins on the right, power pins on the top, and ground
pins on the bottom.

Editing and Fracturing Symbol

After creating your new symbol in the Cadence Allegro PCB Librarian Part Developer tool, you can edit
the symbol graphics, fracture the symbol into multiple slots, and add or change package or symbol
properties.

The Part Developer Symbol Editor contains many graphical tools to edit the graphics of a particular
symbol. To edit the symbol graphics, select the symbol in the cell hierarchy. The Symbol Pins tab appears.
You can edit the preview graphic of the symbol in the Symbol Pins tab.

Fracturing a Cadence Allegro PCB Librarian Part Developer package into separate symbol slots is useful
for FPGA designs. A single symbol for most FPGA packages might be too large for a single schematic
page. Splitting the part into separate slots allows you to organize parts of the symbol by function, creating
cleaner circuit schematics. For example, you can create one slot for an I/O symbol, a second slot for a
JTAG symbol, and a third slot for a power/ground symbol.

8-8 Editing and Fracturing Symbol
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-3: Splitting a Symbol into Multiple Slots

newt

reset

d[7..0] yn_out[7..0]

Slot 1

filtref

filtref

filtref

Slot 2 Slot 3

clk

clkx2

yvalid

follow

VC
CIN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

VC
CIO

1

VC
CIO

2

VC
CIO

3

VC
CIO

4

- This diagram represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for other
devices or other configuration modes may have diff erent sets of configuration pins, but can be fractured in a similar manner.
- The power/ground slot shows only a representation of power and ground pins because the device contains a large number of power
and ground
pins.

To fracture a part into separate slots, or to modify the slot locations of pins on parts fractured in the
Cadence Allegro PCB Librarian Part Developer tool, follow these steps:

1. Start the Cadence Allegro Design Project Manager.
2. On the Flows menu, click Library Management.
3. Click Part Developer.
4. Click the name of the package you want to change in the cell hierarchy.
5. Click Functions/Slots. If you are not creating new slots but want to change the slot location of some

pins, proceed to Step 6. If you are creating new slots, click Add. A dialog box appears, allowing you to
add extra symbol slots. Set the number of extra slots you want to add to the existing symbol, not the
total number of desired slots for the part. Click OK.

6. Click Distribute Pins. Specify the slot location for each pin. Use the checkboxes in each column to
move pins from one slot to another. Click OK.

7. After distributing the pins, click the Package Pin tab and click Generate Symbol(s).
8. Select whether to create a new symbol or modify an existing symbol in each slot. Click OK.

The newly generated or modified slot symbols appear as separate symbols in the cell hierarchy. Each of
these symbols can be edited individually.

Caution: The Cadence Allegro PCB Librarian Part Developer tool allows you to remap pin
assignments in the Package Pin tab of the main Cadence Allegro PCB Librarian Part
Developer window. If signals remap to different pins in the Cadence Allegro PCB Librarian
Part Developer tool, the changes reflect only in regenerated symbols for use in your
schematics. You cannot transfer pin assignment changes to the Quartus Prime software
from the Cadence Allegro PCB Librarian Part Developer tool, which creates a potential
mismatch of the schematic symbols and assignments in the FPGA design. If pin assignment
changes are necessary, make the changes in the Quartus Prime Pin Planner instead of the
Cadence Allegro PCB Librarian Part Developer tool, and update the symbol as described in
the following sections.

For more information about creating, editing, and organizing component symbols with the
Cadence Allegro PCB Librarian Part Developer tool, refer to the Part Developer Help.

QPS5V2
2015.11.02 Editing and Fracturing Symbol 8-9

Cadence PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Updating FPGA Symbols

As the design process continues, you must make logic changes in the Quartus Prime software, placing
signals on different pins after recompiling the design, or use the Quartus Prime Pin Planner to make
changes manually. The board designer can request such changes to improve the board routing and layout.
To ensure signals connect to the correct pins on the FPGA, you must carry forward these types of changes
to the circuit schematic and board layout tools. Updating the .pin in the Quartus Prime software facilitates
this flow.

Figure 8-4: Updating the FPGA Symbol in the Design Flow

Part Developer

End

.pin Import or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(2)
Grayed out steps are not part
of the FPGA symbol update
process.

To update the symbol using the Cadence Allegro PCB Librarian Part Developer tool after updating
the .pin, follow these steps:

1. On the File menu, click Import and Export. The Import and Export wizard appears.
2. In the list of actions to perform, select Import ECO - FPGA. Click Next. The Select Source dialog box

appears.
3. Select the updated source of the FPGA assignment information. In the Vendor list, select Altera. In

the PnR Tool list, select quartusII. In the PR File field, click browse to specify the updated .pin in
your Quartus Prime project directory. Click Next. The Select Destination window appears.

4. Select the source component and a destination cell for the updated symbol. To create a new
component based on the updated pin assignment data, select Generate Custom Component. Selecting
Generate Custom Component replaces the cell listed under the Specify Library and Cell name
header with a new, nonfractured cell. You can preserve these edits by selecting Use standard
component and select the existing library and cell. Select the destination library for the component
and click Next. The Preview of Import Data dialog box appears.

5. Make any additional changes to your symbol. Click Next. A list of ECO messages appears
summarizing the changes made to the cell. To accept the changes and update the cell, click Finish.

6. The main Cadence Allegro PCB Librarian Part Developer window appears. You can edit, fracture, and
generate the updated symbols as usual from the main Cadence Allegro PCB Librarian Part Developer
window.

Note: If the Cadence Allegro PCB Librarian Part Developer tool is not set up to point to your PCB
Librarian Expert license file, an error message appears in red at the bottom of the message text

8-10 Updating FPGA Symbols
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

window of the Part Developer when you select the Import and Export command. To point to your
PCB Librarian Expert license, on the File menu, click Change Product, and select the correct
product license.

Related Information

• FPGA-to-PCB Design Flow on page 8-2

Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software
To instantiate the symbol in your Cadence Allegro Design Entry HDL schematic after saving the new
symbol in the Cadence Allegro PCB Librarian Part Developer tool, follow these steps:

1. In the Cadence Allegro Project Manager tool, switch to the board design flow.
2. On the Flows menu, click Board Design.
3. To start the Cadence Allegro Design Entry HDL software, click Design Entry.
4. To add the newly created symbol to your schematic, on the Component menu, click Add. The Add

Component dialog box appears.
5. Select the new symbol library location, and select the name of the cell you created from the list of cells.

The symbol attaches to your cursor for placement in the schematic. To fracture the symbol into slots,
right-click the symbol and choose Version to select one of the slots for placement in the schematic.

Related Information

• www.cadence.com
Provides more information about the Cadence Allegro Design Entry HDL software, including
licensing, support, usage, training, and product updates.

FPGA-to-Board Integration with Cadence Allegro Design Entry CIS
Software

The Cadence Allegro Design Entry CIS software is a schematic capture tool (part of the Cadence 200
series design flow based on OrCAD Capture CIS). Use the Cadence Allegro Design Entry CIS software to
create flat circuit schematics for all types of PCB design. You can also create hierarchical schematics to
facilitate design reuse and team-based design using the Cadence Allegro Design Entry CIS software. With
the Cadence Allegro Design Entry CIS software, the design flow from FPGA-to-board is unidirectional
using only the .pin generated by the Quartus Prime software. You can only make signal and pin
assignment changes in the Quartus Prime software. These changes reflect as updated symbols in a
Cadence Allegro Design Entry CIS schematic project.

QPS5V2
2015.11.02 Instantiating the Symbol in the Cadence Allegro Design Entry HDL... 8-11

Cadence PCB Design Tools Support Altera Corporation

Send Feedback

http://www.cadence.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-5: Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus Prime Software

End

.pin

Instantiate Symbol in Schematic

Create or Open Project

Board Layout Tool

Layout and Route FPGA

Start FPGA Design Start PCB Design
(Allegro Design Entry CIS

Generate or Update Schematic

Edit or Fracture Symbol

Forward to Board Developement Tool

Note: Routing or pin assignment changes made in a board layout tool or a Cadence Allegro Design Entry
CIS symbol cannot be back-annotated to the Quartus Prime software.

Related Information

• www.cadence.com
For more information about the Cadence Allegro Design Entry CIS software, including licensing,
support, usage, training, and product updates.

• www.ema-eda.com
For more information about the Cadence Allegro Design Entry CIS software, including licensing,
support, usage, training, and product updates.

Creating a Cadence Allegro Design Entry CIS Project
The Cadence Allegro Design Entry CIS software has built-in support for creating schematic symbols using
pin assignment information imported from the Quartus Prime software.

To create a new project in the Cadence Allegro Design Entry CIS software, follow these steps:

1. On the File menu, point to New and click Project. The New Project wizard starts.

When you create a new project, you can select the PC Board wizard, the Programmable Logic wizard,
or a blank schematic.

2. Select the PC Board wizard to create a project where you can select which part libraries to use, or select
a blank schematic.

The Programmable Logic wizard only builds an FPGA logic design in the Cadence Allegro Design Entry
CIS software.

8-12 Creating a Cadence Allegro Design Entry CIS Project
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

http://www.cadence.com/us/pages/default.aspx
http://www.ema-eda.com/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Your new project is in the specified location and consists of the following files:

• OrCAD Capture Project File (.opj)
• Schematic Design File (.dsn)

Generating a Part
After you create a new project or open an existing project in the Cadence Allegro Design Entry CIS
software, you can generate a new schematic symbol based on your Quartus Prime FPGA design. You can
also update an existing symbol. The Cadence Allegro Design Entry CIS software stores component
symbols in OrCAD Library File (.olb). When you place a symbol in a library attached to a project, it is
immediately available for instantiation in the project schematic.

You can add symbols to an existing library or you can create a new library specifically for the symbols
generated from your FPGA designs. To create a new library, follow these steps:

1. On the File menu, point to New and click Library in the Cadence Allegro Design Entry CIS software to
create a default library named library1.olb. This library appears in the Library folder in the Project
Manager window of the Cadence Allegro Design Entry CIS software.

2. To specify a desired name and location for the library, right-click the new library and select Save As.
Saving the new library creates the library file.

Generating Schematic Symbol
You can now create a new symbol to represent your FPGA design in your schematic.

To generate a schematic symbol, follow these steps:

1. Start the Cadence Allegro Design Entry CIS software.
2. On the Tools menu, click Generate Part. The Generate Part dialog box appears.
3. To specify the .pin from your Quartus Prime design, in the Netlist/source file type field, click Browse.
4. In the Netlist/source file type list, select Altera Pin File
5. Type the new part name.
6. Specify the Destination part library for the symbol. Failing to select an existing library for the part

creates a new library with a default name that matches the name of your Cadence Allegro Design Entry
CIS project.

7. To create a new symbol for this design, select Create new part. If you updated your .pin in the Quartus
Prime software and want to transfer any assignment changes to an existing symbol, select Update pins
on existing part in library.

8. Select any other desired options and set Implementation type to <none>. The symbol is for a
primitive library part based only on the .pin and does not require special implementation. Click OK.

9. Review the Undo warning and click Yes to complete the symbol generation.

You can locate the generated symbol in the selected library or in a new library found in the Outputs
folder of the design in the Project Manager window. Double-click the name of the new symbol to see
its graphical representation and edit it manually using the tools available in the Cadence Allegro
Design Entry CIS software.

Note: For more information about creating and editing symbols in the Cadence Allegro Design Entry
CIS software, refer to the Help in the software.

QPS5V2
2015.11.02 Generating a Part 8-13

Cadence PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Splitting a Part
After saving a new symbol in a project library, you can fracture the symbol into multiple parts called
sections. Fracturing a part into separate sections is useful for FPGA designs. A single symbol for most
FPGA packages might be too large for a single schematic page. Splitting the part into separate sections
allows you to organize parts of the symbol by function, creating cleaner circuit schematics. For example,
you can create one slot for an I/O symbol, a second slot for a JTAG symbol, and a third slot for a power/
ground symbol.

Figure 8-6: Splitting a Symbol into Multiple Sections

newt

reset

d[7..0] yn_out[7..0]

Section 1

filtref

filtref

filtref

Section 2 Section 3

clk

clkx2

yvalid

follow

VC
CIN

T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

VC
CIO

1

VC
CIO

2

VC
CIO

3

VC
CIO

4

- This diagram represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings. Symbols created for
other devices or other configuration modes might have diff erent sets of configuration pins, but can be fractured in a similar manner.
- The power/ground section shows only a representation of power and ground pins because the device contains a high number of
power and ground
pins.

Note: Although symbol generation in the Design Entry CIS software refers to symbol fractures as
sections, other tools use different names to refer to symbol fractures.

To split a part into sections, select the part in its library in the Project Manager window of the Cadence
Allegro Design Entry CIS software. On the Tools menu, click Split Part or right-click the part and choose
Split Part. The Split Part Section Input Spreadsheet appears.

8-14 Splitting a Part
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-7: Split Part Section Input Spreadsheet

Each row in the spreadsheet represents a pin in the symbol. The Section column indicates the section of
the symbol to which each pin is assigned. You can locate all pins in a new symbol in section 1. You can
change the values in the Section column to assign pins to various sections of the symbol. You can also
specify the side of a section on the location of the pin by changing the values in the Location column.
When you are ready, click Split. A new symbol appears in the same library as the original with the name
<original part name>_Split1.

View and edit each section individually. To view the new sections of the part, double-click the part. The
Part Symbol Editor window appears and the first section of the part displays for editing. On the View
menu, click Package to view thumbnails of all the part sections. To edit the section of the symbol, double-
click the thumbnail.

For more information about splitting parts into sections and editing symbol sections in the Cadence
Allegro Design Entry CIS software, refer to the Help in the software.

Instantiating a Symbol in a Design Entry CIS Schematic
After saving a new symbol in a library in your Cadence Allegro Design Entry CIS project, you can
instantiate the new symbol on a page in your schematic. Open a schematic page in the Project Manager
window of the Cadence Allegro Design Entry CIS software. To add the newly created symbol to your
schematic on the schematic page, on the Place menu, click Part. The Place Part dialog box appears.

QPS5V2
2015.11.02 Instantiating a Symbol in a Design Entry CIS Schematic 8-15

Cadence PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-8: Place Part Dialog Box

Select the new symbol library location and the newly created part name. If you select a part that is split
into sections, you can select the section to place from the Part pop-up menu. Click OK. The symbol
attaches to your cursor for placement in the schematic. To place the symbol, click on the schematic page.

For more information about using the Cadence Allegro Design Entry CIS software, refer to the Help in
the software.

Altera Libraries for the Cadence Allegro Design Entry CIS Software
Altera provides downloadable .olb for many of its device packages. You can add these libraries to your
Cadence Allegro Design Entry CIS project and update the symbols with the pin assignments contained in
the .pin generated by the Quartus Prime software. You can use the downloaded library symbols as a base
for creating custom schematic symbols with your pin assignments that you can edit or fracture. This
method increases productivity by reducing the amount of time it takes to create and edit a new symbol.

Using the Altera-provided Libraries with your Cadence Allegro Design Entry CIS Project

To use the Altera-provided libraries with your Cadence Allegro Design Entry CIS project, follow these
steps:

1. Download the library of your target device from the Download Center page found through the
Support page on the Altera website.

2. Create a copy of the appropriate .olb to maintain the original symbols. Place the copy in a convenient
location, such as your Cadence Allegro Design Entry CIS project directory.

3. In the Project Manager window of the Cadence Allegro Design Entry CIS software, click once on the
Library folder to select it. On the Edit menu, click Project or right-click the Library folder and choose
Add File to select the copy of the downloaded .olb and add it to your project. You can locate the new
library in the list of part libraries for your project.

4. On the Tools menu, click Generate Part. The Generate Part dialog box appears.
5. In the Netlist/source file field, click Browse to specify the .pin in your Quartus Prime design.
6. From the Netlist/source file type list, select Altera Pin File.
7. For Part name, type the name of the target device the same as it appears in the downloaded library file.

For example, if you are using a device from the CYCLONE06.OLB library, type the part name to
match one of the devices in this library such as ep1c6f256. You can rename the symbol in the Project
Manager window after updating the part.

8-16 Altera Libraries for the Cadence Allegro Design Entry CIS Software
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Set the Destination part library to the copy of the downloaded library you added to the project.
9. Select Update pins on existing part in library. Click OK.
10.Click Yes.

The symbol is updated with your pin assignments. Double-click the symbol in the Project Manager
window to view and edit the symbol. On the View menu, click Package if you want to view and edit
other sections of the symbol. If the symbol in the downloaded library is fractured into sections, you can
edit each section but you cannot further fracture the part. You can generate a new part without using
the downloaded part library if you require additional sections.

For more information about creating, editing, and fracturing symbols in the Cadence Allegro Design
Entry CIS software, refer to the Help in the software.

Document Revision History

Table 8-3: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 Converted to DITA format.

June 2012 12.0.0 Removed survey link.

November
2011

10.0.2 Template update.

December
2010

10.0.1 Template update.

July 2010 10.0.0 • General style editing.
• Removed Referenced Document Section.
• Added a link to Help in “Performing Simultaneous Switching

Noise (SSN) Analysis of Your FPGA” on page 9–5.

November
2009

9.1.0 • Added “Performing Simultaneous Switching Noise (SSN) Analysis
of Your FPGA” on page 9–5.

• General style editing.
• Edited Figure 9–4 on page 9–10 and Figure 9–8 on page 9–16.

March 2009 9.0.0 • Chapter 9 was previously Chapter 7 in the 8.1 software release.
• No change to content.

November
2008

8.1.0 Changed to 8-1/2 x 11 page size.

May 2008 8.0.0 Updated references.

QPS5V2
2015.11.02 Document Revision History 8-17

Cadence PCB Design Tools Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

8-18 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Cadence PCB Design Tools Support

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20PCB%20Design%20Tools%20Support%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reviewing Printed Circuit Board Schematics
with the Quartus Prime Software 9

2015.11.02

QPS5V2 Subscribe Send Feedback

Altera FPGAs and CPLDs offer a multitude of configurable options to allow you to implement a custom
application-specific circuit on your PCB.

Your Quartus Prime project provides important information specific to your programmable logic design,
which you can use in conjunction with the device literature available on Altera's website to ensure that
you implement the correct board-level connections in your schematic.

Refer to the Settings dialog box options, the Fitter report, and Messages window when creating and
reviewing your PCB schematic. The Quartus Prime software also provides the Pin Planner and the SSN
Analyzer to assist you during your PCB schematic review process.

Related Information

• Schematic Review Worksheets
• Pin Connection Guidelines

Reviewing Quartus Prime Software Settings
Review these settings in the Quartus Prime software to help you review your PCB schematic.

The Device dialog box in the Quartus Prime software allows you to specify device-specific assignments
and settings. You can use the Device dialog box to specify general project-wide options, including specific
device and pin options, which help you to implement correct board-level connections in your PCB
schematic.

The Device dialog box provides project-specific device information, including the target device and any
migration devices you specify. Using migration devices can impact the number of available user I/O pins
and internal resources, as well as require connection of some user I/O pins to power/ground pins to
support migration.

If you want to use vertical migration, which allows you to use different devices with the same package, you
can specify your list of migration devices in the Migration Devices dialog box. The Fitter places the pins
in your design based on your targeted migration devices, and allows you to use only I/O pins that are
common to all of the migration devices.

If a migration device has pins that are power or ground, but the pins are also user I/O pins on a different
device in the migration path, the Fitter ensures that these pins are not used as user I/O pins. You must
ensure that these pins are connected to the appropriate plane on the PCB.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Reviewing%20Printed%20Circuit%20Board%20Schematics%20with%20the%20Quartus%20Prime%20Software&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/support/support-resources/download/board-layout-test/schematic-review-ws.html
http://www.altera.com/literature/lit-dpcg.jsp
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

If you are migrating from a smaller device with NC (no-connect) pins to a larger device with power or
ground pins in the same package, you can safely connect the NC pins to power or ground pins to facilitate
successful migration.

Related Information
Migration Devices Dialog Box
For more information about the Migration Devices dialog box in the Quartus Prime software

Device and Pins Options Dialog Box Settings
You can set device and pin options and verify important design-specific data in the Device and Pin
Options dialog box, including options found on the General, Configuration, Unused Pin, Dual-Purpose
Pins, and Voltage pages.

Configuration Settings
The Configuration page of the Device and Pin Options dialog box specifies the configuration scheme
and configuration device for the target device. Use the Configuration page settings to verify the
configuration scheme with the MSEL pin settings used on your PCB schematic and the I/O voltage of the
configuration scheme.

Your specific configuration settings may impact the availability of some dual-purpose I/O pins in user
mode.

Related Information
Dual-Purpose Pins Settings on page 9-2

Unused Pin Settings
The Unused Pin page specifies the behavior of all unused pins in your design. Use the Unused Pin page
to ensure that unused pin settings are compatible with your PCB. For example, if you reserve all unused
pins as outputs driving ground, you must ensure that you do not connect unused I/O pins to VCC pins on
your PCB. Connecting unused I/O pins to VCC pins may result in contention that could lead to higher
than expected current draw and possible device overstress.

The Reserve all unused pins list shows available unused pin state options for the target device. The
default state for each pin is the recommended setting for each device family.

When you reserve a pin as output driving ground, the Fitter connects a ground signal to the output pin
internally. You should connect the output pin to the ground plane on your PCB, although you are not
required to do so. Connecting the output driving ground to the ground plane is known as creating a
virtual ground pin, which helps to minimize simultaneous switching noise (SSN) and ground bounce
effects.

Dual-Purpose Pins Settings

The Dual-Purpose Pins page specifies how configuration pins should be used after device configuration
completes. You can set the function of the dual-purpose pins by selecting a value for a specific pin in the
Dual-purpose pins list. Pin functions should match your PCB schematic. The available options on the
Dual-Purpose Pins page may differ depending on the selected configuration mode.

9-2 Device and Pins Options Dialog Box Settings
QPS5V2

2015.11.02

Altera Corporation Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/migrate/comp_db_migration.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reviewing%20Printed%20Circuit%20Board%20Schematics%20with%20the%20Quartus%20Prime%20Software%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Voltage Settings
The Voltage page specifies the default VCCIO I/O bank voltage and the default I/O bank voltage for the
pins on the target device. VCCIO I/O bank voltage settings made in the Voltage page are overridden by
I/O standard assignments made on I/O pins in their respective banks.

Related Information
Reviewing Device Pin-Out Information in the Fitter Report on page 9-3

Error Detection CRC Settings
The Error Detection CRC page specifies error detection cyclic redundancy check (CRC) use for the target
device. When Enable error detection CRC is turned on, the device checks the validity of the
programming data in the devices. Any changes made in the data while the device is in operation generates
an error.

Turning on the Enable open drain on CRC error pin option allows the CRC ERROR pin to be set as an
open-drain pin in some devices, which decouples the voltage level of the CRC ERROR pin from VCCIO
voltage. You must connect a pull-up resistor to the CRC ERROR pin on your PCB if you turn on this
option.

In addition to settings in the Device dialog box, you should verify settings in the Voltage page of the
Settings dialog box.

Related Information
Device and Pin Options Dialog Box
For more information about the Device and Pins Options dialog box in the Quartus Prime software

Voltage Settings
The Voltage page, under Operating Settings and Conditions in the Settings dialog box, allows you to
specify voltage operating conditions for timing and power analyses. Ensure that the settings in the
Voltage page match the settings in your PCB schematic, especially if the target device includes
transceivers.

The Voltage page settings requirements differ depending on the settings of the transceiver instances in
the design. Refer to the Fitter report for the required settings, and verify that the voltage settings are
correctly set up for your PCB schematic.

After verifying your settings in the Device and Settings dialog boxes, you can verify your device pin-out
with the Fitter report.

Related Information
Pin Connection Guidelines
For more information about voltage settings

Reviewing Device Pin-Out Information in the Fitter Report
After you compile your design, you can use the reports in the Resource section of the Fitter report to
check your device pin-out in detail.

The Input Pins, Output Pins, and Bidirectional Pins reports identify all the user I/O pins in your design
and the features enabled for each I/O pin. For example, you can find use of weak internal pull-ups, PCI

QPS5V2
2015.11.02 Voltage Settings 9-3

Reviewing Printed Circuit Board Schematics with the Quartus Prime Software Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_db_device_pin_options.htm
http://www.altera.com/literature/lit-dpcg.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reviewing%20Printed%20Circuit%20Board%20Schematics%20with%20the%20Quartus%20Prime%20Software%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

clamp diodes, and on-chip termination (OCT) pin assignments in these sections of the Fitter report. You
can check the pin assignments reported in the Input Pins, Output Pins, and Bidirectional Pins reports
against your PCB schematic to determine whether your PCB requires external components.

These reports also identify whether you made pin assignments or if the Fitter automatically placed the
pins. If the Fitter changed your pin assignments, you should make these changes user assignments
because the location of pin assignments made by the Fitter may change with subsequent compilations.

Figure 9-1: Resource Section Report

This figure shows the pins the Fitter chose for the OCT external calibration resistor connections (RUP/
RDN) and the name of the associated termination block in the Input Pins report. You should make these
types of assignments user assignments.

The I/O Bank Usage report provides a high-level overview of the VCCIO and VREF requirements for
your design, based on your I/O assignments. Verify that the requirements in this report match the settings
in your PCB schematic. All unused I/O banks, and all banks with I/O pins with undefined I/O standards,
default the VCCIO voltage to the voltage defined in the Voltage page of the Device and Pin Options
dialog box.

The All Package Pins report lists all the pins on your device, including unused pins, dedicated pins and
power/ground pins. You can use this report to verify pin characteristics, such as the location, name, usage,
direction, I/O standard and voltage for each pin with the pin information in your PCB schematic. In
particular, you should verify the recommended voltage levels at which you connect unused dedicated
inputs and I/O and power pins, especially if you selected a migration device. Use the All Package Pins
report to verify that you connected all the device voltage rails to the voltages reported.

9-4 Reviewing Device Pin-Out Information in the Fitter Report
QPS5V2

2015.11.02

Altera Corporation Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reviewing%20Printed%20Circuit%20Board%20Schematics%20with%20the%20Quartus%20Prime%20Software%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Errors commonly reported include connecting the incorrect voltage to the predriver supply (VCCPD) pin
in a specific bank, or leaving dedicated clock input pins floating. Unused input pins that should be
connected to ground are designated as GND+ in the Pin Name/Usage column in the All Package Pins
report.

You can also use the All Package Pins report to check transceiver-specific pin connections and verify that
they match the PCB schematic. Unused transceiver pins have the following requirements, based on the
pin designation in the Fitter report:

• GXB_GND—Unused GXB receiver or dedicated reference clock pin. This pin must be connected to
GXB_GND through a 10k Ohm resistor.

• GXB_NC—Unused GXB transmitter or dedicated clock output pin. This pin must be disconnected.

Some transceiver power supply rails have dual voltage capabilities, such as VCCA_L/R and VCCH_L/R,
that depend on the settings you created for the ALTGX parameter editor. Because these user-defined
settings overwrite the default settings, you should use the All Package Pins report to verify that these
power pins on the device symbol in the PCB schematics are connected to the voltage required by the
transceiver. An incorrect connection may cause the transceiver to function not as expected.

If your design includes a memory interface, the DQS Summary report provides an overview of each DQ
pin group. You can use this report to quickly confirm that the correct DQ/DQS pins are grouped together.

Finally, the Fitter Device Options report summarizes some of the settings made in the Device and Pin
Options dialog box. Verify that these settings match your PCB schematics.

Reviewing Compilation Error and Warning Messages
If your project does not compile without error or warning messages, you should resolve the issues
identified by the Compiler before signing off on your pin-out or PCB schematic. Error messages often
indicate illegal or unsupported use of the device resources and IP.

Additionally, you should cross-reference fitting and timing analysis warnings with the design implemen‐
tation. Timing may be constrained due to nonideal pin placement. You should investigate if you can
reassign pins to different locations to prevent fitting and timing analysis warnings. Ensure that you review
each warning and consider its potential impact on the design.

Using Additional Quartus Prime Software Features
You can generate IBIS files, which contain models specific to your design and selected I/O standards and
options, with the Quartus Prime software.

Because board-level simulation is important to verify, you should check for potential signal integrity
issues. You can turn on the Board-Level Signal Integrity feature in the EDA Tool Settings page of the
Settings dialog box.

Additionally, using advanced I/O timing allows you to enter physical PCB information to accurately
model the load seen by an output pin. This feature facilitates accurate I/O timing analysis.

Related Information

• Signal Integrity Analysis with Third-Party Tools on page 6-1
For more information about signal integrity analysis in the Quartus Prime software

QPS5V2
2015.11.02 Reviewing Compilation Error and Warning Messages 9-5

Reviewing Printed Circuit Board Schematics with the Quartus Prime Software Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reviewing%20Printed%20Circuit%20Board%20Schematics%20with%20the%20Quartus%20Prime%20Software%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• I/O Management on page 2-1
For more information about advanced I/O timing

Using Additional Quartus Prime Software Tools
Use the Pin Planner and the SSN Analyzer to assist you with reviewing your PCB schematics.

Pin Planner
The Quartus Prime Pin Planner helps you visualize, plan, and assign device I/O pins in a graphical view of
the target device package. You can quickly locate various I/O pins and assign them design elements or
other properties to ensure compatibility with your PCB layout.

You can use the Pin Planner to verify the location of clock inputs, and whether they have been placed on
dedicated clock input pins, which is recommended when your design uses PLLs.

You can also use the Pin Planner to verify the placement of dedicated SERDES pins. SERDES receiver
inputs can be placed only on DIFFIO_RX pins, while SERDES transmitter outputs can be placed only on
DIFFIO_TX pins.

The Pin Planner gives a visual indication of signal-to-signal proximity in the Pad View window, and also
provides information about differential pin pair placement, such as the placement of pseudo-differential
signals.

Related Information

• I/O Management on page 2-1
For more information about the Pin Planner

SSN Analyzer
The SSN Analyzer supports pin planning by estimating the voltage noise caused by the simultaneous
switching of output pins on the device. Because of the importance of the potential SSN performance for a
specific I/O placement, you can use the SSN Analyzer to analyze the effects of aggressor I/O signals on a
victim I/O pin.

Document Revision History

Table 9-1: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 Template update.

November
2012

12.1.0 Minor update of Pin Planner description for task and report windows.

June 2012 12.0.0 Removed survey link.

9-6 Using Additional Quartus Prime Software Tools
QPS5V2

2015.11.02

Altera Corporation Reviewing Printed Circuit Board Schematics with the Quartus Prime Software

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reviewing%20Printed%20Circuit%20Board%20Schematics%20with%20the%20Quartus%20Prime%20Software%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

November
2011

10.0.2 Template update.

December
2010

10.0.1 Changed to new document template. No change to content.

July 2010 10.0.0 Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 9-7

Reviewing Printed Circuit Board Schematics with the Quartus Prime Software Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reviewing%20Printed%20Circuit%20Board%20Schematics%20with%20the%20Quartus%20Prime%20Software%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Optimization Overview 10
2015.11.02

QPS5V2 Subscribe Send Feedback

Design Optimization Overview
This chapter introduces features in the Altera Quartus Prime software that you can use to achieve the
highest design performance when you design for programmable logic devices (PLDs), especially high
density FPGAs.

Physical implementation can be an intimidating and challenging phase of the design process. The Quartus
Prime software provides a comprehensive environment for FPGA designs, delivering unmatched
performance, efficiency, and ease-of-use.

In a typical design flow, you must synthesize your design with Quartus Prime integrated synthesis or a
third-party tool, place and route your design with the Fitter, and use the TimeQuest timing analyzer to
ensure your design meets the timing requirements. With the PowerPlay Power Analyzer, you ensure the
design’s power consumption is within limits.

Initial Compilation: Required Settings
There are basic assignments and settings Altera recommends for your initial compilation. Check the
following settings before compiling your design in the Quartus Prime software. Significantly varied
compilation results can occur depending on the assignments that you set.

Device Settings
Device assignments determine the timing model that the Quartus Prime software uses during
compilation.

Choose the correct speed grade to obtain accurate results and the best optimization. The device size and
the package determine the device pin-out and the available resources in the device.

Device Migration Settings
If you anticipate a change to the target device later in the design cycle, either because of changes in your
design or other considerations, plan for the change at the beginning of your design cycle.

Whenever you select a target device, you can also list any other compatible devices you can migrate by
clicking on the Migration Devices button in the Device dialog box.

Selecting the migration device and companion device early in the design cycle helps to minimize changes
to your design at a later stage.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Design%20Optimization%20Overview&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

I/O Assignments
The I/O standards and drive strengths specified for a design affect I/O timing. Specify I/O assignments so
that the Quartus Prime software uses accurate I/O timing delays in timing analysis and Fitter
optimizations.

If there is no PCB layout requirement, then you do not need to specify pin locations. If your pin locations
are not fixed due to PCB layout requirements, then leave the pin locations unconstrained. If your pin
locations are already fixed, then make pin assignments to constrain the compilation appropriately.

Use the Assignment Editor and Pin Planner to assign I/O standards and pin locations.

Related Information

• Timing Closure and Optimization on page 12-1
For more information about recommendations for making pin assignments that can have a large effect
on your results in smaller macrocell-based architectures.

• I/O Management on page 2-1
For more information about I/O standards and pin constraints, refer to the appropriate device
handbook. For more information about planning and checking I/O assignments.

Timing Requirement Settings
Use your real requirements to get the best results. If you apply more demanding timing requirements than
you need, then increased resource usage, higher power utilization, increased compilation time, or all of
these may result.

You must use comprehensive timing requirement settings to achieve the best results for the following
reasons:

• Correct timing assignments enable the software to work hardest to optimize the performance of the
timing-critical parts of your design and make trade-offs for performance. This optimization can also
save area or power utilization in non-critical parts of your design.

• If enabled, the Quartus Prime software performs physical synthesis optimizations based on timing
requirements.

• Depending on the Fitter Effort setting, the Fitter can reduce runtime if your design meets the timing
requirements.

The Quartus Prime TimeQuest Timing Analyzer determines if the design implementation meets the
timing requirement. The Compilation Report shows whether your design meets the timing requirements,
while the timing analysis reporting commands provide detailed information about the timing paths.

To create timing constraints for the TimeQuest analyzer, create a Synopsys Design Constraints File (.sdc).
You can also enter constraints in the TimeQuest GUI. Use the write_sdc command, or the Constraints
menu in the TimeQuest analyzer. Click Write SDC File to write your constraints to an .sdc. You can add
an .sdc to your project on the Quartus Prime Settings page under Timing Analysis Settings.

Note: If you already have an .sdc in your project, using the write_sdc command from the command line
or using the Write SDC File option from the TimeQuest GUI allows you to create a new .sdc that
combines the constraints from your current .sdc and any new constraints added through the GUI
or command window, or overwrites the existing .sdc with your newly applied constraints.

Ensure that every clock signal has an accurate clock setting constraint. If clocks arrive from a common
oscillator, then they are related. Ensure that you set up all related or derived clocks in the constraints
correctly. You must constrain all I/O pins that require I/O timing optimization. Specify both minimum
and maximum timing constraints as applicable. If your design contains more than one clock or contains

10-2 I/O Assignments
QPS5V2

2015.11.02

Altera Corporation Design Optimization Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Optimization%20Overview%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

pins with different I/O requirements, make multiple clock settings and individual I/O assignments instead
of using a global constraint.

Make any complex timing assignments required in your design, including false path and multicycle path
assignments. Common situations for these types of assignments include reset or static control signals
(when the time required for a signal to reach a destination is not important) or paths that have more than
one clock cycle available for operation in a design. These assignments enable the Quartus Prime software
to make appropriate trade-offs between timing paths and can enable the Compiler to improve timing
performance in other parts of your design.

Note: To ensure that you apply constraints or assignments to all design nodes, you can report all
unconstrained paths in your design with the Report Unconstrained Paths command in the Task
pane of the Quartus Prime TimeQuest Timing Analyzer or the report_ucp Tcl command.

Related Information

• Timing Closure and Optimization on page 12-1
For more information about optimization with physical synthesis.

• Advanced Settings (Fitter)
For more information about reducing runtime by changing Fitter effort.

• The Quartus Prime TimeQuest Timing Analyzer
For more information about timing assignments and timing analysis.

• Quartus Prime TimeQuest Timing Analyzer Cookbook
For more information about timing assignments and timing analysis.

Partitions and Floorplan Assignments for Incremental Compilation
The Quartus Prime incremental compilation feature enables hierarchical and team-based design flows in
which you can compile parts of your design while other parts of your design remain unchanged. You can
also Import parts of your design from separate Quartus Prime projects.

Using incremental compilation for your design with good design partitioning methodology helps to
achieve timing closure. Creating design partitions on some of the major blocks in your design and
assigning them to LogicLock™ regions, reduces Fitter time and improves the quality and repeatability of
the results. LogicLock regions are flexible, reusable floorplan location constraints that help you place logic
on the target device. When you assign entity instances or nodes to a LogicLock region, you direct the
Fitter to place those entity instances or nodes inside the region during fitting.

Using incremental compilation helps you achieve timing closure block by block and preserve the timing
performance between iterations, which aid in achieving timing closure for the entire design. Incremental
compilation may also help reduce compilation times.

Note: If you plan to use incremental compilation, you must create a floorplan for your design. If you are
not using incremental compilation, creating a floorplan is optional.

Related Information
Reducing Compilation Time on page 11-1
For more information about using incremental compilation to reduce compilation time.

Best Practices for Incremental Compilation Partitions and Floorplan Assignments
For more information about guidelines to create partition and floorplan assignments for your design.

QPS5V2
2015.11.02 Partitions and Floorplan Assignments for Incremental Compilation 10-3

Design Optimization Overview Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_fitting.htm
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
http://www.altera.com/literature/manual/mnl_timequest_cookbook.pdf
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959683097/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Optimization%20Overview%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Physical Implementation
Most optimization issues involve preserving previous results, reducing area, reducing critical path delay,
reducing power consumption, and reducing runtime.

The Quartus Prime software includes advisors to address each of these issues and helps you optimize your
design. Run these advisors during physical implementation for advice about your specific design.

You can reduce the time spent on design iterations by following the recommended design practices for
designing with Altera® devices. Design planning is critical for successful design timing implementation
and closure.

Related Information
Design Planning with the Quartus Prime Software

Trade-Offs and Limitations
Many optimization goals can conflict with one another, so you might need to resolve conflicting goals.
For example, one major trade-off during physical implementation is between resource usage and critical
path timing, because certain techniques (such as logic duplication) can improve timing performance at
the cost of increased area. Similarly, a change in power requirements can result in area and timing trade-
offs, such as if you reduce the number of available high-speed tiles, or if you attempt to shorten high-
power nets at the expense of critical path nets.

In addition, system cost and time-to-market considerations can affect the choice of device. For example, a
device with a higher speed grade or more clock networks can facilitate timing closure at the expense of
higher power consumption and system cost.

Finally, not all designs can be realized in a hardware circuit with limited resources and given constraints.
If you encounter resource limitations, timing constraints, or power constraints that cannot be resolved by
the Fitter, consider rewriting parts of the HDL code.

Related Information

• Timing Closure and Optimization on page 12-1

Preserving Results and Enabling Teamwork
For some Quartus Prime Fitter algorithms, small changes to the design can have a large impact on the
final result. For example, a critical path delay can change by 10% or more because of seemingly
insignificant changes. If you are close to meeting your timing objectives, you can use the Fitter algorithm
to your advantage by changing the fitter seed, which changes the pseudo-random result of the Fitter.

Conversely, if you cannot meet timing on a portion of your design, you can partition that portion and
prevent it from recompiling if an unrelated part of the design is changed. This feature, known as
incremental compilation, can reduce the Fitter runtimes by up to 70% if the design is partitioned, such
that only small portions require recompilation at any one time.

When you use incremental compilation, you can apply design optimization options to individual design
partitions and preserve performance in other partitions by leaving them untouched. Many optimization
techniques often result in longer compilation times, but by applying them only on specific partitions, you
can reduce this impact and complete iterations more quickly.

In addition, by physically floorplanning your partitions with LogicLock regions, you can enable team-
based flows and allow multiple people to work on different portions of the design.

10-4 Physical Implementation
QPS5V2

2015.11.02

Altera Corporation Design Optimization Overview

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958354390/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Optimization%20Overview%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Designs

Reducing Area
By default, the Quartus Prime Fitter might physically spread a design over the entire device to meet the set
timing constraints. If you prefer to optimize your design to use the smallest area, you can change this
behavior. If you require reduced area, you can enable certain physical synthesis options to modify your
netlist to create a more area-efficient implementation, but at the cost of increased runtime and decreased
performance.

Related Information
Netlist Optimizations and Physical Synthesis on page 16-1

Timing Closure and Optimization on page 12-1

Recommended HDL Coding Styles

Reducing Critical Path Delay
To meet complex timing requirements involving multiple clocks, routing resources, and area constraints,
the Quartus Prime software offers a close interaction between synthesis, timing analysis, floorplan editing,
and place-and-route processes.

By default, the Quartus Prime Fitter tries to meet the specified timing requirements and stops trying when
the requirements are met. Therefore, using realistic constraints is important to successfully close timing. If
you under-constrain your design, you may get sub-optimal results. By contrast, if you over-constrain your
design, the Fitter might over-optimize non-critical paths at the expense of true critical paths. In addition,
you might incur an increased area penalty. Compilation time may also increase because of excessively
tight constraints.

If your resource usage is very high, the Quartus Prime Fitter might have trouble finding a legal placement.
In such circumstances, the Fitter automatically modifies some of its settings to try to trade off perform‐
ance for area.

The Quartus Prime Fitter offers a number of advanced options that can help you improve the perform‐
ance of your design when you properly set constraints. Use the Timing Optimization Advisor to
determine which options are best suited for your design.

If you use incremental compilation, you can help resolve inter-partition timing requirements by locking
down results, one partition at a time, or by guiding the placement of the partitions with LogicLock
regions. You might be able to improve the timing on such paths by placing the partitions optimally to
reduce the length of critical paths. Once your inter-partition timing requirements are met, use
incremental compilation to preserve the results and work on partitions that have not met timing require‐
ments.

In high-density FPGAs, routing accounts for a major part of critical path timing. Because of this,
duplicating or retiming logic can allow the Fitter to reduce delay on critical paths. The Quartus Prime
software offers push-button netlist optimizations and physical synthesis options that can improve design
performance at the expense of considerable increases of compilation time and area. Turn on only those
options that help you keep reasonable compilation times and resource usage. Alternately, you can modify
your HDL to manually duplicate or adjust the timing logic.

QPS5V2
2015.11.02 Reducing Area 10-5

Design Optimization Overview Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958382198/en-us
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959570946/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Optimization%20Overview%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reducing Power Consumption
The Quartus Prime software has features that help reduce design power consumption. The PowerPlay
power optimization options control the power-driven compilation settings for Synthesis and the Fitter.

Related Information

• Power Optimization on page 13-1

Reducing Runtime
Many Fitter settings influence compilation time. Most of the default settings in the Quartus Prime
software are set for reduced compilation time. You can modify these settings based on your project
requirements.

The Quartus Prime software supports parallel compilation in computers with multiple processors. This
can reduce compilation times by up to 15% while giving the identical result as serial compilation.

You can also reduce compilation time with your iterations by using incremental compilation. Use
incremental compilation when you want to change parts of your design, while keeping most of the
remaining logic unchanged.

Using Quartus Prime Tools
The following sections describe several Quartus Prime tools that you can use to help optimize your
design.

Design Analysis
The Quartus Prime software provides tools that help with a visual representation of your design. You can
use the RTL Viewer to see a schematic representation of your design before synthesis and place-and-
route.The Technology Map Viewer provides a schematic representation of the design implementation in
the selected device architecture after synthesis and place-and-route. It can also include timing
information.

With incremental compilation, the Design Partition Planner and the Chip Planner allow you to partition
and layout your design at a higher level. In addition, you can perform many different tasks with the Chip
Planner, including: making floorplan assignments, implementing engineering change orders (ECOs), and
performing power analysis. Also, you can analyze your design and achieve a faster timing closure with the
Chip Planner. The Chip Planner provides physical timing estimates, critical path display, and a routing
congestion view to help guide placement for optimal performance.

Advisors
The Quartus Prime software includes several advisors to help you optimize your design and reduce
compilation time.

You can complete your design faster by following the recommendations in the following advisor. These
advisors give recommendations based on your project settings and your design constraints:

• Resource Optimization Advisor
• Timing Optimization Advisor
• Power Optimization Advisor
• Compilation Time Advisor

10-6 Reducing Power Consumption
QPS5V2

2015.11.02

Altera Corporation Design Optimization Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Optimization%20Overview%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Pin Optimization Advisor
• Arria 10 to Stratix 10 Migration Advisor
• Incremental Compilation Advisor

Design Space Explorer II
Use Design Space Explorer II (DSE) to find optimal settings in the Quartus Prime software.

DSE II automatically tries different combinations of netlist optimizations and advanced Quartus Prime
software compiler settings, and reports the best settings for your design, based on your chosen primary
optimization goal. You can try different seeds with DSE II if you are fairly close to meeting your timing or
area requirements and find one seed that meets timing or area requirements. Finally, DSE II can run
compilations on a remote compute farm, which shortens the timing closure process.

Related Information
About Design Space Explorer II

Document Revision History

Table 10-1: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings,
and Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II content.

June 2014 14.0.0 Updated format.

November
2013

13.1.0 Minor changes for HardCopy.

May 2013 13.0.0 Added the information about initial compilation requirements. This
section was moved from the Area Optimization chapter of the
Quartus Prime Handbook. Minor updates to delineate division of
Timing and Area optimization chapters.

June 2012 12.0.0 Removed survey link.

November
2011

10.0.3 Template update.

December
2010

10.0.2 Changed to new document template. No change to content.

August
2010

10.0.1 Corrected link

July 2010 10.0.0 Initial release. Chapter based on topics and text in Section III of
volume 2.

QPS5V2
2015.11.02 Design Space Explorer II 10-7

Design Optimization Overview Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/dse/dse_com_launch_DSE.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Optimization%20Overview%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

10-8 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Design Optimization Overview

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Optimization%20Overview%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reducing Compilation Time 11
2015.11.02

QPS5V2 Subscribe Send Feedback

Reducing Compilation Time
The Analysis and Synthesis and Fitter modules consume the majority of time in a compilation. The
Quartus Prime software offers several features and techniques to help reduce compilation time.

The Analysis and Synthesis module includes physical synthesis optimizations performed during synthesis,
if you have turned on physical synthesis optimizations. The Fitter includes two steps, placement and
routing, and also includes physical synthesis if you turned on the physical synthesis option with Normal
or Extra effort levels. The Flow Elapsed Time section of the Compilation Report shows the duration of
the Analysis and Synthesis and Fitter modules. The Fitter Messages report in the Fitter section of the
Compilation Report displays the elapsed time for placement and routing processes.

Placement is the process of finding optimum locations for the logic in your design. Placement includes
Quartus Prime pre-Fitter operations, which place dedicated logic such as clocks, PLLs, and transceiver
blocks. Routing is the process of connecting the nets between the logic in your design. Finding better
placement for the logic in your design requires more compilation time. Good logic placement allows you
to more easily meet your timing requirements and makes your design easier to route.

Info: Fitter placement operations ending: elapsed time =
<days:hours:minutes:seconds>
Info: Fitter routing operations ending: elapsed time = <days:hours:minutes:seconds>

The Quartus Prime software displays info messages while the Fitter is running (including Placement and
Routing). The Message window displays this message every hour to indicate Fitter operations are
progressing normally.

Info: Placement optimizations have been running for 4 hour(s)

Compilation Time Advisor
A Compilation Time Advisor is available to help you to reduce compilation time. Run the Compilation
Time Advisor on the Tools menu by pointing to Advisors and clicking Compilation Time Advisor. You
can find all the compilation time optimizing techniques described in this section in the Compilation Time
Advisor as well.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Reducing%20Compilation%20Time&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Strategies to Reduce the Overall Compilation Time
You can use the following strategies to reduce the overall time required to compile your design: ,
incremental compilation, and use of the Rapid Recompile and Smart Compilation features.

• Parallel compilation (for systems with multiple processor cores)
• Incremental compilation reduces compilation time by only recompiling design partitions that have not

met design requirements.
• Rapid Recompile and Smart Compilation reuse results from a previous compilation to reduce overall

compilation time

Using Rapid Recompile
Rapid Recompile automatically reuses previous synthesis, placement, and routing results to reduce
subsequent recompilation time and timing variations after making small design changes.

Figure 11-1: Rapid Recompile

Regular Compile

A

B
C

D

E

J G
x y z

Unchanged

Changed

Rapid
Recompile

You can use Rapid Recompile to implement HDL-based functional ECO changes that affect a small subset
of a large or complex design (less than 5% of total design logic), without full recompilation. Rapid
Recompile can achieve up to 4x reduction in compilation time for impacted portions of the design.

Note: Rapid Recompile supports only Arria V, Cyclone V, Stratix V, and Arria 10 devices.

To start Rapid Recompilation following an initial compilation, click Processing > Start > Start Rapid
Recompile. Rapid Recompile implements the following type of design changes without full recompilation:

• Changes to nodes tapped by the SignalTap II Logic Analyzer
• Changes to combinational logic functions
• Changes to state machine logic (for example, new states, state transition changes)
• Changes to signal or bus latency or addition of pipeline registers
• Changes to coefficients of an adder or multiplier
• Changes register packing behavior of DSP, RAM, or I/O
• Removal of unnecessary logic
• Changes to synthesis directives

11-2 Strategies to Reduce the Overall Compilation Time
QPS5V2

2015.11.02

Altera Corporation Reducing Compilation Time

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reducing%20Compilation%20Time%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Rapid Recompile Preservation Summary report provides detailed information about the percentage
of preserved compilation results.

Figure 11-2: Rapid Recompile Preservation Summary

The Incremental Compilation Preservation Summary report provides details about placement and
routing implementation.

Using Parallel Compilation with Multiple Processors
The Quartus Prime software can detect the number of processors available on a computer and use
multiple processors to reduce compilation time.

You can control the number of processors used during a compilation on a per user basis. The Quartus
Prime software can use up to 16 processors to run algorithms in parallel and reduce compilation time.
The Quartus Prime software turns on parallel compilation by default to enable the software to detect
available multiple processors. You can specify the maximum number of processors that the software can
use if you want to reserve some of the available processors for other tasks.

Note: Do not consider processors with Intel Hyper-Threading as more than one processor. If you have a
single processor with Intel Hyper-Threading enabled, you should set the number of processors to
one. Do not use the Intel Hyper-Threading feature for Quartus Prime compilations, because it can
increase run times.

The Quartus Prime software does not necessarily use all the processors that you specify during a given
compilation. Additionally, the software never uses more than the specified number of processors,
enabling you to work on other tasks on your computer without it becoming slow or less responsive.

If you have partitioned your design and enabled parallel compilation, the Quartus Prime software can use
different processors to compile those partitions simultaneously during Analysis & Synthesis. This can
cause higher peak memory usage during Analysis and Synthesis.

You can reduce the compilation time by up to 10% on systems with two processing cores and by up to
20% on systems with four cores. With certain design flows in which timing analysis runs alone, multiple
processors can reduce the time required for timing analysis by an average of 10% when using two
processors. This reduction can reach an average of 15% when using four processors.

The actual reduction in compilation time when using incremental compilation partitions depends on
your design and on the specific compilation settings. For example, compilations with multi-corner
optimization turned on benefit more from using multiple processors than do compilations without multi-
corner optimization. The runtime requirement is not reduced for some other compilation goals, such as
Analysis and Synthesis. The Fitter (quartus_fit) and the Quartus Prime TimeQuest Timing Analyzer
(quartus_sta) stages in the compilation can, in certain cases, benefit from the use of multiple processors.
The Flow Elapsed Time panel of the Compilation Report shows the average number of processors for
these stages. The Parallel Compilation panel of the appropriate report, such as the Fitter report, shows a

QPS5V2
2015.11.02 Using Parallel Compilation with Multiple Processors 11-3

Reducing Compilation Time Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reducing%20Compilation%20Time%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

more detailed breakdown of processor usage. This panel is displayed only if parallel compilation is
enabled.

You can also set the number of processors available for Quartus Prime compilation using the following
Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value>

In this case, <value> is an integer from 1 to 16.

If you want the Quartus Prime software to detect the number of processors and use all the processors for
the compilation, include the following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL

The use of multiple processors does not affect the quality of the fit. For a given Fitter seed on a specific
design, the fit is exactly the same, regardless of whether the Quartus Prime software uses one processor or
multiple processors. The only difference between compilations using a different number of processors is
the compilation time.

The Parallel Compilation report provides detailed information about compilation using multiple
processors.

Figure 11-3: Parallel Compilation Report

11-4 Using Parallel Compilation with Multiple Processors
QPS5V2

2015.11.02

Altera Corporation Reducing Compilation Time

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reducing%20Compilation%20Time%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Processing Page (Options Dialog Box)
• Compilation Process Settings Page (Settings Dialog Box)

For more information about how to control the number of processors used during compilation for a
specific project, refer to Quartus Prime Help.

Using Incremental Compilation
The incremental compilation feature can accelerate design iteration time by up to 70% for small design
changes, and helps you reach design timing closure more efficiently.

You can speed up design iterations by recompiling only a particular design partition and merging results
with previous compilation results from other partitions. You can also use physical synthesis optimization
techniques for specific design partitions while leaving other parts of your design untouched to preserve
performance.

If you are using a third-party synthesis tool, you can create separate atom netlist files for the parts of your
design that you already have synthesized and optimized so that you update only the parts of your design
that change.

In the standard incremental compilation design flow, you can divide the top-level design into partitions,
which the software can compile and optimize in the top-level Quartus Prime project. You can preserve
fitting results and performance for completed partitions while other parts of your design are changing.
Incremental compilation reduces the compilation time for each design iteration because the software does
not recompile the unchanged partitions in your design.

The incremental compilation feature facilitates team-based design flows by enabling designers to create
and optimize design blocks independently, when necessary, and supports third-party IP integration.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
For more information about the full incremental compilation flow in the Quartus Prime software.

Reducing Synthesis Time and Synthesis Netlist Optimization Time
You can reduce synthesis time without affecting the Fitter time by reducing your use of netlist
optimizations. For tips on reducing synthesis time when using third-party EDA synthesis tools, refer to
your synthesis software’s documentation.

Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
You can use Quartus Prime integrated synthesis to synthesize and optimize HDL designs, and you can use
synthesis netlist optimizations to optimize netlists that were synthesized by third-party EDA software.
When using Quartus Prime Integrated Synthesis, you can also enable Physical Synthesis Optimization
before performing Analysis and Synthesis. Netlist optimizations can cause the Analysis and Synthesis
module to take much longer to run. Read the Analysis and Synthesis messages to determine how much
time these optimizations take. The compilation time spent in Analysis and Synthesis is usually short
compared to the compilation time spent in the Fitter.

If your design meets your performance requirements without synthesis netlist optimizations, turn off the
optimizations to save time. If you require synthesis netlist optimizations to meet performance, you can
optimize parts of your design hierarchy separately to reduce the overall time spent in Analysis and
Synthesis.

Turn off settings that are not useful. In general, if you carry over compilation settings from a previous
project, evaluate all settings and keep only those that you need.

QPS5V2
2015.11.02 Using Incremental Compilation 11-5

Reducing Compilation Time Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#global/global/gl_tab_processing.htm
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_mode.htm
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958382198/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reducing%20Compilation%20Time%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use Appropriate Coding Style to Reduce Synthesis Time
Your HDL coding style can also affect the synthesis time. For example, if you want to infer RAM blocks
from your code, you must follow the guidelines for inferring RAMs. If RAM blocks are not inferred
properly, the software implements those blocks as registers.

If you are trying to infer a large memory block, the software consumes more resources in the FPGA. This
can cause routing congestion and increasing compilation time significantly. If you see high routing
utilizations in certain blocks, it is a good idea to review the code for such blocks.

Related Information
Recommended HDL Coding Styles
For more information about coding guidelines.

Reducing Placement Time
The time required to place a design depends on two factors: the number of ways the logic in your design
can be placed in the device and the settings that control the amount of effort required to find a good
placement. You can reduce the placement time in two ways:

• Change the settings for the placement algorithm.
• Use incremental compilation to preserve the placement for the unchanged parts of your design.

Sometimes there is a trade-off between placement time and routing time. Routing time can increase if the
placer does not run long enough to find a good placement. When you reduce placement time, ensure that
it does not increase routing time and negate the overall time reduction.

Fitter Effort Setting
The highest Fitter effort setting, Standard Fit, requires the most runtime, but does not always yield a
better result than using the default Auto Fit.

For designs with very tight timing requirements, both Auto Fit and Standard Fit use the maximum effort
during optimization. Altera recommends using Auto Fit for reducing compilation time. If you are certain
that your design has only easy-to-meet timing constraints, you can select Fast Fit for an even greater
runtime savings.

Placement Effort Multiplier Settings
You can control the amount of time the Fitter spends in placement by reducing with the Placement
Effort Multiplier option.

Click Assignments > Settings > Compiler Settings > Advanced Settings (Fitter) and specify a value for
Placement Effort Multiplier. The default is 1.0. Legal values must be greater than 0 and can be non-
integer values. Numbers between 0 and 1 can reduce fitting time, but also can reduce placement quality
and design performance.

Physical Synthesis Effort Settings
Physical synthesis options enable you to optimize your post-synthesis netlist and improve your timing
performance. These options, which affect placement, can significantly increase compilation time.

If your design meets your performance requirements without physical synthesis options, turn them off to
reduce compilation time. For example, if some or all of the physical synthesis algorithm information
messages display an improvement of 0 ps, turning off physical synthesis can reduce compilation time.

You also can use the Physical synthesis effort setting on the Advanced Fitter Settings dialog box to
reduce the amount of extra compilation time used by these optimizations.

11-6 Use Appropriate Coding Style to Reduce Synthesis Time
QPS5V2

2015.11.02

Altera Corporation Reducing Compilation Time

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959570946/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reducing%20Compilation%20Time%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Fast setting directs the Quartus Prime software to use a lower level of physical synthesis optimization.
Compared to the Normal physical synthesis effort level, using the Fast setting can cause a smaller increase
in compilation time. However, the lower level of optimization can result in a smaller increase in design
performance.

Preserving Placement with Incremental Compilation
Preserving information about previous placements can make future placements faster. The incremental
compilation feature provides an easy-to-use method for preserving placement results.

Related Information
Using Incremental Compilation on page 11-5

Reducing Routing Time
The time required to route a design depends on three factors: the device architecture, the placement of
your design in the device, and the connectivity between different parts of your design.

The routing time is usually not a significant amount of the compilation time. If your design requires a
long time to route, perform one or more of the following actions:

• Check for routing congestion.
• Turn off Fitter Aggressive Routability Optimization.
• Use incremental compilation to preserve routing information for parts of your design.

Identifying Routing Congestion in the Chip Planner
To identify areas of routing congestion in your design, open the Chip Planner from the Tools menu.

To view the routing congestion in the Chip Planner, double-click the Report Routing Utilization
command in the Tasks list. Click Preview in the Report Routing Utilization dialog box to preview the
default congestion display. Change the Routing utilization type to display congestion for specific
resources. The default display uses dark blue for 0% congestion and red for 100%. Adjust the slider for
Threshold percentage to change the congestion threshold level.

Even if average congestion is not very high, your design may have areas where congestion is very high in a
specific type of routing. You can use the Chip Planner to identify areas of high congestion for specific
interconnect types. You can change the connections in your design to reduce routing congestion. If the
area with routing congestion is in a LogicLock region or between LogicLock regions, change or remove
the LogicLock regions and recompile your design. If the routing time remains the same, the time is a
characteristic of your design and the placement. If the routing time decreases, consider changing the size,
location, or contents of LogicLock regions to reduce congestion and decrease routing time.

Sometimes, routing congestion may be a result of the HDL coding style used in your design. After you
identity congested areas using the Chip Planner, review the HDL code for the blocks placed in those areas
to determine whether you can reduce interconnect usage by code changes.

The Quartus Prime compilation messages contain information about average and peak interconnect
usage. Peak interconnect usage over 75%, or average interconnect usage over 60%, could be an indication
that it might be difficult to fit your design. Similarly, peak interconnect usage over 90%, or average
interconnect usage over 75%, are likely to have increased chances of not getting a valid fit.

Preserving Routing with Incremental Compilation

Preserving the previous routing results for part of your design can reduce future routing time.
Incremental compilation provides an easy-to-use methodology that preserves placement and routing
results.

QPS5V2
2015.11.02 Preserving Placement with Incremental Compilation 11-7

Reducing Compilation Time Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reducing%20Compilation%20Time%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Using Incremental Compilation on page 11-5

Analyzing and Optimizing the Design Floorplan on page 15-1
For more information about identifying areas of congested routing using the Chip Planner.

Reducing Static Timing Analysis Time
If you are performing timing-driven synthesis, the Quartus Prime software runs the TimeQuest analyzer
during Analysis and Synthesis.

The Quartus Prime Fitter also runs the TimeQuest analyzer during placement and routing. If there are
incorrect constraints in the Synopsys Design Constraints File (.sdc), the Quartus Prime software may
spend unnecessary time processing constraints several times.

• If you do not specify false paths and multicycle paths in your design, the TimeQuest analyzer may
analyze paths that are not relevant to your design.

• If you redefine constraints in the .sdc files, the TimeQuest analyzer may spend additional time
processing them. To avoid this situation, look for indications that Synopsis design constraints are
being redefined in the compilation messages, and update the .sdc file.

• Ensure that you provide the correct timing constraints to your design, because the software cannot
assume design intent, such as which paths to consider as false paths or multicycle paths. When you
specify these assignments correctly, the TimeQuest analyzer skips analysis for those paths, and the
Fitter does not spend additional time optimizing those paths.

Setting Process Priority
It might be necessary to reduce the computing resources allocated to the compilation at the expense of
increased compilation time. It can be convenient to reduce the resource allocation to the compilation with
single processor machines if you must run other tasks at the same time.

Related Information
Processing Page (Options Dialog Box)
For more information about setting process priority, refer to Quartus Prime Help.

Document Revision History

Table 11-1: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings,
and Physical Synthesis Optimizations to Compiler Settings.

• Added information about Rapid Recompile feature.

2014.08.18 14.0a10.0 Added restriction about smart compilation in Arria 10 devices.

June 2014 14.0.0 Updated format.

11-8 Reducing Static Timing Analysis Time
QPS5V2

2015.11.02

Altera Corporation Reducing Compilation Time

Send Feedback

http://quartushelp.altera.com/current/index.htm#global/global/gl_tab_processing.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reducing%20Compilation%20Time%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2013 13.0.0 Removed the “Limit to One Fitting Attempt”, “Using Early Timing
Estimation”, “Final Placement Optimizations”, and “Using Rapid
Recompile” sections.

Updated “Placement Effort Multiplier Settings” section.

Updated “Identifying Routing Congestion in the Chip Planner”
section.

General editorial changes throughout the chapter.

June 2012 12.0.0 Removed survey link.

November
2011

11.0.1 Template update.

May 2011 11.0.0 • Updated “Using Parallel Compilation with Multiple Processors”.
• Updated “Identifying Routing Congestion in the Chip Planner”.
• General editorial changes throughout the chapter.

December
2010

10.1.0 • Template update.
• Added details about peak and average interconnect usage.
• Added new section “Reducing Static Timing Analysis Time”.
• Minor changes throughout chapter.

July 2010 10.0.0 Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 11-9

Reducing Compilation Time Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Reducing%20Compilation%20Time%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Timing Closure and Optimization 12
2015.11.02

QPS5V2 Subscribe Send Feedback

About Timing Closure and Optimization
This manual describes techniques to improve timing performance when designing for Altera® devices.

The application techniques vary between designs. Applying each technique does not always improve
results. Settings and options in the Quartus Prime software have default values that provide the best trade-
off between compilation time, resource utilization, and timing performance. You can adjust these settings
to determine whether other settings provide better results for your design.

Initial Compilation: Optional Fitter Settings
The Fitter offers many optional settings; however, this section focuses on the optional timing-
optimization related Fitter settings only, which are the Optimize Hold Timing, Optimize Multi-Corner
Timing, and Fitter Aggressive Routability Optimization settings.

Caution: The settings required to optimize different designs could be different. The group of settings that
work best for one design may not produce the best result for another design.

Related Information
Advanced Fitter Setting Dialog Box online help
For scripting and device family support information of the Optimize Hold Timing and Optimize Multi-
Corner Timing settings

Optimize Hold Timing
The Optimize Hold Timing option directs the Quartus Prime software to optimize minimum delay
timing constraints. By default, the Quartus Prime software optimizes hold timing for all paths for designs
for supported devices. By default, the Quartus Prime software optimizes hold timing only for I/O paths
and minimum tPD paths for older devices.

When you turn on Optimize Hold Timing in the Advanced Fitter Settings dialog box, the Quartus
Prime software adds delay to paths to ensure that your design meets the minimum delay requirements. If
you select I/O Paths and Minimum TPD Paths, the Fitter works to meet the following criteria:

• Hold times (tH) from the device input pins to the registers
• Minimum delays from I/O pins to I/O registers or from I/O registers to I/O pins
• Minimum clock-to-out time (tCO) from registers to output pins

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Timing%20Closure%20and%20Optimization&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://quartushelp.altera.com/current/#index.htm#comp/comp/comp_tab_fitting.htm
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

If you select All Paths, the Fitter also works to meet hold requirements from registers to registers, as
highlighted in blue in the figure, in which a derived clock generated with logic causes a hold time problem
on another register.

Figure 12-1: Optimize Hold Timing Option Fixing an Internal Hold Time Violation

clk

Logic

D Q

D Q

Derived Clock Hold-Time Violation

Fitter Adds Routing Delay Here

However, if your design still has internal hold time violations between registers, correct the violations by
manually adding some delays by instantiating LCELL primitives, or by making changes to your design,
such as using a clock enable signal instead of a derived or gated clock.

Related Information
Recommended Design Practices documentation
For design practices that help to eliminate internal hold time violations

Optimize Multi-Corner Timing
Due to process variations and changes in operating conditions, delays on some paths can be significantly
smaller than those in the slow corner timing model. This can result in hold time violations on those paths,
and in rare cases, additional setup time violations.

Also, because of the small process geometries of newer device families, the slowest circuit performance of
designs targeting these devices does not necessarily occur at the highest operating temperature. The
temperature at which the circuit is slowest depends on the selected device, the design, and the compilation
results. Therefore, the Quartus Prime software provides newer device families with three different timing
corners—Slow 85°C corner, Slow 0°C corner, and Fast 0°C corner. For other device families, two timing
corners are available—Fast 0°C and Slow 85°C corner.

The Optimize multi-corner timing option directs the Fitter to consider all corner timing delays,
including both fast-corner timing and slow-corner timing, during optimization to meet timing require‐
ments at all process corners and operating conditions. By default, this option is on, and the Fitter
optimizes designs considering multi-corner delays in addition to slow-corner delays, for example, from
the fast-corner timing model, which is based on the fastest manufactured device, operating under high-
voltage conditions

The Optimize multi-corner timing option helps to create a design implementation that is more robust
across process, temperature, and voltage variations. Turning on this option increases compilation time by
approximately 10%.

12-2 Optimize Multi-Corner Timing
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959483992/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When this option is off, the Fitter optimizes designs considering only slow-corner delays from the slow-
corner timing model (slowest manufactured device for a given speed grade, operating in low-voltage
conditions).

Fitter Aggressive Routability Optimization
The Fitter Aggressive Routability Optimizations logic option allows you to specify whether the Fitter
aggressively optimizes for routability. Performing aggressive routability optimizations may decrease
design speed, but may also reduce routing wire usage and routing time.

This option is useful if routing resources are resulting in no-fit errors, and you want to reduce routing
wire use.

The table lists the settings for the Fitter Aggressive Routability Optimizations logic option.

Table 12-1: Fitter Aggressive Routability Optimizations Logic Option Settings

Settings Description

Always The Fitter always performs aggressive routability optimizations. If you set the
Fitter Aggressive Routability Optimizations logic option to Always, reducing
wire utilization may affect the performance of your design.

Never The Fitter never performs aggressive routability optimizations. If improving
timing is more important than reducing wire usage, then set this option to
Automatically or Never.

Automatically The Fitter performs aggressive routability optimizations automatically, based on
the routability and timing requirements of the design. If improving timing is
more important than reducing wire usage, then set this option to Automatically
or Never.

Design Analysis
The initial compilation establishes whether the design achieves a successful fit and meets the specified
timing requirements. This section describes how to analyze your design results in the Quartus Prime
software.

Ignored Timing Constraints
The Quartus Prime software ignores illegal, obsolete, and conflicting constraints.

You can view a list of ignored constraints by clicking Report Ignored Constraints in the Reports menu in
the TimeQuest GUI or by typing the following command to generate a list of ignored timing constraints:

report_sdc -ignored -panel_name "Ignored Constraints"

You should analyze any constraints that the Quartus Prime software ignores. If necessary, correct the
constraints and recompile your design before proceeding with design optimization.

You can view a list of ignored assignment in the Ignored Assignment Report generated by the Fitter.

QPS5V2
2015.11.02 Fitter Aggressive Routability Optimization 12-3

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Quartus Prime TimeQuest Timing Analyzer documentation
For more information about the report_sdc command and its options

• Fitter Summary Reports online help

I/O Timing (Including tPD)
TimeQuest analyzer supports the Synopsys Design Constraints (SDC) format for constraining your
design. When using the TimeQuest analyzer for timing analysis, use the set_input_delay constraint to
specify the data arrival time at an input port with respect to a given clock. For output ports, use the
set_output_delay command to specify the data arrival time at an output port’s receiver with respect to a
given clock. You can use the report_timing Tcl command to generate the I/O timing reports.

The I/O paths that do not meet the required timing performance are reported as having negative slack
and are highlighted in red in the TimeQuest analyzer Report pane. In cases where you do not apply an
explicit I/O timing constraint to an I/O pin, the Quartus Prime timing analysis software still reports the
Actual number, which is the timing number that must be met for that timing parameter when the device
runs in your system.

Related Information
Quartus Prime TimeQuest Timing Analyzer documentation
Information about how timing numbers are calculated

Register-to-Register Timing

Timing Analysis with the TimeQuest Timing Analyzer
Analyze all valid register-to-register paths by using the appropriate constraints in the TimeQuest analyzer.
To view all timing summaries, run the Report All Summaries command by double-clicking Report All
Summaries in the Tasks pane in the TimeQuest analyzer.

If any clock domains have failing paths (highlighted in red in the Report panel), right-click the Clock
Name listed in the Clocks Summary panel and go to Report Timing to get more details. Your design
meets timing requirements when you do not have negative slack on any register-to-register path on any of
the clock domains.

When timing requirements are not met, a report on the failed paths (highlighted in red) can uncover
more detail.

When you select a path listed in the TimeQuest Report Timing pane, the tabs in the corresponding path
detail pane show a path summary of source and destination registers and their timing, statistics about the
path delay, detailed information about the complete data path with all nodes in the path, and the
waveforms of the relevant signals. The Extra Fitter Information tab will show a Graphical Data Path of
where the offending path lies on the physical device. This can reveal whether the timing failure may be
distance related, due to the source and destination node being too close or too far. The Chip Planner can
also be used to investigate the physical layout of a failing path in more detail. To locate a selected path in
the Chip Planner, right-click a node, point to Locate, and select Locate in Chip Planner. The Chip
Planner appears with the path highlighted. Use this to show fanout, fanin, routing congestion, and region
assignments information, and to determine whether those factors might be contributing to the timing
critical path. Additionally, if you know that a path is not a valid path, you can set it to be a false path using
the shortcut menu.

12-4 I/O Timing (Including tPD)
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_fitter_summary.htm
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Data Path tab can also be useful for determining contributions to timing critical paths. The Data
Path tab shows details of the paths that the clock and data took to get from source to destination nodes,
and the time it took on an incremental and cumulative basis. It also provides information about the
routing types and elements used, and their locations.

To view the path details of any selected path, click the Data Path tab in the path details pane. The Data
Path tab displays the details of the Data Arrival Path, as well as the Data Required Path.

The Waveform tab will show the slack relationship between arrival data and required data. This could be
useful for determining how close or far off the path is from meeting timing.

To aid in timing debug, the RTL Viewer or Technology Map Viewer allow you to see schematic represen‐
tations of your design. These viewers allow you to view a gate-level or technology-mapped representation
of your design netlist. By providing a view of the path from source and destination nodes, the viewers can
help identify areas in a design that may benefit from reducing the number of logic levels between the
nodes. To locate a timing path in one of the viewers, right-click a path in the report, point to Locate, and
click Locate in RTL Viewer or Locate in Technology Map Viewer.

Related Information

• Quartus Prime TimeQuest Timing Analyzer documentation
Information about how timing analysis results are calculated

• Analyzing Designs with Quartus Prime Netlist Viewers documentation

Tips for Analyzing Failing Paths
When you are analyzing failing paths, examine the reports and waveforms to determine if the correct
constraints are being applied, and add timing exceptions as appropriate. A multicycle constraint relaxes
setup or hold relationships by the specified number of clock cycles. A false path constraint specifies paths
that can be ignored during timing analysis. Both constraints allow the Fitter to work harder on affected
paths.

Focus on improving the paths that show the worst slack. The Fitter works hardest on paths with the worst
slack. If you fix these paths, the Fitter might be able to improve the other failing timing paths in the
design.

Check for particular nodes that appear in many failing paths. These nodes will appear in a timing report
panel at the top of the list, along with their minimum slacks. Look for paths that have common source
registers, destination registers, or common intermediate combinational nodes. In some cases, the registers
might not be identical, but are part of the same bus.

In the timing analysis report panels, clicking on the From or To column headings can help to sort the
paths by the source or destination registers. Clicking first on From, then on To, uses the registers in the
To column as the primary sort and the registers in the From column as the secondary sort. If you see
common nodes, these nodes indicate areas of your design that might be improved through source code
changes or Quartus Prime optimization settings. Constraining the placement for just one of the paths
might decrease the timing performance for other paths by moving the common node further away in the
device.

Related Information
Design Evaluation for Timing Closure on page 12-27

QPS5V2
2015.11.02 Tips for Analyzing Failing Paths 12-5

Timing Closure and Optimization Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409960088177/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tips for Analyzing Failing Clock Paths that Cross Clock Domains
When analyzing clock path failures, check whether these paths cross two clock domains. This is the case if
the From Clock and To Clock in the timing analysis report are different.

Figure 12-2: Different Value in From Clock and To Clock Field

There can also be paths that involve a different clock in the middle of the path, even if the source and
destination register clock are the same.

When you run Report Timing on your design, the report shows the launch clock and latch clock for each
failing path. Check whether these failing paths between these clock domains should be analyzed synchro‐
nously. If the failing paths are not to be analyzed synchronously, they must be set as false paths. Also
check the relationship between the launch clock and latch clock to make sure it is realistic and what you
expect from your knowledge of the design. For example, the path can start at a rising edge and end at a
falling edge, which reduces the setup relationship by one half clock cycle.

Review the clock skew reported in the Timing Report. A large skew may indicate a problem in your
design, such as a gated clock or a problem in the physical layout (for example, a clock using local routing
instead of dedicated clock routing). When you have made sure the paths are analyzed synchronously and
that there is no large skew on the path, and that the constraints are correct, you can analyze the data
path.These steps help you fine tune your constraints for paths across clock domains to ensure you get an
accurate timing report.

Check if the PLL phase shift is reducing the setup requirement. You might be able to adjust this using PLL
parameters and settings.

Paths that cross clock domains are generally protected with synchronization logic (for example, FIFOs or
double-data synchronization registers) to allow asynchronous interaction between the two clock domains.
In such cases, you can ignore the timing paths between registers in the two clock domains while running
timing analysis, even if the clocks are related.

The Fitter attempts to optimize all failing timing paths. If there are paths that can be ignored for optimiza‐
tion and timing analysis, but the paths do not have constraints that instruct the Fitter to ignore them, the
Fitter tries to optimize those paths as well. In some cases, optimizing unnecessary paths can prevent the
Fitter from meeting the timing requirements on timing paths that are critical to the design. It is beneficial
to specify all paths that can be ignored by setting false path constraints on them, so that the Fitter can put
more effort into the paths that must meet their timing requirements instead of optimizing paths that can
be ignored.

Related Information
Quartus Prime TimeQuest Timing Analyzer
Details about how to ignore timing paths that cross clock domains

12-6 Tips for Analyzing Failing Clock Paths that Cross Clock Domains
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tips for Analyzing Paths from/to the Source and Destination of Critical Path
When analyzing the failing paths in a design, it is often helpful to get a fuller picture of the many
interactions the fitter may be working on around the paths. To understand what may be pulling on a
critical path, the following report_timing command can be useful.

In the project directory, run the report_timing command, shown in the example below, in a .tcl file to
analyze the nodes in a critical path.

set wrst_src <insert_source_of_worst_path_here>
set wrst_dst <insert_destination_of_worst_path_here>
report_timing -setup -npaths 50 -detail path_only -from $wrst_src \
-panel_name "Worst Path||wrst_src -> *"
report_timing -setup -npaths 50 -detail path_only -to $wrst_dst \
-panel_name "Worst Path||* -> wrst_dst"
report_timing -setup -npaths 50 -detail path_only -to $wrst_src \
-panel_name "Worst Path||* -> wrst_src"
report_timing -setup -npaths 50 -detail path_only -from $wrst_dst \
-panel_name "Worst Path||wrst_dst -> *"

Copy the node names from the From Node and To Node columns of the worst path into the first two
variables, and then in the TimeQuest timing analyzer, in the Script menu, source the .tcl script.

In the resulting timing panel, timing failed paths (highlighted in red) can be located in the Chip Planner,
where information such as distance between the nodes and large fanouts can be viewed.

The figure shows a simplified example of what these reports analyzed.

Figure 12-3: Timing Report

LUT

LUT

LUT
LUT

LUT LUT

LUTLUT

LUT

LUT

wrst_src -> *
* -> wrst_dst
* -> wrst_src
wrst_dst -> *
Critical Path

Legend

Source Register
of Worst Path

Destination
Register of
Worst Path

The critical path of the design is in red. The script analyzes the path between the worst source and
destination registers. The first report_timing command analyzes other path that the source is driving, as
shown in green. The second report_timing command analyzes the critical path and other path going to
the destination, shown in yellow. These commands report everything inside these two endpoints that are
pulling them in different directions. The last two report_timing commands show everything outside of

QPS5V2
2015.11.02 Tips for Analyzing Paths from/to the Source and Destination of Critical... 12-7

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the endpoints pulling them in other directions. If any of these reports have slacks near the critical path,
then the Fitter is balancing these paths with the critical path, trying to achieve the best slack. The figure is
quite simple compared to the critical path in most designs, but it is easy to see how this can get very
complicated quickly.

Tips for Locating Multiple Paths to the Chip Planner
The Chip Planner can be used as a visual aid in locating timing critical paths. To view these paths from
timing reports, do the following:

1. Run report_timing to show multiple paths.
2. Select multiple rows of the timing report.
3. Right-click, select Locate Path, and then click Chip Planner.
4. The Locate History window in the Chip Planner displays the selected paths and the worst path.
5. Double-click Locate Paths to show all paths at once, or select individual paths to view the path in the

Chip Planner.

This will show whether timing failures may be due to large distances between the nodes or large
fanouts.

Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
Many designs have the same critical paths show up after each compile, but some suffer from having
critical paths bounce around between different hierarchies, changing with each compile.

This could happen in high speed designs where many register to register paths have very little slack.
Different placements can then result in timing failures in the marginal paths. In designs like this, create a
TQ_critical_paths.tcl script in the project directory. For a given compile, view the critical paths and then
write a generic report_timing command to capture those paths. For example, if several paths fail in a
low-level hierarchy, you can add the following command:

report_timing –setup –npaths 50 –detail path_only \
–to “main_system: main_system_inst|app_cpu:cpu|*” \
–panel_name “Critical Paths||s: * -> app_cpu”

If there is a specific path, such as a bit of a state-machine going to other *count_sync* registers, you can
add a command as shown by the following:

report_timing –setup –npaths 50 –detail path_only \
–from “main_system: main_system_inst|egress_count_sm:egress_inst|update” \
–to “*count_sync*” –panel_name “Critical Paths||s: egress_sm|update -> count_sync”

This file can be sourced in the TimeQuest timing analyzer after every compilation, and new
report_timing commands can be added as new critical paths appear. This helps you monitor paths that
consistently fail and paths that are only marginal, so you can prioritize effectively.

Global Routing Resources
Global routing resources are designed to distribute high fan-out, low-skew signals (such as clocks)
without consuming regular routing resources. Depending on the device, these resources can span the
entire chip, or some smaller portion, such as a quadrant. The Quartus Prime software attempts to assign
signals to global routing resources automatically, but you might be able to make more suitable
assignments manually.

12-8 Tips for Locating Multiple Paths to the Chip Planner
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For details about the number and types of global routing resources available, refer to the relevant device
handbook.

Check the global signal utilization in your design to ensure that the appropriate signals have been placed
on the global routing resources. In the Compilation Report, open the Fitter report and click Resource
Section. Analyze the Global & Other Fast Signals and Non-Global High Fan-out Signals reports to
determine whether any changes are required.

You might be able to reduce skew for high fan-out signals by placing them on global routing resources.
Conversely, you can reduce the insertion delay of low fan-out signals by removing them from global
routing resources. Doing so can improve clock enable timing and control signal recovery/removal timing,
but increases clock skew. Use the Global Signal setting in the Assignment Editor to control global routing
resources.

Optimizing Timing (LUT-Based Devices)
You can use the following guidelines if your design does not meet its timing requirements:

Debugging Timing Failures in the TimeQuest Analyzer
A Report Timing Closure Recommendations task is available in the Custom Reports section of the
Tasks pane of the TimeQuest analyzer. Use this report to get more information and help on the failing
paths in your design.

When you run the Report Timing Closure Recommendations task, you get specific recommendations
about failing paths in your design and changes that you can make to potentially fix the failing paths.

Selecting the Report Timing Closure Recommendations task opens the Report Timing Closure
Recommendations dialog box.

From the Report Timing Closure Recommendations dialog box, you can select paths based on the clock
domain, filter by nodes on path, and choose the number of paths to analyze.

After running the Report Timing Closure Recommendations task in the TimeQuest analyzer, examine
the reports in the Report Timing Closure Recommendations folder in the Report pane of the
TimeQuest analyzer GUI. Each recommendation has star symbols (*) associated with it. Recommenda‐
tions with more stars are more likely to help you close timing on your design.

The reports give you the most probable causes of failure for each path being analyzed. The reports are
organized into sections, depending on the type of issues found in the design, such as large clock skew,
restricted optimizations, unbalanced logic, skipped optimizations, coding style that has too many levels of
logic between registers, or region or partition constraints specific to your project.

You will see recommendations that may help you fix the failing paths. For detailed analysis of the critical
paths, run the report_timing command on specified paths. In the Extra Fitter Information tab of the
Path report panel, you will also see detailed Fitter-related information that may help you visualize the
issue and take the appropriate action if your constraints cause a specific placement.

Related Information
Report Timing Closure Recommendations Dialog Box online help

QPS5V2
2015.11.02 Optimizing Timing (LUT-Based Devices) 12-9

Timing Closure and Optimization Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_com_report_timing_closure_recommendations.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Timing Optimization Advisor
While the TimeQuest Report Timing Closure Recommendations task gives specific recommendations
to fix failing paths, the Timing Optimization Advisor gives more general recommendations to improve
timing performance for a design.

The Timing Optimization Advisor guides you in making settings that optimize your design to meet your
timing requirements. To run the Timing Optimization Advisor, on the Tools menu, point to Advisors
and click Timing Optimization Advisor. This advisor describes many of the suggestions made in this
section.

When you open the Timing Optimization Advisor after compilation, you can find recommendations to
improve the timing performance of your design. Some of the recommendations in these advisors can
contradict each other. Altera recommends evaluating these options and choosing the settings that best
suit the given requirements.

The example shows the Timing Optimization Advisor after compiling a design that meets its frequency
requirements, but requires setting changes to improve the timing.

Figure 12-4: Timing Optimization Advisor

These options open the Settings dialog box or Assignment
Editor so you can manually change the settings.

This button makes the recommended
changes automatically.

When you expand one of the categories in the Timing Optimization Advisor, such as Maximum
Frequency (fmax) or I/O Timing (tsu, tco, tpd), the recommendations are divided into stages. The stages
show the order in which to apply the recommended settings. The first stage contains the options that are
easiest to change, make the least drastic changes to your design optimization, and have the least effect on
compilation time. Icons indicate whether each recommended setting has been made in the current
project. In the figure, the checkmark icons in the list of recommendations for Stage 1 indicate recommen‐
dations that are already implemented. The warning icons indicate recommendations that are not followed
for this compilation. The information icons indicate general suggestions. For these entries, the advisor

12-10 Timing Optimization Advisor
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

does not report whether these recommendations were followed, but instead explains how you can achieve
better performance. For a legend that provides more information for each icon, refer to the “How to use”
page in the Timing Optimization Advisor.

There is a link from each recommendation to the appropriate location in the Quartus Prime GUI where
you can change the settings. For example, consider the Synthesis Netlist Optimizations page of the
Settings dialog box or the Global Signals category in the Assignment Editor. This approach provides the
most control over which settings are made and helps you learn about the settings in the software. In some
cases, you can also use the Correct the Settings button to automatically make the suggested change to
global settings.

For some entries in the Timing Optimization Advisor, a button appears that allows you to further analyze
your design and gives you more information. The advisor provides a table with the clocks in the design
and indicates whether they have been assigned a timing constraint.

I/O Timing Optimization
This stage of design optimization focuses on I/O timing. Ensure that you have made the appropriate
assignments described in the “Initial Compilation: Required Settings” section in the Design Optimization
Overview chapter of the Quartus Prime Handbook. You must also ensure that resource utilization is
satisfactory before proceeding with I/O timing optimization. The suggestions provided in this section are
applicable to all Altera FPGA families and to the MAX II family of CPLDs.

Because changes to the I/O paths affect the internal register-to-register timing, complete this stage before
proceeding to the register-to-register timing optimization stage as described in Register-to-Register
Timing Optimization Techniques (LUT-Based Devices).

The options presented in this section address how to improve I/O timing, including the setup delay (tSU),
hold time (tH), and clock-to-output (tCO) parameters.

Improving Setup and Clock-to-Output Times Summary
The table lists the recommended order in which to use techniques to reduce tSU and tCO times. “Yes”
indicates which timing parameters are affected by each technique. Reducing tSU times increases hold (tH)
times.

Table 12-2: Improving Setup and Clock-to-Output Times

Technique Affects tSU Affects tCO

Ensure that the appropriate constraints are set for the failing I/Os (refer to the
“Initial Compilation: Required Settings” section in the Design Optimization
Overviewchapter of the Quartus Prime Handbook.)

Yes Yes

Use timing-driven compilation for I/O (Fast Input, Output, and Output Enable
Registers)

Yes Yes

Use fast input register (Programmable Delays) Yes N/A

Use fast output register, fast output enable register, and fast OCT register
(Programmable Delays)

N/A Yes

Decrease the value of Input Delay from Pin to Input Register or set Decrease
Input Delay to Input Register = ON

Yes N/A

QPS5V2
2015.11.02 I/O Timing Optimization 12-11

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Technique Affects tSU Affects tCO

Decrease the value of Input Delay from Pin to Internal Cells or set Decrease
Input Delay to Internal Cells = ON

Yes N/A

Decrease the value of Delay from Output Register to Output Pin or set Increase
Delay to Output Pin = OFF (Fast Input, Output, and Output Enable Registers)

N/A Yes

Increase the value of Input Delay from Dual-Purpose Clock Pin to Fan-Out
Destinations (Fast Input, Output, and Output Enable Registers)

Yes N/A

Use PLLs to shift clock edges (Use PLLs to Shift Clock Edges) Yes Yes

Use the Fast Regional Clock (Change How Hold Times are Optimized for
MAX II Devices)

N/A Yes

For MAX II or MAX V family devices, set Guarantee I/O Paths Have Zero Hold
Time at Fast Corner to OFF, or When TSU and TPD Constraints Permit (Change
How Hold Times are Optimized for MAX II Devices)

Yes N/A

Increase the value of Delay to output enable pin or set Increase delay to output
enable pin (Use PLLs to Shift Clock Edges)

N/A Yes

Note to table :

1. These options may not apply to all device families.

Timing-Driven Compilation
This option moves registers into I/O elements if required to meet tSU or tCO assignments, duplicating the
register if necessary (as in the case in which a register fans out to multiple output locations). This option is
turned on by default and is a global setting. The option does not apply to MAX II series devices because
they do not contain I/O registers.

The Optimize IOC Register Placement for Timing option affects only pins that have a tSU or tCO
requirement. Using the I/O register is possible only if the register directly feeds a pin or is fed directly by a
pin. This setting does not affect registers with any of the following characteristics:

• Have combinational logic between the register and the pin
• Are part of a carry or cascade chain
• Have an overriding location assignment
• Use the asynchronous load port and the value is not 1 (in device families where the port is available)

Registers with the characteristics listed are optimized using the regular Quartus Prime Fitter optimiza‐
tions.

Related Information
Optimize IOC Register Placement for Timing Logic Option online help

Fast Input, Output, and Output Enable Registers
Normally, with correct timing assignments, the Fitter already places the I/O registers in the correct I/O
cell or in the core, to meet the performance requirement. However, you can place individual registers in
I/O cells manually by making fast I/O assignments with the Assignment Editor.

12-12 Timing-Driven Compilation
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimize_io_timing.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more information about the Fast Input Register option, Fast Output Register option, Fast Output
Enable Register option, and Fast OCT (on-chip termination) Register option, refer to Quartus Prime
Help.

In MAX II series devices, which have no I/O registers, these assignments lock the register into the LAB
adjacent to the I/O pin if there is a pin location assignment for that I/O pin.

If the fast I/O setting is on, the register is always placed in the I/O element. If the fast I/O setting is off, the
register is never placed in the I/O element. This is true even if the Optimize IOC Register Placement for
Timing option is turned on. If there is no fast I/O assignment, the Quartus Prime software determines
whether to place registers in I/O elements if the Optimize IOC Register Placement for Timing option is
turned on.

You can also use the four fast I/O options (Fast Input Register, Fast Output Register, Fast Output
Enable Register, and Fast OCT Register) to override the location of a register that is in a LogicLock
region and force it into an I/O cell. If you apply this assignment to a register that feeds multiple pins, the
register is duplicated and placed in all relevant I/O elements. In MAX II series devices, the register is
duplicated and placed in each distinct LAB location that is next to an I/O pin with a pin location
assignment.

Programmable Delays
You can use various programmable delay options to minimize the tSU and tCO times. For Arria, Cyclone,
MAX II, MAX V, and Stratix series devices, the Quartus Prime software automatically adjusts the
applicable programmable delays to help meet timing requirements. Programmable delays are advanced
options to use only after you compile a project, check the I/O timing, and determine that the timing is
unsatisfactory. For detailed information about the effect of these options, refer to the device family
handbook or data sheet.

After you have made a programmable delay assignment and compiled the design, you can view the
implemented delay values for every delay chain for every I/O pin in the Delay Chain Summary section of
the Compilation Report.

You can assign programmable delay options to supported nodes with the Assignment Editor. You can
also view and modify the delay chain setting for the target device with the Chip Planner and Resource
Property Editor. When you use the Resource Property Editor to make changes after performing a full
compilation, recompiling the entire design is not necessary; you can save changes directly to the netlist.
Because these changes are made directly to the netlist, the changes are not made again automatically when
you recompile the design. The change management features allow you to reapply the changes on
subsequent compilations.

Although the programmable delays in newer devices are user-controllable, Altera recommends their use
for advanced users only. However, the Quartus Prime software might use the programmable delays
internally during the Fitter phase.

For details about the programmable delay logic options available for Altera devices, refer to the following
Quartus Prime Help topics:

Input Delay from Pin to Input Register logic option

Input Delay from Pin to Internal Cells logic option

Output Enable Pin Delay logic option

Delay from Output Register to Output Pin logic option

QPS5V2
2015.11.02 Programmable Delays 12-13

Timing Closure and Optimization Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_pad_to_input_register_delay.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_pad_to_core_delay.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_output_enable_delay.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_clock_to_output_delay.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations logic option

Use PLLs to Shift Clock Edges
Using a PLL typically improves I/O timing automatically. If the timing requirements are still not met,
most devices allow the PLL output to be phase shifted to change the I/O timing. Shifting the clock
backwards gives a better tH at the expense of tSU, while shifting it forward gives a better tSU at the expense
of tH. You can use this technique only in devices that offer PLLs with the phase shift option.

Figure 12-5: Shift Clock Edges Forward to Improve tSU at the Expense of tH

You can achieve the same type of effect in certain devices by using the programmable delay called Input
Delay from Dual Purpose Clock Pin to Fan-Out Destinations.

Related Information
Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations Logic Option online help

Use Fast Regional Clock Networks and Regional Clocks Networks
Altera devices have a variety of hierarchical clock structures. These include dedicated global clock
networks, regional clock networks, fast regional clock networks, and periphery clock networks. The
available resources differ between the various Altera device families.

For the number of clocking resources available in your target device, refer to the appropriate device
handbook.

In general, fast regional clocks have less delay to I/O elements than regional and global clocks, and are
used for high fan-out control signals. Regional clocks provide the lowest clock delay and skew for logic
contained in a single quadrant. Placing clocks on these low-skew and low-delay clock nets provides better
tCO performance.

Spine Clock Limitations
Global clock networks, regional clock networks, and periphery clock networks have an additional level of
clock hierarchy known as spine clocks. Spine clocks drive the final row and column clocks to their
registers; thus, the clock to every register in the chip is reached through spine clocks. Spine clocks are not
directly user controllable.

If your project has high clock routing demands, due to limitations in the Quartus Prime software, you
may see spine clock errors. These errors are often seen with designs using multiple memory interfaces and
high-speed serial interface (HSSI) channels (especially PMA Direct mode).

To reduce these spine clock errors, you can constrain your design to better use your regional clock
resources using the following techniques:

• If your design does not use LogicLock regions, or if the LogicLock regions are not aligned to your clock
region boundaries, create additional LogicLock regions and further constrain your logic.

Note: Register packing, a Fitter optimization option, may ignore LogicLock regions. If this occurs, disable
register packing for specific instances through the Quartus Prime Assignment Editor.

12-14 Use PLLs to Shift Clock Edges
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dual_purpose_clock_pin_delay.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_dual_purpose_clock_pin_delay.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Some periphery features may ignore LogicLock region assignments. When this happens, the
global promotion process may not function properly. To ensure that the global promotion
process uses the correct locations, assign specific pins to the I/Os using these periphery features.

• By default, some IP MegaCore functions apply a global signal assignment with a value of dual-
regional clock. If you constrain your logic to a regional clock region and set the global signal
assignment to Regional instead of Dual-Regional, you can reduce clock resource contention.

Change How Hold Times are Optimized for MAX II Devices
For MAX II devices, you can use the Guarantee I/O Paths Have Zero Hold Time at Fast Corner option
to control how hold time is optimized by the Quartus Prime software.

Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
The next stage of design optimization is to improve register-to-register (fMAX) timing. The following
sections provide available options if the performance requirements are not achieved after compilation.

Coding style affects the performance of your design to a greater extent than other changes in settings.
Always evaluate your code and make sure to use synchronous design practices.

Note: When using the TimeQuest analyzer, register-to-register timing optimization is the same as
maximizing the slack on the clock domains in your design. You can use the techniques described in
this section to improve the slack on different timing paths in your design.

Before optimizing your design, understand the structure of your design as well as the type of logic affected
by each optimization. An optimization can decrease performance if the optimization does not benefit
your logic structure.

Related Information
Recommended Design Practices documentation
Details about synchronous design practices and coding styles

Optimize Source Code
In many cases, optimizing the design’s source code can have a very significant effect on your design
performance. In fact, optimizing your source code is typically the most effective technique for improving
the quality of your results and is often a better choice than using LogicLock or location assignments.

Be aware of the number of logic levels needed to implement your logic while you are coding. Too many
levels of logic between registers could result in critical paths failing timing. Try restructuring the design to
use pipelining or more efficient coding techniques. Also, try limiting high fan-out signals in the source
code. When possible, duplicate and pipeline control signals. Make sure the duplicate registers are
protected by a preserve attribute, to avoid merging during synthesis.

If the critical path in your design involves memory or DSP functions, check whether you have code blocks
in your design that describe memory or functions that are not being inferred and placed in dedicated
logic. You might be able to modify your source code to cause these functions to be placed into high-
performance dedicated memory or resources in the target device. When using RAM/DSP blocks, enable
the optional input and output registers.

Ensure that your state machines are recognized as state machine logic and optimized appropriately in
your synthesis tool. State machines that are recognized are generally optimized better than if the synthesis
tool treats them as generic logic. In the Quartus Prime software, you can check the State Machine report
under Analysis & Synthesis in the Compilation Report. This report provides details, including state

QPS5V2
2015.11.02 Change How Hold Times are Optimized for MAX II Devices 12-15

Timing Closure and Optimization Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959483992/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

encoding for each state machine that was recognized during compilation. If your state machine is not
recognized, you might have to change your source code to enable it to be recognized.

Related Information

• Recommended HDL Coding Styles documentation
Coding style guidelines including examples of HDL code for inferring memory, functions, guidelines,
and sample HDL code for state machines

• AN 584: Timing Closure Methodology for Advanced FPGA Designs application note.

Improving Register-to-Register Timing Summary
The choice of options and settings to improve the timing margin (slack) or to improve register-to-register
timing depends on the failing paths in the design. To achieve the results that best approximate your
performance requirements, apply the following techniques and compile the design after each step:

1. Ensure that your timing assignments are complete and correct. For details, refer to the “Initial
Compilation: Required Settings” section in the Design Optimization Overview chapter of the Quartus
Prime Handbook.

2. Ensure that you have reviewed all warning messages from your initial compilation and check for
ignored timing assignments.

3. Apply netlist synthesis optimization options.
4. To optimize for speed, apply the following synthesis options:

• Optimize Synthesis for Speed, Not Area
• Flatten the Hierarchy During Synthesis
• Set the Synthesis Effort to High
• Change State Machine Encoding
• Prevent Shift Register Inference
• Use Other Synthesis Options Available in Your Synthesis Tool

5. To optimize for performance using physical synthesis, apply the following options:

• Perform physical synthesis for combinational logic
• Perform automatic asynchronous signal pipelining
• Perform register duplication
• Perform register retiming
• Perform logic to memory mapping

6. Try different Fitter seeds. If there are very few paths that are failing by small negative slack, then you
can try with a different seed to see if there is a fit that meets constraints in the Fitter seed noise.

Note: Omit this step if a large number of critical paths are failing or if the paths are failing badly.
7. To control placement, make LogicLock assignments.
8. Make design source code modifications to fix areas of the design that are still failing timing require‐

ments by significant amounts.
9. Make location assignments, or as a last resort, perform manual placement by back-annotating the

design.
You can use Design Space Explorer II (DSE) to automate the process of running several different
compilations with different settings.
If these techniques do not achieve performance requirements, additional design source code modifica‐
tions might be required.

12-16 Improving Register-to-Register Timing Summary
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959570946/en-us
http://www.altera.com/literature/an/an584.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Design Space Explorer II online help

Physical Synthesis Optimizations
The Quartus Prime software offers physical synthesis optimizations that can help improve the
performance of many designs regardless of the synthesis tool used. Physical synthesis optimizations can
be applied both during synthesis and during fitting.

Physical synthesis optimizations that occur during the synthesis stage of the Quartus Prime compilation
operate either on the output from another EDA synthesis tool or as an intermediate step in Quartus Prime
integrated synthesis. These optimizations make changes to the synthesis netlist to improve either area or
speed, depending on your selected optimization technique and effort level.

To view and modify the synthesis netlist optimization options, click Assignments > Settings > Compiler
Settings > Advanced Settings (Fitter).

If you use a third-party EDA synthesis tool and want to determine if the Quartus Prime software can
remap the circuit to improve performance, you can use the Perform WYSIWYG Primitive Resynthesis
option. This option directs the Quartus Prime software to unmap the LEs in an atom netlist to logic gates
and then map the gates back to Altera-specific primitives. Using Altera-specific primitives enables the
Fitter to remap the circuits using architecture-specific techniques.

The Quartus Prime technology mapper optimizes the design to achieve maximum speed performance,
minimum area usage, or balances high performance and minimal logic usage, according to the setting of
the Optimization Technique option. Set this option to Speed or Balanced.

The physical synthesis optimizations occur during the Fitter stage of the Quartus Prime compilation.
Physical synthesis optimizations make placement-specific changes to the netlist that improve speed
performance results for a specific Altera device.

The following physical synthesis optimizations are available during the Fitter stage for improving
performance:

• Physical synthesis for combinational logic
• Automatic asynchronous signal pipelining
• Physical synthesis for registers

• Register duplication
• Register retiming

Note: If you want the performance gain from physical synthesis only on parts of your design, you can
apply the physical synthesis options on specific instances.

To apply physical synthesis assignments for fitting on a per-instance basis, use the Quartus Prime
Assignment Editor. The following assignments are available as instance assignments:

• Perform physical synthesis for combinational logic
• Perform register duplication for performance
• Perform register retiming for performance
• Perform automatic asynchronous signal pipelining

Related Information

• Perform WYSIWYG Primitive Resynthesis Logic Option online help

QPS5V2
2015.11.02 Physical Synthesis Optimizations 12-17

Timing Closure and Optimization Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/dse/dse_com_launch_DSE.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Optimization Technique Logic Option online help

Turn Off Extra-Effort Power Optimization Settings
If PowerPlay power optimization settings are set to Extra Effort, your design performance can be affected.
If improving timing performance is more important than reducing power use, set the PowerPlay power
optimization setting to Normal.

Related Information
PowerPlay Power Optimization Logic Option online help

Power Optimization documentation on page 13-1

Optimize Synthesis for Speed, Not Area
The manner in which the design is synthesized has a large impact on design performance. Design
performance varies depending on the way the design is coded, the synthesis tool used, and the options
specified when synthesizing. Change your synthesis options if a large number of paths are failing or if
specific paths are failing badly and have many levels of logic.

Set your device and timing constraints in your synthesis tool. Synthesis tools are timing-driven and
optimized to meet specified timing requirements. If you do not specify a target frequency, some synthesis
tools optimize for area.

Some synthesis tools offer an easy way to instruct the tool to focus on speed instead of area.

You can also specify this logic option for specific modules in your design with the Assignment Editor
while leaving the default Optimization Technique setting at Balanced (for the best trade-off between
area and speed for certain device families) or Area (if area is an important concern). You can also use the
Speed Optimization Technique for Clock Domains option in the Assignment Editor to specify that all
combinational logic in or between the specified clock domain(s) is optimized for speed.

To achieve best performance with push-button compilation, follow the recommendations in the following
sections for other synthesis settings. You can use DSE II to experiment with different Quartus Prime
synthesis options to optimize your design for the best performance.

Related Information

• Optimization Technique Logic Option online help
• Design Space Explorer II online help

Flatten the Hierarchy During Synthesis
Synthesis tools typically let you preserve hierarchical boundaries, which can be useful for verification or
other purposes. However, the best optimization results generally occur when the synthesis tool optimizes
across hierarchical boundaries, because doing so often allows the synthesis tool to perform the most logic
minimization, which can improve performance. Whenever possible, flatten your design hierarchy to
achieve the best results.

Note: If you are using Quartus Prime incremental compilation, you cannot flatten your design across
design partitions. Incremental compilation always preserves the hierarchical boundaries between
design partitions. Follow Altera’s recommendations for design partitioning, such as registering
partition boundaries to reduce the effect of cross-boundary optimizations.

12-18 Turn Off Extra-Effort Power Optimization Settings
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimization_technique.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimize_power_during_synth.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_optimization_technique.htm
http://quartushelp.altera.com/current/index.htm#optimize/dse/dse_com_launch_DSE.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Set the Synthesis Effort to High
Some synthesis tools offer varying synthesis effort levels to trade off compilation time with synthesis
results. Set the synthesis effort to high to achieve best results when applicable.

Change State Machine Encoding
State machines can be encoded using various techniques. One-hot encoding, which uses one register for
every state bit, usually provides the best performance. If your design contains state machines, changing
the state machine encoding to one-hot can improve performance at the cost of area.

Related Information
State Machine Processing Logic Option online help

Duplicate Logic for Fan-Out Control
Duplicating logic or registers can help improve timing in cases where moving a register in a failing timing
path to reduce routing delay creates other failing paths or where there are timing problems due to the fan-
out of the registers. Most often, timing failures occur not because of the high fan-out registers, but because
of the location of those registers. Duplicating registers, where source and destination registers are
physically close, can help improve slack on critical paths.

Many synthesis tools support options or attributes that specify the maximum fan-out of a register. When
using Quartus Prime integrated synthesis, you can set the Maximum Fan-Out logic option in the
Assignment Editor to control the number of destinations for a node so that the fan-out count does not
exceed a specified value. You can also use the maxfan attribute in your HDL code. The software duplicates
the node as required to achieve the specified maximum fan-out.

Logic duplication using Maximum Fan-Out assignments normally increases resource utilization and can
potentially increase compilation time, depending on the placement and the total resource usage within the
selected device. The improvement in timing performance that results because of Maximum Fan-Out
assignments is very design-specific. This is because when you use the Maximum Fan-Out assignment,
although the Fitter duplicates the source logic to limit the fan-out, it may not be able to control the
destinations that each of the duplicated sources drive. Since the Maximum Fan-Out destination does not
specify which of the destinations the duplicated source should drive, it is possible that it might still be
driving logic located all around the device. To avoid this situation, you could use the Manual Logic
Duplication logic option.

If you are using Maximum Fan-Out assignments, Altera recommends benchmarking your design with
and without these assignments to evaluate whether they give the expected improvement in timing
performance. Use the assignments only when you get improved results.

You can manually duplicate registers in the Quartus Prime software regardless of the synthesis tool used.
To duplicate a register, apply the Manual Logic Duplication logic option to the register with the
Assignment Editor.

Note: Various Fitter optimizations may cause a small violation to the Maximum Fan-Out assignments to
improve timing.

Related Information
Manual Logic Duplication Logic Option online help

QPS5V2
2015.11.02 Set the Synthesis Effort to High 12-19

Timing Closure and Optimization Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_smp_process_type.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_duplicate_atom.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Prevent Shift Register Inference
In some cases, turning off the inference of shift registers increases performance. Doing so forces the
software to use logic cells to implement the shift register instead of implementing the registers in memory
blocks using the ALTSHIFT_TAPS IP core. If you implement shift registers in logic cells instead of
memory, logic utilization is increased.

Use Other Synthesis Options Available in Your Synthesis Tool
With your synthesis tool, experiment with the following options if they are available:

• Turn on register balancing or retiming
• Turn on register pipelining
• Turn off resource sharing

These options can increase performance, but typically increase the resource utilization of your design.

Fitter Seed
The Fitter seed affects the initial placement configuration of the design. Changing the seed value changes
the Fitter results because the fitting results change whenever there is a change in the initial conditions.
Each seed value results in a somewhat different fit, and you can experiment with several different seeds to
attempt to obtain better fitting results and timing performance.

When there are changes in your design, there is some random variation in performance between compila‐
tions. This variation is inherent in placement and routing algorithms—there are too many possibilities to
try them all and get the absolute best result, so the initial conditions change the compilation result.

Note: Any design change that directly or indirectly affects the Fitter has the same type of random effect as
changing the seed value. This includes any change in source files, Compiler Settings or Timing
Analyzer Settings. The same effect can appear if you use a different computer processor type or
different operating system, because different systems can change the way floating point numbers
are calculated in the Fitter.

If a change in optimization settings slightly affects the register-to-register timing or number of failing
paths, you cannot always be certain that your change caused the improvement or degradation, or whether
it could be due to random effects in the Fitter. If your design is still changing, running a seed sweep
(compiling your design with multiple seeds) determines whether the average result has improved after an
optimization change and whether a setting that increases compilation time has benefits worth the
increased time (such as setting the Physical Synthesis Effort to Extra). The sweep also shows the amount
of random variation to expect for your design.

If your design is finalized, you can compile your design with different seeds to obtain one optimal result.
However, if you subsequently make any changes to your design, you might need to perform seed sweep
again.

On the Assignments menu, select Compiler Settings to control the initial placement with the seed. You
can use the DSE II to perform a seed sweep easily.

You can use the following Tcl command from a script to specify a Fitter seed:

set_global_assignment -name SEED <value>

12-20 Prevent Shift Register Inference
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Design Space Explorer II online help
Information about compiling your design with different seeds using Design Space Explorer II

Set Maximum Router Timing Optimization Level
To improve routability in designs where the router did not pick up the optimal routing lines, set the
Router Timing Optimization Level to Maximum. This setting determines how aggressively the router
tries to meet the timing requirements. Setting this option to Maximum can increase design speed slightly
at the cost of increased compilation time. Setting this option to Minimum can reduce compilation time at
the cost of slightly reduced design speed. The default value is Normal.

Related Information
Router Timing Optimization Level Logic Option online help

LogicLock Assignments
Using LogicLock assignments to improve timing performance is only recommended for older Altera
devices, such as the MAX II family. For other device families, especially for larger devices such as Arria
and Stratix series devices, Altera does not recommend using LogicLock assignments to improve timing
performance. For these devices, use the LogicLock feature for performance preservation and to floorplan
your design.

LogicLock assignments do not always improve the performance of the design. In many cases, you cannot
improve upon results from the Fitter by making location assignments. If there are existing LogicLock
assignments in your design, remove the assignments if your design methodology permits it. Recompile
the design, and then check if the assignments are making the performance worse.

When making LogicLock assignments, it is important to consider how much flexibility to give the Fitter.
LogicLock assignments provide more flexibility than hard location assignments. Assignments that are
more flexible require higher Fitter effort, but reduce the chance of design overconstraint. The following
types of LogicLock assignments are available, listed in the order of decreasing flexibility:

• Auto size, floating location regions
• Fixed size, floating location regions
• Fixed size, locked location regions

If you are unsure of how big or where a LogicLock region should go, the Auto/Floating options are useful
for your first pass. After you determine where a LogicLock region must go, modify the Fixed/Locked
regions, as Auto/Floating LogicLock regions can hurt your overall performance. To determine what to put
into a LogicLock region, refer to the timing analysis results and analyze the critical paths in the Chip
Planner. The register-to-register timing paths in the Timing Analyzer section of the Compilation Report
help you recognize patterns.

Related Information

• Analyzing and Optimizing the Design Floorplan with the Chip Planner on page 15-1

Hierarchy Assignments
For a design with the hierarchy shown in the figure, which has failing paths in the timing analysis results
similar to those shown in the table, mod_A is probably a problem module. In this case, a good strategy to
fix the failing paths is to place the mod_A hierarchy block in a LogicLock region so that all the nodes are
closer together in the floorplan.

QPS5V2
2015.11.02 Set Maximum Router Timing Optimization Level 12-21

Timing Closure and Optimization Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/dse/dse_com_launch_DSE.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_router_timing_optimization_level.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-6: Design Hierarchy

Top

mod_A mod_B

Table 12-3: Failing Paths in a Module Listed in Timing Analysis

From To

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2

Hierarchical LogicLock regions are also important if you are using an incremental compilation flow. Place
each design partition for incremental compilation in a separate LogicLock region to reduce conflicts and
ensure good results as the design develops. You can use the auto size and floating location regions to find
a good design floorplan, but fix the size and placement to achieve the best results in future compilations.

Related Information

• Analyzing and Optimizing the Design Floorplan with the Chip Planner on page 15-1

Location Assignments
If a small number of paths are failing to meet their timing requirements, you can use hard location
assignments to optimize placement. Location assignments are less flexible for the Quartus Prime Fitter
than LogicLock assignments. In some cases, when you are familiar with your design, you can enter
location constraints in a way that produces better results.

Note: Improving fitting results, especially for larger devices, such as Arria and Stratix series devices, can
be difficult. Location assignments do not always improve the performance of the design. In many
cases, you cannot improve upon the results from the Fitter by making location assignments.

Metastability Analysis and Optimization Techniques
Metastability problems can occur when a signal is transferred between circuitry in unrelated or
asynchronous clock domains, because the designer cannot guarantee that the signal will meet its setup
and hold time requirements. The mean time between failures (MTBF) is an estimate of the average time
between instances when metastability could cause a design failure.

12-22 Location Assignments
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Quartus Prime software to analyze the average MTBF due to metastability when a design
synchronizes asynchronous signals and to optimize the design to improve the MTBF. These metastability
features are supported only for designs constrained with the TimeQuest analyzer, and for select device
families.

If the MTBF of your design is low, refer to the Metastability Optimization section in the Timing
Optimization Advisor, which suggests various settings that can help optimize your design in terms of
metastability.

This chapter describes how to enable metastability analysis and identify the register synchronization
chains in your design, provides details about metastability reports, and provides additional guidelines for
managing metastability.

Related Information

• Understanding Metastability in FPGAs white paper
• Managing Metastability with the Quartus Prime Software documentation

Periphery to Core Register Placement and Routing Optimization
The Periphery to Core Register Placement and Routing Optimization (P2C) option specifies whether the
Fitter performs targeted placement and routing optimization on direct connections between periphery
logic and registers in the FPGA core. P2C is an optional pre-routing-aware placement optimization stage
that enables you to more reliably achieve timing closure.

Note: The Periphery to Core Register Placement and Routing Optimization option applies in both
directions, periphery to core and core to periphery.

Transfers between external interfaces (for example, high-speed I/O or serial interfaces) and the FPGA
often require routing many connections with tight setup and hold timing requirements. When this option
is turned on, the Fitter performs P2C placement and routing decisions before those for core placement
and routing. This reserves the necessary resources to ensure that your design achieves its timing require‐
ments and avoids routing congestion for transfers with external interfaces.

This option is available as a global assignment, or can be applied to specific instances within your design.

QPS5V2
2015.11.02 Periphery to Core Register Placement and Routing Optimization 12-23

Timing Closure and Optimization Altera Corporation

Send Feedback

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959644819/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-7: Periphery to Core Register Placement and Routing Optimization (P2C) Flow

P2C runs after periphery placement, and generates placement for core registers on corresponding
P2C/C2P paths, and core routing to and from these core registers.

User Design

Synthesis

Periphery Placement

 P2C

Core Placement

Routing

Design Implementation

Generates periphery placement and routing.

Generates core register placement for periphery interfaces.
Generates core Routing to/from those registers.

Related Information

• Setting Periphery to Core Optimizations in the Advanced Fitter Setting Dialog Box on page 12-24
• Setting Periphery to Core Optimizations in the Assignment Editor on page 12-25
• Viewing Periphery to Core Optimizations in the Fitter Report on page 12-25

Setting Periphery to Core Optimizations in the Advanced Fitter Setting Dialog Box
The Periphery to Core Placement and Routing Optimization setting specifies whether the Fitter should
perform targeted placement and routing optimization on direct connections between periphery logic and
registers in the FPGA core.

You can optionally perform periphery to core optimizations by instance with settings in the Assignment
Editor.

1. In the Quartus Prime software, click Assignments > Settings > Compiler Settings > Advanced
Settings (Fitter).

2. In the Advanced Fitter Settings dialog box, for the Periphery to Core Placement and Routing
Optimization option, select one of the following options depending on how you want to direct
periphery to core optimizations in your design:
a. Select Auto to direct the software to automatically identify transfers with tight timing windows,

place the core registers, and route all connections to or from the periphery.
b. Select On to direct the software to globally optimize all transfers between the periphery and core

registers, regardless of timing requirements.

Note: Setting this option to On in the Advanced Fitter Settings is not recommended. The
intended use for this setting is in the Assignment Editor to force optimization for a targeted
set of nodes or instance.

c. Select Off to disable periphery to core path optimization in your design.

12-24 Setting Periphery to Core Optimizations in the Advanced Fitter Setting...
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Periphery to Core Register Placement and Routing Optimization on page 12-23
• Setting Periphery to Core Optimizations in the Assignment Editor on page 12-25

Setting Periphery to Core Optimizations in the Assignment Editor
When you turn on the Periphery to Core Placement and Routing Optimization (P2C/C2P) setting in
the Assignment Editor, the Quartus Prime software performs periphery to core, or core to periphery
optimizations on selected instances in your design.

You can optionally perform periphery to core optimizations by instance with settings in the Advanced
Fitter Settings dialog box.

1. In the Quartus Prime software, click Assignments > Assignment Editor.
2. For the selected path, double-click the Assignment Name column, and then click the Periphery to

core register placement and routing optimization option in the drop-down list.
3. In the To column, choose either a periphery node or core register node on a P2C/C2P path you want

to optimize. Leave the From column empty.
For paths to appear in the Assignments Editor, you must first run Analysis & Synthesis on your design.

Related Information

• Periphery to Core Register Placement and Routing Optimization on page 12-23
• Setting Periphery to Core Optimizations in the Advanced Fitter Setting Dialog Box on page 12-24

Viewing Periphery to Core Optimizations in the Fitter Report
The Quartus Prime software generates a periphery to core placement and routing optimization summary
in the Fitter (Place & Route) report after compilation.

1. Compile your Quartus Prime project.
2. In the Tasks pane, select Compilation.
3. Under Fitter (Place & Route), double-click View Report.
4. In the Fitter folder, expand the Place Stage folder.
5. Double-click Periphery to Core Transfer Optimization Summary.

QPS5V2
2015.11.02 Setting Periphery to Core Optimizations in the Assignment Editor 12-25

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 12-4: Fitter Report - Periphery to Core Transfer Optimization (P2C) Summary

From Path To Path Status

Node 1 Node 2 Placed and Routed—Core register is
locked. Periphery to core/core to periphery
routing is committed.

Node 3 Node 4 Placed but not Routed—Core register is
locked. Routing is not committed. This
occurs when P2C is not able to optimize all
targeted paths within a single group, for
example, the same delay/wire requirement,
or the same control signals. Partial P2C
routing commitments may cause unresolv‐
able routing congestion.

Node 5 Node 6 Not Optimized—This occurs when P2C is
set to Auto and the path is not optimized
due to one of the following issues:

1. The delay requirement is impossible to
achieve.

2. The minimum delay requirement (for
hold timing) is too large. The P2C
algorithm cannot efficiently handle cases
when many wires need to be added to
meet hold timing.

3. P2C encountered unresolvable routing
congestion for this particular path.

Related Information
Periphery to Core Register Placement and Routing Optimization on page 12-23

12-26 Viewing Periphery to Core Optimizations in the Fitter Report
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Evaluation for Timing Closure
Follow the guidelines in this section when you encounter timing failures in a design. The guidelines show
you how to evaluate compilation results of a design and how to address some of the problems. While the
guideline does not cover specific examples of restructuring RTL to improve design speed, the analysis
techniques help you to evaluate changes that may have to be made to RTL to close timing.

Review Compilation Results

Review Messages
After compiling your design, review the messages in each section of the compilation report. Most designs
that fail timing start out with other problems that are reported as warning messages during compilation.
Determine what causes a warning message, and whether the warning should be fixed or ignored. After
reviewing the warning messages, review the informational messages. Take note of anything unexpected,
for example, unconnected ports, ignored constraints, missing files, and assumptions or optimizations that
the software made.

Evaluate Physical Synthesis Results
If physical synthesis is enabled, the software can duplicate and retime registers, and modify combinatorial
logic during synthesis. After compilation, review the Optimization Results reports in the Analysis &
Synthesis section. The reports list the optimizations performed by the physical synthesis optimizations,
such as register duplication, retiming, and removal. These reports can be found in the Compilation
Report panel.

Figure 12-8: Optimization Results Reports

QPS5V2
2015.11.02 Design Evaluation for Timing Closure 12-27

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When physical synthesis is enabled, compilation messages include a summary of the physical synthesis
algorithms that were run, the performance improvement each algorithm achieved, and the elapsed time.
The reported improvement is the sum of the largest improvement estimated to be achievable in each
timing-critical clock domain. The values for the slack improvements can vary between compiles because
of the random starting point of the compilation algorithms, but the values should be similar. The figure
shows an example of the messages.

Figure 12-9: Compilation Messages

Evaluate Fitter Netlist Optimizations
The Fitter can also perform netlist optimizations to the design netlist. Major changes include register
packing, duplicating or deleting logic cells, retiming registers, inverting signals, or modifying nodes in a
general way such as moving an input from one logic cell to another. These reports can be found in the
Netlist Optimizations results of the Fitter section, and they should also be reviewed.

Evaluate Optimization Results
After checking what optimizations were done and how they improved performance, evaluate the runtime
it took to get the extra performance. To reduce compilation time, review the physical synthesis and netlist
optimizations over a couple of compilations, and edit the RTL to reflect the changes that physical
synthesis performed. If a particular set of registers consistently get retimed, edit the RTL to retime the
registers the same way. If the changes are made to match what the physical synthesis algorithms did, the
physical synthesis options can be turned off to save compile time while getting the same type of
performance improvement.

Evaluate Resource Usage
Evaluate a variety of resources used in the design, including global and non-global signal usage, routing
utilization, and clustering difficulty.

Global and Non-global Usage
If your design contains a lot of clocks, evaluate global and non-global signals. Determine whether global
resources are being used effectively, and if not, consider making changes. These reports can be found in
the Resource Section under Fitter in the Compilation Report panel. The figure shows an example of
inefficient use of a global clock. The highlighted line has a single fan-out from a global clock. Assigning it
to a Regional Clock would make the Global Clock available for another signal. You can ignore signals with
an empty value in the Global Line Name column as the signal uses dedicated routing, and not a clock
buffer.

12-28 Evaluate Fitter Netlist Optimizations
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-10: Inefficient Use of a Global Clock

The Non-Global High Fan-Out Signals report lists the highest fan-out nodes that are not routed on global
signals. Reset and enable signals are at the top of the list. If there is routing congestion in the design, and
there are high fan-out non-global nodes in the congested area, consider using global or regional signals to
fan-out the nodes, or duplicate the high fan-out registers so that each of the duplicates can have fewer fan-
outs. Use the Chip Planner to locate high fan-out nodes, to report routing congestion, and to determine
whether the alternatives are viable.

Routing Usage
Review routing usage reported in the Fitter Resource Usage Summary report. The figure shows an
example of the report.

Figure 12-11: Fitter Resource Usage Summary Report

The average interconnect usage reports the average amount of interconnect that is used, out of what is
available on the device. The peak interconnect usage reports the largest amount of interconnect used in
the most congested areas. Designs with an average value below 50% typically do not have any problems
with routing. Designs with an average between 50-65% may have difficulty routing. Designs with an
average over 65% typically have difficulty meeting timing unless the RTL is well designed to tolerate a
highly utilized chip. Peak values at or above 90% are likely to have problems with timing closure; a 100%
peak value indicates that all routing in an area of the device has been used, so there is a high possibility of
degradation in timing performance. The figure shows the Report Routing Utilization report.

QPS5V2
2015.11.02 Routing Usage 12-29

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-12: Report Routing Utilization Report

Wires Added for Hold
As part of the fitting process, the router can add wire between register paths to increase delay to meet hold
time requirements. During the routing process, the router reports how much extra wire was used to meet
hold time requirements. Excessive amounts of added wire can indicate problems with the constraint.
Typically it would be caused by incorrect multicycle transfers, particularly between different rate clocks,
and between different clock networks. The Fitter reports how much routing delay was added in the
Estimated Delay Added for Hold Timing report. Specific register paths can be reviewed to view whether
a delay was added to meet hold requirements.

Figure 12-13: Estimated Delay Added for Hold Timing Report

12-30 Wires Added for Hold
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

An example of an incorrect constraint which can cause the router to add wire for hold requirements is
when there is data transfer from 1x to 2x clocks. Assume the design intent is to allow two cycles per
transfer. Data can arrive any time in the two destination clock cycles by adding a multicycle setup
constraint as shown in the example:

set_multicycle_path -from 1x -to 2x -setup -end 2

The timing requirement is relaxed by one 2x clock cycle, as shown in the black line in the waveform in the
figure.

Figure 12-14: Timing Requirement Relaxed Waveform

However, the default hold requirement, shown with the dashed blue line, may cause the router to add wire
to guarantee that data is delayed by one cycle. To correct the hold requirement, add a multicycle
constraint with a hold option.

set_multicycle_path -from 1x -to 2x -setup -end 2
set_multicycle_path -from 1x -to 2x -hold -end 1

The orange dashed line in the figure above represents the hold relationship, and no extra wire is required
to delay the data.

The router can also add wire for hold timing requirements when data is transferred in the same clock
domain, but between clock branches that use different buffering. Transferring between clock network
types happens more often between the periphery and the core. The figure below shows a case where data
is coming into a device, and uses a periphery clock to drive the source register, and a global clock to drive
the destination register. A global clock buffer has larger insertion delay than a periphery clock buffer. The
clock delay to the destination register is much larger than to the source register, hence extra delay is
necessary on the data path to ensure that it meets its hold requirement.

Figure 12-15: Clock Delay

Fitter may add routing delay to meet hold requirement

Periphery clock buffer with small insertion
delay

Global clock buffer with large insertion delay

QPS5V2
2015.11.02 Wires Added for Hold 12-31

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To identify cases where a path has different clock network types, review the path in the TimeQuest timing
analyzer, and check nodes along the source and destination clock paths. Also, check the source and
destination clock frequencies to see whether they are the same, or multiples, and whether there are
multicycle exceptions on the paths. In some cases, cross-domain paths may also be false by intent, so
make sure there are false path exceptions on those.

If you suspect that routing is added to fix real hold problems, then disable the Optimize hold timing
option. Recompile the design and rerun timing analysis to uncover paths that fail hold time.

Figure 12-16: Optimize Hold Timing Option

Disabling the Optimize hold timing option is a debug step, and should be left enabled (default state)
during normal compiles. Wire added for hold is a normal part of timing optimization during routing and
is not always a problem.

Evaluate Other Reports and Adjust Settings Accordingly

Difficulty Packing Design
In the Fitter Resource Section, under the Resource Usage Summary, review the Difficulty Packing
Design report. The Difficulty Packing Design report details the effort level (low, medium, or high) of the
Fitter to fit the design into the device, partition, and LogicLock region. As the effort level of Difficulty
Packing Design increases, timing closure gets harder. Going from medium to high can result in
significant drop in performance or increase in compile time. Consider reducing logic to reduce packing
difficulty.

Review Ignored Assignments
The Compilation Report includes details of any assignments ignored by the Fitter. Assignments typically
get ignored if design names change, but assignments are not updated. Make sure any intended
assignments are not being ignored.

Review Non-Default Settings
The reports from Synthesis and Fitter show non-default settings used in a compilation. Review the non-
default settings to ensure the design benefits from the change.

Review Floorplan
Use the Chip Planner for reviewing placement. The Chip Planner can be used to locate hierarchical
entities, and colors each located entity in the floorplan. Look for logic that seems out of place, based on

12-32 Evaluate Other Reports and Adjust Settings Accordingly
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

where you would expect it to be. For example, logic that interfaces with I/Os should be close to the I/Os,
and logic that interfaces with an IP or memory must be close to the IP or memory. The figure shows an
example of a floorplan with color-coded entities. In the floorplan, the green block is spread apart. Check
to see if those paths are failing timing, and if so, what connects to that module that could affect placement.
The blue and aqua blocks are spread out and mixed together. Check and see if there are many connections
between the two modules that may contribute to this. The pink logic at the bottom should interface with
I/Os at the bottom edge.

Figure 12-17: Floorplan with Color-Coded Entities

Check fan-in and fan-out of a highlighted module by using the buttons on the task bar shown in the figure
below.

Figure 12-18: Fan-in and Fan-Out Buttons

Look for signals that go a long way across the chip and see if they are contributing to timing failures.

Check global signal usage for signals that may affect logic placement. Logic feeding a global buffer may be
pulled close to the buffer, away from related logic. High fan-out on non-global resource may pull logic
together.

Check for routing congestion. Highly congested areas may cause logic to be spread out, and the design
may be difficult to route.

QPS5V2
2015.11.02 Review Floorplan 12-33

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Evaluate Placement and Routing
Review duration of parts of compile time in Fitter messages. If routing takes much more time than
placement, then meeting timing may be more difficult than the placer predicted.

Adjust Placement Effort
Increasing the Placement Effort Multiplier to improve placement quality may be a good tradeoff at the
cost of higher compile time, but the benefit is design dependent. The value should be adjusted after
reviewing and optimizing other settings and RTL. Try an increased value, up to 4, and reset to default if
performance or compile time does not improve.

Figure 12-19: Placement Effort Multiplier

Adjust Fitter Effort
To increase effort, enable the Standard Fit (highest effort) option. The default Auto Fit option reduces
Fitter effort when it estimates timing requirements are met.

12-34 Evaluate Placement and Routing
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-20: Fitter Effort

Review Timing Constraints
Ensure that clocks are constrained with the correct frequency requirements. Using the
derive_pll_clocks assignment keeps generated clock settings updated. TimeQuest can be useful in
reviewing SDC constraints. For example, under Diagnostic in the Task panel, the Report Ignored
Constraints report shows any incorrect names in the design, most commonly caused by changes in the
design hierarchy. Use the Report Unconstrained Paths report to locate unconstrained paths. Add
constraints as necessary so that the design can be optimized.

Review Details of Timing Paths

Show Timing Path Routing
Showing routing for a path can help uncover unusual routing delays. In the TimeQuest Tasks panel,
enable the Report panel name option, and then select Report Timing. Then, turn on the Show routing
option to show routing wires in the path.

Figure 12-21: Show Routing

QPS5V2
2015.11.02 Review Timing Constraints 12-35

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Extra Fitter Information tab shows a miniature floorplan with the path highlighted. The path can
also be located in the Chip Planner for viewing routing congestion, and to view whether nodes in a path
are placed close together or far apart.

Global Network Buffers
A routing path can be used to identify global network buffers that fail timing. Buffer locations are named
according to the network they drive.

• CLK_CTRL_Gn—for Global driver
• CLk_CTRL_Rn—for Regional driver

Buffers to access the global networks are located in the center of each side of the device. The buffering to
route a core logic signal on a global signal network will cause insertion delay. Some trade offs to consider
for global and non-global routing are source location, insertion delay, fan-out, distance a signal travels,
and possible congestion if the signal is demoted to local routing.

Source Location
If the register feeding the global buffer cannot be moved closer, then consider changing either the design
logic or the routing type.

Insertion Delay
If a global signal is required, consider adding half a cycle to timing by using a negative-edge triggered
register to generate the signal (top figure) and use a multicycle setup constraint (bottom figure).

Figure 12-22: Negative-Edge Triggered Register

Figure 12-23: Multicycle Setup Constraint

set_multicycle_path –from <generating register> -setup –end 2

Fan-Out
Nodes with very high fan-out that use local routing tend to pull logic that they drive close to the source
node. This can make other paths fail timing. Duplicating registers can help reduce the impact of high fan-
out paths. Consider manually duplicating and preserving these registers. Using a MAX_FANOUT assignment

12-36 Global Network Buffers
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

may make arbitrary groups of fan-out nodes, whereas a designer can make more intelligent fan-out
groups.

Global Networks
If a signal should use a different type of global signal than it has automatically been assigned, use the
Global Signal assignment to control the global signal usage on a per-signal basis. For example, if local
routing is desired, set the Global Signal assignment to OFF.

Figure 12-24: Global Signal Assignment

Resets and Global Networks
Reset signals are often routed on global networks. Sometimes, the use of a global network causes recovery
failures. Consider reviewing the placement of the register that generates the reset and the routing path of
the signal.

Suspicious Setup
Suspicious setup failures include paths with very small or very large requirements. One typical cause is
math precision error. For example, 10Mhz/3 = 33.33 ns per period. In three cycles, the time would be
99.999 ns vs 100.000 ns. Setting a maximum delay could provide an appropriate setup relationship.

Another cause of failure would be paths that should be false by design intent, such as:

• asynchronous paths that are handled through FIFOs, or
• slow asynchronous paths that rely on handshaking for data that remain available for multiple clock

cycles.

To prevent the Fitter from having to meet unnecessarily restrictive timing requirements, consider adding
false or multicycle path statements.

Logic Depth
The Statistics tab in the TimeQuest path report shows the levels of logic in a path. If the path fails timing
and the number of logic levels is high, consider adding pipelining in that part of the design.

Auto Shift Register Replacement
Shift registers or register chains can be converted to RAM during synthesis to save area. However,
conversion to RAM often reduces speed. The names of the converted registers will include "altshift_taps".

If paths that fail timing begin or end in shift registers, consider disabling the Auto Shift Register Replace‐
ment option. Registers that are intended for pipelining should not be converted. For shift registers that
are converted to a chain, evaluate area/speed trade off of implementing in RAM or logic cells. If a design is
close to full, shift register conversion to RAM may benefit non-critical clock domains by saving area. The
settings can be changed globally or on a register or hierarchy basis from the default of AUTO to OFF.

Clocking Architecture
Review the clock region boundaries in the Chip Planner. You must place registers driven by a regional
clock in one quadrant of the chip.

QPS5V2
2015.11.02 Global Networks 12-37

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-25: Clock Regions

Timing failure can occur when the I/O interface at the top of the device connects to logic driven by a
regional clock which is in one quadrant of the device, and placement restrictions force long paths to and
from some of the I/Os to logic across quadrants.

Use a different type of clock source to drive the logic - global, which covers the whole device, or dual-
regional which covers half the device. Alternatively, you can reduce the frequency of the I/O interface to
accommodate the long path delays. You can also redesign the pinout of the device to place all the specified
I/Os adjacent to the regional clock quadrant. This issue can happen when register locations are restricted,
such as with LogicLock regions, clocking resources, or hard blocks (memories, DSPs, IPs). The Extra
Fitter Information tab in the TimeQuest report informs you when placement is restricted for nodes in a
path.

Timing Closure Recommendations
The Report Timing Closure Recommendations task in the TimeQuest analyzer analyzes paths and
provides specific recommendations based on path characteristics.

12-38 Timing Closure Recommendations
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Making Adjustments and Recompiling
Look for obvious problems that you can fix with minimal effort. To identify where the Compiler had
trouble meeting timing, perform seed sweeping with about five compiles. Doing so shows consistently
failing paths. Consider recoding or redesigning that part of the design.

To reach timing closure, a well written RTL can be more effective than changing your compilation
settings. Seed sweeping can also be useful if the timing failure is very small, and the design has already
been optimized for performance improvements and is close to final release. Additionally, seed sweeping
can be used for evaluating changes to compilation settings. Compilation results vary due to the random
nature of fitter algorithms. If a compilation setting change produces lower average performance, undo the
change.

Sometimes, settings or constraints can cause more problems than they fix. When significant changes to
the RTL or design architecture have been made, compile periodically with default settings and without
LogicLock regions, and re-evaluate paths that fail timing.

Partitioning often does not help timing closure, and should be done at the beginning of the design
process. Adding partitions can increase logic utilization if it prevents cross-boundary optimizations,
making timing closure harder and increasing compile times.

Adding LogicLock regions can be an effective part of timing closure, but must be done at the beginning of
a design. Adding new LogicLock regions at the end of the design cycle can restrict placement, hence
lowering the performance.

Scripting Support
You can run procedures and make settings described in this manual in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command options, refer to
the Quartus Prime command-line and Tcl API Help browser. To run the Help browser, type the following
command at the command prompt:

quartus_sh --qhelp

You can specify many of the options described in this section either in an instance, or at a global level, or
both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <.qsf variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <.qsf variable name> <value> -to <instance name>

Note: If the <value> field includes spaces (for example, ‘Standard Fit’), you must enclose the value in
straight double quotation marks.

Related Information
Tcl Scripting documentation on page 5-1

Quartus Prime Settings Reference File Manual

QPS5V2
2015.11.02 Making Adjustments and Recompiling 12-39

Timing Closure and Optimization Altera Corporation

Send Feedback

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command-Line Scripting documentation on page 4-1

Initial Compilation Settings
Use the Quartus Prime Settings File (.qsf) variable name in the Tcl assignment to make the setting along
with the appropriate value. The Type column indicates whether the setting is supported as a global
setting, an instance setting, or both.

The top table lists the .qsf variable name and applicable values for the settings described in the “Initial
Compilation: Required Settings” section in the Design Optimization Overview chapter in the Quartus
Prime Handbook. The bottom table lists the advanced compilation settings.

Table 12-5: Initial Compilation Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC
Register
Placement For
Timing

OPTIMIZE_IOC_REGISTER_

PLACEMENT_FOR_TIMING

ON, OFF Global

Optimize Hold
Timing

OPTIMIZE_HOLD_TIMING OFF, IO PATHS AND
MINIMUM TPD PATHS,
ALL PATHS

Global

Table 12-6: Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Router
Timing
Optimization
level

ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM, MAXIMUM Global

Resource Utilization Optimization Techniques (LUT-Based Devices)
The table lists the .qsf file variable name and applicable values for the settings described in Optimizing
Timing (LUT-Based Devices).

Table 12-7: Resource Utilization Optimization Settings

Setting Name .qsf File Variable Name Values Type

Auto Packed
Registers (1)

AUTO_PACKED_REGISTERS_<device family name> OFF, NORMAL,

MINIMIZE AREA,

MINIMIZE AREA WITH

CHAINS, AUTO

Global,
Instance

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

12-40 Initial Compilation Settings
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Name .qsf File Variable Name Values Type

Physical
Synthesis for
Combina‐
tional Logic
for Reducing
Area

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA ON, OFF Global,
Instance

Physical
Synthesis for
Mapping
Logic to
Memory

PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_FOR AREA ON, OFF Global,
Instance

Optimization
Technique

<device family name>_OPTIMIZATION_TECHNIQUE AREA, SPEED,

BALANCED

Global,
Instance

Speed
Optimization
Technique for
Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, ONE-HOT,

GRAY, JOHNSON,

MINIMAL BITS,

SEQUENTIAL, USER-

ENCODE

Global,
Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift
Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Auto Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Number of
Processors for
Parallel
Compilation

NUM_PARALLEL_PROCESSORS Integer between 1 and
16 inclusive, or ALL

Global

Note to table :

1. Allowed values for this setting depend on the device family that you select.

I/O Timing Optimization Techniques (LUT-Based Devices)
The table lists the .qsf file variable name and applicable values for the I/O timing optimization settings.

QPS5V2
2015.11.02 I/O Timing Optimization Techniques (LUT-Based Devices) 12-41

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 12-8: I/O Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Optimize IOC Register
Placement For Timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instan
ce

Fast Output Register FAST_OUTPUT_REGISTER ON, OFF Instan
ce

Fast Output Enable
Register

FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instan
ce

Fast OCT Register FAST_OCT_REGISTER ON, OFF Instan
ce

Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
The table lists the .qsf file variable name and applicable values for the settings described in Register-to-
Register Timing Optimization Techniques (LUT-Based Devices).

Table 12-9: Register-to-Register Timing Optimization Settings

Setting Name .qsf File Variable Name Values Type

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Perform Physical
Synthesis for
Combinational
Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global,
Instance

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_

DUPLICATION

ON, OFF Global,
Instance

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global,
Instance

Perform Automatic
Asynchronous
Signal Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_

SIGNAL_PIPELINING

ON, OFF Global,
Instance

Physical Synthesis
Effort

PHYSICAL_SYNTHESIS_EFFORT NORMAL, EXTRA, FAST Global

Fitter Seed SEED <integer> Global
Maximum Fan-Out MAX_FANOUT <integer> Instance
Manual Logic
Duplication

DUPLICATE_ATOM <node name> Instance

Optimize Power
during Synthesis

OPTIMIZE_POWER_DURING_SYNTHESIS NORMAL, OFF

EXTRA_EFFORT

Global

12-42 Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Name .qsf File Variable Name Values Type

Optimize Power
during Fitting

OPTIMIZE_POWER_DURING_FITTING NORMAL, OFF

EXTRA_EFFORT

Global

Document Revision History

Table 12-10: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Added: Periphery to Core Register Placement and Routing
Optimization.

• Changed instances of Quartus II to Quartus Prime.

2015.11.02 15.1.0 • Added: Periphery to Core Register Placement and Routing
Optimization.

• Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings,
and Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II content.

June 2014 14.0.0 • Dita conversion.
• Removed content about obsolete devices that are no longer

supported in QII software v14.0: Arria GX, Arria II, Cyclone III,
Stratix II, Stratix III.

• Replaced Megafunction content with IP core content.

November 2013 13.1.0 • Added Design Evaluation for Timing Closure section.
• Removed Optimizing Timing (Macrocell-Based CPLDs) section.
• Updated Optimize Multi-Corner Timing and Fitter Aggressive

Routability Optimization.
• Updated Timing Analysis with the TimeQuest Timing Analyzer to

show how to access the Report All Summaries command.
• Updated Ignored Timing Constraints to include a help link to

Fitter Summary Reports with the Ignored Assignment Report
information.

QPS5V2
2015.11.02 Document Revision History 12-43

Timing Closure and Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2013 13.0.0 • Renamed chapter title from Area and Timing Optimization to
Timing Closure and Optimization.

• Removed design and area/resources optimization information.
• Added the following sections:

Fitter Aggressive Routability Optimization.

Tips for Analyzing Paths from/to the Source and Destination of
Critical Path.

Tips for Locating Multiple Paths to the Chip Planner.

Tips for Creating a .tcl Script to Monitor Critical Paths Across
Compiles.

November 2012 12.1.0 • Updated “Initial Compilation: Optional Fitter Settings” on
page 13–2, “I/O Assignments” on page 13–2, “Initial Compilation:
Optional Fitter Settings” on page 13–2, “Resource Utilization” on
page 13–9, “Routing” on page 13–21, and “Resolving Resource
Utilization Problems” on page 13–43.

June 2012 12.0.0 • Updated “Optimize Multi-Corner Timing” on page 13–6,
“Resource Utilization” on page 13–10, “Timing Analysis with the
TimeQuest Timing Analyzer” on page 13–12, “Using the Resource
Optimization Advisor” on page 13–15, “Increase Placement Effort
Multiplier” on page 13–22, “Increase Router Effort Multiplier” on
page 13–22 and “Debugging Timing Failures in the TimeQuest
Analyzer” on page 13–24.

• Minor text edits throughout the chapter.

November 2011 11.1.0 • Updated the “Timing Requirement Settings”, “Standard Fit”, “Fast
Fit”, “Optimize Multi-Corner Timing”, “Timing Analysis with the
TimeQuest Timing Analyzer”, “Debugging Timing Failures in the
TimeQuest Analyzer”, “LogicLock Assignments”, “Tips for
Analyzing Failing Clock Paths that Cross Clock Domains”, “Flatten
the Hierarchy During Synthesis”, “Fast Input, Output, and Output
Enable Registers”, and “Hierarchy Assignments” sections

• Updated Table 13–6
• Added the “Spine Clock Limitations” section
• Removed the Change State Machine Encoding section from page

19
• Removed Figure 13-5
• Minor text edits throughout the chapter

12-44 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Timing Closure and Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2011 11.0.0 • Reorganized sections in “Initial Compilation: Optional Fitter
Settings” section

• Added new information to “Resource Utilization” section
• Added new information to “Duplicate Logic for Fan-Out Control”

section
• Added links to Help
• Additional edits and updates throughout chapter

December 2010 10.1.0 • Added links to Help
• Updated device support
• Added “Debugging Timing Failures in the TimeQuest Analyzer”

section
• Removed Classic Timing Analyzer references
• Other updates throughout chapter

August 2010 10.0.1 Corrected link

July 2010 10.0.0 • Moved Compilation Time Optimization Techniques section to new
Reducing Compilation Time chapter

• Removed references to Timing Closure Floorplan
• Moved Smart Compilation Setting and Early Timing Estimation

sections to new Reducing Compilation Time chapter
• Added Other Optimization Resources section
• Removed outdated information
• Changed references to DSE chapter to Help links
• Linked to Help where appropriate
• Removed Referenced Documents section

Related Information
Quartus Handbook Archive
For previous versions of the Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 12-45

Timing Closure and Optimization Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Closure%20and%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Power Optimization 13
2015.11.02

QPS5V2 Subscribe Send Feedback

Power Optimization
The Quartus Prime software offers power-driven compilation to fully optimize device power
consumption. Power-driven compilation focuses on reducing your design’s total power consumption
using power-driven synthesis and power-driven place-and-route.

This chapter describes the power-driven compilation feature and flow in detail, as well as low power
design techniques that can further reduce power consumption in your design. The techniques primarily
target Arria®, Stratix®, and Cyclone® series of devices. These devices utilize a low-k dielectric material that
dramatically reduces dynamic power and improves performance. Arria series, Stratix IV, and Stratix V
device families include efficient logic structures called adaptive logic modules (ALMs) that obtain
maximum performance while minimizing power consumption. Cyclone device families offer the optimal
blend of high performance and low power in a low-cost FPGA.

Altera provides the Quartus Prime PowerPlay Power Analyzer to aid you during the design process by
delivering fast and accurate estimations of power consumption. You can minimize power consumption,
while taking advantage of the industry’s leading FPGA performance, by using the tools and techniques
described in this chapter.

Total FPGA power consumption is comprised of I/O power, core static power, and core dynamic power.
This chapter focuses on design optimization options and techniques that help reduce core dynamic power
and I/O power. In addition to these techniques, there are additional power optimization techniques
available for specific devices. These techniques include:

• Programmable Power Technology
• Device Speed Grade Selection

Related Information

• Literature and Technical Documentation
For more information about a device-specific architecture, refer to the device handbook on the Altera
website.

• PowerPlay Power Analysis
For more information about the PowerPlay Power Analyzer, refer to volume 3 of the Quartus Prime
Handbook.

• AN 514: Power Optimization in Stratix IV FPGAs
For more information about power optimization techniques available for Stratix IV devices.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Power%20Optimization&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/lit-index.html
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384023666/en-us
http://www.altera.com/literature/an/an514.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Power Dissipation
You can refine techniques that reduce power consumption in your design by understanding the sources of
power dissipation.

The following figure shows the power dissipation of Stratix and Cyclone devices in different designs. All
designs were analyzed at a fixed clock rate of 100 MHz and exhibited varied logic resource utilization
across available resources.

Figure 13-1: Average Core Dynamic Power Dissipation

Average Core Dynamic Power Dissipation by Block
 Type in Stratix III Devices at a 12.5% Toggle Rate (1)

Average Core Dynamic Power Dissipation by Block
 Type in Cyclone III Devices at a 12.5% Toggle Rate (2)

Routing
30%

Combinational Logic
16%

Registered Logic
18%

Memory
21%

Global Clock Routing
14%

DSP Blocks
1% (3)

Multipliers
1% (3)

Routing
29%

Combinational Logic
11%

Registered Logic
23%

Memory
20%

Global Clock Routing
16%

Notes:

1. 103 different designs were used to obtain these results.
2. 96 different designs were used to obtain these results.
3. In designs using DSP blocks, DSPs consumed 5% of core dynamic power.

In Stratix and Cyclone device families, a series of column and row interconnect wires of varying lengths
provide signal interconnections between logic array blocks (LABs), memory block structures, and digital
signal processing (DSP) blocks or multiplier blocks. These interconnects dissipate the largest component
of device power.

FPGA combinational logic is another source of power consumption. The basic building block of logic in
the latest Stratix series devices is the ALM, and in Cyclone IV GX devices, it is the logic element (LE).

For more information about ALMs and LEs in Cyclone or Stratix devices, refer to the respective device
handbook.

Memory and clock resources are other major consumers of power in FPGAs. Stratix devices feature the
TriMatrix memory architecture. TriMatrix memory includes 512-bit M512 blocks, 4-Kbit M4K blocks,
and 512-Kbit M-RAM blocks, which are configurable to support many features. Stratix IV TriMatrix on-
chip memory is an enhancement based upon the Stratix II FPGA TriMatrix memory and includes three
sizes of memory blocks: MLAB blocks, M9K blocks, and M144K blocks. Stratix IV and Stratix V devices
feature Programmable Power Technology, an advanced architecture that enables a smooth trade-off
between speed and power. The core of each Stratix IV and Stratix V device is divided into tiles, each of
which may be put into a high-speed or low-power mode. The primary benefit of Programmable Power

13-2 Power Dissipation
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Technology is to reduce static power, with a secondary benefit being a small reduction in dynamic power.
Cyclone IV GX devices have 9-Kbit M9K memory blocks.

Design Space Explorer II
Design Space Explorer II (DSE) is an easy-to-use, self-guided design optimization utility that is included
in the Quartus Prime software. DSE II explores and reports optimal Quartus Prime software options for
your design, targeting either power optimization, design performance, or area utilization improvements.
You can use DSE II to implement the techniques described in this chapter.

Figure 13-2: Design Space Explorer II User Interface

The power optimizations, under Exploration mode, target overall design power improvements. These
settings focus on applying different options that specifically reduce total design thermal power.

By default, the Quartus Prime PowerPlay Power Analyzer is run for every exploration performed by DSE
II when power optimizations are selected. This helps you debug your design and determine trade-offs
between power requirements and performance optimization.

DSE II automatically tries different combinations of netlist optimizations and advanced Quartus Prime
software compiler settings, and reports the best settings for your design, based on your chosen primary

QPS5V2
2015.11.02 Design Space Explorer II 13-3

Power Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

optimization goal. You can try different seeds with DSE II if you are fairly close to meeting your timing or
area requirements and find one seed that meets timing or area requirements. Finally, DSE II can run
compilations on a remote compute farm, which shortens the timing closure process

• Name your DSE II session and specify the type of compilation to perform.
• Set Exploration Points and specify Exploration mode and the number and types of Seeds to use.
• Specify the Design File Setup including the use of a specified Quartus Archive File (.qar) or create a

new one.
• Specify Limits to the operation of DSE II.
• Specify the type of Results to save.
• When using a remote compute farm, DSE II uses the values in the DSE Server Settings box to specify

a registration host and network ports to connect.
• Options in the Advanced settings allow you to specify options such as:

• Turn on the option to specify exploration points without compiling.
• Specify the Maximum number of parallel compilations used by DSE II.
• Specify the Maximum number of CPUs that can be used by DSE II.
• Specify a quality of fit formula.

When you have completed your configuration, you can perform an exploration by clicking Start.

Related Information
Launch the Design Space Explorer II
For more information about the DSE II, refer to Quartus Prime Help.

Power-Driven Compilation
The standard Quartus Prime compilation flow consists of Analysis and Synthesis, placement and routing,
Assembly, and Timing Analysis. Power-driven compilation takes place at the Analysis and Synthesis and
Place-and-Route stages.

Quartus Prime software settings that control power-driven compilation are located in the PowerPlay
power optimization during synthesis list in the Advanced Settings (Synthesis) dialog box, and the
PowerPlay power optimization during fitting list on the Advanced Fitter Settings dialog box. The
following sections describes these power optimization options at the Analysis and Synthesis and Fitter
levels.

Power-Driven Synthesis
Synthesis netlist optimization occurs during the synthesis stage of the compilation flow. The optimization
technique makes changes to the synthesis netlist to optimize your design according to the selection of
area, speed, or power optimization. This section describes power optimization techniques at the synthesis
level.

To access the PowerPlay Power Optimization During Synthesis option, click Assignments > Settings >
Compiler Settings > Advanced Settings (Synthesis).
You can apply these settings on a project or entity level.

13-4 Power-Driven Compilation
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/dse/dse_com_launch_DSE.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 13-1: Optimize Power During Synthesis Options

Settings Description

Off No netlist, placement, or routing optimizations are performed
to minimize power.

Normal
compilation
(Default)

Low compute effort algorithms are applied to minimize power
through netlist optimizations as long as they are not expected
to reduce design performance.

Extra effort High compute effort algorithms are applied to minimize
power through netlist optimizations. Max performance might
be impacted.

The Normal compilation setting is turned on by default. This setting performs memory optimization and
power-aware logic mapping during synthesis.

Memory blocks can represent a large fraction of total design dynamic power. Minimizing the number of
memory blocks accessed during each clock cycle can significantly reduce memory power. Memory
optimization involves effective movement of user-defined read/write enable signals to associated read-
and-write clock enable signals for all memory types.

A default implementation of a simple dual-port memory block in which write-clock enable signals and
read-clock enable signals are connected to VCC, making both read and write memory ports active during
each clock cycle.

Figure 13-3: Memory Transformation

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Switch

Switch

Memory transformation effectively moves the read-enable and write-enable signals to the respective read-
clock enable and write-clock enable signals. By using this technique, memory ports are shut down when
they are not accessed. This significantly reduces your design’s memory power consumption. For Stratix IV
and Stratix V devices, the memory transformation takes place at the Fitter level by selecting the Normal
compilation settings for the power optimization option.

In Cyclone IV GX and Stratix IV devices, the specified read-during-write behavior can significantly
impact the power of single-port and bidirectional dual-port RAMs. It is best to set the read-during-write
parameter to “Don’t care” (at the HDL level), as it allows an optimization whereby the read-enable
signal can be set to the inversion of the existing write-enable signal (if one exists). This allows the core
of the RAM to shut down (that is, not toggle), which saves a significant amount of power.

The other type of power optimization that takes place with the Normal compilation setting is power-
aware logic mapping. The power-aware logic mapping reduces power by rearranging the logic during
synthesis to eliminate nets with high toggle rates.

QPS5V2
2015.11.02 Power-Driven Synthesis 13-5

Power Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Extra effort setting performs the functions of the Normal compilation setting and other memory
optimizations to further reduce memory power by shutting down memory blocks that are not accessed.
This level of memory optimization can require extra logic, which can reduce design performance.

The Extra effort setting also performs power-aware memory balancing. Power-aware memory balancing
automatically chooses the best memory configuration for your memory implementation and provides
optimal power saving by determining the number of memory blocks, decoder, and multiplexer circuits
required. If you have not previously specified target-embedded memory blocks for your design’s memory
functions, the power-aware balancer automatically selects them during memory implementation.

The following figure is an example of a 4k × 4 (4k deep and 4 bits wide) memory implementation in two
different configurations using M4K memory blocks available in some Stratix devices.

Figure 13-4: 4K × 4 Memory Implementation Using Multiple M4K Blocks

Addr
Decoder

4

1K Deep × 4 Wide
M4K RAM

Addr[0:9]

Addr[10:11]

Data[0:3]

Addr[10:11]

4K Words Deep &
4 Bits Wide

Addr[0:11]

4K Deep × 1 Wide
M4K RAM

Data[0:3]

Minimum RAM Power
(Power Efficient)

Minimum Logic Area
(Power Inefficient)

The minimum logic area implementation uses M4K blocks configured as 4k × 1. This implementation is
the default in the Quartus Prime software because it has the minimum logic area (0 logic cells) and the
highest speed. However, all four M4K blocks are active on each memory access in this implementation,
which increases RAM power. The minimum RAM power implementation is created by selecting Extra
effort in the PowerPlay power optimization list. This implementation automatically uses four M4K
blocks configured as 1k × 4 for optimal power saving. An address decoder is implemented by the RAM
megafunction to select which of the four M4K blocks should be activated on a given cycle, based on the
state of the top two user address bits. The RAM megafunction automatically implements a multiplexer to
feed the downstream logic by choosing the appropriate M4K output. This implementation reduces RAM
power because only one M4K block is active on any cycle, but it requires extra logic cells, costing logic
area and potentially impacting design performance.

There is a trade-off between power saved by accessing fewer memories and power consumed by the extra
decoder and multiplexor logic. The Quartus Prime software automatically balances the power savings
against the costs to choose the lowest power configuration for each logical RAM. The benchmark data
shows that the power-driven synthesis can reduce memory power consumption by as much as 60% in
Stratix devices.

Memory optimization options can also be controlled by the Low_Power_Mode parameter in the Default
Parameters page of the Settings dialog box. The settings for this parameter are None, Auto, and ALL.
None corresponds to the Off setting in the PowerPlay power optimization list. Auto corresponds to the
Normal compilation setting and ALL corresponds to the Extra effort setting, respectively. You can apply
PowerPlay power optimization either on a compiler basis or on individual entities. The Low_Power_Mode

13-6 Power-Driven Synthesis
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

parameter always takes precedence over the Optimize Power for Synthesis option for power optimiza‐
tion on memory.

You can also set the MAXIMUM_DEPTH parameter manually to configure the memory for low power
optimization. This technique is the same as the power-aware memory balancer, but it is manual rather
than automatic like the Extra effort setting in the PowerPlay power optimization list. You can set the
MAXIMUM_DEPTH parameter for memory modules manually in the megafunction instantiation or in the IP
Catalog for power optimization. The MAXIMUM_DEPTH parameter always takes precedence over the
Optimize Power for Synthesis options for power optimization on memory optimization.

Related Information
Reducing Memory Power Consumption on page 13-11
For more information about clock enable signals.

Power-Driven Fitter
The Compiler Settings page provides access to PowerPlay power optimization settings.

You can apply these settings only on a project-wide basis. The Extra effort setting for the Fitter requires
extensive effort to optimize the design for power and can increase the compilation time.

Table 13-2: Power-Driven Fitter Option

Settings Description

Off No netlist, placement, or routing optimizations are performed to minimize power.
Normal
compilation
(Default)

Low compute effort algorithms are applied to minimize power through placement
and routing optimizations as long as they are not expected to reduce design
performance.

Extra effort High compute effort algorithms are applied to minimize power through placement
and routing optimizations. Max performance might be impacted.

The Normal compilation setting is selected by default and performs DSP optimization by creating
power-efficient DSP block configurations for your DSP functions. For Stratix IV and Stratix V devices,
this setting, which is based on timing constraints entered for the design, enables the Programmable Power
Technology to configure tiles as high-speed mode or low-power mode. Programmable Power Technology
is always turned ON even when the OFF setting is selected for the PowerPlay power optimization
option. Tiles are the combination of LAB and MLAB pairs (including the adjacent routing associated with
LAB and MLAB), which can be configured to operate in high-speed or low-power mode. This level of
power optimization does not have any affect on the fitting, timing results, or compile time.

The Extra effort setting performs the functions of the Normal compilation setting and other place-and-
route optimizations during fitting to fully optimize the design for power. The Fitter applies an extra effort
to minimize power even after timing requirements have been met by effectively moving the logic closer
during placement to localize high-toggling nets, and using routes with low capacitance. However, this
effort can increase the compilation time.

The Extra effort setting uses a Value Change Dump File (.vcd) that guides the Fitter to fully optimize the
design for power, based on the signal activity of the design. The best power optimization during fitting
results from using the most accurate signal activity information. Signal activities from full post-fit netlist
(timing) simulation provide the highest accuracy because all node activities reflect the actual design
behavior, provided that supplied input vectors are representative of typical design operation. If you do not
have a .vcd file, the Quartus Prime software uses assignments, clock assignments, and vectorless
estimation values (PowerPlay Power Analyzer Tool settings) to estimate the signal activities. This
information is used to optimize your design for power during fitting. The benchmark data shows that the

QPS5V2
2015.11.02 Power-Driven Fitter 13-7

Power Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

power-driven Fitter technique can reduce power consumption by as much as 19% in Stratix devices. On
average, you can reduce core dynamic power by 16% with the Extra effort synthesis and Extra effort fitting
settings, as compared to the Off settings in both synthesis and Fitter options for power-driven compila‐
tion.

Note: Only the Extra effort setting in the PowerPlay power optimization list for the Fitter option uses
the signal activities (from .vcd files) during fitting. The settings made in the PowerPlay Power
Analyzer Settings page in the Settings dialog box are used to calculate the signal activity of your
design.

Related Information

• AN 514: Power Optimization in Stratix IV FPGAs
For more information about Stratix IV power optimization.

• PowerPlay Power Analysis
For more information about .vcd files and how to create them, refer to the Quartus Prime Handbook.

Area-Driven Synthesis
Using area optimization rather than timing or delay optimization during synthesis saves power because
you use fewer logic blocks. Using less logic usually means less switching activity. The Quartus Prime
integrated synthesis tool provides Speed, Balanced, or Area for the Optimization Technique option. You
can also specify this logic option for specific modules in your design with the Assignment Editor in cases
where you want to reduce area using the Area setting (potentially at the expense of register-to-register
timing performance) while leaving the default Optimization Technique setting at Balanced (for the best
trade-off between area and speed for certain device families). The Speed Optimization Technique can
increase the resource usage of your design if the constraints are too aggressive, and can also result in
increased power consumption.

The benchmark data shows that the area-driven technique can reduce power consumption by as much as
31% in Stratix devices and as much as 15% in Cyclone devices.

Gate-Level Register Retiming
You can also use gate-level register retiming to reduce circuit switching activity. Retiming shuffles
registers across combinational blocks without changing design functionality. The Perform gate-level
register retiming option in the Quartus Prime software enables the movement of registers across
combinational logic to balance timing, allowing the software to trade off the delay between timing critical
and noncritical timing paths.

Retiming uses fewer registers than pipelining. In this example of gate-level register retiming, the 10 ns
critical delay is reduced by moving the register relative to the combinational logic, resulting in the
reduction of data depth and switching activity.

13-8 Area-Driven Synthesis
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

http://www.altera.com/literature/an/an514.pdf
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384023666/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-5: Gate-Level Register Retiming

10 ns 5 ns

7 ns 8 ns

Before

After

Note: Gate-level register retiming makes changes at the gate level. If you are using an atom netlist from a
third-party synthesis tool, you must also select the Perform WYSIWYG primitive resynthesis
option to undo the atom primitives to gates mapping (so that register retiming can be performed),
and then to remap gates to Altera primitives. When using Quartus Prime integrated synthesis,
retiming occurs during synthesis before the design is mapped to Altera primitives. The benchmark
data shows that the combination of WYSIWYG remapping and gate-level register retiming
techniques can reduce power consumption by as much as 6% in Stratix devices and as much as 21%
in Cyclone devices.

Related Information

• Netlist Optimizations and Physical Synthesis on page 16-1
For more information about register retiming, refer to the Quartus Prime Handbook.

Design Guidelines
Several low-power design techniques can reduce power consumption when applied during FPGA design
implementation. This section provides detailed design techniques for Cyclone IV GXdevices that affect
overall design power. The results of these techniques might be different from design to design.

Clock Power Management
Clocks represent a significant portion of dynamic power consumption due to their high switching activity
and long paths. Actual clock-related power consumption is higher than this because the power consumed
by local clock distribution within logic, memory, and DSP or multiplier blocks is included in the power
consumption for the respective blocks.

Clock routing power is automatically optimized by the Quartus Prime software, which enables only those
portions of the clock network that are required to feed downstream registers. Power can be further
reduced by gating clocks when they are not required. It is possible to build clock-gating logic, but this
approach is not recommended because it is difficult to generate a glitch free clock in FPGAs using ALMs
or LEs.

Cyclone IV, Stratix IV, and Stratix V devices use clock control blocks that include an enable signal. A
clock control block is a clock buffer that lets you dynamically enable or disable the clock network and
dynamically switch between multiple sources to drive the clock network. You can use the Quartus Prime
IP Catalog to create this clock control block with the ALTCLKCTRL megafunction. Cyclone IV,

QPS5V2
2015.11.02 Design Guidelines 13-9

Power Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Stratix IV, and Stratix V devices provide clock control blocks for global clock networks. In addition,
Stratix IV, and Stratix V devices have clock control blocks for regional clock networks. The dynamic clock
enable feature lets internal logic control the clock network. When a clock network is powered down, all
the logic fed by that clock network does not toggle, thereby reducing the overall power consumption of
the device. For example, the following shows a 4-input clock control block diagram.

Figure 13-6: Clock Control Block Diagram

inclk 3×
inclk 2×
inclk 1×
inclk 0×

clkselect[1..0]

outclk

ena

The enable signal is applied to the clock signal before being distributed to global routing. Therefore, the
enable signal can either have a significant timing slack (at least as large as the global routing delay) or it
can reduce the fMAX of the clock signal.

Another contributor to clock power consumption is the LAB clock that distributes a clock to the registers
within a LAB. LAB clock power can be the dominant contributor to overall clock power. For example, in
Cyclone devices, each LAB can use two clocks and two clock enable signals, as shown in the following
figure. Each LAB’s clock signal and clock enable signal are linked. For example, an LE in a particular LAB
using the labclk1 signal also uses the labclkena1 signal.

Figure 13-7: LAB-Wide Control Signals

6

labclk1 labclk2 labclr2syncload

labclkena1 labclkena2 labclr1 synclr

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Dedicated
LAB Row
Clocks

To reduce LAB-wide clock power consumption without disabling the entire clock tree, use the LAB-wide
clock enable to gate the LAB-wide clock. The Quartus Prime software automatically promotes register-
level clock enable signals to the LAB-level. All registers within an LAB that share a common clock and
clock enable are controlled by a shared gated clock. To take advantage of these clock enables, use a clock
enable construct in the relevant HDL code for the registered logic.

Related Information
Clock Control Block Megafunction User Guide (ALTCLKCTRL)
For more information about using clock control blocks.

13-10 Clock Power Management
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

http://www.altera.com/literature/ug/ug_altclock.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

LAB-Wide Clock Enable Example
This VHDL code makes use of a LAB-wide clock enable. This clock-gating logic is automatically turned
into an LAB-level clock enable signal.

IF clk'event AND clock = '1' THEN
 IF logic_is_enabled = '1' THEN
 reg <= value;
 ELSE
 reg <= reg;
 END IF;
END IF;

Reducing Memory Power Consumption
The memory blocks in FPGA devices can represent a large fraction of typical core dynamic power.
Memory consumes approximately 20% of the core dynamic power in typical some device designs.
Memory blocks are unlike most other blocks in the device because most of their power is tied to the clock
rate, and is insensitive to the toggle rate on the data and address lines.

Reducing Memory Power Consumption

The memory blocks in FPGA devices can represent a large fraction of typical core dynamic power.
Memory consumes approximately 20% of the core dynamic power in typical some device designs.
Memory blocks are unlike most other blocks in the device because most of their power is tied to the clock
rate, and is insensitive to the toggle rate on the data and address lines.

When a memory block is clocked, there is a sequence of timed events that occur within the block to
execute a read or write. The circuitry controlled by the clock consumes the same amount of power
regardless of whether or not the address or data has changed from one cycle to the next. Thus, the toggle
rate of input data and the address bus have no impact on memory power consumption.

The key to reducing memory power consumption is to reduce the number of memory clocking events.
You can achieve this through clock network-wide gating, or on a per-memory basis through use of the
clock enable signals on the memory ports.

The logical view of the internal clock of the memory block. Use the appropriate enable signals on the
memory to make use of the clock enable signal instead of gating the clock.

Figure 13-8: Memory Clock Enable Signal

Enable Internal Memory Clk

Clk

0

1

Using the clock enable signal enables the memory only when necessary and shuts it down for the rest of
the time, reducing the overall memory power consumption. You can create these enable signals by
selecting the Clock enable signal option for the appropriate port when generating the memory block
function.

QPS5V2
2015.11.02 LAB-Wide Clock Enable Example 13-11

Power Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-9: RAM 2-Port Clock Enable Signal Selectable Option

For example, consider a design that contains a 32-bit-wide M4K memory block in ROM mode that is
running at 200 MHz. Assuming that the output of this block is only required approximately every four
cycles, this memory block will consume 8.45 mW of dynamic power according to the demands of the
downstream logic. By adding a small amount of control logic to generate a read clock enable signal for the
memory block only on the relevant cycles, the power can be cut 75% to 2.15 mW.

You can also use the MAXIMUM_DEPTH parameter in your memory megafunction to save power in
Cyclone IV GX, Stratix IV, and Stratix V devices; however, this approach might increase the number of
LEs required to implement the memory and affect design performance.

You can set the MAXIMUM_DEPTH parameter for memory modules manually in the megafunction instantia‐
tion. The Quartus Prime software automatically chooses the best design memory configuration for
optimal power.

13-12 Reducing Memory Power Consumption
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-10: RAM 2-Port Maximum Depth Selectable Option

Related Information

• Power-Driven Compilation on page 13-4
• Clock Power Management on page 13-9

For more information on clock network-wide gating.

Memory Power Reduction Example
Power usage measurements for a 4K × 36 simple dual-port memory implemented using multiple M4K
blocks in a Stratix device. For each implementation, the M4K blocks are configured with a different
memory depth.

Table 13-3: 4K × 36 Simple Dual-Port Memory Implemented Using Multiple M4K Blocks

M4K Configuration Number of M4K Blocks ALUTs

4K × 1 (Default setting) 36 0
2K × 2 36 40
1K × 4 36 62
512 × 9 32 143
256 × 18 32 302
128 × 36 32 633

Using the MAXIMUM_DEPTH parameter can save power. For all implementations, a user-provided read
enable signal is present to indicate when read data is required. Using this power-saving technique can
reduce power consumption by as much as 60%.

QPS5V2
2015.11.02 Memory Power Reduction Example 13-13

Power Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-11: Power Savings Using the MAXIMUM_DEPTH Parameter

0%
10%
20%
30%
40%
50%
60%
70%

4K × 1 2K × 2 256 × 18 128 × 361K × 4 512 × 9
M4K Configuration

Po
we

r S
av

ing
s

As the memory depth becomes more shallow, memory dynamic power decreases because unaddressed
M4K blocks can be shut off using a decoded combination of address bits and the read enable signal. For a
128-deep memory block, power used by the extra LEs starts to outweigh the power gain achieved by using
a more shallow memory block depth. The power consumption of the memory blocks and associated LEs
depends on the memory configuration.

Note: The SOPC Builder and Qsys system do not offer specific power savings control for on-chip
memory block. There is no read enable, write enable, or clock enable that you can enable in the on-
chip RAM megafunction to shut down the RAM block in the SOPC Builder and Qsys system.

Pipelining and Retiming
Designs with many glitches consume more power because of faster switching activity. Glitches cause
unnecessary and unpredictable temporary logic switches at the output of combinational logic. A glitch
usually occurs when there is a mismatch in input signal timing leading to unequal propagation delay.

For example, consider an input change on one input of a 2-input XOR gate from 1 to 0, followed a few
moments later by an input change from 0 to 1 on the other input. For a moment, both inputs become 1
(high) during the state transition, resulting in 0 (low) at the output of the XOR gate. Subsequently, when
the second input transition takes place, the XOR gate output becomes 1 (high). During signal transition, a
glitch is produced before the output becomes stable.

Figure 13-12: XOR Gate Showing Glitch at the Output

XOR (Exclusive OR) Gate

A

B Q

A

B

Q

Timing Diagram for the 2-Input XOR Gate

Glitch

t

This glitch can propagate to subsequent logic and create unnecessary switching activity, increasing power
consumption. Circuits with many XOR functions, such as arithmetic circuits or cyclic redundancy check
(CRC) circuits, tend to have many glitches if there are several levels of combinational logic between
registers.

Pipelining can reduce design glitches by inserting flipflops into long combinational paths. Flipflops do not
allow glitches to propagate through combinational paths. Therefore, a pipelined circuit tends to have less
glitching. Pipelining has the additional benefit of generally allowing higher clock speed operations,
although it does increase the latency of a circuit (in terms of the number of clock cycles to a first result).

An example where pipelining is applied to break up a long combinational path.

13-14 Pipelining and Retiming
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-13: Pipelining Example

Combinational
Logic

Combinational
Logic

Combinational
Logic

Short Logic
Depth

Short Logic
Depth

Long Logic
Depth

Non-Pipelined

Pipelined

Pipelining is very effective for glitch-prone arithmetic systems because it reduces switching activity,
resulting in reduced power dissipation in combinational logic. Additionally, pipelining allows higher-
speed operation by reducing logic-level numbers between registers. The disadvantage of this technique is
that if there are not many glitches in your design, pipelining can increase power consumption by adding
unnecessary registers. Pipelining can also increase resource utilization. The benchmark data shows that
pipelining can reduce dynamic power consumption by as much as 30% in Cyclone and Stratix devices.

Architectural Optimization
You can use design-level architectural optimization by taking advantage of specific device architecture
features. These features include dedicated memory and DSP or multiplier blocks available in FPGA
devices to perform memory or arithmetic-related functions. You can use these blocks in place of LUTs to
reduce power consumption. For example, you can build large shift registers from RAM-based FIFO
buffers instead of building the shift registers from the LE registers.

The Stratix device family allows you to efficiently target small, medium, and large memories with the
TriMatrix memory architecture. Each TriMatrix memory block is optimized for a specific function. M512
memory blocks are more power-efficient than the distributed memory structures in some competing
FPGAs. The M4K memory blocks are used to implement buffers for a wide variety of applications,
including processor code storage, large look-up table implementation, and large memory applications.
The M-RAM blocks are useful in applications where a large volume of data must be stored on-chip.
Effective utilization of these memory blocks can have a significant impact on power reduction in your
design.

The latest Stratix and Cyclone device families have configurable M9K memory blocks that provide various
memory functions such as RAM, FIFO buffers, and ROM.

Related Information

• Area and Timing Optimization on page 12-1
For more information about using DSP and memory blocks efficiently, refer to the Quartus Prime
Handbook.

QPS5V2
2015.11.02 Architectural Optimization 13-15

Power Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

I/O Power Guidelines
Nonterminated I/O standards such as LVTTL and LVCMOS have a rail-to-rail output swing. The voltage
difference between logic-high and logic-low signals at the output pin is equal to the VCCIO supply voltage.
If the capacitive loading at the output pin is known, the dynamic power consumed in the I/O buffer can
be calculated.

P = 0.5 x F x C x V2

In this equation, F is the output transition frequency and C is the total load capacitance being switched. V
is equal to VCCIO supply voltage. Because of the quadratic dependence on VCCIO, lower voltage standards
consume significantly less dynamic power.

Transistor-to-transistor logic (TTL) I/O buffers consume very little static power. As a result, the total
power consumed by a LVTTL or LVCMOS output is highly dependent on load and switching frequency.

When using resistively terminated I/O standards like SSTL and HSTL, the output load voltage swings by a
small amount around some bias point. The same dynamic power equation is used, where V is the actual
load voltage swing. Because this is much smaller than VCCIO, dynamic power is lower than for nontermi‐
nated I/O under similar conditions. These resistively terminated I/O standards dissipate significant static
(frequency-independent) power, because the I/O buffer is constantly driving current into the resistive
termination network. However, the lower dynamic power of these I/O standards means they often have
lower total power than LVCMOS or LVTTL for high-frequency applications. Use the lowest drive
strength I/O setting that meets your speed and waveform requirements to minimize I/O power when
using resistively terminated standards.

You can save a small amount of static power by connecting unused I/O banks to the lowest possible VCCIO
voltage of 1.2 V.

For more information about I/O standards, refer to the Stratix IV Device Handbook, or the Cyclone IV GX
Handbook on the Altera website.

When calculating I/O power, the PowerPlay Power Analyzer uses the default capacitive load set for the
I/O standard in the Capacitive Loading page of the Device and Pin Options dialog box. Any other
components defined in the board trace model are not taken into account for the power measurement.

For Cyclone IV GX, Stratix IV, and Stratix V, devices, Advanced I/O Timing is always used, which uses
the full board trace model.

Related Information

• I/O Management on page 2-1
For information about using Advanced I/O Timing and configuring a board trace model, refer to the
Quartus Prime Handbook.

Dynamically Controlled On-Chip Terminations
Stratix IV and Stratix V FPGAs offer dynamic on-chip termination (OCT). Dynamic OCT enables series
termination (RS) and parallel termination (RT) to dynamically turn on/off during the data transfer. This
feature is especially useful when Stratix IV and Stratix V FPGAs are used with external memory interfaces,
such as interfacing with DDR memories.

Compared to conventional termination, dynamic OCT reduces power consumption significantly as it
eliminates the constant DC power consumed by parallel termination when transmitting data. Parallel
termination is extremely useful for applications that interface with external memories where I/O
standards, such as HSTL and SSTL, are used. Parallel termination supports dynamic OCT, which is useful
for bidirectional interfaces.

13-16 I/O Power Guidelines
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following is an example of power saving for a DDR3 interface using on-chip parallel termination.

The static current consumed by parallel OCT is equal to the VCCIO voltage divided by 100 W . For DDR3
interfaces that use SSTL-15, the static current is 1.5 V/100 W = 15 mA per pin. Therefore, the static power
is 1.5 V ×15 mA = 22.5 mW. For an interface with 72 DQ and 18 DQS pins, the static power is 90 pins ×
22.5 mW = 2.025 W. Dynamic parallel OCT disables parallel termination during write operations, so if
writing occurs 50% of the time, the power saved by dynamic parallel OCT is 50% × 2.025 W = 1.0125 W.

Related Information
Stratix IV Device I/O Features
For more information about dynamic OCT in Stratix IV devices, refer to the chapter in the Stratix IV
Device Handbook.

Power Optimization Advisor
The Quartus Prime software includes the Power Optimization Advisor, which provides specific power
optimization advice and recommendations based on the current design project settings and assignments.
The advisor covers many of the suggestions listed in this chapter. The following example shows how to
reduce your design power with the Power Optimization Advisor.

Power Optimization Advisor Example
After compiling your design, run the PowerPlay Power Analyzer to determine your design power and to
see where power is dissipated in your design. Based on this information, you can run the Power
Optimization Advisor to implement recommendations that can reduce design power.

The Power Optimization Advisor after compiling a design that is not fully optimized for power.

Figure 13-14: Power Optimization Advisor

The Power Optimization Advisor shows the recommendations that can reduce power in your design. The
recommendations are split into stages to show the order in which you should apply the recommended
settings. The first stage shows mostly CAD setting options that are easy to implement and highly effective
in reducing design power. An icon indicates whether each recommended setting is made in the current
project. The checkmark icons for Stage 1 shows the recommendations that are already implemented. The
warning icons indicate recommendations that are not followed for this compilation. The information icon
shows the general suggestions. Each recommendation includes the description, summary of the effect of
the recommendation, and the action required to make the appropriate setting.

QPS5V2
2015.11.02 Power Optimization Advisor 13-17

Power Optimization Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/stratix-iv/stx4_siv51006.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There is a link from each recommendation to the appropriate location in the Quartus Prime user interface
where you can change the setting. After making the recommended changes, recompile your design. The
Power Optimization Advisor indicates with green check marks that the recommendations were
implemented successfully. You can use the PowerPlay Power Analyzer to verify your design power results.

Figure 13-15: Implementation of Power Optimization Advisor Recommendations

The recommendations listed in Stage 2 generally involve design changes, rather than CAD settings
changes as in Stage 1. You can use these recommendations to further reduce your design power consump‐
tion. Altera recommends that you implement Stage 1 recommendations first, then the Stage 2 recommen‐
dations.

Document Revision History

Table 13-4: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

• Updated screenshot for DSE II GUI.
• Added information about remote hosts for DSE II.

2015.05.04 15.0.0

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

• Updated DSE II GUI and optimization settings.

2014.06.30 14.0.0 Updated the format.

May 2013 13.0.0 Added a note to “Memory Power Reduction Example” on Qsys and SOPC
Builder power savings limitation for on-chip memory block.

June 2012 12.0.0 Removed survey link.

13-18 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Power Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November
2011

10.0.2 Template update.

December
2010

10.0.1 Template update.

July 2010 10.0.0 • Was chapter 11 in the 9.1.0 release
• Updated Figures 14-2, 14-3, 14-6, 14-18, 14-19, and 14-20
• Updated device support
• Minor editorial updates

November
2009

9.1.0 • Updated Figure 11-1 and associated references
• Updated device support
• Minor editorial update

March 2009 9.0.0 • Was chapter 9 in the 8.1.0 release
• Updated for the Quartus Prime software release
• Added benchmark results
• Removed several sections
• Updated Figure 13–1, Figure 13–17, and Figure 13–18

November
2008

8.1.0 • Changed to 8½” × 11” page size
• Changed references to altsyncram to RAM
• Minor editorial updates

May 2008 8.0.0 • Added support for Stratix IV devices
• Updated Table 9–1 and 9–9
• Updated “Architectural Optimization” on page 9–22
• Added “Dynamically-Controlled On-Chip Terminations” on page 9–26
• Updated “Referenced Documents” on page 9–29
• Updated references

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 13-19

Power Optimization Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Power%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Area Optimization 14
2015.11.02

QPS5V2 Subscribe Send Feedback

This chapter describes techniques to reduce resource usage when designing for Altera devices.

Resource Utilization
Determining device utilization is important regardless of whether your design achieved a successful fit. If
your compilation results in a no-fit error, resource utilization information is important for analyzing the
fitting problems in your design.If your fitting is successful, review the resource utilization information to
determine whether the future addition of extra logic or other design changes might introduce fitting
difficulties. Also, review the resource utilization information to determine if it is impacting timing
performance.

To determine resource usage, refer to the Flow Summary section of the Compilation Report. This section
reports resource utilization, including pins, memory bits, digital signal processing (DSP) blocks, and
phase-locked loops (PLLs). Flow Summary indicates whether your design exceeds the available device
resources. More detailed information is available by viewing the reports under Resource Section in the
Fitter section of the Compilation Report.

Flow Summary shows the overall logic utilization. The Fitter can spread logic throughout the device,
which may lead to higher overall utilization.

As the device fills up, the Fitter automatically searches for logic functions with common inputs to place in
one ALM. The number of packed registers also increases. Therefore, a design that has high overall utiliza‐
tion might still have space for extra logic if the logic and registers can be packed together more tightly.

The reports under the Resource Section in the Fitter section of the Compilation Report provide more
detailed resource information. The Fitter Resource Usage Summary report breaks down the logic utiliza‐
tion information and provides other resource information, including the number of bits in each type of
memory block. This panel also contains a summary of the usage of global clocks, PLLs, DSP blocks, and
other device-specific resources.

You can also view reports describing some of the optimizations that occurred during compilation. For
example, if you use Quartus Prime integrated synthesis, the reports in the Optimization Results folder in
the Analysis & Synthesis section include information about registers that integrated synthesis removed
during synthesis. Use this report to estimate device resource utilization for a partial design to ensure that
registers were not removed due to missing connections with other parts of the design.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Area%20Optimization&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

If a specific resource usage is reported as less than 100% and a successful fit cannot be achieved, either
there are not enough routing resources or some assignments are illegal. In either case, a message appears
in the Processing tab of the Messages window describing the problem.

If the Fitter finishes unsuccessfully and runs much faster than on similar designs, a resource might be
over-utilized or there might be an illegal assignment. If the Quartus Prime software seems to run for an
excessively long time compared to runs on similar designs, a legal placement or route probably cannot be
found. In the Compilation Report, look for errors and warnings that indicate these types of problems.

You can use the Chip Planner to find areas of the device that have routing congestion on specific types of
routing resources. If you find areas with very high congestion, analyze the cause of the congestion. Issues
such as high fan-out nets not using global resources, an improperly chosen optimization goal (speed
versus area), very restrictive floorplan assignments, or the coding style can cause routing congestion. After
you identify the cause, modify the source or settings to reduce routing congestion.

Related Information
Fitter Resources Report
For more information about Fitter Resources Report

Analyzing and Optimizing the Design Floorplan with the Chip Planner on page 15-1
For details about using the Chip Planner tool

Optimizing Resource Utilization (LUT-Based Devices)
The following lists the stages after design analysis:

• Optimize resource utilization—Ensure that you have already set the basic constraints
• I/O timing optimization—Optimize I/O timing after you optimize resource utilization and your design

fits in the desired target device
• Register-to-register timing optimization

Related Information

• Design Optimization Overview on page 10-1
Provides information about setting basic constraints

• Timing Closure and Optimization on page 12-1
Provides information about optimizing I/O timing. These tips are valid for all FPGA families and the
MAX II family of CPLDs.

Using the Resource Optimization Advisor
The Resource Optimization Advisor provides guidance in determining settings that optimize resource
usage. To run the Resource Optimization Advisor, on the Tools menu, point to Advisors, and click
Resource Optimization Advisor.

The Resource Optimization Advisor provides step-by-step advice about how to optimize resource usage
(logic element, memory block, DSP block, I/O, and routing) of your design. Some of the recommenda‐

14-2 Optimizing Resource Utilization (LUT-Based Devices)
QPS5V2

2015.11.02

Altera Corporation Area Optimization

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_resource_usage.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

tions in these categories might conflict with each other. Altera recommends evaluating the options and
choosing the settings that best suit your requirements.

Related Information
Resource Optimization Advisor Command Tools Menu
For more information about the Resource Optimization Advisor

Resolving Resource Utilization Issues Summary
Resource utilization issues can be divided into the following three categories:

Table 14-1: Resource Utilization Issues

Types of Resource Utilization Issues Refer to

Issues relating to I/O pin utilization or placement,
including dedicated I/O blocks such as PLLs or
LVDS transceivers

I/O Pin Utilization or Placement on page 14-3

Issues relating to logic utilization or placement,
including logic cells containing registers and LUTs
as well as dedicated logic, such as memory blocks
and DSP blocks

Logic Utilization or Placement on page 14-4

Issues relating to routing Routing on page 14-8

Related Information

• I/O Pin Utilization or Placement on page 14-3
• Logic Utilization or Placement on page 14-4
• Routing on page 14-8

I/O Pin Utilization or Placement
Resolve I/O resource problems with these guidelines.

Guideline: Use I/O Assignment Analysis
To help with pin placement, on the Processing menu, point to Start and click Start I/O Assignment
Analysis. The Start I/O Assignment Analysis command allows you to check your I/O assignments early
in the design process. You can use this command to check the legality of pin assignments before, during,
or after compilation of your design. If design files are available, you can use this command to accomplish
more thorough legality checks on your design’s I/O pins and surrounding logic. These checks include
proper reference voltage pin usage, valid pin location assignments, and acceptable mixed I/O standards.

Common issues with I/O placement relate to the fact that differential standards have specific pin pairings
and certain I/O standards might be supported only on certain I/O banks.

If your compilation or I/O assignment analysis results in specific errors relating to I/O pins, follow the
recommendations in the error message. Right-click the message in the Messages window and click Help
to open the Quartus Prime Help topic for this message.

QPS5V2
2015.11.02 Resolving Resource Utilization Issues Summary 14-3

Area Optimization Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#report/oaw/oaw_com_roa_command.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Guideline: Modify Pin Assignments or Choose a Larger Package
If a design that has pin assignments fails to fit, compile the design without the pin assignments to
determine whether a fit is possible for the design in the specified device and package. You can use this
approach if a Quartus Prime error message indicates fitting problems due to pin assignments.

If the design fits when all pin assignments are ignored or when several pin assignments are ignored or
moved, you might have to modify the pin assignments for the design or select a larger package.

If the design fails to fit because insufficient I/Os pins are available, a successful fit can often be obtained by
using a larger device package (which can be the same device density) that has more available user I/O
pins.

Related Information

• I/O Management on page 2-1
For more information about I/O assignment analysis

Logic Utilization or Placement
Resolve logic resource problems, including logic cells containing registers and LUTs, as well as dedicated
logic such as memory blocks and DSP blocks, with these guidelines.

Guideline: Optimize Source Code
If your design does not fit because of logic utilization, then evaluate and modify the design at the source.
You can often improve logic significantly by making design-specific changes to your source code. This is
typically the most effective technique for improving the quality of your results.

If your design does not fit into available logic elements (LEs) or ALMs, but you have unused memory or
DSP blocks, check if you have code blocks in your design that describe memory or DSP functions that are
not being inferred and placed in dedicated logic. You might be able to modify your source code to allow
these functions to be placed into dedicated memory or DSP resources in the target device.

Ensure that your state machines are recognized as state machine logic and optimized appropriately in
your synthesis tool. State machines that are recognized are generally optimized better than if the synthesis
tool treats them as generic logic. In the Quartus Prime software, you can check for the State Machine
report under Analysis & Synthesis in the Compilation Report. This report provides details, including the
state encoding for each state machine that was recognized during compilation. If your state machine is
not being recognized, you might have to change your source code to enable it to be recognized.

Related Information

• Recommended HDL Coding Styles
For coding style guidelines, including examples of HDL code for inferring memory and DSP functions
and sample HDL code for state machines

• AN 584: Timing Closure Methodology for Advanced FPGA Designs.
For additional HDL coding examples

Guideline: Optimize Synthesis for Area, Not Speed
If your design fails to fit because it uses too much logic, resynthesize the design to improve the area
utilization. First, ensure that you have set your device and timing constraints correctly in your synthesis
tool. Particularly when area utilization of the design is a concern, ensure that you do not over-constrain
the timing requirements for the design. Synthesis tools generally try to meet the specified requirements,
which can result in higher device resource usage if the constraints are too aggressive.

14-4 Guideline: Modify Pin Assignments or Choose a Larger Package
QPS5V2

2015.11.02

Altera Corporation Area Optimization

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959570946/en-us
http://www.altera.com/literature/an/an584.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If resource utilization is an important concern, some synthesis tools offer an easy way to optimize for area
instead of speed. If you are using Quartus Prime integrated synthesis, select Balanced or Area for the
Optimization Technique. You can also specify an Optimization Technique logic option for specific
modules in your design with the Assignment Editor in cases where you want to reduce area using the
Area setting (potentially at the expense of register-to-register timing performance) while leaving the
default Optimization Technique setting at Balanced (for the best trade-off between area and speed for
certain device families) or Speed. You can also use the Speed Optimization Technique for Clock
Domains logic option to specify that all combinational logic in or between the specified clock domain(s)
is optimized for speed.

In some synthesis tools, not specifying an fMAX requirement can result in less resource utilization.

Note: In the Quartus Prime software, the Balanced setting typically produces utilization results that are
very similar to those produced by the Area setting, with better performance results. The Area
setting can give better results in some cases.

The Quartus Prime software provides additional attributes and options that can help improve the quality
of your synthesis results.

Related Information
Synthesis
For information about setting the timing requirements and synthesis options in Quartus Prime integrated
synthesis and other synthesis tools

Guideline: Restructure Multiplexers
Multiplexers form a large portion of the logic utilization in many FPGA designs. By optimizing your
multiplexed logic, you can achieve a more efficient implementation in your Altera device.

Related Information

• Restructure Multiplexers logic option
For more information about the Restructure Multiplexers option

• Recommended HDL Coding Styles
For design guidelines to achieve optimal resource utilization for multiplexer designs

Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
The Perform WYSIWYG Primitive Resynthesis logic option specifies whether to perform WYSIWYG
primitive resynthesis during synthesis. This option uses the setting specified in the Optimization
Technique logic option. The Perform WYSIWYG Primitive Resynthesis logic option is useful for
resynthesizing some or all of the WYSIWYG primitives in your design for better area or performance.
However, WYSIWYG primitive resynthesis can be done only when you use third-party synthesis tools.

Note: The Balanced setting typically produces utilization results that are very similar to the Area setting
with better performance results. The Area setting can give better results in some cases. Performing
WYSIWYG resynthesis for area in this way typically reduces register-to-register timing perform‐
ance.

Related Information
Perform WYSIWYG Primitive Resynthesis logic option
For information about this logic option

QPS5V2
2015.11.02 Guideline: Restructure Multiplexers 14-5

Area Optimization Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959843979/en-us
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_mux_restructure.htm
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959570946/en-us
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_adv_netlist_opt_synth_wysiwyg_remap.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Guideline: Use Register Packing
The Auto Packed Registers option implements the functions of two cells into one logic cell by combining
the register of one cell in which only the register is used with the LUT of another cell in which only the
LUT is used.

Related Information
Auto Packed Registers logic option
For more information about the Auto Packed Registers logic option

Guideline: Remove Fitter Constraints
A design with conflicting constraints or constraints that are difficult to meet may not fit in the targeted
device. For example, a design might fail to fit if the location or LogicLock assignments are too strict and
not enough routing resources are available on the device.

To resolve routing congestion caused by restrictive location constraints or LogicLock region assignments,
use the Routing Congestion task in the Chip Planner to locate routing problems in the floorplan, then
remove any internal location or LogicLock region assignments in that area. If your design still does not fit,
the design is over-constrained. To correct the problem, remove all location and LogicLock assignments
and run successive compilations, incrementally constraining the design before each compilation. You can
delete specific location assignments in the Assignment Editor or the Chip Planner. To remove LogicLock
assignments in the Chip Planner, in the LogicLock Regions Window, or on the Assignments menu, click
Remove Assignments. Turn on the assignment categories you want to remove from the design in the
Available assignment categories list.

Related Information

• Analyzing and Optimizing the Design Floorplan with the Chip Planner on page 15-1
For more information about the Routing Congestion task in the Chip Planner

Guideline: Flatten the Hierarchy During Synthesis
Synthesis tools typically provide the option of preserving hierarchical boundaries, which can be useful for
verification or other purposes. However, the Quartus Prime software optimizes across hierarchical
boundaries so as to perform the most logic minimization, which can reduce area in a design with no
design partitions.

If you are using Quartus Prime incremental compilation, you cannot flatten your design across design
partitions. Incremental compilation always preserves the hierarchical boundaries between design
partitions, and the synthesis does not flatten it across partitions. Follow Altera’s recommendations for
design partitioning, such as registering partition boundaries to reduce the effect of cross-boundary
optimizations.

Guideline: Retarget Memory Blocks
If your design fails to fit because it runs out of device memory resources, your design may require a
certain type of memory that the device does not have. For example, a design that requires two M-RAM
blocks cannot be targeted to a device with only one M-RAM block. You might be able to obtain a fit by
building one of the memories with a different size memory block, such as an M4K memory block.

If the memory block was created with a parameter editor, open the parameter editor and edit the RAM
block type so it targets a new memory block size.

ROM and RAM memory blocks can also be inferred from your HDL code, and your synthesis software
can place large shift registers into memory blocks by inferring the Shift register (RAM-based) IP core.
This inference can be turned off in your synthesis tool to cause the memory or shift registers to be placed

14-6 Guideline: Use Register Packing
QPS5V2

2015.11.02

Altera Corporation Area Optimization

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_register_packing.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

in logic instead of in memory blocks. Also, for improved timing performance, you can turn this inference
off to prevent registers from being moved into RAM.

Depending on your synthesis tool, you can also set the RAM block type for inferred memory blocks. In
Quartus Prime integrated synthesis, set the ramstyle attribute to the desired memory type for the inferred
RAM blocks, or set the option to logic, to implement the memory block in standard logic instead of a
memory block.

Consider the Resource Utilization by Entity report in the report file and determine whether there is an
unusually high register count in any of the modules. Some coding styles can prevent the Quartus Prime
software from inferring RAM blocks from the source code because of the blocks’ architectural implemen‐
tation, and force the software to implement the logic in flipflops. As an example, a function such as an
asynchronous reset on a register bank might make the resistor bank incompatible with the RAM blocks in
the device architecture, so that the register bank is implemented in flipflops. It is often possible to move a
large register bank into RAM by slight modification of associated logic.

Guideline: Use Physical Synthesis Options to Reduce Area
The physical synthesis options for fitting help you decrease resource usage. When you enable these
options, the Quartus Prime software makes placement-specific changes to the netlist that reduce resource
utilization for a specific Altera device.

Note: The compilation time might increase considerably when you use physical synthesis options.

With the Quartus Prime software, you can apply physical synthesis options to specific instances, which
can reduce the impact on compilation time. Physical synthesis instance assignments allow you to enable
physical synthesis algorithms for specific portions of your design.

The following physical synthesis optimizations for fitting are available:

• Physical synthesis for combinational logic
• Map logic into memory

Related Information
Physical Synthesis Optimizations Page Settings Dialog Box

Guideline: Retarget or Balance DSP Blocks
A design might not fit because it requires too many DSP blocks. You can implement all DSP block
functions with logic cells, so you can retarget some of the DSP blocks to logic to obtain a fit.

If the DSP function was created with the parameter editor, open the parameter editor and edit the
function so it targets logic cells instead of DSP blocks. The Quartus Prime software uses the
DEDICATED_MULTIPLIER_CIRCUITRY IP core parameter to control the implementation.

DSP blocks also can be inferred from your HDL code for multipliers, multiply-adders, and multiply-
accumulators. You can turn off this inference in your synthesis tool. When you are using Quartus Prime
integrated synthesis, you can disable inference by turning off the Auto DSP Block Replacement logic
option for your entire project. Click Assignments > Settings > Compiler Settings > Advanced Settings
(Synthesis). Turn off Auto DSP Block Replacement. Alternatively, you can disable the option for a
specific block with the Assignment Editor.

The Quartus Prime software also offers the DSP Block Balancing logic option, which implements DSP
block elements in logic cells or in different DSP block modes. The default Auto setting allows DSP block
balancing to convert the DSP block slices automatically as appropriate to minimize the area and maximize
the speed of the design. You can use other settings for a specific node or entity, or on a project-wide basis,
to control how the Quartus Prime software converts DSP functions into logic cells and DSP blocks. Using

QPS5V2
2015.11.02 Guideline: Use Physical Synthesis Options to Reduce Area 14-7

Area Optimization Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_physical.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

any value other than Auto or Off overrides the DEDICATED_MULTIPLIER_CIRCUITRY parameter used in IP
core variations.

Guideline: Use a Larger Device
If a successful fit cannot be achieved because of a shortage of routing resources, you might require a larger
device.

Routing
Resolve routing resource problems with these guidelines.

Guideline: Set Auto Packed Registers to Sparse or Sparse Auto
The Auto Packed Registers option reduces LE or ALM count in a design.You can set this option by
clicking Assignment > Settings > Compiler Settings > Advanced Settings (Fitter).

Related Information
Auto Packed Registers logic option

Guideline: Set Fitter Aggressive Routability Optimizations to Always
The Fitter Aggressive Routability Optimization option is useful if your design does not fit due to
excessive routing wire utilization.

If there is a significant imbalance between placement and routing time (during the first fitting attempt), it
might be because of high wire utilization. Turning on the Fitter Aggressive Routability Optimizations
option can reduce your compilation time.

On average, this option can save up to 6% wire utilization, but can also reduce performance by up to 4%,
depending on the device.

Related Information
Fitter Aggressive Routability Optimizations logic option

Guideline: Increase Router Effort Multiplier
The Router Effort Multiplier controls how quickly the router tries to find a valid solution. The default
value is 1.0 and legal values must be greater than 0. Numbers higher than 1 help designs that are difficult
to route by increasing the routing effort. Numbers closer to 0 (for example, 0.1) can reduce router
runtime, but usually reduce routing quality slightly. Experimental evidence shows that a multiplier of 3.0
reduces overall wire usage by approximately 2%. Using a Router Effort Multiplier higher than the default
value could be beneficial for designs with complex datapaths with more than five levels of logic. However,
congestion in a design is primarily due to placement, and increasing the Router Effort Multiplier does not
necessarily reduce congestion.

Note: Any Router Effort Multiplier value greater than 4 only increases by 10% for every additional 1. For
example, a value of 10 is actually 4.6.

Guideline: Remove Fitter Constraints
A design with conflicting constraints or constraints that are difficult to achieve may not fit the targeted
device. Conflicting or difficult-to-achieve constraints can occur when location or LogicLock assignments
are too strict and there are not enough routing resources.

In this case, use the Routing Congestion task in the Chip Planner to locate routing problems in the
floorplan, then remove all location and LogicLock region assignments from that area. If the local
constraints are removed, and the design still does not fit, the design is over-constrained. To correct the

14-8 Guideline: Use a Larger Device
QPS5V2

2015.11.02

Altera Corporation Area Optimization

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_register_packing.htm
http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_fitter_aggressive_routability_optimization.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

problem, remove all location and LogicLock assignments and run successive compilations, incrementally
constraining the design before each compilation. You can delete specific location assignments in the
Assignment Editor or the Chip Planner. To remove LogicLock assignments in the Chip Planner, in the
LogicLock Regions Window, or on the Assignments menu, click Remove Assignments. Turn on the
assignment categories you want to remove from the design in the Available assignment categories list.

Related Information

• Analyzing and Optimizing the Design Floorplan with the Chip Planner on page 15-1
For more information about the Routing Congestion task in the Chip Planner

Guideline: Optimize Synthesis for Area, Not Speed
In some cases, resynthesizing the design to improve the area utilization can also improve the routability of
the design. First, ensure that you have set your device and timing constraints correctly in your synthesis
tool. Ensure that you do not overconstrain the timing requirements for the design, particularly when the
area utilization of the design is a concern. Synthesis tools generally try to meet the specified requirements,
which can result in higher device resource usage if the constraints are too aggressive.

If resource utilization is important to improve the routing results in your design, some synthesis tools
offer an easy way to optimize for area instead of speed. If you are using Quartus Prime integrated
synthesis, click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis). For
Optimization Technique, select Balanced or Area.

You can also specify this logic option for specific modules in your design with the Assignment Editor in
cases where you want to reduce area using the Area setting (potentially at the expense of register-to-
register timing performance). You can apply the setting to specific modules while leaving the default
Optimization Technique setting at Balanced (for the best trade-off between area and speed for certain
device families) or Speed. You can also use the Speed Optimization Technique for Clock Domains logic
option to specify that all combinational logic in or between the specified clock domain(s) is optimized for
speed.

Note: In the Quartus Prime software, the Balanced setting typically produces utilization results that are
very similar to those obtained with the Area setting, with better performance results. The Area
setting can yield better results in some unusual cases.

In some synthesis tools, not specifying an fMAX requirement can result in less resource utilization, which
can improve routability.

Related Information
Synthesis
For information about setting the timing requirements and synthesis options in Quartus Prime integrated
synthesis and other synthesis tools

Guideline: Optimize Source Code
If your design does not fit because of routing problems and the methods described in the preceding
sections do not sufficiently improve the routability of the design, modify the design at the source to
achieve the desired results. You can often improve results significantly by making design-specific changes
to your source code, such as duplicating logic or changing the connections between blocks that require
significant routing resources.

Guideline: Use a Larger Device
If a successful fit cannot be achieved because of a shortage of routing resources, you might require a larger
device.

QPS5V2
2015.11.02 Guideline: Optimize Synthesis for Area, Not Speed 14-9

Area Optimization Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959843979/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command options, refer to
the Quartus Prime command-line and Tcl API Help browser. To run the Help browser, type the following
command at the command prompt:

quartus_sh --qhelp

You can specify many of the options described in this section either in an instance, or at a global level, or
both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <.qsf variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <.qsf variable name> <value> \
-to <instance name>

Note: If the <value> field includes spaces (for example, ‘Standard Fit’), you must enclose the value in
straight double quotation marks.

Related Information
Tcl Scripting on page 5-1
For more information about Tcl scripting

Quartus Prime Settings File Manual
For more information about all settings and constraints in the Quartus Prime software

Command-Line Scripting on page 4-1
For more information about command-line scripting

Initial Compilation Settings
Use the Quartus Prime Settings File (.qsf) variable name in the Tcl assignment to make the setting along
with the appropriate value. The Type column indicates whether the setting is supported as a global
setting, an instance setting, or both.

Table 14-2: Advanced Compilation Settings

Setting Name .qsf File Variable Name Values Type

Placement Effort
Multiplier

PLACEMENT_EFFORT_MULTIPLIER Any positive, non-zero
value

Globa
l

Router Effort
Multiplier

ROUTER_EFFORT_MULTIPLIER Any positive, non-zero
value

Globa
l

Router Timing
Optimization
level

ROUTER_TIMING_OPTIMIZATION_LEVEL NORMAL, MINIMUM,
MAXIMUM

Globa
l

14-10 Scripting Support
QPS5V2

2015.11.02

Altera Corporation Area Optimization

Send Feedback

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Name .qsf File Variable Name Values Type

Final Placement
Optimization

FINAL_PLACEMENT_OPTIMIZATION ALWAYS, AUTOMATICALLY,
NEVER

Globa
l

Resource Utilization Optimization Techniques (LUT-Based Devices)
This table lists the .qsf file variable name and applicable values for the settings described in Optimizing
Resource Utilization (LUT-Based Devices) on page 14-2.

Table 14-3: Resource Utilization Optimization Settings

Setting Name .qsf File Variable Name Values Type

Auto Packed
Registers (1)

AUTO_PACKED_REGISTERS_

<device family name>

OFF, NORMAL,

MINIMIZE AREA,

MINIMIZE AREA WITH

CHAINS, AUTO

Global,

Instance

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,

Instance

Physical Synthesis
for Combina‐
tional Logic for
Reducing Area

PHYSICAL_SYNTHESIS_COMBO_LOGIC_FOR_AREA ON, OFF Global,

Instance

Physical Synthesis
for Mapping
Logic to Memory

PHYSICAL_SYNTHESIS_MAP_LOGIC_TO_MEMORY_

FOR AREA

ON, OFF Global,

Instance

Optimization
Technique

<device family name>_OPTIMIZATION_

TECHNIQUE

AREA, SPEED, BALANCED Global,

Instance

Speed Optimiza‐
tion Technique
for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, ONE-HOT, GRAY,
JOHNSON, MINIMAL

BITS, ONE-HOT,
SEQUENTIAL, USER-

ENCODE

Global,

Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,

Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,

Instance

(1) Allowed values for this setting depend on the device family that you select.

QPS5V2
2015.11.02 Resource Utilization Optimization Techniques (LUT-Based Devices) 14-11

Area Optimization Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Name .qsf File Variable Name Values Type

Auto Shift
Register Replace‐
ment

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,

Instance

Auto Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,

Instance

Number of
Processors for
Parallel Compila‐
tion

NUM_PARALLEL_PROCESSORS Integer between 1 and
16 inclusive, or ALL

Global

Document Revision History

Table 14-4: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

June 2014 14.0.0 • Removed Cyclone III and Stratix III devices references.
• Removed Macrocell-Based CPLDs related information.
• Updated template.

May 2013 13.0.0 Initial release.

14-12 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Area Optimization

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Area%20Optimization%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Analyzing and Optimizing the Design
Floorplan with the Chip Planner 15

2015.11.02

QPS5V2 Subscribe Send Feedback

Analyzing and Optimizing the Design Floorplan with the Chip Planner
As FPGA designs grow larger in density, the ability to analyze the design for performance, routing
congestion, and logic placement is critical to meet the design requirements. This chapter discusses how to
analyze the design floorplan with the Chip Planner.

Design floorplan analysis helps to close timing and ensure optimal performance in highly complex
designs. With analysis capability, the Quartus Prime Chip Planner helps you close timing quickly on your
designs. Use the Chip Planner together with LogicLock regions to compile your designs hierarchically,
preserving the timing results from individual compilation runs. Use LogicLock regions to improve your
productivity.

You can perform design analysis, as well as create and optimize the design floorplan with the Chip
Planner. To make I/O assignments, use the Pin Planner.

Related Information
I/O Management on page 2-1
For information about the Pin Planner.

Altera Training
For training courses on the Chip Planner.

Migrating Assignments between Quartus Prime Standard Edition and
Quartus Prime Pro Edition

The Quartus Prime Pro Edition software does not support the Quartus Prime Standard Edition LogicLock
assignments and vice versa. Therefore, if you are migrating a design from Quartus Prime Pro Edition to
Quartus Prime Standard Edition or vice versa, you must convert the LogicLock or LogicLock Plus
assignments.

Related Information
Migrating to the Quartus Prime Pro Edition

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/education/training/trn-index.jsp
https://documentation.altera.com/#/link/mwh1409960181641/
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Chip Planner Overview
The Chip Planner provides a visual display of chip resources. The Chip Planner shows:

• Logic placement regions
• LogicLock regions
• Relative resource usage
• Detailed routing information

• Fan-in and fan-out connections between nodes
• Timing paths between registers
• Delay estimates for paths
• Routing congestion information

The Chip Planner lets you:

• Make assignment changes with the Chip Planner, such as creating and deleting resource assignments.
• Perform post-compilation changes such as creating, moving, and deleting logic cells and I/O atoms.
• View and create assignments for a design floorplan.
• Perform power and design analyses.
• Implement ECOs.
• Change connections between resources and make post-compilation changes to the properties of logic

cells, I/O elements, PLLs, and RAM and digital signal processing (DSP) blocks.

Related Information

• Engineering Change Management with the Chip Planner on page 17-1
For details about how to implement ECOs in your design using the Chip Planner in the Quartus Prime
software.

Starting the Chip Planner
To start the Chip Planner, choose Tools > Chip Planner. You can also start the Chip Planner by the
following methods:

• Click the Chip Planner icon on the Quartus Prime software toolbar.
• On the Shortcut menu in the following tools, click Locate > Locate in Chip Planner to locate:

• Design Partition Planner
• Compilation Report
• LogicLock Regions window
• Technology Map Viewer
• Project Navigator window
• RTL source code
• Node Finder
• Simulation Report
• RTL Viewer
• Report Timing panel of the TimeQuest Timing Analyzer

Chip Planner Toolbar
The Chip Planner provides powerful tools for design analysis with a GUI. You can access Chip Planner
commands from the View menu and the Shortcut menu, or by clicking the icons on the toolbar.

15-2 Chip Planner Overview
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Chip Planner Presets, Layers, and Editing Modes
The Chip Planner models types of resource objects as unique display layers. It also uses presets—which
are predefined sets of layer settings—to control the display of resources.

The Chip Planner provides a set of default presets, and you can create custom presets to customize the
display for your particular needs. The Basic, Detailed, and Floorplan Editing presets provided with the
Chip Planner are useful for general assignment-related activities. The Design Partition Planner preset is
optimized for specific activities.

The Chip Planner editing modes determine the operations that you can perform. The assignment editing
mode allows you to make assignment changes that are applied by the Fitter during the next place and
route operation.

The Chip Planner editing modes determine the operations that you can perform. The assignment editing
mode allows you to make assignment changes that are applied by the Fitter during the next place and
route operation. The ECO editing mode allows you to make post-compilation changes, commonly
referred to as engineering change orders (ECOs).

You should choose the editing mode appropriate for the work that you want to perform, and a preset that
displays the resources that you want to view, in a level of detail appropriate for your design.

Locate History Window
As you optimize your design floorplan, you might have to locate a path or node in the Chip Planner many
times. The Locate History window lists all the nodes and paths you have displayed using a Locate in Chip
Planner command, providing easy access to the nodes and paths of interest to you.

If you locate a required path from the TimeQuest Timing Analyzer Report Timing pane, the Locate
History window displays the required clock path. If you locate an arrival path from the TimeQuest
Timing Analyzer Report Timing pane, the Locate History window displays the path from the arrival
clock to the arrival data. Double-clicking a node or path in the Locate History window displays the
selected node or path in the Chip Planner.

Related Information
Layers Settings Dialog Box

Engineering Change Management with the Chip Planner on page 17-1
For more information about the ECO editing mode

LogicLock Regions
LogicLock regions are floorplan location constraints that help you constrain logic in the target device.
When you assign entity instances or nodes to a LogicLock region, you direct the Fitter to place those
entity instances or nodes within the region during fitting. Your floorplan can contain multiple LogicLock
regions.

A LogicLock region is defined by its height, width, and location; you can specify the size or location of a
region, or both, or the Quartus Prime Standard Edition software can generate these properties automati‐
cally. The Quartus Prime software bases the size and location of a region on the contents of the region and
the timing requirements of the module. LogicLock regions are color coded to indicate the percentage of
resources available in the region. An orange LogicLock region indicates a nearly full LogicLock region.

QPS5V2
2015.11.02 Chip Planner Presets, Layers, and Editing Modes 15-3

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/ace/acv_db_layers_settings.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 15-1: Types of LogicLock Regions

Property Value Behavior

State Floating |
Locked

Floating allows the Quartus Prime software to determine the location of the
region on the device. Floating regions are shown with a dashed boundary in
the floorplan. Locked allows you to specify the location of the region. Locked
regions are shown with a solid boundary in the floorplan. A locked region
must have a fixed size.

Size Auto |
Fixed

Auto allows the Quartus Prime software to determine the appropriate size of a
region given its contents. Fixed regions have a shape and size that you define.

Reser
ved

Off | On Allows you to define whether the Fitter can use the resources within a region
for entities that are not assigned to the region. If the reserved property is
turned on, only items assigned to the region can be placed within its
boundaries.

Origi
n

Any
Floorplan
Location

Specifies the location of the LogicLock region on the floorplan. For Arria
series, Stratix series, Cyclone series, MAX II, and MAX V devices, the origin is
located at the lower left corner of the LogicLock region. For other Altera®

device families, the origin is located at the upper left corner of the LogicLock
region.

Note: The Quartus Prime software cannot automatically define the size of a region if the location is
locked. Therefore, if you want to specify the exact location of the region, you must also specify the
size.

You can use the Design Partition Planner in conjunction with LogicLock regions to create a floorplan for
your design.

Note: LogicLock Plus assignments are not compatible with Quartus Prime Standard Edition LogicLock
assignments. Additionally, Quartus Prime Pro Edition cannot use LogicLock assignments and
Standard Edition cannot use LogicLock assignments.

Creating LogicLock Regions
You can create LogicLock Regions using several methods, such as with the Chip Planner.

Creating LogicLock Regions with the Project Navigator

After you perform either a full compilation or analysis and elaboration on the design, the Project
Navigator displays the hierarchy of the design. If the Project Navigator is not already open, choose View >
Utility Windows > Project Navigator. With the design hierarchy fully expanded, right-click on any
design entity, and click Create New LogicLock Region to create a LogicLock region and assign the entity
to the new region.

Creating LogicLock Regions with the LogicLock Regions Window

To create a LogicLock region with the LogicLock Regions window, choose Assignments > LogicLock
Regions Window. In the LogicLock Regions window, click <<new>>.

Creating LogicLock Regions with the Design Partition Planner

To create a LogicLock region and assign a partition to it with the Design Partition Planner, right-click the
partition and then click Create LogicLock Region.

15-4 Creating LogicLock Regions
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating LogicLock Regions with the Chip Planner

To create a LogicLock region in the Chip Planner, choose View > LogicLock Regions > Assign LogicLock
Region, then click and drag on the Chip Planner floorplan to create a region of your preferred location
and size.

Related Information
Creating or Modifying LogicLock Regions on page 15-20

Creating Non-Rectangular LogicLock Regions
When you create a floorplan for your design, you may want to create non-rectangular LogicLock regions
to exclude certain resources from the LogicLock region.

You might also create a non-rectangular LogicLock region to place certain parts of your design around
specific device resources to improve performance.

To create a non-rectangular region with the Merge LogicLock Region command, follow these steps:

1. In the Chip Planner, create two or more contiguous or non-contiguous rectangular regions.
2. Arrange the regions that you have created into the locations where you want the non-rectangular

region.
3. Select all the individual regions that you want to merge by clicking each of them while pressing the

Shift key.
4. Right-click the title bar of any of the LogicLock regions that you want to merge, point to LogicLock

Regions, and then click Merge LogicLock Region. The individual regions that you select merge to
create a single new region.

By default, the new LogicLock region has the same name as the component region containing the
greatest number of resources; however, you can rename the new region. In the LogicLock Regions
Window, the new region is shown as having a Custom Shape.

You can use the Merge LogicLock Region command to form a nonrectangular LogicLock region by
merging two rectangular LogicLock regions.

QPS5V2
2015.11.02 Creating Non-Rectangular LogicLock Regions 15-5

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-1: Using the Merge LogicLock Region command to create a nonrectangular region

Related Information
Creating LogicLock Regions on page 15-4

Hierarchical (Parent and Child) LogicLock Regions
To further constrain module locations, you can define a hierarchy for a group of regions by declaring
parent and child regions.

The Quartus Prime software places a child region completely within the boundaries of its parent region; a
child region must be placed entirely within the boundary of its parent. Additionally, parent and child
regions allow you to further improve the performance of a module by constraining nodes in the critical
path of a module.

To make one LogicLock region a child of another LogicLock region, in the LogicLock Regions window,
select the new child region and drag and drop the new child region into its new parent region.

Note: The LogicLock region hierarchy does not have to be the same as the design hierarchy.

You can create both auto-sized and fixed-sized LogicLock regions within a parent LogicLock region;
however, the parent of a fixed-sized child region must also be fixed-sized. The location of a locked parent
region is locked relative to the device; the location of a locked child region is locked relative to its parent
region. If you change the parent’s location, the locked child’s origin changes, but maintains the same
placement relative to the origin of its parent. The location of a floating child region can float within its
parent. Complex region hierarchies might result in some LABs not being used, effectively increasing the
resource utilization in the device. Do not create more levels of hierarchy than you need.

Placing LogicLock Regions
A fixed region must contain all resources required by the design block assigned to the region. Although
the Quartus Prime software can automatically place and size LogicLock regions to meet resource and
timing requirements, you can manually place and size regions to meet your design requirements.

15-6 Hierarchical (Parent and Child) LogicLock Regions
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You should consider the following if you manually place or size a LogicLock region:

• LogicLock regions with pin assignments must be placed on the periphery of the device, adjacent to the
pins. For the Arria series, Cyclone series, Stratix series, MAX II, and MAX V devices, you must also
include the I/O block within the LogicLock Region.

• Floating LogicLock regions can overlap with their ancestors or descendants, but not with other floating
LogicLock regions.

Placing Device Resources into LogicLock Regions
A LogicLock region includes all device resources within its boundaries, including memory and pins. The
software does not include pins automatically when you assign an entity to a region. You can manually
assign pins to LogicLock regions; however, this placement puts location constraints on the region. The
software only obeys pin assignments to locked regions that border the periphery of the device. For the
Arria series, Cyclone series, Stratix series, MAX II, and MAX V devices, the locked regions must include
the I/O pins as resources.

Note: Pin assignments to LogicLock regions are effective only in fixed and locked regions. Pin
assignments to floating regions do not influence the placement of the region.

Only one LogicLock region can use a device resource. If a LogicLock region boundary includes part of a
device resource, the Quartus Prime software allocates the entire resource to that LogicLock region. When
the Quartus Prime software places a floating auto-sized region, it places the region in an area that meets
the requirements of the contents of the LogicLock region.

Note: If you want to import multiple instances of a module into a top-level design, you must ensure that
the device has two or more locations with exactly the same device resources. (You can determine
this from the applicable device specifications.) If the device does not have another area with exactly
the same resources, the Quartus Prime software generates a fitting error during compilation of the
top-level design.

LogicLock Regions Window
Use the LogicLock Regions window to create LogicLock regions, assign nodes and entities to them, and
modify the properties of a LogicLock region. You can modify the size, state, width, height, origin, and
whether the region is a reserved region.

The LogicLock Regions window also has a recommendations toolbar; select a LogicLock region from the
drop-down list in the recommendations toolbar to display the relevant suggestions to optimize that
LogicLock region. You can customize the LogicLock Regions window by dragging and dropping the
columns to change their order; you can also show and hide optional columns by right-clicking any
column heading and then selecting the appropriate columns in the shortcut menu.

QPS5V2
2015.11.02 Placing Device Resources into LogicLock Regions 15-7

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-2: LogicLock Regions Window

The LogicLock Region Properties dialog box provides a summary of all LogicLock regions in your
design. Use the LogicLock Region Properties dialog box to obtain detailed information about your
LogicLock region, such as which entities and nodes are assigned to your region and which resources are
required. The LogicLock Region Properties dialog box shows the properties of the current selected
regions and allows you to modify them. To open the LogicLock Region Properties dialog box, double-
click any region in the LogicLock Regions window, or right-click the region and click Properties.

Note: For designs that target Arria series, Cyclone series, Stratix series, MAX II, and MAX V devices, the
Quartus Prime software automatically creates a LogicLock region that encompasses the entire
device. This default region is labelled Root_Region, and is locked and fixed.

Note: For Arria series, Cyclone series, Stratix series, MAX II, and MAX V devices, the origin of the
LogicLock region is located at the lower-left corner of the region. For all other supported devices,
the origin is located at the upper-left corner of the region.

Reserved LogicLock Region
The Quartus Prime software honors all entity and node assignments to LogicLock regions. Occasionally,
entities and nodes do not occupy an entire region, which leaves some of the region’s resources
unoccupied.

To increase the region’s resource utilization and performance, the Quartus Prime software’s default
behavior fills the unoccupied resources with other nodes and entities that have not been assigned to
another region. You can prevent this behavior by turning on Reserved on theLogicLock Region
Properties > General tab. When you turn on this option, your LogicLock region contains only the entities
and nodes that you specifically assigned to your LogicLock region.

Excluded Resources
The Excluded Resources feature allows you to easily exclude specific device resources such as DSP blocks
or M4K memory blocks from a LogicLock region.

For example, you can assign a specific entity to a LogicLock region but allow the DSP blocks of that entity
to be placed anywhere on the device. Use the Excluded Resources feature on a per-LogicLock region
member basis.

To exclude certain device resources from an entity, in the LogicLock Region Properties dialog box,
highlight the entity in the Design Element column, and click Edit. In the Edit Node dialog box, under
Excluded Element Types, click the Browse button. In the Excluded Resources Element Types dialog
box, you can select the device resources you want to exclude from the entity. When you have selected the
resources to exclude, the Excluded Resources column is updated in the LogicLock Region Properties
dialog box to reflect the excluded resources.

15-8 Reserved LogicLock Region
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Excluded Resources feature prevents certain resource types from being included in a region,
but it does not prevent the resources from being placed inside the region unless you set the region’s
Reserved property to On. To indicate to the Fitter that certain resources are not required inside a
LogicLock region, define a resource filter.

Additional Quartus Prime LogicLock Design Features
To complement the LogicLock Regions window, the Quartus Prime software has additional features to
help you design with LogicLock regions.

Analysis and Synthesis Resource Utilization by Entity
The Compilation Report contains an Analysis and Synthesis Resource Utilization by Entity section,
which reports resource usage statistics, including entity-level information. You can use this feature to
verify that any LogicLock region you manually create contains enough resources to accommodate all the
entities you assign to it.

Quartus Prime Revisions Feature
When you evaluate different LogicLock regions in your design, you might want to experiment with
different configurations to achieve your desired results. The Quartus Prime Revisions feature allows you
to organize the same project with different settings until you find an optimum configuration.

To use the Revisions feature, choose Project > Revisions. You can create a revision from the current
design or any previously created revisions. Each revision can have an associated description. You can use
revisions to organize the placement constraints created for your LogicLock regions.

LogicLock Assignment Precedence
You can encounter conflicts during the assignment of entities and nodes to LogicLock regions. For
example, an entire top-level entity might be assigned to one region and a node within this top-level entity
assigned to another region.

To resolve conflicting assignments, the Quartus Prime software maintains an order of precedence for
LogicLock assignments. The following order of precedence, from highest to lowest, applies:

1. Exact node-level assignments
2. Path-based and wildcard assignments
3. Hierarchical assignments

Note: To open the Priority dialog box, select LogicLock Regions Properties > General > Priority. You
can change the priority of path-based and wildcard assignments with the Up and Down buttons in
the Priority dialog box. To prioritize assignments between regions, you must select multiple
LogicLock regions and then open the Priority dialog box from the LogicLock Regions Properties
dialog box.

Related Information
Understanding Assignment Priority
For more information about LogicLock assignment precedence.

Virtual Pins
A virtual pin is an I/O element that is temporarily mapped to a logic element and not to a pin during
compilation. The software implements it as a LUT.

When you apply the Virtual Pin assignment to an input pin, the pin no longer appears as an FPGA pin,
but is fixed to GND or VCC in the design. The assigned pin is not an open node.

QPS5V2
2015.11.02 Additional Quartus Prime LogicLock Design Features 15-9

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/lock/lock_ref_assignment_precedence.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Virtual pins should be used only for I/O elements in lower-level design entities that become nodes when
imported to the top-level design. You can create virtual pins by assigning the Virtual Pin logic option to
an I/O element.

You might use virtual pin assignments when you compile a partial design, because not all the I/Os from a
partial design drive chip pins at the top level.

The virtual pin assignment identifies the I/O ports of a design module that are internal nodes in the top-
level design. These assignments prevent the number of I/O ports in the lower-level modules from
exceeding the total number of available device pins. Every I/O port that you designate as a virtual pin
becomes mapped to either a logic cell or an adaptive logic module (ALM), depending on the target device.

Note: The Virtual Pin logic option must be assigned to an input or output pin. If you assign this option
to a bidirectional pin, tri-state pin, or registered I/O element, Analysis & Synthesis ignores the
assignment. If you assign this option to a tri-state pin, the Fitter inserts an I/O buffer to account for
the tri-state logic; therefore, the pin cannot be a virtual pin. You can use multiplexer logic instead
of a tri-state pin if you want to continue to use the assigned pin as a virtual pin. Do not use tri-state
logic except for signals that connect directly to device I/O pins.

In the top-level design, you connect these virtual pins to an internal node of another module. By making
assignments to virtual pins, you can place those pins in the same location or region on the device as that
of the corresponding internal nodes in the top-level module. You can use the Virtual Pin option when
compiling a LogicLock module with more pins than the target device allows. The Virtual Pin option can
enable timing analysis of a design module that more closely matches the performance of the module after
you integrate it into the top-level design.

Note: In the Node Finder, you can set Filter Type to Pins: Virtual to display all assigned virtual pins in
the design. Alternatively, to access the Node Finder from the Assignment Editor, double-click the
To field; when the arrow appears on the right side of the field, click the arrow and select Node
Finder.

Using LogicLock Regions in the Chip Planner
You can easily create LogicLock regions in the Chip Planner and assign resources to them.

Viewing Connections Between LogicLock Regions in the Chip Planner
You can view and edit LogicLock regions using the Chip Planner. To view and edit LogicLock regions, use
Floorplan Editing in the Layers Settings window, or any layers setting mode that has the User-assigned
LogicLock regions setting enabled.

The Chip Planner shows the connections between LogicLock regions. By default, you can view each
connection as an individual line. You can choose to display connections between two LogicLock regions
as a single bundled connection rather than as individual connection lines. To use this option, open the
Chip Planner and on the View menu, click Inter-region Bundles.

Related Information
Inter-region Bundles Dialog Box
For more information about the Inter-region Bundles dialog box, refer to Quartus Prime Help.

Using LogicLock Regions with the Design Partition Planner
You can optimize timing in a design by placing entities that share significant logical connectivity close to
each other on the device.

15-10 Using LogicLock Regions in the Chip Planner
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/ace/acv_db_generate_interregion_bundles.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

By default, the Fitter usually places closely connected entities in the same area of the device; however, you
can use LogicLock regions, together with the Design Partition Planner and the Chip Planner, to help
ensure that logically connected entities retain optimal placement from one compilation to the next.

You can view the logical connectivity between entities with the Design Partition Planner, and the physical
placement of those entities with the Chip Planner. In the Design Partition Planner, you can identify
entities that are highly interconnected, and place those entities in a partition. In the Chip Planner, you can
create LogicLock regions and assign each partition to a LogicLock region, thereby preserving the
placement of the entities.

Design Floorplan Analysis in the Chip Planner
The Chip Planner helps you visually analyze the floorplan of your design at any stage of your design cycle.
With the Chip Planner, you can view post-compilation placement, connections, and routing paths.

You can also create LogicLock regions and location assignments. The Chip Planner allows you to create
new logic cells and I/O atoms and to move existing logic cells and I/O atoms in your design. You can also
see global and regional clock regions within the device, and the connections between I/O atoms, PLLs and
the different clock regions.

From the Chip Planner, you can launch the Resource Property Editor that changes the properties and
parameters of device resources and modifies connectivity between certain types of device resources. The
Change Manager records any changes that you make to your design floorplan so that you can selectively
undo changes.

The following sections present Chip Planner floorplan views and design analysis procedures which you
can use with any Chip Planner preset, unless a procedure requires a specific preset or editing mode.

Related Information

• About the Change Manager on page 17-1
• About the Resource Property Editor on page 17-1

For more information about the Resource Property Editor and the Change Manager, refer to Quartus
Prime Help.

• Engineering Change Management with the Chip Planner on page 17-1
For more information about the Resource Property Editor and the Change Manager.

Chip Planner Floorplan Views
The Chip Planner uses a hierarchical zoom viewer that shows various abstraction levels of the targeted
Altera device. As you zoom in, the level of abstraction decreases, revealing more details about your design.

Bird’s Eye View

The Bird’s Eye View displays a high-level picture of resource usage for the entire chip and provides a fast
and efficient way to navigate between areas of interest in the Chip Planner.

The Bird’s Eye View is particularly useful when the parts of your design that you want to view are at
opposite ends of the chip and you want to quickly navigate between resource elements without losing
your frame of reference.

QPS5V2
2015.11.02 Design Floorplan Analysis in the Chip Planner 15-11

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Properties Window

The Properties Window displays detailed properties of the objects (such as atoms, paths, LogicLock
regions, or routing elements) currently selected in the Chip Planner. To display the Properties Window,
click Properties on the View menu in the Chip Planner.

Related Information

• Engineering Change Management with the Chip Planner on page 17-1
For more information about Chip Planner floorplan views.

• Displaying Resources and Information
• Bird’s Eye View

For more information about displaying information in the Bird’s Eye View.

Viewing Architecture-Specific Design Information
By adjusting the Layers Settings in the Chip Planner, you can view the following architecture-specific
information related to your design:

• Device routing resources used by your design—View how blocks are connected, as well as the signal
routing that connects the blocks.

• LE configuration—View logic element (LE) configuration in your design. For example, you can view
which LE inputs are used; if the LE utilizes the register, the look-up table (LUT), or both; as well as the
signal flow through the LE.

• ALM configuration—View ALM configuration in your design. For example, you can view which
ALM inputs are used, if the ALM utilizes the registers, the upper LUT, the lower LUT, or all of them.
You can also view the signal flow through the ALM.

• I/O configuration—View device I/O resource usage. For example, you can view which components of
the I/O resources are used, if the delay chain settings are enabled, which I/O standards are set, and the
signal flow through the I/O.

• PLL configuration—View phase-locked loop (PLL) configuration in your design. For example, you
can view which control signals of the PLL are used with the settings for your PLL.

• Timing—View the delay between the inputs and outputs of FPGA elements. For example, you can
analyze the timing of the DATAB input to the COMBOUT output.

In addition, you can modify the following device properties with the Chip Planner:

• LEs and ALMs
• I/O cells
• PLLs
• Registers in RAM and DSP blocks
• Connections between elements
• Placement of elements

For more information about LEs, ALMs, and other resources of an FPGA device, refer to the relevant
device handbook.

Viewing Available Clock Networks in the Device
When you select a task with clock region layer preset enabled, you can display the areas of the chip that
are driven by global and regional clock networks. This global clock display feature is available for Arria V,
Cyclone V, Stratix IV, and Stratix V device families.

Depending on the clock layers activated in the selected preset, the Chip Planner displays regional and
global clock regions in the device, and the connectivity between clock regions, pins, and PLLs. Clock

15-12 Viewing Architecture-Specific Design Information
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/ace/acv_com_birds_eye.htm
http://quartushelp.altera.com/current/index.htm#optimize/ace/acv_com_birds_eye.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

regions appear as rectangular overlay boxes with labels indicating the clock type and index. You can select
each clock network region by clicking on the clock region. The clock-shaped icon at the top-left corner
indicates that the region represents a clock network region. You can change the color in which the Chip
Planner displays clock regions on the Options dialog box of the Tools menu.

The Layers Settings dialog box lists layers for different clock region types; when the selected device does
not contain a given clock region, the option for that category is unavailable in the dialog box. You can
customize the Chip Planner’s display of clock regions by creating a custom preset with selected clock
layers enabled in the Layers Settings dialog box.

Viewing Critical Paths
Critical paths are timing paths in your design that have a negative slack. These timing paths can span from
device I/Os to internal registers, registers to registers, or from registers to device I/Os.

The slack of a path determines its criticality; slack appears in the timing analysis report. Design analysis
for timing closure is a fundamental requirement for optimal performance in highly complex designs. The
analytical capability of the Chip Planner helps you close timing on complex designs.

Viewing critical paths in the Chip Planner shows why a specific path is failing. You can see if any
modification in the placement can reduce the negative slack. You can display details of a path (to expand/
collapse the path to/from the connections in the path) by clicking Expand Connections in the toolbar, or
by clicking on the “+/-” on the label.

You can locate failing paths from the timing report in the TimeQuest Timing Analyzer. To locate the
critical paths, click the Report Timing task from the Custom Reports group in the Tasks pane of the
TimeQuest Timing Analyzer. From the View pane, which lists the failing paths, right-click on any failing
path or node, and select Locate Path. From the Locate dialog box, select Chip Planner to see the failing
path in the Chip Planner.

Note: To display paths in the floorplan, you must first make timing settings and perform a timing
analysis.

Related Information
The Quartus Prime TimeQuest Timing Analyzer
For more information about performing static timing analysis with the TimeQuest Timing Analyzer.

Viewing Routing Congestion
The Report Routing Utilization task allows you to determine the percentage of routing resources in use
following a compilation. This feature can identify where there is a lack of routing resources, helping you
to make design changes to meet routing congestion design requirements.

1. Choose Tools > Chip Planner.
2. To view the routing congestion in the Chip Planner, double-click the Report Routing Utilization

command in the Tasks list.
3. Click Preview in the Report Routing Utilization dialog box to preview the default congestion display.
4. Change the Routing Utilization Type to display congestion for specific resources.

Note: The default display uses dark blue for 0% congestion (blue indicates zero utilization) and red for
100%. You can adjust the slider for Threshold percentage to change the congestion threshold
level.

The routing congestion map uses the color and shading of logic resources to indicate relative resource
utilization; darker shading represents a greater utilization of routing resources. Areas where routing
utilization exceeds the threshold value specified in the Report Routing Utilization dialog box appear in

QPS5V2
2015.11.02 Viewing Critical Paths 15-13

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

red. The congestion map can help you determine whether you can modify the floorplan, or modify the
RTL to reduce routing congestion.

To identify a lack of routing resources, it is necessary to investigate each routing interconnect type
separately by selecting each interconnect type in turn in the Routing Utilization Settings dialog box.

The Compiler messages contain information about average and peak interconnect usage. Peak intercon‐
nect usage over 75%, or average interconnect usage over 60%, could be an indication that it might be
difficult to fit your design. Similarly, peak interconnect usage over 90%, or average interconnect usage
over 75%, are likely to have increased chances of not getting a valid fit.

Viewing I/O Banks
The Chip Planner shows all of the I/O banks of the device. To see the I/O bank map of the device, select
Report All I/O Banks in the Tasks pane.

Viewing High-Speed Serial Interfaces (HSSI)
For the Stratix V device family, the Chip Planner displays a detailed block view of the receiver and
transmitter channels of the high-speed serial interfaces. To display the HSSI block view, select Report
HSSI Block Connectivity.

Figure 15-3: Stratix V HSSI Receiver Channel Blocks

Generating Fan-In and Fan-Out Connections
The ability to display fan-in and fan-out connections enables you to view the atoms that fan-in to or fan-
out from the selected atom. To remove the connections displayed, use the Clear Unselected Connections
icon in the Chip Planner toolbar.

Generating Immediate Fan-In and Fan-Out Connections
The ability to display immediate fan-in and fan-out connections enables you to view the resource that is
the immediate fan-in or fan-out connection for the selected atom. For example, if you select a logic
resource and choose to view the immediate fan-in for that resource, you can see the routing resource that
drives the logic resource. You can generate immediate fan-ins and fan-outs for all logic resources and
routing resources. To remove the displayed connections from the screen, click the Clear Unselected
Connections icon in the toolbar.

Highlight Routing
The Show Physical Routing command in the Locate History pane enables you to highlight the routing
resources used by a selected path or connection.

15-14 Viewing I/O Banks
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-4: Highlight Routing

Related Information

• Engineering Change Management with the Chip Planner on page 17-1
For more information on how you can view and edit resources in the FPGA using the Resource
Property Editor.

Show Delays
With the Show Delays command, you can view timing delays for paths located from TimeQuest Timing
Analyzer reports. For example, you can view the delay between two logic resources or between a logic
resource and a routing resource.

QPS5V2
2015.11.02 Show Delays 15-15

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-5: Show Delays Associated in a TimeQuest Timing Analyzer Path

Exploring Paths in the Chip Planner
You can use the Chip Planner to explore paths between logic elements. The following example uses the
Chip Planner to traverse paths from the Timing Analysis report.

Locate Path from the Timing Analysis Report to the Chip Planner
To locate a path from the Timing Analysis report to the Chip Planner, perform the following steps:

1. Select the path you want to locate in the Timing Analysis report.
2. Right-click the path and point to Locate Path > Locate in Chip Planner. The path is displayed with its

timing data in the Chip Planner main window and is listed in the Locate History window.
3. To view the routing resources taken for a path you have located in the Chip Planner, use of one the

following methods:

• Select the path and then click the Highlight Routing icon in the Chip Planner toolbar, or from the
View menu, click Highlight Routing.

• Right-click the path and choose Expand Connections.

15-16 Exploring Paths in the Chip Planner
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Analyzing Connections for a Path
To determine the connections between items in the Chip Planner, click the Expand Connections icon on
the toolbar. To add the timing delays for paths you locate from the TimeQuest Timing Analyzer, click the
Show Delays icon on the toolbar. To see the constituent delays on the selected path, click the “+” sign
next to the path delay displayed in the Chip Planner.

Figure 15-6: Path Analysis in the Chip Planner of a Path Located from TimeQuest

Viewing Assignments in the Chip Planner
You can view location assignments by selecting the appropriate layer set in the Chip Planner. To view
location assignments, select the Floorplan Editing preset or any custom preset that displays block
utilization, and the Assignment editing mode. The Chip Planner shows location assignments graphically,
by displaying assigned resources in a particular color (gray, by default). You can create or move an
assignment by dragging the selected resource to a new location.

QPS5V2
2015.11.02 Analyzing Connections for a Path 15-17

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-7: Viewing Assignments in the Chip Planner

You can make node and pin location assignments to LogicLock regions and custom regions using the
drag-and-drop method in the Chip Planner. The Fitter applies the assignments that you create during the
next place-and-route operation.

Viewing High-Speed and Low-Power Tiles in the Chip Planner
Some Altera devices have ALMs that can operate in either high-speed mode or low-power mode. The
power mode is set during the fitting process in the Quartus Prime software. These ALMs are grouped
together to form larger blocks, called “tiles.”

Stratix IV, Stratix V, and Arria 10 devices support power maps. To view a power map, select Tasks >
Report High-Speed/Low-Power Tiles after running the Fitter. The Chip Planner displays low-power and
high-speed tiles in contrasting colors; yellow tiles operate in a high-speed mode, while blue tiles operate in
a low-power mode. When you select the Power task, you can perform all floorplan-related functions for
this task; however, you cannot edit tiles to change the power mode.

15-18 Viewing High-Speed and Low-Power Tiles in the Chip Planner
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-8: Viewing High-Speed and Low Power Tiles in a Stratix Device

Yellow T iles Operate in
High Speed Mode

Related Information
AN 514: Power Optimization in Stratix IV FPGAs
To learn more about power analyses and optimizations in Stratix IV devices.

Scripting Support
You can run procedures and specify the settings described in this chapter in a Tcl script. You can also run
some procedures at a command prompt.

For detailed information about scripting command options, refer to the Quartus Prime command-line
and Tcl API Help browser. To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp

Related Information
API Functions for Tcl on page 5-1
For more information about Tcl scripting in Quartus Prime Help.

Tcl Scripting on page 5-1
API Functions for Tcl For more information about Tcl scripting .

Command-Line Scripting on page 4-1
For more information about command-line scripting.

QPS5V2
2015.11.02 Scripting Support 15-19

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an514.pdf
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Settings File Manual
For information about all settings and constraints in the Quartus Prime software.

Initializing and Uninitializing a LogicLock Region
You must initialize the LogicLock data structures before creating or modifying any LogicLock regions and
before executing any of the Tcl commands listed below.

Use the following Tcl command to initialize the LogicLock data structures:

initialize_logiclock

Use the following Tcl command to uninitialize the LogicLock data structures before closing your project:

uninitialize_logiclock

Creating or Modifying LogicLock Regions
Use the following Tcl command to create or modify a LogicLock region:

set_logiclock -auto_size true -floating true -region <my_region-name>

Note: The command in the above example sets the size of the region to auto and the state to floating.

If you specify a region name that does not exist in the design, the command creates the region with the
specified properties. If you specify the name of an existing region, the command changes all properties
you specify and leaves unspecified properties unchanged.

Related Information
Creating LogicLock Regions on page 15-4

Obtaining LogicLock Region Properties
Use the following Tcl command to obtain LogicLock region properties. This example returns the height of
the region named my_region:

get_logiclock -region my_region -height

Assigning LogicLock Region Content
Use the following Tcl commands to assign or change nodes and entities in a LogicLock region. This
example assigns all nodes with names matching fifo* to the region named my_region.

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl command:

set_logiclock_contents -region my_region -from fifo -to ram*

15-20 Initializing and Uninitializing a LogicLock Region
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Save a Node-Level Netlist for the Entire Design into a Persistent Source File
Make the following assignments to cause the Quartus Prime Fitter to save a node-level netlist for the
entire design into a .vqm file:

set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Any path specified in the file name is relative to the project directory. For example, specifying atom_
netlists/top.vqm places top.vqm in the atom_netlists subdirectory of your project directory.

A .vqm file is saved in the directory specified at the completion of a full compilation.

Note: The saving of a node-level netlist to a persistent source file is not supported for designs targeting
newer devices such as MAX V, Stratix IV, or Stratix V.

Setting LogicLock Assignment Priority
Use the following Tcl code to set the priority for a LogicLock region’s members. This example reverses the
priorities of the LogicLock region in your design.

set reverse [list]
for each member [get_logiclock_member_priority] {
 set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

Assigning Virtual Pins
Use the following Tcl command to turn on the virtual pin setting for a pin called my_pin:

set_instance_assignment -name VIRTUAL_PIN ON -to my_pin

Related Information
Virtual Pins on page 15-9

Tcl Scripting on page 5-1
For more information about Tcl scripting.

Document Revision History

Table 15-2: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Added information about color coding of LogicLock regions.

2014.12.15 14.1.0 Updated description of Virtual Pins assignement to clarify that assigned
input is not available.

June 2014 14.0.0 Updated format

QPS5V2
2015.11.02 Save a Node-Level Netlist for the Entire Design into a Persistent... 15-21

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

November
2013

13.1.0 Removed HardCopy device information.

May 2013 13.0.0 Updated “Viewing Routing Congestion” section

Updated references to Quartus UI controls for the Chip Planner

June 2012 12.0.0 Removed survey link.

November
2011

11.0.1 Template update.

May 2011 11.0.0 • Updated for the 11.0 release.

Edited “LogicLock Regions”

Updated “Viewing Routing Congestion”

Updated “Locate History”

Updated Figures 15-4, 15-9, 15-10, and 15-13

Added Figure 15-6

December
2010

10.1.0 • Updated for the 10.1 release.

July 2010 10.0.0 • Updated device support information
• Removed references to Timing Closure Floorplan; removed “Design

Analysis Using the Timing Closure Floorplan” section
• Added links to online Help topics
• Added “Using LogicLock Regions with the Design Partition Planner”

section
• Updated “Viewing Critical Paths” section
• Updated several graphics
• Updated format of Document revision History table

November
2009

9.1.0 • Updated supported device information throughout
• Removed deprecated sections related to the Timing Closure Floorplan

for older device families. (For information on using the Timing Closure
Floorplan with older device families, refer to previous versions of the
Quartus Prime Handbook, available in the Quartus Prime Handbook
Archive.)

• Updated “Creating Nonrectangular LogicLock Regions” section
• Added “Selected Elements Window” section
• Updated table 12-1

15-22 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Analyzing and Optimizing the Design Floorplan with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

May 2008 8.0.0 • Updated the following sections:

“Chip Planner Tasks and Layers”

“LogicLock Regions”

“Back-Annotating LogicLock Regions”

“LogicLock Regions in the Timing Closure Floorplan”
• Added the following sections:

“Reserve LogicLock Region”

“Creating Nonrectangular LogicLock Regions”

“Viewing Available Clock Networks in the Device”
• Updated Table 10–1
• Removed the following sections:

Reserve LogicLock Region Design Analysis Using the Timing Closure
Floorplan

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 15-23

Analyzing and Optimizing the Design Floorplan with the Chip Planner Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Optimizing%20the%20Design%20Floorplan%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Netlist Optimizations and Physical Synthesis 16
2015.11.02

QPS5V2 Subscribe Send Feedback

Netlist Optimizations and Physical Synthesis
The Quartus Prime software offers additional physical synthesis optimizations that improve performance.
The Compiler performs physical synthesis optimization during fitting.

Netlist optimizations operate with the atom netlist of your design, which describes a design in terms of
specific primitives. An atom netlist file can be an Electronic Design Interchange Format (.edf) file or a
Verilog Quartus Mapping (.vqm) file generated by a third-party synthesis tool. Quartus Prime synthesis
generates and internally uses the atom netlist internally.

Physical synthesis optimizations are applied at different stages of the Quartus Prime compilation flow,
either during synthesis, fitting, or both.

Note: Because the node names for primitives in the design can change when you use physical synthesis
optimizations, you should evaluate whether your design flow requires fixed node names. If you use
a verification flow that might require fixed node names, such as the SignalTap® II Logic Analyzer,
formal verification, or the LogicLock based optimization flow (for legacy devices), you must turn
off physical synthesis options.

This chapter explains how physical synthesis optimizations in the Quartus Prime software can modify
your design’s netlist to improve the quality of results. This chapter also provides guidelines for applying
the various physical synthesis options, and information about preserving compilation results through
back-annotation.

WYSIWYG Primitive Resynthesis
If you use a third-party tool to synthesize your design, use the Perform WYSIWYG primitive resynthesis
option to apply optimizations to the synthesized netlist.

The Perform WYSIWYG primitive resynthesis option directs the Quartus Prime software to un-map the
logic elements (LEs) in an atom netlist to logic gates, and then re-map the gates back to Altera-specific
primitives. Third-party synthesis tools generate either an .edf or .vqm atom netlist file using Altera-specific
primitives. When you turn on the Perform WYSIWYG primitive resynthesis option, the Quartus Prime
software uses device-specific techniques during the re-mapping process. This feature re-maps the design
using the Optimization Technique specified for your project (Speed, Area, or Balanced).

The Perform WYSIWYG primitive resynthesis option unmaps and remaps only logic cells, also referred
to as LCELL or LE primitives, and regular I/O primitives (which may contain registers). Double data rate

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Netlist%20Optimizations%20and%20Physical%20Synthesis&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

(DDR) I/O primitives, memory primitives, digital signal processing (DSP) primitives, and logic cells in
carry/cascade chains are not remapped. This process does not process logic specified in an encrypted .vqm
file or an .edf file, such as third-party intellectual property (IP).

The Perform WYSIWYG primitive resynthesis option can change node names in the .vqm file or .edf file
from your third-party synthesis tool, because the primitives in the atom netlist are broken apart and then
re-mapped by the Quartus Prime software. The re-mapping process removes duplicate registers. Registers
that are not removed retain the same name after re-mapping.

Any nodes or entities that have the Netlist Optimizations logic option set to Never Allow are not affected
during WYSIWYG primitive resynthesis. You can use the Assignment Editor to apply the Netlist
Optimizations logic option. This option disables WYSIWYG resynthesis for parts of your design.

Note: Primitive node names are specified during synthesis. When netlist optimizations are applied, node
names might change because primitives are created and removed. HDL attributes applied to
preserve logic in third-party synthesis tools cannot be maintained because those attributes are not
written into the atom netlist, which the Quartus Prime software reads.

If you use the Quartus Prime software to synthesize your design, you can use the Preserve Register
(preserve) and Keep Combinational Logic (keep) attributes to maintain certain nodes in the design.

Figure 16-1: Quartus Prime Flow for WYSIWYG Primitive Resynthesis

Perform WYSIWYG Primitive Resynthesis
Note: The Perform WYSIWYG primitive resynthesis option has no effect if you are using Quartus

Prime synthesis to synthesize your design.

To turn on the Perform WYSIWYG primitive resynthesis option, click Assignments > Settings >
Compiler Settings > Advanced Settings (Synthesis).

Performing Physical Synthesis Optimizations
The Quartus Prime Fitter places and routes the logic cells to ensure critical portions of logic are close
together and use the fastest possible routing resources.

However, routing delays are often a significant part of the typical critical path delay. Physical synthesis
optimizations take into consideration placement information, routing delays, and timing information.
The Fitter then focuses timing-driven optimizations at those critical parts of the design. The tight integra‐
tion of the synthesis and fitting processes is known as physical synthesis.

16-2 Perform WYSIWYG Primitive Resynthesis
QPS5V2

2015.11.02

Altera Corporation Netlist Optimizations and Physical Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following sections describe the physical synthesis optimizations available in the Quartus Prime
software, and how they can help improve performance and fitting for the selected device.

Nodes or entities that have the Netlist Optimizations logic option set to Never Allow are not affected by
physical synthesis algorithms. You can use the Assignment Editor to apply the Netlist Optimizations
logic option. Use this option to disable physical synthesis optimizations for parts of your design.

Some physical synthesis options affect only registered logic, while others affect only combinational logic.
Select options based on whether you want to keep the registers intact. For example, if your verification
flow involves formal verification, you might want to keep the registers intact.

To choose physical synthesis optimization options, click Assignments > Settings > Compiler Settings >
Advanced Settings (Fitter).

Related Information
Compiler Settings Page (Settings Dialog Box)

Spectra-Q Physical Synthesis Optimization
The Quartus Prime software includes advanced physical synthesis optimization. The Spectra-Q Physical
Synthesis option uses the Spectra-Q engine to perform combinational and sequential optimization during
fitting to improve circuit performance for Arria 10 designs.

Spectra-Q Physical Synthesis fine tunes the physical placement and structure of logic to achieve timing
closure and meet performance requirements. Enable the Spectra-Q physical synthesis option by clicking
Assignments > Settings > Compiler Settings > Advanced Settings (Fitter).

Setting Physical Synthesis Options
You enable Spectra-Q Physical Synthesis options in the Settings dialog box. When you select
Performance (High effort) or Performance (Aggressive), the Spectra-Q Physical Synthesis option is set
to On automatically for supported devices. For all other optimization modes, the Spectra-Q Physical
Synthesis option is set to Off by default.

Note: The Spectra-Q Physical Synthesis option is available in the Quartus Prime Standard Edition only
for Arria 10 devices.

QPS5V2
2015.11.02 Spectra-Q Physical Synthesis Optimization 16-3

Netlist Optimizations and Physical Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_physical.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify physical synthesis options, follow these steps:

1. Click Assignments > Settings > Compiler Settings.
2. In the Compiler Settings, select either high effort or aggressive performance for the Optimization

mode to automatically enable Spectra-Q Physical Synthesis.
3. If you select an optimization mode other than high effort or aggressive, and you want to turn on

Spectra-Q Physical Synthesis, click Advanced Settings (Fitter).
4. In the Advanced Fitter Settings dialog box, turn on Spectra-Q Physical Synthesis.

The Netlist Optimizations report provides information about the physical synthesis optimizations the
Fitter performs.

16-4 Setting Physical Synthesis Options
QPS5V2

2015.11.02

Altera Corporation Netlist Optimizations and Physical Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16-2: Netlist Optimizations Report

Physical Synthesis Options
The Quartus Prime software provides physical synthesis optimization options to improve fitting results.
To access these options, click Assignments > Settings > Compiler Settings > Advanced Settings (Fitter).

Table 16-1: Physical Synthesis Options

Option Description

Netlist Optimizations You can use the Assignment Editor to apply the Netlist Optimizations logic
option. Use this option to disable physical synthesis optimizations for parts of
your design.

Perform asynchronous
signal pipelining

The Fitter performs automatic insertion of pipeline stages for asynchronous
clear and asynchronous load signals during fitting when these signals
negatively affect performance. You can use this option if asynchronous
control signal recovery and removal times are not achieving requirements.

Perform physical
synthesis for combina‐
tional logic

Swaps the look-up table (LUT) ports within LEs so that the critical path has
fewer layers through which to travel. Also allows the duplication of LUTs to
enable further optimizations on the critical path.

Perform Register
Retiming for Performance

Enables the movement of registers across combinational logic, allowing the
Quartus Prime software to trade off the delay between timing-critical paths
and non-critical paths.

Physical Synthesis for
Combinational Logic for
Fitting

Causes registers that do not have a Power-Up Level logic option setting to
power up with a don't care logic level (X). When the Power-Up Don't Care
option is turned on, the Compiler determines when it is beneficial to change
the power-up level of a register to minimize the area of the design. A power-
up state of zero is maintained unless there is an immediate area advantage.

QPS5V2
2015.11.02 Physical Synthesis Options 16-5

Netlist Optimizations and Physical Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Perform WYSIWYG
Primitive Resynthesis

Specifies whether to perform WYSIWYG primitive resynthesis during
synthesis. This option uses the setting specified in the Optimization
Technique logic option.

Physical Synthesis Effort
Level

Specifies the amount of effort, in terms of compile time, physical synthesis
should use. Compared to the Default setting, a setting of Extra uses extra
compile time to try to gain extra circuit performance. Conversely, a setting of
Fast uses less compile time but may reduce the performance gain that
physical synthesis is able to achieve.

Spectra-Q Physical
Synthesis

Uses the Spectra-Q physical synthesis engine to perform combinational and
sequential optimization during fitting to improve circuit performance.

Physical Synthesis Effort Level
The Quartus Prime provides various additional settings to control Physical Synthesis. The Physical
Synthesis Effort Level option allows you to set the effort level for physical synthesis optimizations.

Generally, physical synthesis optimizations increase the compilation time; however, the Fast effort level
allows you to limit the increase in compilation time. When you select the Fast effort level, the Quartus
Prime software performs limited register retiming operations during fitting. The Extra effort level runs
additional algorithms beyond the default Normal value to achieve the best circuit performance, but
results in increased compilation time.

1. In the Quartus Prime software, click Assignments > Advanced Settings (Fitter).
2. For the Physical Synthesis Effort Level option, select Extra, Fast, or Normal.

Perform Physical Synthesis for Combinational Logic Fitting
To optimize the design and reduce delay along critical paths, you can turn on the Perform physical
synthesis for combinational logic option.

This option swaps the look-up table (LUT) ports within LEs so that the critical path has fewer layers
through which to travel. The Perform physical synthesis for combinational logic option also allows the
duplication of LUTs to enable further optimizations on the critical path.

The Perform physical synthesis for combinational logic option affects only combinational logic in the
form of LUTs. These transformations might occur during the synthesis stage or the Fitter stage during
compilation. The registers contained in the affected logic cells are not modified. Inputs into memory
blocks, DSP blocks, and I/O elements (IOEs) are not swapped.

The Quartus Prime software does not perform combinational optimization on logic cells that have the
following properties:

• Are part of a chain
• Drive global signals
• Are constrained to a single logic array block (LAB) location
• Have the Netlist Optimizations option set to Never Allow
If you want to consider logic cells with any of these conditions for physical synthesis, you can override
these rules by setting the Netlist Optimizations logic option to Always Allow on a given set of nodes.

16-6 Physical Synthesis Effort Level
QPS5V2

2015.11.02

Altera Corporation Netlist Optimizations and Physical Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Setting Up and Running the Fitter
For more information about using the Perform physical synthesis for combinational logic option, refer to
Quartus Prime Help.

Perform Register Retiming for Performance
The Perform Register Retiming for Performance option enables the movement of registers across
combinational logic, allowing the Quartus Prime software to trade off the delay between timing-critical
paths and non-critical paths. Register retiming can be done during Quartus Prime integrated synthesis or
during the Fitter stages of design compilation.

Figure 16-3: Reducing Critical Delay by Moving the Register Relative to Combinational Logic

Retiming can create multiple registers at the input of a combinational block from a register at the output
of a combinational block. In this case, the new registers have the same clock and clock enable. The
asynchronous control signals and power-up level are derived from previous registers to provide
equivalent functionality. Retiming can also combine multiple registers at the input of a combinational
block to a single register.

Figure 16-4: Combining Registers with Register Retiming

To move registers across combinational logic to balance timing, click Assignments > Settings >
Compiler Settings > Advanced Settings (Fitter). Specify your preferred option under Optimize for
performance (physical synthesis) and Effort level .

Perform Asynchronous Signal Pipelining
The Quartus Prime Fitter to perform automatic insertion of pipeline stages for asynchronous clear and
asynchronous load signals during fitting.

QPS5V2
2015.11.02 Perform Register Retiming for Performance 16-7

Netlist Optimizations and Physical Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_pro_set_fitting.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To enable Perform asynchronous signal pipelining, click Assignments > Settings > Compiler
Settings > Advanced Settings (Fitter). The Quartus Prime Fitter performs automatic insertion of pipeline
stages for asynchronous clear and asynchronous load signals during fitting when these signals negatively
affect performance. You can use this option if asynchronous control signal recovery and removal times
are not achieving their requirements.

The Perform asynchronous signal pipelining option improves performance for designs in which
asynchronous signals in very fast clock domains cannot be distributed across the chip fast enough due to
long global network delays. This optimization performs automatic pipelining of these signals, while
attempting to minimize the total number of registers inserted.

Note: The Perform asynchronous signal pipelining option adds registers to nets driving the asynchro‐
nous clear or asynchronous load ports of registers. These additional registers add register delays
(adds latency) to the reset, adding the same number of register delays for each destination using the
reset. The additional register delays can change the behavior of the signal in the design; therefore,
you should use this option only if additional latency on the reset signals does not violate any design
requirements. This option also prevents the promotion of signals to global routing resources.

The Quartus Prime software performs automatic asynchronous signal pipelining only if Enable Recovery/
Removal analysis is turned on. If you use the TimeQuest Timing Analyzer, Enable Recovery/Removal
analysis is turned on by default. Pipelining is allowed only on asynchronous signals that have the
following properties:

• The asynchronous signal is synchronized to a clock (a synchronization register drives the signal)
• The asynchronous signal fans-out only to asynchronous control ports of registers

The Quartus Prime software does not perform automatic asynchronous signal pipelining on asynchro‐
nous signals that have the Netlist Optimization logic option set to Never Allow.

Perform Register Duplication for Performance
The Perform register duplication option duplicates registers based on Fitter placement information. You
can also duplicate combinational logic when this option is enabled. A logic cell that fans out to multiple
locations can be duplicated to reduce the delay of one path without degrading the delay of another. The
new logic cell can be placed closer to critical logic without affecting the other fan-out paths of the original
logic cell.

The Quartus Prime software does not perform register duplication on logic cells that have the following
properties:

• Are part of a chain
• Contain registers that drive asynchronous control signals on another register
• Contain registers that drive the clock of another register
• Contain registers that drive global signals
• Contain registers that are constrained to a single LAB location
• Contain registers that are driven by input pins without a tSU constraint
• Contain registers that are driven by a register in another clock domain
• Are considered virtual I/O pins
• Have the Netlist Optimizations option set to Never Allow

Related Information
Setting Up and Running the Fitter

Analyzing and Optimizing the Design Floorplan on page 15-1
For more information about virtual I/O pins.

16-8 Perform Register Duplication for Performance
QPS5V2

2015.11.02

Altera Corporation Netlist Optimizations and Physical Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#comp/comp/comp_pro_set_fitting.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Node Preservation for Older Device Families
You can preserve the resulting nodes from physical synthesis in any device that does not support
incremental compilation. You might need to preserve nodes if you use the LogicLock flow to back-
annotate placement, import one design into another, or both. For all device families that support
incremental compilation, use that feature to preserve results.

The Save a node-level netlist of the entire design into a persistent source file option saves your final
results as an atom-based netlist in .vqm file format. By default, the Quartus Prime software places the .vqm
in the atom_netlists directory under the current project directory. To create a different .vqm file using
different Quartus Prime settings, in the Compilation Process Settings page, change the File name setting.

If you use the physical synthesis optimizations and want to lock down the location of all LEs and other
device resources in the design with the Back-Annotate Assignments command, a .vqm file netlist is
required. The .vqm file preserves the changes that you made to your original netlist. Because the physical
synthesis optimizations depend on the placement of the nodes in the design, back-annotating the
placement changes the results from physical synthesis. Changing the results means that node names are
different, and your back-annotated locations are no longer valid.

You should not use a Quartus Prime-generated .vqm file or back-annotated location assignments with
physical synthesis optimizations unless you have finalized the design. Making any changes to the design
invalidates your physical synthesis results and back-annotated location assignments. If you require
changes later, use the new source HDL code as your input files, and remove the back-annotated
assignments corresponding to the Quartus Prime-generated .vqm file.

To back-annotate logic locations for a design that was compiled with physical synthesis optimizations,
first create a .vqm file. When recompiling the design with the hard logic location assignments, use the
new .vqm file as the input source file and turn off the physical synthesis optimizations for the new
compilation.

If you are importing a .vqm file and back-annotated locations into another project that has any Netlist
Optimizations turned on, you must apply the Never Allow constraint to make sure node names don’t
change; otherwise, the back-annotated location or LogicLock assignments are invalid.

To preserve the nodes from Quartus Prime physical synthesis optimization options for devices that do not
support incremental compilation, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box appears.
2. In the Category list, select Compilation Process Settings. The Compilation Process Settings page

appears.
3. Turn on Save a node-level netlist of the entire design into a persistent source file. This setting is not

available for some devices.

Click OK.

Preventing Register Movement During Retiming
If you want to prevent register movement during register retiming, you can set the Netlist Optimizations
logic option to Never Allow. You can apply this option to either individual registers or entities in the
design using the Assignment Editor.

In digital circuits, synchronization registers are instantiated on cross clock domain paths to reduce the
possibility of metastability. The Quartus Prime software detects such synchronization registers and does
not move them, even if register retiming is turned on.

QPS5V2
2015.11.02 Node Preservation for Older Device Families 16-9

Netlist Optimizations and Physical Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following sets of registers are not moved during register retiming:

• Both registers in a direct connection from input pin-to-register-to-register if both registers have the
same clock and the first register does not fan-out to anywhere else. These registers are considered
synchronization registers.

• Both registers in a direct connection from register-to-register if both registers have the same clock, the
first register does not fan out to anywhere else, and the first register is fed by another register in a
different clock domain (directly or through combinational logic). These registers are considered
synchronization registers.

The Quartus Prime software does not perform register retiming on logic cells that have the following
properties:

• Are part of a cascade chain
• Contain registers that drive asynchronous control signals on another register
• Contain registers that drive the clock of another register
• Contain registers that drive a register in another clock domain
• Contain registers that are driven by a register in another clock domain

Note: The Quartus Prime software does not usually retime registers across different clock domains;
however, if you use the Classic Timing Analyzer and specify a global fMAX requirement, the
Quartus Prime software interprets all clocks as related. Consequently, the Quartus Prime software
might try to retime register-to-register paths associated with different clocks.

To avoid this circumstance, provide individual fMAX requirements to each clock when using Classic
Timing Analysis. When you constrain each clock individually, the Quartus Prime software assumes
no relationship between different clock domains and considers each clock domain to be asychro‐
nous to other clock domains; hence no register-to-register paths crossing clock domains are
retimed.

When you use the TimeQuest Timing Analyzer, register-to-register paths across clock domains are
never retimed, because the TimeQuest Timing Analyzer treats all clock domains as asychronous to
each other unless they are intentionally grouped.

• Contain registers that are constrained to a single LAB location
• Contain registers that are connected to SERDES
• Are considered virtual I/O pins
• Registers that have the Netlist Optimizations logic option set to Never Allow

The Quartus Prime software assumes that a synchronization register chain consists of two registers. If
your design has synchronization register chains with more than two registers, you must indicate the
number of registers in your synchronization chains so that they are not affected by register retiming. To
do this, perform the following steps:

1. Click Assignments > Settings > Compiler Settings > Advanced Settings (Synthesis).
2. Modify the Synchronization Register Chain Length setting to match the synchronization register

length used in your design. If you set a value of 1 for the Synchronization Register Chain Length, it
means that any registers connected to the first register in a register-to-register connection can be
moved during retiming. A value of n > 1 means that any registers in a sequence of length 1, 2,… n are
not moved during register retiming.

If you want to consider logic cells that meet any of these conditions for physical synthesis, you can
override these rules by setting the Netlist Optimizations logic option to Always Allow on a given set
of registers.

16-10 Preventing Register Movement During Retiming
QPS5V2

2015.11.02

Altera Corporation Netlist Optimizations and Physical Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Analyzing and Optimizing the Design Floorplan on page 15-1
For more information about virtual I/O pins.

Applying Netlist Optimization Options
The improvement in performance when using netlist optimizations is design dependent. If you have
restructured your design to balance critical path delays, netlist optimizations might yield minimal
improvement in performance.

You may have to experiment with available options to see which combination of settings works best for a
particular design. Refer to the messages in the compilation report to see the magnitude of improvement
with each option, and to help you decide whether you should turn on a given option or specific effort
level.

Turning on more netlist optimization options can result in more changes to the node names in the design;
bear this in mind if you are using a verification flow, such as the SignalTap II Logic Analyzer or formal
verification that requires fixed or known node names.

Applying all of the physical synthesis options at the Extra effort level generally produces the best results
for those options, but adds significantly to the compilation time. You can also use the Physical synthesis
effort level options to decrease the compilation time. The WYSIWYG primitive resynthesis option does
not add much compilation time relative to the overall design compilation time.

To find the best results, you can use the Quartus Prime Design Space Explorer II (DSE) to apply various
sets of netlist optimization options.

Related Information
About Design Space Explorer II

Viewing Synthesis and Netlist Optimization Reports
Physical synthesis optimizations performed during synthesis write results to the synthesis report. To
access this report, perform the following steps:

1. On the Processing menu, click Compilation Report.
2. In the Compilation Report list, open the Analysis & Synthesis. folder to view synthesis results.
3. In the Compilation Report list, open the Fitter folder to view the Netlist Optimizations table.

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command options, refer to
the Quartus Prime Command-Line and Tcl API Help browser. To run the Help browser, type the
following command at the command prompt:

quartus_sh --qhelp

You can specify many of the options described in this section on either an instance or global level, or both.

QPS5V2
2015.11.02 Applying Netlist Optimization Options 16-11

Netlist Optimizations and Physical Synthesis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/dse/dse_com_launche_DSE.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> \
-to <instance name>

Related Information

• Tcl Scripting on page 5-1
• API Functions for Tcl
• Command-Line Scripting on page 4-1
• Quartus Prime Settings File Manual

Synthesis Netlist Optimizations
The project .qsf file preserves the settings that you specify in the GUI. Alternatively, you can edit the .qsf
directly. The .qsf file supports the following synthesis netlist optimization commands. The Type column
indicates whether the setting is supported as a global setting, an instance setting, or both.

Table 16-2: Synthesis Netlist Optimizations and Associated Settings

Setting Name Quartus Prime Settings File Variable Name Values Type

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_

REMAP

ON, OFF Global, Instance

Optimization
Mode

OPTIMIZATION_MODE BALANCEDHIGH

PERFORMANCE EFFOR

AGGRESSIVE

PERFORMANCE

Global, Instance

Power-Up
Don’t Care

ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Save a node-
level netlist
into a
persistent
source file

LOGICLOCK_INCREMENTAL_COMPILE_

ASSIGNMENT

ON, OFF

Global
LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS ALLOW",
DEFAULT, "NEVER
ALLOW"

Instance

Physical Synthesis Optimizations
The project .qsf file preserves the settings that you specify in the GUI. Alternatively, you can edit the .qsf
directly. The .qsf file supports the following synthesis netlist optimization commands. The Type column
indicates whether the setting is supported as a global setting, an instance setting, or both.

16-12 Synthesis Netlist Optimizations
QPS5V2

2015.11.02

Altera Corporation Netlist Optimizations and Physical Synthesis

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 16-3: Physical Synthesis Optimizations and Associated Settings

Setting Name Quartus Prime Settings File Variable Name Values Type

Physical
Synthesis for
Combinational
Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Spectra-Q
Physical
Synthesis

SPECTRAQ_PHYSICAL_SYNTHESIS ON, OFF Global

Automatic
Asynchronous
Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_

SIGNAL_PIPELINING

ON, OFF Global

Perform
Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_

DUPLICATION

ON, OFF Global

Perform
Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_

RETIMING

ON, OFF Global

Power-Up
Don’t Care

ALLOW_POWER_UP_DONT_CARE ON, OFF Global,
Instance

Power-Up
Level

POWER_UP_LEVEL HIGH,LOW Instance

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS

ALLOW",
DEFAULT,
"NEVER

ALLOW"

Instance

Save a node-
level netlist
into a
persistent
source file

LOGICLOCK_INCREMENTAL_COMPILE_

ASSIGNMENT

ON, OFF

Global
LOGICLOCK_INCREMENTAL_COMPILE_FILE <file

name>

Back-Annotating Assignments
You can use the logiclock_back_annotate Tcl command to back-annotate resources in your design.
This command can back-annotate resources in LogicLock regions, and resources in designs without
LogicLock regions.

The following Tcl command back-annotates all registers in your design:

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate package.

QPS5V2
2015.11.02 Back-Annotating Assignments 16-13

Netlist Optimizations and Physical Synthesis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Preserving Your Physical Synthesis Results
For more information about back-annotating assignments.

Document Revision History

Table 16-4: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations Settings to Compiler Settings.

• Updated DSE II content.

June 2014 14.0.0 Updated format.

November
2013

13.1.0 Removed HardCopy device information.

June 2012 12.0.0 Removed survey link.

November
2011

10.0.2 Template update.

December
2010

10.0.1 Template update.

July 2010 10.0.0 • Added links to Quartus Prime Help in several sections.
• Removed Referenced Documents section.
• Reformatted Document Revision History

November
2009

9.1.0 • Added information to “Physical Synthesis for Registers—Register
Retiming”

• Added information to “Applying Netlist Optimization Options”
• Made minor editorial updates

March 2009 9.0.0 • Was chapter 11 in the 8.1.0 release.
• Updated the “Physical Synthesis for Registers—Register Retiming” and

“Physical Synthesis Options for Fitting”
• Updated “Performing Physical Synthesis Optimizations”
• Deleted Gate-Level Register Retiming section.
• Updated the referenced documents

November
2008

8.1.0 Changed to 8½” × 11” page size. No change to content.

16-14 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Netlist Optimizations and Physical Synthesis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2008 8.0.0 • Updated “Physical Synthesis Optimizations for Performance on page
11-9

• Added Physical Synthesis Options for Fitting on page 11-16

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V2
2015.11.02 Document Revision History 16-15

Netlist Optimizations and Physical Synthesis Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Netlist%20Optimizations%20and%20Physical%20Synthesis%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Engineering Change Orders with the Chip
Planner 17

2015.11.02

QPS5V2 Subscribe Send Feedback

Programmable logic can accommodate changes to a system specification late in the design cycle. In a
typical engineering project development cycle, the specification of the programmable logic portion is
likely to change after engineering begins or while integrating all system elements. Last-minute design
changes, commonly referred to as engineering change orders (ECOs), are small targeted changes to the
functionality of a design after the design has been fully compiled.

The Chip Planner supports ECOs by allowing quick and efficient changes to your logic late in the design
cycle. The Chip Planner provides a visual display of your post-place-and-route design mapped to the
device architecture of your chosen FPGA and allows you to create, move, and delete logic cells and I/O
atoms.

Note: In addition to making ECOs, the Chip Planner allows you to perform detailed analysis on routing
congestion, relative resource usage, logic placement, LogicLock regions, fan-ins and fan-outs, paths
between registers, and delay estimates for paths.

ECOs directly apply to atoms in the target device. As such, performing an ECO relies on your
understanding of the device architecture of the target device.

Related Information
Analyzing and Optimizing the Design Floorplan on page 15-1
For more information about using the Chip Planner for design analysis

Literature
For more information about the architecture of your device

Engineering Change Orders
In the context of an FPGA design, you can apply an ECO directly to a physical resource on the device to
modify its behavior. ECOs are typically made during the verification stage of a design cycle. When a small
change is required on a design (such as modifying a PLL for a different clock frequency or routing a signal
out to a pin for analysis) recompilation of the entire design can be time consuming, especially for larger
designs.

Because several iterations of small design changes can occur during the verification cycle, recompilation
times can quickly add up. Furthermore, a full recompilation due to a small design change can result in the
loss of previous design optimizations. Making ECOs, instead of performing a full recompilation on your
design, limits the change only to the affected portions of logic.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V2
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V2%202015.05.04)%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/literature/lit-index.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Performance Preservation
You can preserve the results of previous design optimizations when you make changes to an existing
design with one of the following methods:

• Incremental compilation
• Rapid recompile
• ECOs

Choose the method to modify your design based on the scope of the change. The methods above are
arranged from the larger scale change to the smallest targeted change to a compiled design.

The incremental compilation feature allows you to preserve compilation results at an RTL component or
module level. After the initial compilation of your design, you can assign modules in your design
hierarchy to partitions. Upon subsequent compilations, incremental compilation recompiles changed
partitions based on the chosen preservation levels.

The rapid recompilation feature leverages results from the latest post-fit netlist to determine the changes
required to honor modifications you have made to the source code. If you run a rapid recompilation, the
Compiler refits only changed portion of the netlist.

ECOs provide a finer granularity of control compared to the incremental compilation and the rapid
recompilation feature. All modifications are performed directly on the architectural elements of the
device. You should use ECOs for targeted changes to the post-fit netlist.

Note: In the Quartus Prime software versions 10.0 and later, the software does not preserve ECO
modifications to the netlist when you recompile a design with the incremental compilation feature
turned on. You can reapply ECO changes made during a previous compilation with the Change
Manager.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Compilation Time
In the traditional programmable logic design flow, a small change in the design requires a complete
recompilation of the design. A complete recompilation of the design consists of synthesis and place-and-
route. Making small changes to the design to reach the final implementation on a board can be a long
process. Because the Chip Planner works only on the post-place-and-route database, you can implement
your design changes in minutes without performing a full compilation.

Verification
After you make a design change, you can verify the impact on your design. To verify that your changes do
not violate timing requirements, perform static timing analysis with the Quartus Prime TimeQuest
Timing Analyzer after you check and save your netlist changes in the Chip Planner.

Additionally, you can perform a gate-level or timing simulation of the ECO-modified design with the
post-place-and-route netlist generated by the Quartus Prime software.

Related Information
Quartus Prime TimeQuest Timing Analyzer

17-2 Performance Preservation
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958382198/en-us
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Change Modification Record
All ECOs made with the Chip Planner are logged in the Change Manager to track all changes. With the
Change Manager, you can easily revert to the original post-fit netlist or you can pick and choose which
ECOs to apply.

Additionally, the Quartus Prime software provides support for multiple compilation revisions of the same
project. You can use ECOs made with the Chip Planner in conjunction with revision support to compare
several different ECO changes and revert back to previous project revisions when required.

ECO Design Flow
For iterative verification cycles, implementing small design changes at the netlist level can be faster than
making an RTL code change. As such, making ECO changes are especially helpful when you debug the
design on silicon and require a fast turnaround time to generate a programming file for debugging the
design.

The figure shows the design flow for making ECOs.

QPS5V2
2015.11.02 Change Modification Record 17-3

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-1: Design Flow to Support ECOs

Verilog HDL
(.v)

VHDL
(.vhdl)

AHDL
(.tdf)

Block Design
File (.bdf)

EDIF Netlist
(.edf)

VQM Netlist
(.vqm)

Partition Top

Partition 1

Partition 2

Analysis & Synthesis

Partition Merge
Create complete netlist using

appropriate source netlists for each
partition (post-fit or post-synthesis)

Fitter

Assembler

Timing Analyzer

Program/Configuration Device

System Test and Verify

Requirements
Satisfied?

yes

no

Recreate Programming File

Change Manager
Stores netlist

modification details

Modify
Logic cells, I/O cells,

PLL, Floorplan location
assignments in Chip Planner

Analysis and Synthesis Changes

Analysis and Synthesis Changes

Make design change
in your HDL

Make ECO
at Netlist level

no

Design Partition Assignment

ECO performs
partial refit

A typical ECO application occurs when you uncover a problem on the board and isolate the problem to
the appropriate nodes or I/O cells on the device. You must be able to correct the functionality quickly and
generate a new programming file. By making small changes with the Chip Planner, you can modify the
post-place-and-route netlist directly without having to perform synthesis and logic mapping, thus
decreasing the turnaround time for programming file generation during the verification cycle. If the

17-4 ECO Design Flow
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

change corrects the problem, no modification of the HDL source code is necessary. You can use the Chip
Planner to perform the following ECO-related changes to your design:

• Document the changes made with the Change Manager
• Easily recreate the steps taken to produce design changes
• Generate EDA simulation netlists for design verification

Note: For more complex changes that require HDL source code modifications, the incremental compila‐
tion feature can help reduce recompilation time.

The Chip Planner Overview
The Chip Planner provides a visual display of device resources. It shows the arrangement and usage of the
resource atoms in the device architecture that you are targeting. Resource atoms are the building blocks
for your device, such as ALMs, LEs, PLLs, DSP blocks, memory blocks, or I/O elements.

The Chip Planner also provides an integrated platform for design analysis and for making ECOs to your
design after place-and-route. The toolset consists of the Chip Planner (providing a device floorplan view
of your mapped design) and two integrated subtools—the Resource Property Editor and the Change
Manager.

For analysis, the Chip Planner can show logic placement, LogicLock regions, relative resource usage,
detailed routing information, routing congestion, fan-ins and fan-outs, paths between registers, and delay
estimates for paths. Additionally, the Chip Planner allows you to create location constraints or resource
assignment changes, such as moving or deleting logic cells or I/O atoms with the device floorplan. For
ECO changes, the Chip Planner enables you to create, move, or delete logic cells in the post-place-and-
route netlist for fast programming file generation. Additionally, you can open the Resource Property
Editor from the Chip Planner to edit the properties of resource atoms or to edit the connections between
resource atoms. All changes to resource atoms and connections are logged automatically with the Change
Manager.

Opening the Chip Planner
To open the Chip Planner, on the Tools menu, click Chip Planner. Alternatively, click the Chip Planner
icon on the Quartus Prime software toolbar.

Optionally, you can open the Chip Planner by cross-probing from the shortcut menu in the following
tools:

• Design Partition Planner
• Compilation Report
• LogicLock Regions window
• Technology Map Viewer
• Project Navigator window
• RTL source code
• Node Finder
• Simulation Report
• RTL Viewer
• Report Timing panel of the TimeQuest Timing Analyzer

QPS5V2
2015.11.02 The Chip Planner Overview 17-5

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Chip Planner Tasks and Layers
The Chip Planner allows you to set up tasks to quickly implement ECO changes or manipulate
assignments for the floorplan of the device. Each task consists of an editing mode and a set of customized
layer settings.

Related Information
Performing ECOs in the Resource Property Editor on page 17-6

Analyzing and Optimizing the Design Floorplan on page 15-1

Performing ECOs with the Chip Planner (Floorplan View)
You can manipulate resource atoms in the Chip Planner when you select the ECO editing mode.

The following ECO changes can be made with the Chip Planner Floorplan view:

• Create atoms
• Delete atoms
• Move existing atoms

Note: To configure the properties of atoms, such as managing the connections between different LEs/
ALMs, use the Resource Property Editor.

To select the ECO editing mode in the Chip Planner, in the Editing Mode list at the top of the Chip
Planner, select the ECO editing mode.

Related Information
Performing ECOs in the Resource Property Editor on page 17-6

Creating, Deleting, and Moving Atoms
You can use the Chip Planner to create, delete, and move atoms in the post-compilation design.

Check and Save Netlist Changes
After making all the ECOs, you can run the Fitter to incorporate the changes by clicking the Check and
Save Netlist Changes icon in the Chip Planner toolbar. The Fitter compiles the ECO changes, performs
design rule checks on the design, and generates a programming file.

Performing ECOs in the Resource Property Editor
You can view and edit the following resources with the Resource Property Editor.

Logic Elements
An Altera® LE contains a four-input LUT, which is a function generator that can implement any function
of four variables. In addition, each LE contains a register fed by the output of the LUT or by an
independent function generated in another LE.

17-6 The Chip Planner Tasks and Layers
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the Resource Property Editor to view and edit any LE in the FPGA. To open the Resource
Property Editor for an LE, on the Project menu, point to Locate, and then click Locate in Resource
Property Editor in one of the following views:

• RTL Viewer
• Technology Map Viewer
• Node Finder
• Chip Planner

For more information about LE architecture for a particular device family, refer to the device family
handbook or data sheet.

You can use the Resource Property Editor to change the following LE properties:

• Data input to the LUT
• LUT mask or LUT

Logic Element Properties
To view logic element properties, on the View menu, click View Properties.

Figure 17-2: LE Properties in the Resource Property Editor

Modes of Operation
LUTs in an LE can operate in either normal or arithmetic mode.

When an LE is configured in normal mode, the LUT in the LE can implement a function of four inputs.

When the LE is configured in arithmetic mode, the LUT in the LE is divided into two 3-input LUTs. The
first LUT generates the signal that drives the output of the LUT, while the second LUT generates the
carry-out signal. The carry-out signal can drive only a carry-in signal of another LE.

For more information about LE modes of operation, refer to volume 1 of the appropriate device
handbook.

Sum and Carry Equations
You can change the logic function implemented by the LUT by changing the sum and carry equations.
When the LE is configured in normal mode, you can change only the sum equation. When the LE is
configured in arithmetic mode, you can change both the sum and the carry equations.

QPS5V2
2015.11.02 Logic Element Properties 17-7

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The LUT mask is the hexadecimal representation of the LUT equation output. When you change the LUT
equation, the Quartus Prime software automatically changes the LUT mask. Conversely, when you change
the LUT mask, the Quartus Prime software automatically computes the LUT equation.

sload and sclr Signals
Each LE register contains a synchronous load (sload) signal and a synchronous clear (sclr) signal. You
can invert either the sload or sclr signal feeding into the LE.

If the design uses the sload signal in an LE, the signal and its inversion state must be the same for all
other LEs in the same LAB. For example, if two LEs in a LAB have the sload signal connected, both LEs
must have the sload signal set to the same value. This is also true for the sclr signal.

Register Cascade Mode
When register cascade mode is enabled, the cascade-in port feeds the input to the register. The register
cascade mode is used most often when the design implements shift registers.

You can change the register cascade mode by connecting (or disconnecting) the cascade in the port.
However, if you create this port, you must ensure that the source port LE is directly above the destination
LE.

Cell Delay Table
The cell delay table describes the propagation delay from all inputs to all outputs for the selected LE.

Logic Element Connections
To view the connections that feed in and out of an LE, on the View menu, click View Port Connections.

Figure 17-3: View LE Connections in the Connectivity Window

Deleting a Logic Element
To delete an LE, follow these steps:

1. Right-click the desired LE in the Chip Planner, point to Locate, and click Locate in Resource Property
Editor.

2. You must remove all fan-out connections from an LE prior to deletion. To delete fan-out connections,
right-click each connected output signal, point to Remove, and click Fanouts. Select all of the fan-out
signals in the Remove Fan-outs dialog box and click OK.

3. To delete an atom after all fan-out connections are removed, right-click the atom in the Chip Planner
and click Delete Atom.

17-8 sload and sclr Signals
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Adaptive Logic Modules
Each ALM contains LUT-based resources that can be divided between two adaptive LUTs (ALUTs).

With up to eight inputs to the two ALUTs, each ALM can implement various combinations of two
functions. This adaptability allows the ALM to be completely backward-compatible with four-input LUT
architectures. One ALM can implement any function with up to six inputs and certain seven-input
functions. In addition to the ALUT-based resources, each ALM contains two programmable registers, two
dedicated full adders, a carry chain, a shared arithmetic chain, and a register chain. The ALM can
efficiently implement various arithmetic functions and shift registers with these dedicated resources.

You can implement the following types of functions in a single ALM:

• Two independent 4-input functions
• An independent 5-input function and an independent 3-input function
• A 5-input function and a 4-input function, if they share one input
• Two 5-input functions, if they share two inputs
• An independent 6-input function
• Two 6-input functions, if they share four inputs and share the same functions
• Certain 7-input functions

You can use the Resource Property Editor to change the following ALM properties:

• Data input to the LUT
• LUT mask or LUT equation

Adaptive Logic Module Schematic
You can view and edit any ALM atom with the Resource Property Editor by right-clicking the ALM in the
RTL Viewer, the Node Finder, or the Chip Planner, and clicking Locate in Resource Property Editor.

For a detailed description of the ALM, refer to the device handbooks of devices based on an ALM
architecture.

By default, the Quartus Prime software displays the used resources in blue and the unused in gray. For the
figure, the used resources are in blue and the unused resources are in gray.

QPS5V2
2015.11.02 Adaptive Logic Modules 17-9

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-4: Adaptive Logic Module

Adaptive Logic Module Properties
The properties that you can display for the ALM include an equations table that shows the name and
location of each of the two combinational nodes and two register nodes in the ALM, the individual LUT
equations for each of the combinational nodes, and the combout, sumout, carryout, and shareout
equations for each combinational node.

Adaptive Logic Module Connections
Click View > View Connectivity to view the input and output connections for the ALM.

FPGA I/O Elements
Altera FPGAs that have high-performance I/O elements, including up to six registers, are equipped with
support for a number of I/O standards that allow you to run your design at peak speeds. Use the Resource
Property Editor to view, change connectivity, and edit the properties of the I/O elements. Use the Chip
Planner (Floorplan view) to change placement, delete, and create new I/O elements.

For a detailed description of the device I/O elements, refer to the applicable device handbook.

You can change the following I/O properties:

• Delay chain
• Bus hold
• Weak pull up
• Slow slew rate
• I/O standard
• Current strength

17-10 Adaptive Logic Module Properties
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Extend OE disable
• PCI I/O
• Register reset mode
• Register synchronous reset mode
• Register power up
• Register mode

Stratix V I/O Elements
The I/O elements in Stratix® V devices contain a bidirectional I/O buffer and I/O registers to support a
complete embedded bidirectional single data rate (SDR) or double data rate (DDR) transfer.

I/O registers are composed of the input path for handling data from the pin to the core, the output path
for handling data from the core to the pin, and the output enable path for handling the output enable
signal to the output buffer. These registers allow faster source-synchronous register-to-register transfers
and resynchronization. The input path consists of the DDR input registers, alignment and synchroniza‐
tion registers, and half data rate blocks; you can bypass each block in the input path. The input path uses
the deskew delay to adjust the input register clock delay across process, voltage, and temperature (PVT)
variations.

By default, the Quartus Prime software displays the used resources in blue and the unused resources in
gray.

Figure 17-5: Stratix V Device I/O Element Structure

Related Information
Stratix V Device Handbook

QPS5V2
2015.11.02 Stratix V I/O Elements 17-11

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/stratix-v/stx5_core.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Stratix IV I/O Elements

The I/O elements in Stratix IV devices contain a bidirectional I/O buffer and I/O registers to support a
complete embedded bidirectional SDR or DDR transfer.

The I/O registers are composed of the input path for handling data from the pin to the core, the output
path for handling data from the core to the pin, and the output enable path for handling the output enable
signal for the output buffer. Each path consists of a set of delay elements that allow you to fine-tune the
timing characteristics of each path for skew management. By default, the Quartus Prime software displays
the used resources in blue and the unused resources in gray.

Figure 17-6: Stratix IV I/O Element and Structure

Related Information
Literature
For more information about I/O elements in Stratix IV devices

Arria V I/O Elements
The I/O elements in Arria® V devices contain a bidirectional I/O buffer and I/O registers to support a
complete embedded bidirectional SDR or DDR transfer.

The I/O registers are composed of the input path for handling data from the pin to the core, the output
path for handling data from the core to the pin, and the output enable path for handling the output enable
signal for the output buffer. Each path consists of a set of delay elements that allow you to fine-tune the
timing characteristics of each path for skew management. By default, the Quartus Prime software displays
the used resources in blue and the unused resources in gray.

17-12 Stratix IV I/O Elements
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

http://www.altera.com/literature/lit-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-7: Arria V Device I/O Element and Structure

Cyclone V I/O Elements
The I/O elements in Cyclone V devices contain a bidirectional I/O buffer and registers for complete
embedded bidirectional single data rate transfer. The I/O element contains three input register, two
output registers, and two output-enable registers. The two output registers and two output-enable
registers are utilized for double-data rate (DDR) applications.

You can use the input registers for fast setup times and the output registers for fast clock-to-output times.
Additionally, you can use the output-enable (OE) registers for fast clock-to-output enable timing. You can
use I/O elements for input, output, or bidirectional data paths. By default, the Quartus Prime software
displays the used resources in blue and the unused resources in gray.

QPS5V2
2015.11.02 Cyclone V I/O Elements 17-13

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-8: Cyclone V Device I/O Elements and Structure

MAX V I/O Elements
The I/O elements in MAX® V devices contain a bidirectional I/O buffer. You can drive registers from
adjacent LABs to or from the bidirectional I/O buffer of the I/O element. By default, the Quartus Prime
software displays the used resources in blue and the unused resources in gray.

Figure 17-9: MAX V Device I/O Elements and Structure

FPGA RAM Blocks
With the Resource Property Editor, you can view the architecture of different RAM blocks in the device,
modify the input and output registers to and from the RAM blocks, and modify the connectivity of the

17-14 MAX V I/O Elements
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

input and output ports. By default, the Quartus Prime software displays the used resources in blue and the
unused resources in gray.

Figure 17-10: M9K RAM View in a Stratix V Device

FPGA DSP Blocks
Dedicated hardware DSP circuit blocks in Altera devices provide performance benefits for the critical DSP
functions in your design.

The Resource Property Editor allows you to view the architecture of DSP blocks in the Resource Property
Editor for the Cyclone and Stratix series of devices. The Resource Property Editor also allows you to
modify the signal connections to and from the DSP blocks and modify the input and output registers to

QPS5V2
2015.11.02 FPGA DSP Blocks 17-15

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

and from the DSP blocks. By default, theQuartus Prime software displays the used resources in blue and
the unused resources in gray.

Figure 17-11: DSP Block View in a Stratix V Device

Change Manager
The Change Manager maintains a record of every change you perform with the Chip Planner, the
Resource Property Editor, the SignalProbe feature, or a Tcl script. Each row of data in the Change
Manager represents one ECO.

17-16 Change Manager
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Change Manager allows you to apply changes, roll back changes, delete changes, and export change
records to a Text File (.txt), a Comma-Separated Value File (.csv), or a Tcl Script File (.tcl). The Change
Manager tracks dependencies between changes, so that when you apply, roll back, or delete a change, any
prerequisite or dependent changes are also applied, rolled back, or deleted.

Complex Changes in the Change Manager
Certain changes in the Change Manager (including creating or deleting atoms and changing connectivity)
can appear to be self-contained, but are actually composed of multiple actions. The Change Manager
marks such complex changes with a plus icon in the Index column.

You can click the plus icon to expand the change record and show all the component actions preformed
as part of that complex change.

Related Information
Example of Managing Changes With the Change Manager

Managing SignalProbe Signals
The SignalProbe pins that you create from the SignalProbe Pins dialog box are recorded in the Change
Manager. After you have made a SignalProbe assignment, you can use the Change Manager to quickly
disable SignalProbe assignments by selecting Revert to Last Saved Netlist on the shortcut menu in the
Change Manager.

Related Information
Quick Design Debugging Using SignalProbe

Exporting Changes
You can export changes to a .txt, a .csv, or a .tcl. Tcl scripts allow you to reapply changes that were deleted
during compilation.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design

Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script. You can also run some
procedures at a command prompt. The Tcl commands for controlling the Chip Planner are located in the
chip_planner package of the quartus_cdb executable.

Related Information

• About Quartus Prime Scripting
• Tcl Scripting on page 5-1
• Quartus Prime Settings File Manual
• Command Line Scripting on page 4-1

Common ECO Applications
You can use an ECO to make a post-compilation change to your design.

QPS5V2
2015.11.02 Complex Changes in the Change Manager 17-17

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#optimize/ace/eco_ex_change_manager_usage.htm
https://documentation.altera.com/#/link/mwh1410385117325/mwh1410384400729/en-us
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958382198/en-us
http://quartushelp.altera.com/current/index.htm#reference/scripting/tcl_view_using_tcl_scripts.htm
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To help build your system quickly, you can use Chip Planner functions to perform the following activities:

• Adjust the drive strength of an I/O with the Chip Planner
• Modify the PLL properties with the Resource Property Editor, see Modify the PLL Properties With

the Chip Planner
• Modify the connectivity between new resource atoms with the Chip Planner and Resource Property

Editor

Related Information
Modify the PLL Properties With the Chip Planner on page 17-19

Adjust the Drive Strength of an I/O with the Chip Planner
To adjust the drive strength of an I/O, follow these steps to incorporate the ECO changes into the netlist
of the design.

1. In the Editing Mode list at the top of the Chip Planner, select the ECO editing mode.
2. Locate the I/O in the Resource Property Editor.
3. In the Resource Property Editor, point to the Current Strength option in the Properties pane and

double-click the value to enable the drop-down list.
4. Change the value for the Current Strength option.
5. Right-click the ECO change in the Change Manager and click Check & Save All Netlist Changes to

apply the ECO change.

17-18 Adjust the Drive Strength of an I/O with the Chip Planner
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-12: I/O in the Resource Property Editor

Note: You can change the pin locations of input or output ports with the ECO flow. You
can drag and move the signal from an existing pin location to a new location while
in the Post Compilation Editing (ECO) task in the Chip Planner. You can then
click Check & Save All Netlist Changes to compile the ECO.

Modify the PLL Properties With the Chip Planner
You use PLLs to modify and generate clock signals to meet design requirements. Additionally, you can
use PLLs to distribute clock signals to different devices in a design, reducing clock skew between devices,
improving I/O timing, and generating internal clock signals.

The Resource Property Editor allows you to view and modify PLL properties to meet your design require‐
ments.

QPS5V2
2015.11.02 Modify the PLL Properties With the Chip Planner 17-19

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-13: PLL View in the Resource Property Editor of a Stratix Device

PLL Properties
The Resource Property Editor allows you to modify PLL options, such as phase shift, output clock
frequency, and duty cycle.

You can also change the following PLL properties with the Resource Property Editor:

• Input frequency
• M VCO tap
• M initial
• M value
• N value

17-20 PLL Properties
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• M counter delay
• N counter delay
• M2 value
• N2 value
• SS counter
• Charge pump current
• Loop filter resistance
• Loop filter capacitance
• Counter delay
• Counter high
• Counter low
• Counter mode
• Counter initial
• VCO tap

You can also view post-compilation PLL properties in the Compilation Report. To do so, in the Compila‐
tion Report, select Fitter and then select Resource Section.

Adjusting the Duty Cycle
Use the equation to adjust the duty cycle of individual output clocks.

High % =
Counter High

(Counter High + Counter Low)

Adjusting the Phase Shift
Use the equation to adjust the phase shift of an output clock of a PLL.

Phase Shift = (Period VCO × 0.125 × Tap VCO) + (Initial VCO × Period VCO)

For normal mode, Tap VCO, Initial VCO, and Period VCO are governed by the following settings:

Tap VCO= Counter Delay- M Tap VCO

Initial VCO= Counter Delay- M Initial

Period VCO= In Clock Period x N÷M

For external feedback mode, Tap VCO, Initial VCO, and Period VCO are governed by the following settings:

Tap VCO= Counter Delay- M Tap VCO

Initial VCO= Counter Delay- M Initial

Period VCO= In Clock Period x N

(M+ Counter High+Counter Low)

Related Information
Stratix Device Handbook

QPS5V2
2015.11.02 Adjusting the Duty Cycle 17-21

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Adjusting the Output Clock Frequency
Use the equation to adjust the PLL output clock in normal mode.

Output Clock Frequency = Input Frequency •
M Value

N Value + Counter High + Counter Low

Use the equation to adjust the PLL output clock in external feedback mode.

OUTCLK =
M Value + External Feedback Counter High + External Feedback Counter Low

N Value + Counter High + Counter Low

Adjusting the Spread Spectrum
Use the equation to adjust the spread spectrum for your PLL.

% Spread =
M2N1
M1N2

Modify the Connectivity between Resource Atoms
The Chip Planner and Resource Property Editor allow you to create new resource atoms and manipulate
the existing connection between resource atoms in the post-fit netlist. These features are useful for small
changes when you are debugging a design, such as manually inserting pipeline registers into a
combinational path that fails timing, or routing a signal to a spare I/O pin for analysis.

Use the following procedure to create a new register in a Cyclone V device and route register output to a
spare I/O pin. This example illustrates how to create a new resource atom and modify the connections
between resource atoms.

To create new resource atoms and manipulate the existing connection between resource atoms in the
post-fit netlist, follow these steps:

1. Create a new register in the Chip Planner.
2. Locate the atom in the Resource Property Editor.
3. To assign a clock signal to the register, right-click the clock input port for the register, point to Edit

connection, and click Other. Use the Node Finder to assign a clock signal from your design.
4. To tie the SLOAD input port to VCC, right-click the clock input port for the register, point to Edit

connection, and click VCC.
5. Assign a data signal from your design to the SDATA port.
6. In the Connectivity window, under the output port names, copy the port name of the register.
7. In the Chip Planner, locate a free I/O resource and create an output buffer.
8. Locate the new I/O atom in the Resource Property Editor.
9. On the input port to the output buffer, right-click, point to Edit connection, and click Other.
10.In the Edit Connection dialog box, type the output port name of the register you have created.
11.Run the ECO Fitter to apply the changes by clicking Check and Save Netlist Changes.

Note: A successful ECO connection is subject to the available routing resources. You can view the
relative routing utilization by selecting Routing Utilization as the Background Color Map in
the Layers Settings dialog box of the Chip Planner. Also, you can view individual routing
channel utilization from local, row, and column interconnects with the tooltips created when

17-22 Adjusting the Output Clock Frequency
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

you position your mouse pointer over the appropriate resource. Refer to the device data sheet
for more information about the architecture of the routing interconnects of your device.

Post ECO Steps
After you make an ECO change with the Chip Planner, you must perform static timing analysis of your
design with the TimeQuest analyzer to ensure that your changes did not adversely affect the timing
performance of your design.

For example, when you turn on one of the delay chain settings for a specific pin, you change the I/O
timing. Therefore, to ensure that the design still meets all timing requirements, you should perform static
timing analysis.

Related Information
Quartus Prime TimeQuest Timing Analyzer
For more information about performing a static timing analysis of your design

Document Revision History

Table 17-1: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 • Updated formatting.
• Removed references to Stratix, Stratix II, Stratix III, Arria GX, Arria II

GX, Cyclone, Cyclone II, Cyclone III, and MAX II devices.
• Added MAX V, Cyclone V, Arria V I/O elements

June 2012 12.0.0 Removed survey link.

November
2011

10.1.1 Template update.

December
2010

10.1.0 • Updated chapter to new template
• Removed “The Chip Planner FloorPlan Views” section
• Combined “Creating Atoms”, “Deleting Atoms”, and “Moving Atoms”

sections, and linked to Help.
• Added Stratix V I/O elements in “FPGA I/O Elements”.

QPS5V2
2015.11.02 Post ECO Steps 17-23

Engineering Change Orders with the Chip Planner Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410385117325/mwh1410383638859/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

July 2010 10.0.0 • Added information to page 17–1.
• Added information to “Engineering Change Orders” on page 17–2.
• Changed heading from “Performance” to “Performance Preservation”

on page 7–2.
• Updated information in “Performance Preservation” on page 17–2.
• Changed heading from “Documentation” to “Change Modification

Record” on page 17–3.
• Changed heading from “Resource Property Editor” to “Performing

ECOs in the Resource Property Editor” on page 17–15.
• Removed “Using Incremental Compilation in the ECO Flow” section.

Preservation support for ECOs with the incremental compilation flow
has been removed in the Quartus Prime software version 10.0.

• Removed “Referenced Documents” section.

November
2009

9.1.0 • Updated device support list
• Made minor editorial updates

March 2009 9.0.0 • Updated Figure 17–17.
• Made minor editorial updates.
• Chapter 15 was previously Chapter 13 in the 8.1.0 release.

November
2008

8.1.0 • Corrected preservation attributes for ECOs in the section “Using
Incremental Compilation in the ECO Flow” on page15–32.

• Minor editorial updates.
• Changed to 8½” x 11” page size.

May 2008 8.0.0 • Updated device support list
• Modified description for ECO support for block RAMs and DSP blocks
• Corrected Stratix PLL ECO example
• Added an application example to show modifying the connectivity

between resource atoms

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

17-24 Document Revision History
QPS5V2

2015.11.02

Altera Corporation Engineering Change Orders with the Chip Planner

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Engineering%20Change%20Orders%20with%20the%20Chip%20Planner%20(QPS5V2%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Standard Edition Handbook Volume 3: Verification

Subscribe

Send Feedback

QPS5V3
2015.11.02

101 Innovation Drive
San Jose, CA 95134
www.altera.com

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quartus%20Prime%20Standard%20Edition%20Handbook%20Volume%203:%20Verification%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulating Altera Designs 1
2015.11.02

QPS5V3 Subscribe Send Feedback

This document describes simulating designs that target Altera devices. Simulation verifies design behavior
before device programming. The Quartus® Prime software supports RTL- and gate-level design
simulation in supported EDA simulators. Simulation involves setting up your simulator working environ‐
ment, compiling simulation model libraries, and running your simulation.

Simulator Support
The Quartus Prime software supports specific EDA simulator versions for RTL and gate-level simulation.

Table 1-1: Supported Simulators

Vendor Simulator Version Platform

Aldec Active-HDL 10.2 Update 2 Windows
Aldec Riviera-PRO 2015.06 Windows, Linux
Cadence Incisive Enterprise 14.2 Linux
Mentor
Graphics

ModelSim-Altera (provided) 10.4b Windows, Linux

Mentor
Graphics

ModelSim PE 10.4b Windows

Mentor
Graphics

ModelSim SE 10.4b Windows, Linux

Mentor
Graphics

QuestaSim 10.4b Windows, Linux

Synopsys VCS/VCS MX 2014,12-SP1 Linux

Simulation Levels
The Quartus Prime software supports RTL and gate-level simulation of IP cores in supported EDA
simulators.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Simulating%20Altera%20Designs&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Table 1-2: Supported Simulation Levels

Simulation Level Description Simulation Input

RTL Cycle-accurate simulation using
Verilog HDL, SystemVerilog, and VHDL
design source code with simulation models
provided by Altera and other IP providers.

• Design source/testbench
• Altera simulation libraries
• Altera IP plain text or IEEE encrypted

RTL models
• IP simulation models
• Altera IP functional simulation models
• Altera IP bus functional models
• Qsys-generated models
• Verification IP

Gate-level
functional

Simulation using a post-synthesis or post-fit
functional netlist testing the post-synthesis
functional netlist, or post-fit functional
netlist.

• Testbench
• Altera simulation libraries
• Post-synthesis or post-fit functional

netlist
• Altera IP bus functional models

Gate-level
timing

Simulation using a post-fit timing netlist,
testing functional and timing performance.
Supported only for the Stratix IV, Cyclone
IV, and MAX 10 device families.

• Testbench
• Altera simulation libraries
• Post-fit timing netlist
• Post-fit Standard Delay Output File

(.sdo). Not supported for MAX 10
devices.

Note: Gate-level timing simulation of an entire design can be slow and should be avoided. Gate-level
timing simulation is supported only for the Stratix IV and Cyclone IV device families. Use
TimeQuest static timing analysis rather than gate-level timing simulation.

1-2 Simulation Levels
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

HDL Support
The Quartus® Prime software provides the following HDL support for EDA simulators.

Table 1-3: HDL Support

Language Description

VHDL • For VHDL RTL simulation, compile design files directly in your simulator. To
use NativeLink automation, analyze and elaborate your design in the Quartus
Prime software, and then use the NativeLink simulator scripts to compile the
design files in your simulator. You must also compile simulation models from the
Altera simulation libraries and simulation models for the IP cores in your design.
Use the Simulation Library Compiler or NativeLink to compile simulation
models.

• For gate-level simulation, the EDA Netlist Writer generates a synthesized design
netlist VHDL Output File (.vho). Compile the .vho in your simulator. You may
also need to compile models from the Altera simulation libraries.

• IEEE 1364-2005 encrypted Verilog HDL simulation models are encrypted
separately for each Altera-supported simulation vendor. If you want to simulate
the model in a VHDL design, you need either a simulator that is capable of
VHDL/Verilog HDL co-simulation, or any Mentor Graphics single language
VHDL simulator.

Verilog HDL

SystemVerilog

• For RTL simulation in Verilog HDL or SystemVerilog, compile your design files
in your simulator. To use NativeLink automation, analyze and elaborate your
design in the Quartus Prime software, and then use the NativeLink simulator
scripts to compile your design files in your simulator. You must also compile
simulation models from the Altera simulation libraries and simulation models for
the IP cores in your design. Use the Simulation Library Compiler or NativeLink
to compile simulation models.

• For gate-level simulation, the EDA Netlist Writer generates a synthesized design
netlist Verilog Output File (.vo). Compile the .vo in your simulator.

Mixed HDL • If your design is a mix of VHDL, Verilog HDL, and SystemVerilog files, you must
use a mixed language simulator. Choose the most convenient supported language
for generation of Altera IP cores in your design.

• Altera provides the entry-level ModelSim-Altera software, along with
precompiled Altera simulation libraries, to simplify simulation of Altera designs.
Starting in version 15.0, the ModelSim-Altera software supports native, mixed-
language (VHDL/Verilog HDL/SystemVerilog) co-simulation of plain text HDL.

If you have a VHDL-only simulator and need to simulate Verilog HDL modules
and IP cores, you can either acquire a mixed-language simulator license from the
simulator vendor, or use the ModelSim-Altera software.

Schematic You must convert schematics to HDL format before simulation. You can use the
converted VHDL or Verilog HDL files for RTL simulation.

QPS5V3
2015.11.02 HDL Support 1-3

Simulating Altera Designs Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulation Flows
The Quartus® Prime software supports various method for integrating your supported simulator into the
design flow.

Table 1-4: Simulation Flows

Simulation Flow Description

NativeLink flow The NativeLink automated flow supports a variety of design flows. Do not use
NativeLink if you require direct control over every aspect of simulation.

• Use NativeLink to generate simulation scripts to compile your design and
simulation libraries, and to automatically launch your simulator.

• Specify your own compilation, elaboration, and simulation scripts for testbench
and simulation model files that have not been analyzed by the Quartus Prime
software.

• Use NativeLink to supplement your scripts by automatically compiling design
files, IP simulation model files, and Altera simulation library models.

• To use NativeLink for Arria 10 devices and later, you must add to your project
the .qsys file generated for IP or Qsys system. To use NativeLink for all other
device families, you must add to your project the .qip and .sip files generated for
IP or Qsys systems.

• The Quartus Prime Pro Edition software does not support NativeLink RTL
simulation

Custom flows Custom flows support manual control of all aspects of simulation, including the
following:

• Manually compile and simulate testbench, design, IP, and simulation model
libraries, or write scripts to automate compilation and simulation in your
simulator.

• Use the Simulation Library Compiler to compile simulation libraries for all Altera
devices and supported third-party simulators and languages.

Use the custom flow if you require any of the following:

• Custom compilation commands for design, IP, or simulation library model
files (for example, macros, debugging or optimization options, or other
simulator-specific options).

• Multi-pass simulation flows.
• Flows that use dynamically generated simulation scripts.

Specialized flows Altera supports specialized flows for various design variations, including the
following:

• For simulation of Altera example designs, refer to the documentation for the
example design or to the IP core user guide.

• For simulation of Qsys designs, refer to Creating a System with Qsys.
• For simulation of designs that include the Nios II embedded processor, refer to

Simulating a Nios II Embedded Processor.

1-4 Simulation Flows
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• IP User Guide Documentation
• Creating a System with Qsys
• Simulating a Nios II Embedded Processor

Preparing for Simulation
Preparing for RTL or gate-level simulation involves compiling the RTL or gate-level representation of
your design and testbench. You must also compile IP simulation models, models from the Altera
simulation libraries, and any other model libraries required for your design.

Generating Simulation Scripts
You can use the NativeLink feature to automatically generate top-level simulation scripts to set up
supported simulators. These scripts compile the required device libraries and system design files in the
correct order, and then elaborate or load the top-level design for simulation. You can use Altera-provided
utilities to generate a combined simulation script for Altera IP cores in your design. You can source these
IP simulation scripts in your top-level project script. You can modify and reuse these simulation scripts to
fit your simulation requirements.

1. Click Assignments > Settings.
2. Under EDA Tool Settings, click Simulation.
3. Select the Tool name of your simulator.
4. Click More NativeLink Settings.
5. Turn on Generate third-party EDA tool command scripts without running the EDA tool.

Table 1-5: NativeLink Generated Scripts for RTL Simulation

Simulator(s) Simulation File Use

Mentor Graphics
ModelSim
QuestaSim

/simulation/modelsim/<my_ip>.do Source directly with your simulator.

Aldec Riviera Pro /simulation/modelsim/<my_ip>.do Source directly with your simulator.

Synopsys VCS /simulation/modelsim/<revision name>
_<rtl or gate>.vcs

Add your testbench file name to this options file
to pass the file to VCS using the -file option.
If you specify a testbench file to NativeLink,
NativeLink generates an .sh script that runs
VCS.

Synopsys
VCS MX

/simulation/scsim/<revision name>_
vcsmx_<rtl or gate>_<verilog or vhdl>
.tcl

Run this script at the command line using the
command:
quartus_sh -t <script>

Any testbench you specify with NativeLink is
included in this script.

QPS5V3
2015.11.02 Preparing for Simulation 1-5

Simulating Altera Designs Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-ip.jsp
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958596582/en-us
http://www.altera.com/literature/an/an351.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulator(s) Simulation File Use

Cadence Incisive
(NC SIM)

/simulation/ncsim/<revision name>_
ncsim_<rtl or gate>_<verilog or vhdl>
.tcl

Run this script at the command line using the
command:
quartus_sh -t <script>.

Any testbench you specify with NativeLink is
included in this script.

You can use the following script variables:

• TOP_LEVEL_NAME—The top-level entity of your simulation is often a testbench that instantiates your
design, and then your design instantiates IP cores and/or Qsys systems. Set the value of
TOP_LEVEL_NAME to the top-level entity.

• QSYS_SIMDIR—Specifies the top-level directory containing the simulation files.
• Other variables control the compilation, elaboration, and simulation process.

Generating Version-Independent IP and Qsys Simulation Scripts
The Quartus Prime software includes useful utilities that generate simulation scripts for each IP core or
Qsys system in your design. You can use these utilities to produce a single simulation script that does not
require manual update for upgrades to Quartus Prime software or IP versions.

This scripted method generates simulation scripts that support ModelSim-Altera, all supported versions
of Questa-SIM, VCS, VCSMX, NCSim, and Aldec simulators. These generated scripts are not suitable for
entire design simulation because they lack top-level design information. However, you can easily source
the generated scripts from your top-level simulation script. You can incorporate templates from the
generated scripts into a top-level script.

Use the ip-setup-simulation utility to find all Altera IP cores and Qsys systems in your project. Next,
run the ip-make-simscript utility to generate a combined IP simulation script. The ip-setup-
simulation utility also automates regeneration of a combined simulation script following upgrade of the
software. If you use simulation scripts, run the ip-setup-simulation utility after upgrading software or
IP core version.

Set appropriate variables in the script, or edit the variable assignment directly in the script. If the
simulation script is a Tcl file that is sourced in the simulator, set the variables before sourcing the script. If
the simulation script is a shell script, pass in the variables as command-line arguments to the shell script.

Table 1-6: IP Simulation Script Utilities

Utility Description Syntax Generated Files

ip-setup-

simulation

Finds all Altera IP cores in
your project and
automates regeneration of
a combined simulation
script after upgrading
software or IP versions.

ip-setup-simulation --quartus-

project=<project>.qpf --

output-directory=<directory>

N/A

1-6 Generating Version-Independent IP and Qsys Simulation Scripts
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Utility Description Syntax Generated Files

ip-make-

simscript

Generates a single,
combined simulation
script for all of the IP cores
specified on the command
line. To use ip-make-
simscript, specify one or
more .spd files and an
output directory in the
command. Running the
script compiles IP
simulation models into
various simulation
libraries. Use the
compileto- work option
to compile all simulation
files into a single work
library. Use the --use-
relative-paths option
to use relative paths
whenever possible

ip-make-simscript --

spd=<ipA.spd,ipB.spd> --

output-directory=<directory>

• Aldec—aldec/
rivierapro_setup.tcl

• Cadence—cadence/
ncsim_setup.sh

• Mentor Graphics—
mentor/msim_
setup.tcl

• Synopsys—synopsys/
vcs/vcs_setup.sh

Incorporating IP Simulation Scripts in Top-Level Scripts
You can incorporate generated IP core simulation scripts into a top-level simulation script that controls
simulation of your entire design. After generating a combined IP simulation script, you can copy the
template sections and modify them for use in a new top-level script file.

Figure 1-1: Incorporating IP Simulation Scripts into Top-Level Script

Top-Level Simulation Script

Specify:
 TOP_LEVEL_NAME
 Additional compile and elaboration options

Source the Generated Combined IP Simulation Script
(e.g., source msim_setup.tcl)

 Compile design files
 Elaborate
 Simulate

Individual IP
Simulation Scripts

Simulation Script
with Combined IP

Includes Guidelines for
Use and Templates

Run ip_setup_simulation
For Quartus Prime Project

1. Run ip-setup-simulation on the project:

ip-setup-simulation --quartus-project=<project>.qpf
 --output-directory=<directory>

2. Copy the template sections from the simulator-specific generated scripts and paste them into a new
top-level file. The examples in this document assume that the top-level simulation script file is in the

QPS5V3
2015.11.02 Incorporating IP Simulation Scripts in Top-Level Scripts 1-7

Simulating Altera Designs Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

project directory, and that the generated simulation scripts are located in a directory one level below
the project directory.

3. After pasting the template sections, remove the comments at the beginning of each line from the
copied template sections.

4. Make any other modification to match your design simulation requirements, for example:
a. Specify the TOP_LEVEL_NAME variable to the design’s simulation top-level file.
b. Compile the top-level HDL file (e.g. a test program) and all other files in the design.
c. Specify any other changes, such as using the grep command-line utility to search a transcript file

for error signatures, or e-mail a report.

Incorporating Aldec IP Simulation Scripts
To incorporate generated Aldec simulation scripts into a top-level project simulation script, follow these
steps:

1. The generated simulation script contains the following template lines. Cut and paste these lines into a
new file. For example, sim_top.tcl.

Start of template
If the copied and modified template file is "aldec.do", run it as:
vsim -c -do aldec.do

Source the generated sim script
source rivierapro_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the user top-level
vlog -sv2k5 ../../top.sv
Elaborate the design.
elab
Run the simulation
run
Report success to the shell
exit -code 0
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "aldec.do", run it as:
vsim -c -do aldec.do

Source the generated sim script source rivierapro_setup.tcl
Compile eda/sim_lib contents first dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the user top-level vlog -sv2k5 ../../top.sv
Elaborate the design.
elab
Run the simulation
run
Report success to the shell

1-8 Incorporating Aldec IP Simulation Scripts
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

exit -code 0
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

set TOP_LEVEL_NAME sim_top vlog –sv2k5 ../../sim_top.sv

4. Specify any other changes required to match your design simulation requirements.
5. Run the new top-level script from the generated simulation directory:

vsim –c –do <path to sim_top>.tcl

Incorporating Cadence IP Simulation Scripts
To incorporate generated Cadence IP simulation scripts into a top-level project simulation script, follow
these steps:

1. The generated simulation script contains the following template lines. Cut and paste these lines into a
new file. For example, ncsim.sh.

Start of template
If the copied and modified template file is "ncsim.sh", run it as:
./ncsim.sh

Do the file copy, dev_com and com steps
source ncsim_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1

Compile the top level module
ncvlog -sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the user-defined sim options, so the simulation
runs forever (until $finish()).
source ncsim_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME=top \
USER_DEFINED_SIM_OPTIONS=""
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "ncsim.sh", run it as:
./ncsim.sh

Do the file copy, dev_com and com steps
source ncsim_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1
Compile the top level module
ncvlog -sv "$QSYS_SIMDIR/../top.sv"
Do the elaboration and sim steps
Override the top-level name
Override the user-defined sim options, so the simulation
runs forever (until $finish()).
source ncsim_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \

QPS5V3
2015.11.02 Incorporating Cadence IP Simulation Scripts 1-9

Simulating Altera Designs Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SKIP_COM=1 \
TOP_LEVEL_NAME=top \
USER_DEFINED_SIM_OPTIONS=""
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

TOP_LEVEL_NAME=sim_top \

4. Make the appropriate changes to the compilation of the your top-level file, for example:

ncvlog -sv "$QSYS_SIMDIR/../top.sv"

5. Specify any other changes required to match your design simulation requirements.
6. Run the resulting top-level script from the generated simulation directory by specifying the path to

ncsim.sh.

Incorporating ModelSim IP Simulation Scripts
To incorporate generated ModelSim IP simulation scripts into a top-level project simulation script, follow
these steps:

1. The generated simulation script contains the following template lines. Cut and paste these lines into a
new file. For example, sim_top.tcl.

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script
source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the user top-level
vlog -sv ../../top.sv
Elaborate the design.
elab
Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

2. Delete the first two characters of each line (comment and space):

Start of template
If the copied and modified template file is "mentor.do", run it
as: vsim -c -do mentor.do

Source the generated sim script source msim_setup.tcl
Compile eda/sim_lib contents first
dev_com
Override the top-level name (so that elab is useful)
set TOP_LEVEL_NAME top
Compile the standalone IP.
com
Compile the user top-level vlog -sv ../../top.sv
Elaborate the design.
elab

1-10 Incorporating ModelSim IP Simulation Scripts
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Run the simulation
run -a
Report success to the shell
exit -code 0
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

set TOP_LEVEL_NAME sim_top vlog -sv ../../sim_top.sv

4. Specify any other changes required to match your design simulation requirements.
5. Run the resulting top-level script from the generated simulation directory:

vsim –c –do <path to sim_top>.tcl

Incorporating VCS IP Simulation Scripts
To incorporate generated Synopsys VCS simulation scripts into a top-level project simulation script,
follow these steps:

1. The generated simulation script contains these template lines. Cut and paste the lines preceding the
“helper file” into a new executable file. For example, synopsys_vcs.f.

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the user-defined sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh \
TOP_LEVEL_NAME=top \
USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'" \
USER_DEFINED_SIM_OPTIONS=""

helper file: synopsys_vcs.f
+systemverilogext+.sv
../../../top.sv
End of template

2. Delete the first two characters of each line (comment and space) for the vcs.sh file, as shown below:

Start of template
If the copied and modified template file is "vcs_sim.sh", run it
as: ./vcs_sim.sh

Override the top-level name
specify a command file containing elaboration options
(system verilog extension, and compile the top-level).
Override the user-defined sim options, so the simulation
runs forever (until $finish()).
source vcs_setup.sh \
TOP_LEVEL_NAME=top \

QPS5V3
2015.11.02 Incorporating VCS IP Simulation Scripts 1-11

Simulating Altera Designs Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

USER_DEFINED_ELAB_OPTIONS="'-f ../../../synopsys_vcs.f'" \
USER_DEFINED_SIM_OPTIONS=""

3. Delete the first two characters of each line (comment and space) for the synopsys_vcs.f file, as shown
below:

helper file: synopsys_vcs.f
 +systemverilogext+.sv
 ../../../top.sv
End of template

4. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

TOP_LEVEL_NAME=sim_top \

5. Specify any other changes required to match your design simulation requirements.
6. Run the resulting top-level script from the generated simulation directory by specifying the path to

vcs_sim.sh.

Incorporating VCS MX IP Simulation Scripts
To incorporate generated Synopsys VCS MX simulation scripts for use in top-level project simulation
scripts, follow these steps:

1. The generated simulation script contains these template lines. Cut and paste the lines preceding the
“helper file” into a new executable file. For example, vcsmx.sh.

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh \
SKIP_ELAB=1 \

SKIP_SIM=1

Compile the top level module vlogan +v2k
 +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the user-defined sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME="'-top top'" \
USER_DEFINED_SIM_OPTIONS=""
End of template

2. Delete the first two characters of each line (comment and space), as shown below:

Start of template
If the copied and modified template file is "vcsmx_sim.sh", run
it as: ./vcsmx_sim.sh

Do the file copy, dev_com and com steps
source vcsmx_setup.sh \
SKIP_ELAB=1 \
SKIP_SIM=1

1-12 Incorporating VCS MX IP Simulation Scripts
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compile the top level module
vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../top.sv"

Do the elaboration and sim steps
Override the top-level name
Override the user-defined sim options, so the simulation runs
forever (until $finish()).
source vcsmx_setup.sh \
SKIP_FILE_COPY=1 \
SKIP_DEV_COM=1 \
SKIP_COM=1 \
TOP_LEVEL_NAME="'-top top'" \
USER_DEFINED_SIM_OPTIONS=""
End of template

3. Modify the TOP_LEVEL_NAME and compilation step appropriately, depending on the simulation’s top-
level file. For example:

TOP_LEVEL_NAME=”-top sim_top’” \

4. Make the appropriate changes to the compilation of the your top-level file, for example:

vlogan +v2k +systemverilogext+.sv "$QSYS_SIMDIR/../sim_top.sv"

5. Specify any other changes required to match your design simulation requirements.
6. Run the resulting top-level script from the generated simulation directory by specifying the path to

vcsmx_sim.sh.

Compiling Simulation Models
The Quartus Prime software includes simulation models for all Altera IP cores. These models include IP
functional simulation models, and device family-specific models in the Quartus Prime< installation path>/
eda/sim_lib directory. These models include IEEE encrypted Verilog HDL models for both Verilog HDL
and VHDL simulation.

Before running simulation, you must compile the appropriate simulation models from the Altera
simulation libraries using any of the following methods:

• Use the NativeLink feature to automatically compile your design, Altera IP, simulation model libraries,
and testbench.

• Run the Simulation Library Compiler to compile all RTL and gate-level simulation model libraries for
your device, simulator, and design language.

• Compile Altera simulation models manually with your simulator.

After you compile the simulation model libraries, you can reuse these libraries in subsequent simulations.

Note: The specified timescale precision must be within 1ps when using Altera simulation models.

Related Information
Altera Simulation Models

Generating IP Simulation Files for RTL Simulation
The Quartus Prime software supports both Verilog HDL and VHDL simulation of encrypted and
unencrypted Altera IP cores. If your design includes Altera IP cores, you must compile any corresponding
IP simulation models in your simulator with the rest of your design and testbench. The Quartus Prime
software generates and copies the simulation models for IP cores to your project directory.

QPS5V3
2015.11.02 Compiling Simulation Models 1-13

Simulating Altera Designs Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#eda/eda_topics/quartus2/eda_ref_presynth_lib.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use the following files to simulate your Altera IP variation.

Table 1-7: Altera IP Simulation Files

File Type Description File Name

Simulator
setup script

Simulator-specific script to compile, elaborate, and
simulate Altera IP models and simulation model
library files. Copy the commands into your simulation
script, or edit these files to compile, elaborate, and
simulate your design and testbench.

Cadence

• cds.lib
• ncsim_setup.sh
• hdl.var

Mentor Graphics

• msim_setup.tcl

Synopsys

• synopsys_sim.setup
• vcs_setup.sh
• vcsmx_setup.sh

Aldec

• rivierapro_setup.tcl

Simulation IP
File (.sip) or
Qsys System
File (.qsys)

The .sip and .qsys files contain IP core simulation
library mapping information. To use NativeLink for
Arria 10 devices and later, you must add the .qsys file
generated for IP or Qsys system to your project. To use
NativeLink for all other device families, you must add
the .qip and .sip files generated for IP or Qsys systems
to your project.

<design name>.sip

IP functional
simulation
models

IP functional simulation models are cycle-accurate
VHDL or Verilog HDL models generated by the
Quartus Prime software for some Altera IP cores. IP
functional simulation models support fast functional
simulation of IP using industry-standard VHDL and
Verilog HDL simulators.

<my_ip>.vho

<my_ip>.vo

IEEE
encrypted
models

Arria V, Cyclone V, Stratix V, and newer simulation
model libraries and IP simulation models are provided
in Verilog HDL and IEEE encrypted Verilog HDL.
VHDL simulation of these models is supported using
your simulator's co-simulation capabilities. IEEE
encrypted Verilog HDL models are significantly faster
than IP functional simulation models.

<my_ip>.v

Generating IP Functional Simulation Models for RTL Simulation
Altera provides IP functional simulation models for some Altera IP cores. To generate IP functional
simulation models, follow these steps:

• Turn on the Generate Simulation Model option when parameterizing the IP core.
• When you simulate your design, compile only the .vo or .vho for these IP cores in your simulator. In

this case you should not compile the corresponding HDL file. The encrypted HDL file supports
synthesis by only the Quartus Prime software.

1-14 Generating IP Functional Simulation Models for RTL Simulation
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Altera IP cores that do not require IP functional simulation models for simulation, do not provide
the Generate Simulation Model option in the IP core parameter editor.

Note: Many recently released Altera IP cores support RTL simulation using IEEE Verilog HDL
encryption. IEEE encrypted models are significantly faster than IP functional simulation models.
You can simulate the models in both Verilog HDL and VHDL designs.

Related Information
AN 343: OpenCore Evaluation of AMPP Megafunctions

Running a Simulation (NativeLink Flow)
The NativeLink feature integrates your EDA simulator with the Quartus Prime software and automates
the following simulation steps:

• Set and reuse simulation settings
• Generate simulator-specific files and simulation scripts
• Compile Altera simulation libraries
• Launch your simulator automatically following Quartus Prime Analysis & Elaboration, Analysis &

Synthesis, or after a full compilation.

Note: To use NativeLink for Arria 10 devices and later, you must add to your project the .qsys file
generated for IP or Qsys system. To use NativeLink for all other device families, you must add to
your project the .qip and .sip files generated for IP or Qsys systems.

Setting Up Simulation (NativeLink Flow)
Before running simulation using the NativeLink flow, you must specify settings for your simulator in the
Quartus Prime software. To specify simulation settings in the Quartus Prime software, follow these steps:

1. Open a Quartus Prime project.
2. Click Tools > Options and specify the location of your simulator executable file .

Table 1-8: Execution Paths for EDA Simulators

Simulator Path

Mentor Graphics
ModelSim-Altera

<drive letter>:\<simulator install path>\
win32aloem (Windows)

/<simulator install path>/bin (Linux)

Mentor Graphics
ModelSim
Mentor Graphics
QuestaSim

<drive letter>:\<simulator install path>\win32
(Windows)

<simulator install path>/bin (Linux)

Synopsys VCS/VCS MX <simulator install path>/bin (Linux)

Cadence Incisive
Enterprise

<simulator install path>/tools/bin (Linux)

QPS5V3
2015.11.02 Running a Simulation (NativeLink Flow) 1-15

Simulating Altera Designs Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an343.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulator Path

Aldec Active-HDL
Aldec Riviera-PRO

<drive letter>:\<simlulator install path>\bin
(Windows)
<simulator install path>/bin (Linux)

3. Click Assignments > Settings and specify options on the Simulation page and More NativeLink
Settings dialog box. Specify default options for simulation library compilation, netlist and tool
command script generation, and for launching RTL or gate-level simulation automatically following
Quartus Prime processing.

4. If your design includes a testbench, turn on Compile test bench and then click Test Benches to specify
options for each testbench. Alternatively, turn on Use script to compile testbench and specify the
script file.

5. If you want to use a script to setup simulation, turn on Use script to setup simulation.

Running RTL Simulation (NativeLink Flow)
To run RTL simulation using the NativeLink flow, follow these steps:

1. Set up the simulation environment.
2. Click Processing > Start > Analysis and Elaboration.
3. Click Tools > Run Simulation Tool > RTL Simulation.

NativeLink compiles simulation libraries and launches and runs your RTL simulator automatically
according to the NativeLink settings.

4. Review and analyze the simulation results in your simulator. Correct any functional errors in your
design. If necessary, re-simulate the design to verify correct behavior.

Running Gate-Level Simulation (NativeLink Flow)
To run gate-level simulation with the NativeLink flow, follow these steps:

1. Prepare for simulation.
2. Set up the simulation environment. To generate only a functional (rather than timing) gate-level

netlist, click More EDA Netlist Writer Settings, and turn on Generate netlist for functional
simulation only.

3. To synthesize the design, follow one of these steps:

• To generate a post-fit functional or post-fit timing netlist and then automatically simulate your
design according to your NativeLink settings, Click Processing > Start Compilation. Skip to step 6.

• To synthesize the design for post-synthesis functional simulation only, click Processing > Start >
Start Analysis and Synthesis.

4. To generate the simulation netlist, click Start EDA Netlist Writer.
5. Click Tools > Run Simulation Tool > Gate Level Simulation.
6. Review and analyze the simulation results in your simulator. Correct any unexpected or incorrect

conditions found in your design. Simulate the design again until you verify correct behavior.

1-16 Running RTL Simulation (NativeLink Flow)
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running a Simulation (Custom Flow)
Use a custom simulation flow to support any of the following more complex simulation scenarios:

• Custom compilation, elaboration, or run commands for your design, IP, or simulation library model
files (for example, macros, debugging/optimization options, simulator-specific elaboration or run-time
options)

• Multi-pass simulation flows
• Flows that use dynamically generated simulation scripts

Use these to compile libraries and generate simulation scripts for custom simulation flows:

• NativeLink-generated scripts—use NativeLink only to generate simulation script templates to develop
your own custom scripts.

• Simulation Library Compiler—compile Altera simulation libraries for your device, HDL, and
simulator. Generate scripts to compile simulation libraries as part of your custom simulation flow.
This tool does not compile your design, IP, or testbench files.

• IP and Qsys simulation scripts—use the scripts generated for Altera IP cores and Qsys systems as
templates to create simulation scripts. If your design includes multiple IP cores or Qsys systems, you
can combine the simulation scripts into a single script, manually or by using the
ip-make-simscript utility.

Use the following steps in a custom simulation flow:

1. Compile the design and testbench files in your simulator.
2. Run the simulation in your simulator.

Post-synthesis and post-fit gate-level simulations run significantly slower than RTL simulation. Altera
recommends that you verify your design using RTL simulation for functionality and use the TimeQuest
timing analyzer for timing. Timing simulation is not supported for Arria V, Cyclone V, Stratix V, and
newer families.

Related Information
Running EDA Simulators

Document Revision History
This document has the following revision history.

QPS5V3
2015.11.02 Running a Simulation (Custom Flow) 1-17

Simulating Altera Designs Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#eda/simulation/activeHDL/eda_view_aldec.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

2015.11.02 15.1.0 • Added new Generating
Version-Independent IP
Simulation Scripts topic.

• Added example IP simulation
script templates for all
supported simulators.

• Added new Incorporating IP
Simulation Scripts in Top-
Level Scripts topic.

• Updated simulator support
table with latest version
information.

• Changed instances of
Quartus II to Quartus Prime.

2015.05.04 15.0.0 • Updated simulator support
table with latest.

• Gate-level timing simulation
limited to Stratix IV and
Cyclone IV devices.

• Added mixed language
simulation support in the
ModelSim-Altera software.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-
In Manager information with
IP Catalog.

May 2013 13.0.0 • Updated introductory section
and system and IP file
locations.

November 2012 12.1.0 • Revised chapter to reflect
latest changes to other
simulation documentation.

June 2012 12.0.0 • Reorganization of chapter to
reflect various simulation
flows.

• Added NativeLink support
for newer IP cores.

1-18 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Simulating Altera Designs

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November 2011 11.1.0 • Added information about
encrypted Altera simulation
model files.

• Added information about IP
simulation and NativeLink.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V3
2015.11.02 Document Revision History 1-19

Simulating Altera Designs Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Simulating%20Altera%20Designs%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Mentor Graphics ModelSim and QuestaSim
Support 2

2015.11.02

QPS5V3 Subscribe Send Feedback

You can integrate a supported EDA simulator into the Quartus Prime design flow. This document
provides guidelines for simulation of designs with Mentor Graphics® ModelSim-Altera®, ModelSim, or
QuestaSim software. Altera provides the entry-level ModelSim-Altera software, along with precompiled
Altera simulation libraries, to simplify simulation of Altera designs.

Note: The latest version of the ModelSim-Altera software supports native, mixed-language (VHDL/
Verilog HDL/SystemVerilog) co-simulation of plain text HDL. If you have a VHDL-only
simulator, you can use the ModelSim-Altera software to simulate Verilog HDL modules and IP
cores. Alternatively, you can purchase separate co-simulation software.

Related Information
Simulating Altera Designs on page 1-1

Managing Quartus Prime Projects

Quick Start Example (ModelSim with Verilog)
You can adapt the following RTL simulation example to get started quickly with ModelSim:

1. Type the following to specify your EDA simulator and executable path in the Quartus Prime software:
set_user_option -name EDA_TOOL_PATH_MODELSIM <modelsim executable path>
set_global_assignment -name EDA_SIMULATION_TOOL "MODELSIM (verilog)"

2. Compile simulation model libraries using one of the following methods:

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Mentor%20Graphics%20ModelSim%20and%20QuestaSim%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958212952/en-us
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Run NativeLink RTL simulation to compile required design files, simulation models, and run your
simulator. Verify results in your simulator. If you complete this step you can ignore the remaining
steps.

• Use Quartus Prime Simulation Library Compiler to automatically compile all required simulation
models for your design.

• Type the following commands to create and map Altera simulation libraries manually, and then
compile the models manually:

vlib <lib1>_ver
vmap <lib1>_ver <lib1>_ver
vlog -work <lib1> <lib1>

3. Compile your design and testbench files:

vlog -work work <design or testbench name>.v

4. Load the design:

sim -L work -L <lib1>_ver -L <lib2>_ver work.<testbench name>

ModelSim, ModelSim-Altera, and QuestaSim Guidelines
The following guidelines apply to simulation of Altera designs in the ModelSim, ModelSim-Altera, or
QuestaSim software.

Using ModelSim-Altera Precompiled Libraries
Precompiled libraries for both functional and gate-level simulations are provided for the ModelSim-
Altera software. You should not compile these library files before running a simulation. No precompiled
libraries are provided for ModelSim or QuestaSim. You must compile the necessary libraries to perform
functional or gate-level simulation with these tools.

The precompiled libraries provided in <ModelSim-Altera path>/altera/ must be compatible with the
version of the Quartus Prime software that creates the simulation netlist. To verify compatibility of
precompiled libraries with your version of the Quartus Prime software, refer to the <ModelSim-Altera
path>/altera/version.txt file. This file indicates the Quartus Prime software version and build of the
precompiled libraries.

Note: Encrypted Altera simulation model files shipped with the Quartus Prime software version 10.1 and
later can only be read by ModelSim-Altera Edition Software version 6.6c and later. These encrypted
simulation model files are located at the <Quartus Prime System directory>/quartus/eda/sim_lib/
<mentor> directory.

Disabling Timing Violation on Registers
In certain situations, you may want to ignore timing violations on registers and disable the “X”
propagation that occurs. For example, this technique may be helpful to eliminate timing violations in
internal synchronization registers in asynchronous clock-domain crossing.

Before you begin

By default, the x_on_violation_option logic option is enabled for all design registers, resulting in an
output of “X” at timing violation. To disable “X” propagation at timing violations on a specific register,

2-2 ModelSim, ModelSim-Altera, and QuestaSim Guidelines
QPS5V3

2015.11.02

Altera Corporation Mentor Graphics ModelSim and QuestaSim Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20ModelSim%20and%20QuestaSim%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

disable the x_on_violation_option logic option for the specific register, as shown in the following
example from the Quartus Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \ <register_name>

Passing Parameter Information from Verilog HDL to VHDL
You must use in-line parameters to pass values from Verilog HDL to VHDL.

Before you begin

By default, the x_on_violation_option logic option is enabled for all design registers, resulting in an
output of “X” at timing violation. To disable “X” propagation at timing violations on a specific register,
disable the x_on_violation_option logic option for the specific register, as shown in the following
example from the Quartus Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \ <register_name>

Example 2-1: In-line Parameter Passing Example

lpm_add_sub#(.lpm_width(12), .lpm_direction("Add"),
.lpm_type("LPM_ADD_SUB"),
.lpm_hint("ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO"))

lpm_add_sub_component (
 .dataa (dataa),
 .datab (datab),
 .result (sub_wire0)
);

Note: The sequence of the parameters depends on the sequence of the GENERIC in the
VHDL component declaration.

Increasing Simulation Speed
By default, the ModelSim and QuestaSim software runs in a debug-optimized mode.

Before you begin

To run the ModelSim and QuestaSim software in speed-optimized mode, add the following two vlog
command-line switches. In this mode, module boundaries are flattened and loops are optimized, which
eliminates levels of debugging hierarchy and may result in faster simulation. This switch is not supported
in the ModelSim-Altera simulator.

vlog -fast -05

Simulating Transport Delays
By default, the ModelSim and QuestaSim software filter out all pulses that are shorter than the
propagation delay between primitives.

Turning on the transport delay options in the ModelSim and QuestaSim software prevents the simulator
from filtering out these pulses.

QPS5V3
2015.11.02 Passing Parameter Information from Verilog HDL to VHDL 2-3

Mentor Graphics ModelSim and QuestaSim Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20ModelSim%20and%20QuestaSim%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2-1: Transport Delay Simulation Options (ModelSim and QuestaSim)

Option Description

+transport_path_delays Use when simulation pulses are shorter than the
delay in a gate-level primitive. You must include the
+pulse_e/number and +pulse_r/number options.

+transport_int_delays Use when simulation pulses are shorter than the
interconnect delay between gate-level primitives.
You must include the +pulse_int_e/number and
+pulse_int_r/number options.

Note: The +transport_path_delays and +transport_path_delays options apply automatically during
NativeLink gate-level timing simulation. For more information about either of these options, refer
to the ModelSim-Altera Command Reference installed with the ModelSim and QuestaSim
software.

The following ModelSim and QuestaSim software command shows the command line syntax to perform
a gate-level timing simulation with the device family library:

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo work.filtref_vhd_vec_tst \
+transport_int_delays +transport_path_delays

Viewing Error Messages
ModelSim and QuestaSim error and warning messages are tagged with a vsim or vcom code. To
determine the cause and resolution for a vsim or vcom error or warning, use the verror command.

For example, ModelSim may return the following error:

** Error: C:/altera_trn/DUALPORT_TRY/simulation/modelsim/DUALPORT_TRY.vho(31):
 (vcom-1136) Unknown identifier "stratixiv"

In this case, type the following command:

verror 1136

The following description appears:

vcom Message # 1136:
The specified name was referenced but was not found. This indicates
that either the name specified does not exist or is not visible at
this point in the code.

Generating Power Analysis Files
To generate a timing Value Change Dump File (.vcd) for power analysis, you must first generate a
<filename>_dump_all_vcd_nodes.tcl script file in the Quartus Prime software. You can then run the script
from the ModelSim, QuestaSim, or ModelSim-Altera software to generate a timing <filename>.vcd. for
use in the Quartus Prime PowerPlay power analyzer.

2-4 Viewing Error Messages
QPS5V3

2015.11.02

Altera Corporation Mentor Graphics ModelSim and QuestaSim Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20ModelSim%20and%20QuestaSim%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before you begin

To generate and use a .vcd for power analysis, follow these steps:

1. In the Quartus Prime software, click Assignments > Settings.
2. Under EDA Tool Settings, click Simulation.
3. Turn on Generate Value Change Dump file script, specify the type of output signals to include, and

specify the top-level design instance name in your testbench.
4. Click Processing > Start Compilation.
5. Click Tools > Run EDA Simulation > EDA Gate Level Simulation. The Compiler creates the

<filename>_dump_all_vcd_nodes.tcl file, the ModelSim simulation <filename>_run_msim_gate_vhdl/
verilog.do file (including the .vcd and .tcl execution lines), and all other files for simulation. ModelSim
then automatically runs the generated .do to start the simulation.

6. Stop the simulation if your testbench does not have a break point. ModelSim generates the .vcd only
after simulation ends with the End Simulation function.

Viewing Simulation Waveforms
ModelSim-Altera, ModelSim, and QuestaSim automatically generate a Wave Log Format File (.wlf)
following simulation. You can use the .wlf to generate a waveform view.

Before you begin

To view a waveform from a .wlf through ModelSim-Altera, ModelSim, or QuestaSim, perform the
following steps:

1. Type vsim at the command line. The ModelSim/QuestaSim or ModelSim-Altera dialog box appears.
2. Click File > Datasets. The Datasets Browser dialog box appears.
3. Click Open and select your .wlf.
4. Click Done.
5. In the Object browser, select the signals that you want to observe.
6. Click Add > Wave, and then click Selected Signals.

You must first convert the .vcd to a .wlf before you can view a waveform in ModelSim-Altera,
ModelSim, or QuestaSim.

7. To convert the the .vcd to a .wlf, type the following at the command-line:

vcd2wlf <example>.vcd <example>.wlf

8. After conversion, view the .wlf waveform in ModelSim or QuestaSim.
You can convert your .wlf to a .vcd by using the wlf2vcd command

Simulating with ModelSim-Altera Waveform Editor
You can use the ModelSim-Altera Waveform Editor as a simple method to create stimulus vectors for
simulation. You can create this design stimulus via interactive manipulation of waveforms from the wave
window in ModelSim-Altera. With the ModelSim-Altera waveform editor, you can create and edit
waveforms, drive simulation directly from created waveforms, and save created waveforms into a stimulus
file.

Related Information
ModelSim Web Page

QPS5V3
2015.11.02 Viewing Simulation Waveforms 2-5

Mentor Graphics ModelSim and QuestaSim Support Altera Corporation

Send Feedback

http://www.model.com/
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20ModelSim%20and%20QuestaSim%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ModelSim Simulation Setup Script Example
The Quartus Prime software can generate a msim_setup.tcl simulation setup script for IP cores in your
design. The script compiles the required device library models, compiles the design files, and elaborates
the design with or without simulator optimization. To run the script, type source msim_setup.tcl in the
simulator Transcript window.

Alternatively, if you are using the simulator at the command line, you can type the following command:

vsim -c -do msim_setup.tcl

In this example the top-level-simulate.do custom top-level simulation script sets the hierarchy variable
TOP_LEVEL_NAME to top_testbench for the design, and sets the variable QSYS_SIMDIR to the location of
the generated simulation files.

Set hierarchy variables used in the IP-generated files
set TOP_LEVEL_NAME "top_testbench"
set QSYS_SIMDIR "./ip_top_sim"
Source generated simulation script which defines aliases used below
source $QSYS_SIMDIR/mentor/msim_setup.tcl
dev_com alias compiles simulation libraries for device library files
dev_com
com alias compiles IP simulation or Qsys model files and/or Qsys model files in
the correct order
com
Compile top level testbench that instantiates your IP
vlog -sv ./top_testbench.sv
elab alias elaborates the top-level design and testbench
elab
Run the full simulation
run - all

In this example, the top-level simulation files are stored in the same directory as the original IP core, so
this variable is set to the IP-generated directory structure. The QSYS_SIMDIR variable provides the relative
hierarchy path for the generated IP simulation files. The script calls the generated msim_setup.tcl script
and uses the alias commands from the script to compile and elaborate the IP files required for simulation
along with the top-level simulation testbench. You can specify additional simulator elaboration command
options when you run the elab command, for example, elab +nowarnTFMPC. The last command run in
the example starts the simulation.

Unsupported Features
The Quartus Prime software does not support the following ModelSim simulation features:

• Altera does not support companion licensing for ModelSim AE.
• The USB software guard is not supported by versions earlier than Mentor Graphics ModelSim

software version 5.8d.
• For ModelSim-Altera software versions prior to 5.5b, use the PCLS utility included with the software

to set up the license.
• Some versions of ModelSim and QuestaSim support SystemVerilog, PSL assertions, SystemC, and

more. For more information about specific feature support, refer to Mentor Graphics literature

Related Information

• ModelSim-Altera Software Web Page

2-6 ModelSim Simulation Setup Script Example
QPS5V3

2015.11.02

Altera Corporation Mentor Graphics ModelSim and QuestaSim Support

Send Feedback

http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20ModelSim%20and%20QuestaSim%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 2-2: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus
Prime.

2015.05.04 15.0.0 • Added mixed language simulation support in
the ModelSim-Altera software.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager
information with IP Catalog.

November 2012 12.1.0 • Relocated general simulation information to
Simulating Altera Designs.

June 2012 12.0.0 • Removed survey link.

November 2011 11.0.1 • Changed to new document template.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V3
2015.11.02 Document Revision History 2-7

Mentor Graphics ModelSim and QuestaSim Support Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Mentor%20Graphics%20ModelSim%20and%20QuestaSim%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Synopsys VCS and VCS MX Support 3
2015.11.02

QPS5V3 Subscribe Send Feedback

You can integrate your supported EDA simulator into the Quartus Prime design flow. This document
provides guidelines for simulation of Quartus Prime designs with the Synopsys VCS or VCS MX software.

Quick Start Example (VCS with Verilog)
You can adapt the following RTL simulation example to get started quickly with VCS:

1. Type the following to specify your EDA simulator and executable path in the Quartus Prime software:
set_user_option -name EDA_TOOL_PATH_VCS <VCS executable path>
set_global_assignment -name EDA_SIMULATION_TOOL "VCS"

2. Compile simulation model libraries using one of the following methods:

• Run NativeLink RTL simulation to compile required design files, simulation models, and run your
simulator. Verify results in your simulator. If you complete this step you can ignore the remaining
steps.

• Use Quartus Prime Simulation Library Compiler to automatically compile all required simulation
models for your design.

3. Modify the simlib_comp.vcs file to specify your design and testbench files.
4. Type the following to run the VCS simulator:

vcs -R -file simlib_comp.vcs

VCS and QuestaSim Guidelines
The following guidelines apply to simulation of Altera designs in the VCS or VCS MX software:

• Do not specify the -v option for altera_lnsim.sv because it defines a systemverilog package.
• Add -verilog and +verilog2001ext+.v options to make sure all .v files are compiled as verilog 2001

files, and all other files are compiled as systemverilog files.
• Add the -lca option for Stratix V and later families because they include IEEE-encrypted simulation

files for VCS and VCS MX.
• Add -timescale=1ps/1ps to ensure picosecond resolution.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Synopsys%20VCS%20and%20VCS%20MX%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Simulating Transport Delays
By default, the VCS and VCS MX software filter out all pulses that are shorter than the propagation delay
between primitives. Turning on the transport delay options in the VCS and VCS MX software prevents
the simulator from filtering out these pulses.

Table 3-1: Transport Delay Simulation Options (VCS and VCS MX)

Option Description

+transport_path_delays Use when simulation pulses are shorter than the
delay in a gate-level primitive. You must include the
+pulse_e/number and +pulse_r/number options.

+transport_int_delays Use when simulation pulses are shorter than the
interconnect delay between gate-level primitives.
You must include the +pulse_int_e/number and
+pulse_int_r/number options.

Note: The +transport_path_delays and +transport_path_delays options apply automatically during
NativeLink gate-level timing simulation.

The following VCS and VCS MX software command runs a post-synthesis simulation:

vcs -R <testbench>.v <gate-level netlist>.v -v <Altera device family \
library>.v +transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0

Disabling Timing Violation on Registers
In certain situations, you may want to ignore timing violations on registers and disable the “X”
propagation that occurs. For example, this technique may be helpful to eliminate timing violations in
internal synchronization registers in asynchronous clock-domain crossing.

Before you begin

By default, the x_on_violation_option logic option is enabled for all design registers, resulting in an
output of “X” at timing violation. To disable “X” propagation at timing violations on a specific register,
disable the x_on_violation_option logic option for the specific register, as shown in the following
example from the Quartus Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \ <register_name>

Generating Power Analysis Files
You can generate a Verilog Value Change Dump File (.vcd) for power analysis in the Quartus Prime
software, and then run the .vcd from the VCS software. Use this .vcd for power analysis in the Quartus
Prime PowerPlay power analyzer.

3-2 Simulating Transport Delays
QPS5V3

2015.11.02

Altera Corporation Synopsys VCS and VCS MX Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20VCS%20and%20VCS%20MX%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before you begin

To generate and use a .vcd for power analysis, follow these steps:

1. In the Quartus Prime software, click Assignments > Settings.
2. Under EDA Tool Settings, click Simulation.
3. Turn on Generate Value Change Dump file script, specify the type of output signals to include, and

specify the top-level design instance name in your testbench.
4. Click Processing > Start Compilation.
5. Use the following command to include the script in your testbench where the design under test (DUT)

is instantiated:
include <revision_name>_dump_all_vcd_nodes.v

Note: Include the script within the testbench module block. If you include the script outside of the
testbench module block, syntax errors occur during compilation.

6. Run the simulation with the VCS command. Exit the VCS software when the simulation is finished
and the <revision_name>.vcd file is generated in the simulation directory.

VCS Simulation Setup Script Example
The Quartus Prime software can generate a simulation setup script for IP cores in your design. The scripts
contain shell commands that compile the required simulation models in the correct order, elaborate the
top-level design, and run the simulation for 100 time units by default. You can run these scripts from a
Linux command shell.

The scripts for VCS and VCS MX are vcs_setup.sh (for Verilog HDL or SystemVerilog) and
vcsmx_setup.sh (combined Verilog HDL and SystemVerilog with VHDL). Read the generated .sh script
to see the variables that are available for override when sourcing the script or redefining directly if you
edit the script. To set up the simulation for a design, use the command-line to pass variable values to the
shell script.

Example 3-1: Using Command-line to Pass Simulation Variables

sh vcsmx_setup.sh\
USER_DEFINED_ELAB_OPTIONS=+rad\
USER_DEFINED_SIM_OPTIONS=+vcs+lic+wait

Example 3-2: Example Top-Level Simulation Shell Script for VCS-MX

Run generated script to compile libraries and IP simulation files
Skip elaboration and simulation of the IP variation
sh ./ip_top_sim/synopsys/vcsmx/vcsmx_setup.sh SKIP_ELAB=1 SKIP_SIM=1
QSYS_SIMDIR="./ip_top_sim"
#Compile top-level testbench that instantiates IP
vlogan -sverilog ./top_testbench.sv
#Elaborate and simulate the top-level design
vcs –lca –t ps <elaboration control options> top_testbench
simv <simulation control options>

QPS5V3
2015.11.02 VCS Simulation Setup Script Example 3-3

Synopsys VCS and VCS MX Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20VCS%20and%20VCS%20MX%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3-3: Example Top-Level Simulation Shell Script for VCS

Run script to compile libraries and IP simulation files
sh ./ip_top_sim/synopsys/vcs/vcs_setup.sh TOP_LEVEL_NAME=”top_testbench”\
Pass VCS elaboration options to compile files and elaborate top-level
 passed to the script as the TOP_LEVEL_NAME
USER_DEFINED_ELAB_OPTIONS="top_testbench.sv"\
Pass in simulation options and run the simulation for specified amount of
time.
USER_DEFINED_SIM_OPTIONS=”<simulation control options>

Document Revision History

Table 3-2: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus
Prime.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager
information with IP Catalog.

November 2012 12.1.0 • Relocated general simulation information to
Simulating Altera Designs.

June 2012 12.0.0 • Removed survey link.

November 2011 11.0.1 • Changed to new document template.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

3-4 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Synopsys VCS and VCS MX Support

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Synopsys%20VCS%20and%20VCS%20MX%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Cadence Incisive Enterprise (IES) Support 4
2015.11.02

QPS5V3 Subscribe Send Feedback

You can integrate your supported EDA simulator into the Quartus Primedesign flow. This chapter
provides specific guidelines for simulation of Quartus Prime designs with the Cadence Incisive Enterprise
(IES) software.

Quick Start Example (NC-Verilog)
You can adapt the following RTL simulation example to get started quickly with IES:

1. Type the following to specify your EDA simulator and executable path in the Quartus Prime software:
set_user_option -name EDA_TOOL_PATH_NCSIM <ncsim executable path>
set_global_assignment -name EDA_SIMULATION_TOOL "NC-Verilog (Verilog)"

2. Compile simulation model libraries using one of the following methods:

• Run NativeLink RTL simulation to compile required design files, simulation models, and run your
simulator. Verify results in your simulator. If you complete this step you can ignore the remaining
steps.

• Use Quartus Prime Simulation Library Compiler to automatically compile all required simulation
models for your design.

• Map Altera simulation libraries by adding the following commands to a cds.lib file:

include ${CDS_INST_DIR}/tools/inca/files/cds.lib
DEFINE <lib1>_ver <lib1_ver>

Then, compile Altera simulation models manually:

 vlog -work <lib1_ver>

3. Elaborate your design and testbench with IES:

ncelab <work library>.<top-level entity name>

4. Run the simulation:

ncsim <work library>.<top-level entity name>

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Cadence%20Incisive%20Enterprise%20(IES)%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Cadence Incisive Enterprise (IES) Guidelines
The following guidelines apply to simulation of Altera designs in the IES software:

• Do not specify the -v option for altera_lnsim.sv because it defines a systemverilog package.
• Add -verilog and +verilog2001ext+.v options to make sure all .v files are compiled as verilog 2001

files, and all other files are compiled as systemverilog files.
• Add the -lca option for Stratix V and later families because they include IEEE-encrypted simulation

files for IES.
• Add -timescale=1ps/1ps to ensure picosecond resolution.

Using GUI or Command-Line Interfaces
Altera supports both the IES GUI and command-line simulator interfaces.

To start the IES GUI, type nclaunch at a command prompt.

Table 4-1: Simulation Executables

Program Function

ncvlog

ncvhdl

ncvlog compiles your Verilog HDL code and performs syntax and
static semantics checks.

ncvhdl compiles your VHDL code and performs syntax and static
semantics checks.

ncelab Elaborates the design hierarchy and determines signal connectivity.
ncsdfc Performs back-annotation for simulation with VHDL simulators.
ncsim Runs mixed-language simulation. This program is the simulation

kernel that performs event scheduling and executes the simulation
code.

Elaborating Your Design
The simulator automatically reads the .sdo file during elaboration of the Quartus Prime-generated
Verilog HDL or SystemVerilog HDL netlist file. The ncelab command recognizes the embedded system
task $sdf_annotate and automatically compiles and annotates the .sdo file by running ncsdfc
automatically.

VHDL netlist files do not contain system task calls to locate your .sdf file; therefore, you must compile the
standard .sdo file manually. Locate the .sdo file in the same directory where you run elaboration or
simulation. Otherwise, the $sdf_annotate task cannot reference the .sdo file correctly. If you are starting
an elaboration or simulation from a different directory, you can either comment out the $sdf_annotate
and annotate the .sdo file with the GUI, or add the full path of the .sdo file.

Note: If you use NC-Sim for post-fit VHDL functional simulation of a Stratix V design that includes
RAM, an elaboration error might occur if the component declaration parameters are not in the
same order as the architecture parameters. Use the -namemap_mixgen option with the ncelab
command to match the component declaration parameter and architecture parameter names.

4-2 Cadence Incisive Enterprise (IES) Guidelines
QPS5V3

2015.11.02

Altera Corporation Cadence Incisive Enterprise (IES) Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20Incisive%20Enterprise%20(IES)%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Back-Annotating Simulation Timing Data (VHDL Only)
You can back annotate timing information in a Standard Delay Output File (.sdo) for VHDL simulators.
To back annotate the .sdo timing data at the command line, follow these steps:

1. To compile the .sdo with the ncsdfc program, type the following command at the command prompt.
The ncsdfc program generates an <output name>.sdf.X compiled .sdo file

ncsdfc <project name>_vhd.sdo –output <output name>

Note: If you do not specify an output name, ncsdfc uses <project name>.sdo.X
2. Specify the compiled .sdf file for the project by adding the following command to an ASCII SDF

command file for the project:

COMPILED_SDF_FILE = "<project name>.sdf.X" SCOPE = <instance path>

3. After compiling the .sdf file, type the following command to elaborate the design:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File>

Example 4-1: Example SDF Command File

// SDF command file sdf_file
COMPILED_SDF_FILE = "lpm_ram_dp_test_vhd.sdo.X",
SCOPE = :tb,
MTM_CONTROL = "TYPICAL",
SCALE_FACTORS = "1.0:1.0:1.0",
SCALE_TYPE = "FROM_MTM";

Disabling Timing Violation on Registers
In certain situations, you may want to ignore timing violations on registers and disable the “X”
propagation that occurs. For example, this technique may be helpful to eliminate timing violations in
internal synchronization registers in asynchronous clock-domain crossing.

Before you begin

By default, the x_on_violation_option logic option is enabled for all design registers, resulting in an
output of “X” at timing violation. To disable “X” propagation at timing violations on a specific register,
disable the x_on_violation_option logic option for the specific register, as shown in the following
example from the Quartus Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \ <register_name>

Simulating Pulse Reject Delays
By default, the IES software filters out all pulses that are shorter than the propagation delay between
primitives.
Setting the pulse reject delays options in the IES software prevents the simulation tool from filtering out
these pulses. Use the following options to ensure that all signal pulses are seen in the simulation results.

QPS5V3
2015.11.02 Back-Annotating Simulation Timing Data (VHDL Only) 4-3

Cadence Incisive Enterprise (IES) Support Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20Incisive%20Enterprise%20(IES)%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4-2: Pulse Reject Delay Options

Program Function

-PULSE_R Use when simulation pulses are shorter than the delay in a gate-level
primitive. The argument is the percentage of delay for pulse reject
limit for the path

-PULSE_INT_R Use when simulation pulses are shorter than the interconnect delay
between gate-level primitives. The argument is the percentage of delay
for pulse reject limit for the path

Viewing Simulation Waveforms
IES generates a .trn file automatically following simulation. You can use the .trn for generating the
SimVision waveform view.

Before you begin

To view a waveform from a .trn file through SimVision, follow these steps:

1. Type simvision at the command line. The Design Browser dialog box appears.
2. Click File > Open Database and click the .trn file.
3. In the Design Browser dialog box, select the signals that you want to observe from the Hierarchy.
4. Right-click the selected signals and click Send to Waveform Window.

You cannot view a waveform from a .vcd file in SimVision, and the .vcd file cannot be converted to
a .trn file.

IES Simulation Setup Script Example
The Quartus Prime software can generate a ncsim_setup.sh simulation setup script for IP cores in your
design. The script contains shell commands that compile the required device libraries, IP, or Qsys
simulation models in the correct order. The script then elaborates the top-level design and runs the
simulation for 100 time units by default. You can run these scripts from a Linux command shell. To set up
the simulation script for a design, you can use the command-line to pass variable values to the shell script.

Read the generated .sh script to see the variables that are available for you to override when you source the
script or that you can redefine directly in the generated .sh script. For example, you can specify additional
elaboration and simulation options with the variables USER_DEFINED_ELAB_OPTIONS and
USER_DEFINED_SIM_OPTIONS.

Example 4-2: Example Top-Level Simulation Shell Script for Incisive (NCSIM)

Run script to compile libraries and IP simulation files
Skip elaboration and simulation of the IP variation
sh ./ip_top_sim/cadence/ncsim_setup.sh SKIP_ELAB=1 SKIP_SIM=1 QSYS_SIMDIR="./
ip_top_sim"

#Compile the top-level testbench that instantiates your IP
ncvlog -sv ./top_testbench.sv
#Elaborate and simulate the top-level design

4-4 Viewing Simulation Waveforms
QPS5V3

2015.11.02

Altera Corporation Cadence Incisive Enterprise (IES) Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20Incisive%20Enterprise%20(IES)%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ncelab <elaboration control options> top_testbench
ncsim <simulation control options> top_testbench

Document Revision History

Table 4-3: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus
Prime.

2014.08.18 14.0.a10.0 • Corrected incorrect references to VCS and
VCS MX.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager
information with IP Catalog.

November 2012 12.1.0 • Relocated general simulation information to
Simulating Altera Designs.

June 2012 12.0.0 • Removed survey link.

November 2011 11.0.1 • Changed to new document template.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V3
2015.11.02 Document Revision History 4-5

Cadence Incisive Enterprise (IES) Support Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Cadence%20Incisive%20Enterprise%20(IES)%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Aldec Active-HDL and Riviera-PRO Support 5
2015.11.02

QPS5V3 Subscribe Send Feedback

You can integrate your supported EDA simulator into the Quartus Prime design flow. This chapter
provides specific guidelines for simulation of Quartus Prime designs with the Aldec Active-HDL or
Riviera-PRO software.

Quick Start Example (Active-HDL VHDL)
You can adapt the following RTL simulation example to get started quickly with Active-HDL:

1. Type the following to specify your EDA simulator and executable path in the Quartus Prime software:
set_user_option -name EDA_TOOL_PATH_ACTIVEHDL <Active HDL executable path>
set_global_assignment -name EDA_SIMULATION_TOOL "Active-HDL (VHDL)"

2. Compile simulation model libraries using one of the following methods:

• Run NativeLink RTL simulation to compile required design files, simulation models, and run your
simulator. Verify results in your simulator. If you complete this step you can ignore the remaining
steps.

• Use Quartus Prime Simulation Library Compiler to automatically compile all required simulation
models for your design.

• Compile Altera simulation models manually:

vlib <library1> <altera_library1>
vcom -strict93 -dbg -work <library1> <lib1_component/pack.vhd> <lib1.vhd>

3. Create and open the workspace:

createdesign <workspace name> <workspace path>
opendesign -a <workspace name>.adf

4. Create the work library and compile the netlist and testbench files:

vlib work
vcom -strict93 -dbg -work work <output netlist> <testbench file>

5. Load the design:

vsim +access+r -t 1ps +transport_int_delays +transport_path_delays \
-L work -L <lib1> -L <lib2> work.<testbench module name>

6. Run the simulation in the Active-HDL simulator.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Aldec%20Active-HDL%20and%20Riviera-PRO%20Support&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Aldec Active-HDL and Riviera-PRO Guidelines
The following guidelines apply to simulating Altera designs in the Active-HDL or Riviera-PRO software.

Compiling SystemVerilog Files
If your design includes multiple SystemVerilog files, you must compile the System Verilog files together
with a single alog command. If you have Verilog files and SystemVerilog files in your design, you must
first compile the Verilog files, and then compile only the SystemVerilog files in the single alog command.

Simulating Transport Delays
By default, the Active-HDL or Riviera-PRO software filters out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay options in the in the Active-HDL
or Riviera-PRO software prevents the simulator from filtering out these pulses.

Table 5-1: Transport Delay Simulation Options

Option Description

+transport_path_delays Use when simulation pulses are shorter than the
delay in a gate-level primitive. You must include the
+pulse_e/number and +pulse_r/number options.

+transport_int_delays Use when simulation pulses are shorter than the
interconnect delay between gate-level primitives.
You must include the +pulse_int_e/number and
+pulse_int_r/number options.

Note: The +transport_path_delays and +transport_path_delays options apply automatically during
NativeLink gate-level timing simulation.

To perform a gate-level timing simulation with the device family library, type the Active-HDL command:

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo \
work.filtref_vhd_vec_tst +transport_int_delays +transport_path_delays

Disabling Timing Violation on Registers
In certain situations, you may want to ignore timing violations on registers and disable the “X”
propagation that occurs. For example, this technique may be helpful to eliminate timing violations in
internal synchronization registers in asynchronous clock-domain crossing.

Before you begin

By default, the x_on_violation_option logic option is enabled for all design registers, resulting in an
output of “X” at timing violation. To disable “X” propagation at timing violations on a specific register,
disable the x_on_violation_option logic option for the specific register, as shown in the following
example from the Quartus Prime Settings File (.qsf).

set_instance_assignment -name X_ON_VIOLATION_OPTION OFF -to \ <register_name>

5-2 Aldec Active-HDL and Riviera-PRO Guidelines
QPS5V3

2015.11.02

Altera Corporation Aldec Active-HDL and Riviera-PRO Support

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Aldec%20Active-HDL%20and%20Riviera-PRO%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using Simulation Setup Scripts
The Quartus Prime software can generate a rivierapro_setup.tcl simulation setup script for IP cores in
your design. The use and content of the script file is similar to the msim_setup.tcl file used by the
ModelSim simulator.

Document Revision History

Table 5-2: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus
Prime.

2014.06.30 14.0.0 • Replaced MegaWizard Plug-In Manager
information with IP Catalog.

November 2012 12.1.0 • Relocated general simulation information to
Simulating Altera Designs.

June 2012 12.0.0 • Removed survey link.

November 2011 11.0.1 • Changed to new document template.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V3
2015.11.02 Using Simulation Setup Scripts 5-3

Aldec Active-HDL and Riviera-PRO Support Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Aldec%20Active-HDL%20and%20Riviera-PRO%20Support%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Timing Analysis Overview 6
2015.11.02

QPS5V3 Subscribe Send Feedback

Timing Analysis Overview
Comprehensive static timing analysis involves analysis of register-to-register, I/O, and asynchronous reset
paths. Timing analysis with the TimeQuest Timing Analyzer uses data required times, data arrival times,
and clock arrival times to verify circuit performance and detect possible timing violations.

The TimeQuest analyzer determines the timing relationships that must be met for the design to correctly
function, and checks arrival times against required times to verify timing. This chapter is an overview of
the concepts you need to know to analyze your designs with the TimeQuest analyzer.

Related Information

• The Quartus Prime TimeQuest Timing Analyzer on page 7-1
For more information about the TimeQuest analyzer flow and TimeQuest examples.

TimeQuest Terminology and Concepts

Table 6-1: TimeQuest Analyzer Terminology

Term Definition

nodes Most basic timing netlist unit. Used to represent ports, pins,
and registers.

cells Look-up tables (LUT), registers, digital signal processing (DSP)
blocks, memory blocks, input/output elements, and so on. (1)

pins Inputs or outputs of cells.

nets Connections between pins.

ports Top-level module inputs or outputs; for example, device pins.

clocks Abstract objects representing clock domains inside or outside
of your design.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Timing%20Analysis%20Overview&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Term Definition

Notes:

1. For Stratix® devices, the LUTs and registers are contained in logic
elements (LE) and modeled as cells.

Timing Netlists and Timing Paths
The TimeQuest analyzer requires a timing netlist to perform timing analysis on any design. After you
generate a timing netlist, the TimeQuest analyzer uses the data to help determine the different design
elements in your design and how to analyze timing.

The Timing Netlist
A sample design for which the TimeQuest analyzer generates a timing netlist equivalent.

Figure 6-1: Sample Design

data1

data2

clk

reg1

reg2

and_inst

reg3

The timing netlist for the sample design shows how different design elements are divided into cells, pins,
nets, and ports.

6-2 Timing Netlists and Timing Paths
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-2: The TimeQuest Analyzer Timing Netlist

reg2

data1

data2

clk clk~clkctrl

reg1

and_inst
reg3 data_out

combout

inclk0

datain

clk
regout

regout

datac

datad

combout
datain

Cells
Cell

Cell

Pin

Pin

outclk

Port

Port

Net
Net

Net

Timing Paths
Timing paths connect two design nodes, such as the output of a register to the input of another register.

Understanding the types of timing paths is important to timing closure and optimization. The TimeQuest
analyzer uses the following commonly analyzed paths:

• Edge paths—connections from ports-to-pins, from pins-to-pins, and from pins-to-ports.
• Clock paths—connections from device ports or internally generated clock pins to the clock pin of a

register.
• Data paths—connections from a port or the data output pin of a sequential element to a port or the

data input pin of another sequential element.
• Asynchronous paths—connections from a port or asynchronous pins of another sequential element

such as an asynchronous reset or asynchronous clear.
Figure 6-3: Path Types Commonly Analyzed by the TimeQuest Analyzer

CLRN

D Q

CLRN

D Q

clk

rst

Clock Path Data Path

Asynchronous Clear Path

data

In addition to identifying various paths in a design, the TimeQuest analyzer analyzes clock characteristics
to compute the worst-case requirement between any two registers in a single register-to-register path. You
must constrain all clocks in your design before analyzing clock characteristics.

QPS5V3
2015.11.02 Timing Paths 6-3

Timing Analysis Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data and Clock Arrival Times
After the TimeQuest analyzer identifies the path type, it can report data and clock arrival times at register
pins.

The TimeQuest analyzer calculates data arrival time by adding the launch edge time to the delay from the
clock source to the clock pin of the source register, the micro clock-to-output delay (µtCO) of the source
register, and the delay from the source register’s data output (Q) to the destination register’s data input
(D).

The TimeQuest analyzer calculates data required time by adding the latch edge time to the sum of all
delays between the clock port and the clock pin of the destination register, including any clock port buffer
delays, and subtracts the micro setup time (µtSU) of the destination register, where the µtSU is the intrinsic
setup time of an internal register in the FPGA.

Figure 6-4: Data Arrival and Data Required Times

D Q D Q

Data Arrival Time

Data Required Time

The basic calculations for data arrival and data required times including the launch and latch edges.

Figure 6-5: Data Arrival and Data Required Time Equations

Data Arrival Time = Launch Edge + Source Clock Delay + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Destination Clock Delay – µtSU

Launch and Latch Edges
All timing relies on one or more clocks. In addition to analyzing paths, the TimeQuest analyzer
determines clock relationships for all register-to-register transfers in your design.

The following figure shows the launch edge, which is the clock edge that sends data out of a register or
other sequential element, and acts as a source for the data transfer. A latch edge is the active clock edge
that captures data at the data port of a register or other sequential element, acting as a destination for the
data transfer. In this example, the launch edge sends the data from register reg1 at 0 ns, and the register
reg2 captures the data when triggered by the latch edge at 10 ns. The data arrives at the destination
register before the next latch edge.

6-4 Data and Clock Arrival Times
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-6: Setup and Hold Relationship for Launch and Latch Edges 10ns Apart

Launch Clock

Latch Clock

0ns 10ns 20ns

Setup relationshipHold relationship

In timing analysis, and with the TimeQuest analyzer specifically, you create clock constraints and assign
those constraints to nodes in your design. These clock constraints provide the structure required for
repeatable data relationships. The primary relationships between clocks, in the same or different domains,
are the setup relationship and the hold relationship.

Note: If you do not constrain the clocks in your design, the Quartus Prime software analyzes in terms of a
1 GHz clock to maximize timing based Fitter effort. To ensure realistic slack values, you must
constrain all clocks in your design with real values.

Clock Setup Check
To perform a clock setup check, the TimeQuest analyzer determines a setup relationship by analyzing
each launch and latch edge for each register-to-register path.

For each latch edge at the destination register, the TimeQuest analyzer uses the closest previous clock edge
at the source register as the launch edge. The following figure shows two setup relationships, setup A and
setup B. For the latch edge at 10 ns, the closest clock that acts as a launch edge is at 3 ns and is labeled
setup A. For the latch edge at 20 ns, the closest clock that acts as a launch edge is 19 ns and is labeled setup
B. TimQuest analyzes the most restrictive setup relationship, in this case setup B; if that relationship meets
the design requirement, then setup A meets it by default.

Figure 6-7: Setup Check

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

The TimeQuest analyzer reports the result of clock setup checks as slack values. Slack is the margin by
which a timing requirement is met or not met. Positive slack indicates the margin by which a requirement
is met; negative slack indicates the margin by which a requirement is not met.

Figure 6-8: Clock Setup Slack for Internal Register-to-Register Paths

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU – Setup Uncertainty

QPS5V3
2015.11.02 Clock Setup Check 6-5

Timing Analysis Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The TimeQuest analyzer performs setup checks using the maximum delay when calculating data arrival
time, and minimum delay when calculating data required time.

Figure 6-9: Clock Setup Slack from Input Port to Internal Register

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Maximum Delay + Port-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU – Setup Uncertainty

Figure 6-10: Clock Setup Slack from Internal Register to Output Port

Clock Setup Slack = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Output Port – Output Maximum Delay
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register +µtCO + Register-to-Port Delay

Clock Hold Check
To perform a clock hold check, the TimeQuest analyzer determines a hold relationship for each possible
setup relationship that exists for all source and destination register pairs. The TimeQuest analyzer checks
all adjacent clock edges from all setup relationships to determine the hold relationships.

The TimeQuest analyzer performs two hold checks for each setup relationship. The first hold check
determines that the data launched by the current launch edge is not captured by the previous latch edge.
The second hold check determines that the data launched by the next launch edge is not captured by the
current latch edge. From the possible hold relationships, the TimeQuest analyzer selects the hold relation‐
ship that is the most restrictive. The most restrictive hold relationship is the hold relationship with the
smallest difference between the latch and launch edges and determines the minimum allowable delay for
the register-to-register path. In the following example, the TimeQuest analyzer selects hold check A2 as
the most restrictive hold relationship of two setup relationships, setup A and setup B, and their respective
hold checks.

Figure 6-11: Setup and Hold Check Relationships

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 32 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1

Figure 6-12: Clock Hold Slack for Internal Register-to-Register Paths

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH + Hold Uncertainty

6-6 Clock Hold Check
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The TimeQuest analyzer performs hold checks using the minimum delay when calculating data arrival
time, and maximum delay when calculating data required time.

Figure 6-13: Clock Hold Slack Calculation from Input Port to Internal Register

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay + Pin-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

Figure 6-14: Clock Hold Slack Calculation from Internal Register to Output Port

Clock Hold Slack = Data Arrival Time – Data Required Time
Data Arrival Time = Latch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Pin Delay
Data Required Time = Latch Edge + Clock Network Delay – Output Minimum Delay

Recovery and Removal Time
Recovery time is the minimum length of time for the deassertion of an asynchronous control signal
relative to the next clock edge.

For example, signals such as clear and preset must be stable before the next active clock edge. The
recovery slack calculation is similar to the clock setup slack calculation, but it applies to asynchronous
control signals.

Figure 6-15: Recovery Slack Calculation if the Asynchronous Control Signal is Registered

Recovery Slack Time = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU

Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO + Register-to-Register Delay

Figure 6-16: Recovery Slack Calculation if the Asynchronous Control Signal is not Registered

Recovery Slack Time = Data Required Time – Data Arrival Time
Data Required Time = Latch Edge + Clock Network Delay to Destination Register – µtSU

Data Arrival Time = Launch Edge + Clock Network Delay + Input Maximum Delay + Port-to-Register Delay

Note: If the asynchronous reset signal is from a device I/O port, you must create an input delay
constraint for the asynchronous reset port for the TimeQuest analyzer to perform recovery analysis
on the path.

Removal time is the minimum length of time the deassertion of an asynchronous control signal must be
stable after the active clock edge. The TimeQuest analyzer removal slack calculation is similar to the clock
hold slack calculation, but it applies asynchronous control signals.

QPS5V3
2015.11.02 Recovery and Removal Time 6-7

Timing Analysis Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-17: Removal Slack Calcuation if the Asynchronous Control Signal is Registered

Removal Slack Time = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay to Source Register + µtCO of Source Register + Register-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

Figure 6-18: Removal Slack Calculation if the Asynchronous Control Signal is not Registered

Removal Slack Time = Data Arrival Time – Data Required Time
Data Arrival Time = Launch Edge + Clock Network Delay + Input Minimum Delay of Pin + Minimum Pin-to-Register Delay
Data Required Time = Latch Edge + Clock Network Delay to Destination Register + µtH

If the asynchronous reset signal is from a device pin, you must assign the Input Minimum Delay timing
assignment to the asynchronous reset pin for the TimeQuest analyzer to perform removal analysis on the
path.

Multicycle Paths
Multicycle paths are data paths that require a non-default setup and/or hold relationship for proper
analysis.

For example, a register may be required to capture data on every second or third rising clock edge. An
example of a multicycle path between the input registers of a multiplier and an output register where the
destination latches data on every other clock edge.

Figure 6-19: Multicycle Path

2 Cycles

ENA

D Q

ENA

D Q

D Q

ENA

A register-to-register path used for the default setup and hold relationship, the respective timing diagrams
for the source and destination clocks, and the default setup and hold relationships, when the source clock,
src_clk, has a period of 10 ns and the destination clock, dst_clk, has a period of 5 ns. The default setup
relationship is 5 ns; the default hold relationship is 0 ns.

6-8 Multicycle Paths
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-20: Register-to-Register Path and Default Setup and Hold Timing Diagram

reg reg

data_out
data_in

src_clk

dst_clk

D Q D Q

0 10 20 30

setup
hold

To accommodate the system requirements you can modify the default setup and hold relationships with a
multicycle timing exception.

The actual setup relationship after you apply a multicycle timing exception. The exception has a
multicycle setup assignment of two to use the second occurring latch edge; in this example, to 10 ns from
the default value of 5 ns.

Figure 6-21: Modified Setup Diagram

 new setup
default setup

0 10 20 30

Related Information

• The Quartus Prime TimeQuest Timing Analyzer on page 7-1
For more information about creating exceptions with multicycle paths.

Metastability
Metastability problems can occur when a signal is transferred between circuitry in unrelated or
asynchronous clock domains because the designer cannot guarantee that the signal will meet setup and
hold time requirements.

To minimize the failures due to metastability, circuit designers typically use a sequence of registers, also
known as a synchronization register chain, or synchronizer, in the destination clock domain to
resynchronize the data signals to the new clock domain.

The mean time between failures (MTBF) is an estimate of the average time between instances of failure
due to metastability.

QPS5V3
2015.11.02 Metastability 6-9

Timing Analysis Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The TimeQuest analyzer analyzes the potential for metastability in your design and can calculate the
MTBF for synchronization register chains. The MTBF of the entire design is then estimated based on the
synchronization chains it contains.

In addition to reporting synchronization register chains found in the design, the Quartus Prime software
also protects these registers from optimizations that might negatively impact MTBF, such as register
duplication and logic retiming. The Quartus Prime software can also optimize the MTBF of your design if
the MTBF is too low.

Related Information

• Understanding Metastability in FPGAs
For more information about metastability, its effects in FPGAs, and how MTBF is calculated.

• Managing Metastability with the Quartus Prime Software
For more information about metastability analysis, reporting, and optimization features in the Quartus
Prime software.

Common Clock Path Pessimism Removal
Common clock path pessimism removal accounts for the minimum and maximum delay variation
associated with common clock paths during static timing analysis by adding the difference between the
maximum and minimum delay value of the common clock path to the appropriate slack equation.

Minimum and maximum delay variation can occur when two different delay values are used for the same
clock path. For example, in a simple setup analysis, the maximum clock path delay to the source register is
used to determine the data arrival time. The minimum clock path delay to the destination register is used
to determine the data required time. However, if the clock path to the source register and to the destina‐
tion register share a common clock path, both the maximum delay and the minimum delay are used to
model the common clock path during timing analysis. The use of both the minimum delay and maximum
delay results in an overly pessimistic analysis since two different delay values, the maximum and
minimum delays, cannot be used to model the same clock path.

Figure 6-22: Typical Register to Register Path

D Q

D Q
clk

A

B

C

reg1

reg2

5.5 ns
5.0 ns

2.2 ns
2.0 ns

2.2 ns
2.0 ns

3.2 ns
3.0 ns

Segment A is the common clock path between reg1 and reg2. The minimum delay is 5.0 ns; the
maximum delay is 5.5 ns. The difference between the maximum and minimum delay value equals the
common clock path pessimism removal value; in this case, the common clock path pessimism is 0.5 ns.
The TimeQuest analyzer adds the common clock path pessimism removal value to the appropriate slack
equation to determine overall slack. Therefore, if the setup slack for the register-to-register path in the
example equals 0.7 ns without common clock path pessimism removal, the slack would be 1.2 ns with
common clock path pessimism removal.

You can also use common clock path pessimism removal to determine the minimum pulse width of a
register. A clock signal must meet a register’s minimum pulse width requirement to be recognized by the
register. A minimum high time defines the minimum pulse width for a positive-edge triggered register. A
minimum low time defines the minimum pulse width for a negative-edge triggered register.

6-10 Common Clock Path Pessimism Removal
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959644819/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Clock pulses that violate the minimum pulse width of a register prevent data from being latched at the
data pin of the register. To calculate the slack of the minimum pulse width, the TimeQuest analyzer
subtracts the required minimum pulse width time from the actual minimum pulse width time. The
TimeQuest analyzer determines the actual minimum pulse width time by the clock requirement you
specified for the clock that feeds the clock port of the register. The TimeQuest analyzer determines the
required minimum pulse width time by the maximum rise, minimum rise, maximum fall, and minimum
fall times.

Figure 6-23: Required Minimum Pulse Width time for the High and Low Pulse

High Pulse
Width

Low Pulse
Width

Minimum and
Maximum
Fall Arrival Times

Minimum and
Maximum Rise

Rise Arrival Times

0.8
0.5

0.5
0.8

0.9
0.7

With common clock path pessimism, the minimum pulse width slack can be increased by the smallest
value of either the maximum rise time minus the minimum rise time, or the maximum fall time minus the
minimum fall time. In the example, the slack value can be increased by 0.2 ns, which is the smallest value
between 0.3 ns (0.8 ns – 0.5 ns) and 0.2 ns (0.9 ns – 0.7 ns).

Related Information
TimeQuest Timing Analyzer Page (Settings Dialog Box)
For more information, refer to the Quartus Prime Help.

Clock-As-Data Analysis
The majority of FPGA designs contain simple connections between any two nodes known as either a data
path or a clock path.

A data path is a connection between the output of a synchronous element to the input of another synchro‐
nous element.

A clock is a connection to the clock pin of a synchronous element. However, for more complex FPGA
designs, such as designs that use source-synchronous interfaces, this simplified view is no longer
sufficient. Clock-as-data analysis is performed in circuits with elements such as clock dividers and DDR
source-synchronous outputs.

The connection between the input clock port and output clock port can be treated either as a clock path or
a data path. A design where the path from port clk_in to port clk_out is both a clock and a data path.
The clock path is from the port clk_in to the register reg_data clock pin. The data path is from port
clk_in to the port clk_out.

QPS5V3
2015.11.02 Clock-As-Data Analysis 6-11

Timing Analysis Overview Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_tqa_settings.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-24: Simplified Source Synchronous Output

D Q

clk_in clk_out

reg_data

With clock-as-data analysis, the TimeQuest analyzer provides a more accurate analysis of the path based
on user constraints. For the clock path analysis, any phase shift associated with the phase-locked loop
(PLL) is taken into consideration. For the data path analysis, any phase shift associated with the PLL is
taken into consideration rather than ignored.

The clock-as-data analysis also applies to internally generated clock dividers. An internally generated
clock divider. In this figure, waveforms are for the inverter feedback path, analyzed during timing
analysis. The output of the divider register is used to determine the launch time and the clock port of the
register is used to determine the latch time.

Figure 6-25: Clock Divider

D Q

D Q

Launch Clock (2 T)

Data Arrival Time

Latch Clock (T)

Multicycle Clock Setup Check and Hold Check Analysis
You can modify the setup and hold relationship when you apply a multicycle exception to a register-to-
register path.

6-12 Multicycle Clock Setup Check and Hold Check Analysis
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-26: Register-to-Register Path

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

CLK

Tclk1

TCO TSU / TH

Tdata

Tclk2

Multicycle Clock Setup
The setup relationship is defined as the number of clock periods between the latch edge and the launch
edge. By default, the TimeQuest analyzer performs a single-cycle path analysis, which results in the setup
relationship being equal to one clock period (latch edge – launch edge). Applying a multicycle setup
assignment, adjusts the setup relationship by the multicycle setup value. The adjustment value may be
negative.

An end multicycle setup assignment modifies the latch edge of the destination clock by moving the latch
edge the specified number of clock periods to the right of the determined default latch edge. The following
figure shows various values of the end multicycle setup (EMS) assignment and the resulting latch edge.

Figure 6-27: End Multicycle Setup Values

-10 0 10 20

REG1.CLK

REG2.CLK

EMS = 2

EMS = 1
(default)

EMS = 3

A start multicycle setup assignment modifies the launch edge of the source clock by moving the launch
edge the specified number of clock periods to the left of the determined default launch edge. A start
multicycle setup (SMS) assignment with various values can result in a specific launch edge.

QPS5V3
2015.11.02 Multicycle Clock Setup 6-13

Timing Analysis Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6-28: Start Multicycle Setup Values

Source Clock

Destination Clock

SMS = 1
(Default)

SMS = 2

SMS = 3

0 10 20 30 40

The setup relationship reported by the TimeQuest analyzer for the negative setup relationship.

Figure 6-29: Start Multicycle Setup Values Reported by the TimeQuest Analyzer

-10 0 10 20

Source Clock

Destination Clock

SMS = 2

SMS = 1
(default) SMS = 3

Multicycle Clock Hold
The setup relationship is defined as the number of clock periods between the launch edge and the latch
edge.

By default, the TimeQuest analyzer performs a single-cycle path analysis, which results in the hold
relationship being equal to one clock period (launch edge – latch edge).When analyzing a path, the
TimeQuest analyzer performs two hold checks. The first hold check determines that the data launched by
the current launch edge is not captured by the previous latch edge. The second hold check determines that
the data launched by the next launch edge is not captured by the current latch edge. The TimeQuest
analyzer reports only the most restrictive hold check. The TimeQuest analyzer calculates the hold check
by comparing launch and latch edges.

The calculation the TimeQuest analyzer performs to determine the hold check.

Figure 6-30: Hold Check

hold check 1 = current launch edge – previous latch edge
hold check 2 = next launch edge – current latch edge

Tip: If a hold check overlaps a setup check, the hold check is ignored.

6-14 Multicycle Clock Hold
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A start multicycle hold assignment modifies the launch edge of the destination clock by moving the latch
edge the specified number of clock periods to the right of the determined default launch edge. he
following figure shows various values of the start multicycle hold (SMH) assignment and the resulting
launch edge.

Figure 6-31: Start Multicycle Hold Values

-10 0 10 20

Source Clock

Destination Clock

SMH = 1
SMH = 0
(default) SMH = 2

An end multicycle hold assignment modifies the latch edge of the destination clock by moving the latch
edge the specific ed number of clock periods to the left of the determined default latch edge. he following
figure shows various values of the end multicycle hold (EMH) assignment and the resulting latch edge.

Figure 6-32: End Multicycle Hold Values

Source Clock

Destination Clock

EMH = 0
(Default)

EMH = 2

EMH = 1

-20 -10 0 10 20

QPS5V3
2015.11.02 Multicycle Clock Hold 6-15

Timing Analysis Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The hold relationship reported by the TimeQuest analyzer for the negative hold relationship shown in the
figure above would look like this:

Figure 6-33: End Multicycle Hold Values Reported by the TimeQuest Analyzer

Source Clock

Destination Clock

EMH = 0
(Default)

EMH = 2

EMH = 1

-10 0 10 20

Multicorner Analysis
The TimeQuest analyzer performs multicorner timing analysis to verify your design under a variety of
operating conditions—such as voltage, process, and temperature—while performing static timing
analysis.

To change the operating conditions or speed grade of the device used for timing analysis, use the
set_operating_conditions command.

If you specify an operating condition Tcl object, the -model, speed, -temperature, and -voltage options
are optional. If you do not specify an operating condition Tcl object, the -model option is required; the -
speed, -temperature, and -voltage options are optional.

Tip: To obtain a list of available operating conditions for the target device, use the
get_available_operating_conditions -all command.

To ensure that no violations occur under various conditions during the device operation, perform static
timing analysis under all available operating conditions.

Table 6-2: Operating Conditions for Slow and Fast Models

Model Speed Grade Voltage Temperature

Slow Slowest speed grade in device
density

Vcc minimum supply (1) Maximum TJ (1)

Fast Fastest speed grade in device density Vcc maximum supply (1) Minimum TJ (1)

Note :

1. Refer to the DC & Switching Characteristics chapter of the applicable device Handbook for
Vcc and TJ. values

In your design, you can set the operating conditions for to the slow timing model, with a voltage of
1100 mV, and temperature of 85° C with the following code:

set_operating_conditions -model slow -temperature 85 -voltage 1100

6-16 Multicorner Analysis
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can set the same operating conditions with a Tcl object:

set_operating_conditions 3_slow_1100mv_85c

The following block of code shows how to use the set_operating_conditions command to generate
different reports for various operating conditions.

Example 6-1: Script Excerpt for Analysis of Various Operating Conditions

#Specify initial operating conditions
set_operating_conditions -model slow -speed 3 -grade c -temperature 85 -
voltage 1100
#Update the timing netlist with the initial conditions
update_timing_netlist
#Perform reporting
#Change initial operating conditions. Use a temperature of 0C
set_operating_conditions -model slow -speed 3 -grade c -temperature 0 -
voltage 1100
#Update the timing netlist with the new operating condition
update_timing_netlist
#Perform reporting
#Change initial operating conditions. Use a temperature of 0C and a model of
fast
set_operating_conditions -model fast -speed 3 -grade c -temperature 0 -
voltage 1100
#Update the timing netlist with the new operating condition
update_timing_netlist
#Perform reporting

Related Information
set_operating_conditions

get_available_operating_conditions
For more information about the get_available_operating_conditions command

Document Revision History

Table 6-3: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 Moved Multicycle Clock Setup Check and Hold Check Analysis section
from the TimeQuest Timing Analyzer chapter.

June 2014 14.0.0 Updated format

June 2012 12.0.0 Added social networking icons, minor text updates

November
2011

11.1.0 Initial release.

QPS5V3
2015.11.02 Document Revision History 6-17

Timing Analysis Overview Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_set_operating_conditions.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_get_available_operating_conditions.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

6-18 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Timing Analysis Overview

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Timing%20Analysis%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Quartus Prime TimeQuest Timing Analyzer 7
2015.11.02

QPS5V3 Subscribe Send Feedback

The Quartus Prime TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool that
validates the timing performance of all logic in your design using an industry-standard constraint,
analysis, and reporting methodology. Use the TimeQuest analyzer GUI or command-line interface to
constrain, analyze, and report results for all timing paths in your design.

This document is organized to allow you to refer to specific subjects relating to the TimeQuest analyzer
and timing analysis. The sections cover the following topics:

Enhanced Timing Analysis for Arria 10 on page 7-2
The TimeQuest Timing Analyzer supports new timing algorithms for the Arria® 10 device family which
significantly improve the speed of the analysis.

Recommended Flow on page 7-2
The Quartus Prime TimeQuest analyzer performs constraint validation to timing verification as part of
the compilation flow.

Timing Constraints on page 7-6
Timing analysis in the Quartus Prime software with the TimeQuest Timing Analyzer relies on
constraining your design to make it meet your timing requirements.

Running the TimeQuest Analyzer on page 7-54
When you compile a design, the TimeQuest timing analyzer automatically performs multi-corner signoff
timing analysis after the Fitter has finished.

Understanding Results on page 7-57
Knowing how your constraints are displayed when analyzing a path is one of the most important skills of
timing analysis.

Constraining and Analyzing with Tcl Commands on page 7-65
You can use Tcl commands from the Quartus Prime software Tcl Application Programming Interface
(API) to constrain, analyze, and collect information for your design.

Generating Timing Reports on page 7-70
The TimeQuest analyzer provides real-time static timing analysis result reports.

Document Revision History on page 7-71

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Related Information

• Timing Analysis Overview on page 6-1
For more information about basic timing analysis concepts and how they pertain to the TimeQuest
analyzer.

• TimeQuest Timing Analyzer Resource Center
For more information about Altera resources available for the TimeQuest analyzer.

• Altera Training
For more information about the TimeQuest analyzer.

Enhanced Timing Analysis for Arria 10
The TimeQuest Timing Analyzer supports new timing algorithms for the Arria® 10 device family which
significantly improve the speed of the analysis.

These algorithms are enabled by default for Arria 10 devices, and can be enabled for earlier families with
an assignment. The new analysis engine analyzes the timing graph a fixed number of times. Previous
TimeQuest analysis analyzed the timing graph as many times as there were constraints in your Synopsys
Design Constraint (SDC) file.

The new algorithms also support incremental timing analysis, which allows you to modify a single block
and re-analyze while maintaining a fully analyzed design.

You can turn on the new timing algorithms for use with Arria V, Cyclone V, and Stratix V devices with
the following QSF assignment:

set_global_assignment -name TIMEQUEST2 ON

Recommended Flow for First Time Users
The Quartus Prime TimeQuest analyzer performs constraint validation to timing verification as part of
the compilation flow. Both the TimeQuest analyzer and the Fitter use of constraints contained in a
Synopsys Design Constraints (.sdc) file. The following flow is recommended if you have not created a
project and do not have a SDC file with timing constraints for your design.

7-2 Enhanced Timing Analysis for Arria 10
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://www.altera.com/support/software/timequest/sof-qts-timequest.html
http://www.altera.com/education/training/trn-index.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-1: Design Flow with the TimeQuest Timing Analyzer

Create Quartus Prime Project
and Specify Design Files

Specify Timing Requirements

Perform Analysis & Synthesis

Compile Design and Verify Timing

Creating and Setting Up your Design
You must first create your project in the Quartus Prime software. Include all the necessary design files,
including any existing Synopsys Design Constraints (.sdc) files, also referred to as SDC files, that contain
timing constraints for your design. Some reference designs, or Altera or partner IP cores may already
include one or more SDC files.

All SDC files must be added to your project so that your constraints are processed when the Quartus
Prime software performs Fitting and Timing Analysis. Typically you must create an SDC file to constrain
your design.

Related Information
SDC File Precedence on page 7-56

Specifying Timing Requirements
Before running timing analysis with the TimeQuest analyzer, you must specify timing constraints,
describe the clock frequency requirements and other characteristics, timing exceptions, and I/O timing
requirements of your design. You can use the TimeQuest Timing Analyzer Wizard to enter initial
constraints for your design, and then refine timing constraints with the TimeQuest analyzer GUI.

Both the TimeQuest analyzer and the Fitter use of constraints contained in a Synopsis Design Constraints
(.sdc) file.

The constraints in the SDC file are read in sequence. You must first make a constraint before making any
references to that constraint. For example, if a generated clock references a base clock, the base clock
constraint must be made before the generated clock constraint.

If you are new to timing analysis with the TimeQuest analyzer, you can use template files included with
the Quartus Prime software and the interactive dialog boxes to create your initial SDC file. To use this
method, refer to Performing an Initial Analysis and Synthesis.

If you are familiar with timing analysis, you can also create an SDC file in you preferred text editor. Don't
forget to include the SDC file in the project when you are finished.

QPS5V3
2015.11.02 Creating and Setting Up your Design 7-3

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Creating a Constraint File from Quartus Prime Templates with the Quartus Prime Text Editor on
page 7-4
For more information on using the <keyword keyref="qts-all" /> Text Editor templates for SDC
constraints.

• Identifying the Quartus Prime Software Executable from the SDC File on page 7-69

Performing an Initial Analysis and Synthesis
Perform Analysis and Synthesis on your design so that you can find design entry names in the Node
Finder to simplify creating constraints.

The Quartus Prime software populates an internal database with design element names. You must
synthesize your design in order for the Quartus Prime software to assign names to your design elements,
for example, pins, nodes, hierarchies, and timing paths.

If you have already compiled your design, you do not need need to perform the synthesis step again,
because compiling the design automatically performs synthesis.You can either perform Analysis and
Synthesis to create a post-map database, or perform a full compilation to create a post-fit database.
Creating a post-map database is faster than a post-fit database, and is sufficient for creating initial timing
constraints.

Note: If you are using incremental compilation, you must merge your design partitions after performing
Analysis and Synthesis to create a post-map database.

Note: When compiling for the Arria 10 device family, the following commands are required to perform
initial synthesis and enable you to use the Node Finder to find names in your design:

quartus_map <design>
quartus_fit <design> --floorplan
quartus_sta <design> --post_map

When compiling for other devices, you can exclude the quartus_fit <design> --floorplan
step:

quartus_map <design>
quartus_sta <design> --post_map

Creating a Constraint File from Quartus Prime Templates with the Quartus Prime Text Editor
You can create an SDC file from constraint templates in the Quartus Prime software with the Quartus
Prime Text Editor, or with your preferred text editor.

1. On the File menu, click New.
2. In the New dialog box, select the Synopsys Design Constraints File type from the Other Files group.

Click OK.
3. Right-click in the blank SDC file in the Quartus Prime Text Editor, then click Insert Constraint.

Choose Clock Constraint followed by Set Clock Groups since they are the most widely used
constraints.
The Quartus Prime Text Editor displays a dialog box with interactive fields for creating constraints.
For example, the Create Clock dialog box shows you the waveform for your create_clock constraint
while you adjust the Period and Rising and Falling waveform edge settings. The actual constraint is
displayed in the SDC command field. Click Insert to use the constraint in your SDC.

7-4 Performing an Initial Analysis and Synthesis
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

or
4. Click the Insert Template button on the text editor menu, or, right-click in the blank SDC file in the

Quartus Prime Text Editor, then click Insert TemplateTimeQuest.
a. In the Insert Template dialog box, expand the TimeQuest section, then expand the SDC

Commands section.
b. Expand a command category, for example, Clocks.
c. Select a command. The SDC constraint appears in the Preview pane.
d. Click Insert to paste the SDC constraint into the blank SDC file you created in step 2.

This creates a generic constraint for you to edit manually, replacing variables such as clock names,
period, rising and falling edges, ports, etc.

5. Repeat as needed with other constraints, or click Close to close the Insert Template dialog box.

You can now use any of the standard features of the Quartus Prime Text Editor to modify the SDC file, or
save the SDC file to edit in a text editor. Your SDC can be saved with the same name as the project, and
generally should be stored in the project directory.

Related Information

• Create Clocks Dialog Box
• Set Clock Groups Dialog Box

For more information on Create Clocks and Set Clock Groups, refer to the Quartus Prime Help.

Performing a Full Compilation
After creating initial timing constraints, compile your design.

During a full compilation, the Fitter uses the TimeQuest analyzer repeatedly to perform timing analysis
with your timing constraints. By default, the Fitter can stop early if it meets your timing requirements,
instead of attempting to achieve the maximum performance. You can modify this by changing the Fitter
effort settings in the Quartus Prime software.

Related Information

• Analyzing Timing in Designs Compiled in Previous Versions on page 7-6
For more information about importing databases compiled in previous versions of the software.

• Fitter Settings Page (Settings Dialog Box)
For more information about changing Fitter effort, refer to the Quartus Prime Help.

Verifying Timing
The TimeQuest analyzer examines the timing paths in the design, calculates the propagation delay along
each path, checks for timing constraint violations, and reports timing results as positive slack or negative
slack. Negative slack indicates a timing violation. If you encounter violations along timing paths, use the
timing reports to analyze your design and determine how best to optimize your design. If you modify,
remove, or add constraints, you should perform a full compilation again. This iterative process helps
resolve timing violations in your design.

There is a recommended flow for constraining and analyzing your design within the TimeQuest analyzer,
and each part of the flow has a corresponding Tcl command.

QPS5V3
2015.11.02 Performing a Full Compilation 7-5

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/analyze/sta/sta_db_create_clock.htm
http://quartushelp.altera.com/current/analyze/sta/sta_db_set_clock_groups.htm
http://quartushelp.altera.com/current/index.htm#comp/comp/comp_tab_fitting.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-2: The TimeQuest Timing Analyzer Flow

Open Project
project_open

Create Timing Netlist
create_timing_netlist

Apply Timing Constraints
read_sdc

Update Timing Netlist
update_timing_netlist

report_clock_transfers
report_min_pulse_width

report_net_timing
report_sdc

report_timing
report_clocks

report_ucp

Verify Static Timing Analysis
Results

Analyzing Timing in Designs Compiled in Previous Versions
Performing a full compilation can be a lengthy process, however, once your design meets timing you can
export the design database for later use. This can include operations such as verification of subsequent
timing models, or use in a later version of the Quartus Prime software.

When you re-open the project, the Quartus Prime software opens the exported database from the export
directory. You can then run TimeQuest on the design without having to recompile the project.

To export the database in the previous version of the Quartus Prime software, click Project > Export
Database and select the export directory to contain the exported database.

To import a database in a later version of the Quartus Prime software, click File > Open and select the
Quartus Prime Project file (.qpf) for the project.

Once you import the database, you can perform any TimeQuest analyzer functions on the design without
recompiling.

Timing Constraints
Timing analysis in the Quartus Prime software with the TimeQuest Timing Analyzer relies on
constraining your design to make it meet your timing requirements. When discussing these constraints,
they can be referred to as timing constraints, SDC constraints, or SDC commands interchangeably.

Recommended Starting SDC Constraints
Almost every beginning SDC file should contain the following four commands:

7-6 Analyzing Timing in Designs Compiled in Previous Versions
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

create_clock on page 7-7

derive_pll_clocks on page 7-8

derive_clock_uncertainty on page 7-8

SDC Constraint Creation Summary on page 7-8
Those are the first three steps, which can usually be done very quickly. For a sample design with two
clocks coming into it, your SDC file might look like this example:

set_clock_groups on page 7-9

Related Information
Creating a Constraint File from Quartus Prime Templates with the Quartus Prime Text Editor on
page 7-4

create_clock

The first statements in a SDC file should be constraints for clocks, for example, constrain the external
clocks coming into the FPGA with create_clock. An example of the basic syntax is:

create_clock -name sys_clk -period 8.0 [get_ports fpga_clk]

This command creates a clock called sys_clk with an 8ns period and applies it to the port called
fpga_clk.

Note: Both Tcl files and SDC files are case-sensitive, so make sure references to pins, ports, or nodes,
such as fpga_clk match the case used in your design.

By default, the clock has a rising edge at time 0ns, and a 50% duty cycle, hence a falling edge at time 4ns. If
you require a different duty cycle or to represent an offset, use the -waveform option, however, this is
seldom necessary.

It is common to create a clock with the same name as the port it is applied to. In the example above, this
would be accomplished by:

create_clock -name fpga_clk -period 8.0 [get_ports fpga_clk]

There are now two unique objects called fpga_clk, a port in your design and a clock applied to that port.

Note: In Tcl syntax, square brackets execute the command inside them, so [get_ports fpga_clk]
executes a command that finds all ports in the design that match fpga_clk and returns a collection
of them. You can enter the command without using the get_ports collection command, as shown
in the following example. There are benefits to using collection commands, which are described in
"Collection Commands".

create_clock -name sys_clk -period 8.0 fpga_clk

Repeat this process, using one create_clock command for each known clock coming into your design.
Later on you can use Report Unconstrained Paths to identify any unconstrained clocks.

Note: Rather than typing constraints, users can enter constraints through the GUI. After launching
TimeQuest, open the SDC file from TimeQuest or Quartus Prime, place the cursor where the new
constraint will go, and go to Edit > Insert Constraint, and choose the constraint.

Warning: Using the Constraints menu option in the TimeQuest GUI applies constraints directly to the
timing database, but makes no entry in the SDC file. An advanced user may find reasons to do
this, but if you are new to TimeQuest, Altera recommends entering your constraints directly
into your SDC with the Edit > Insert Constraint command.

QPS5V3
2015.11.02 create_clock 7-7

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Creating Base Clocks on page 7-11

derive_pll_clocks

After the create_clock commands add the following command into your SDC file:

derive_pll_clocks

This command automatically creates a generated clock constraint on each output of the PLLs in your
design..

When PLLs are created, you define how each PLL output is configured. Because of this, the TimeQuest
analyzer can automatically constrain them, wit thet derive_pll_clocks command.

This command also creates other constraints. It constrains transceiver clocks. It adds multicycles between
LVDS SERDES and user logic.

The derive_pll_clocks command prints an Info message to show each generated clock it creates.

If you are new to the TimeQuest analyzer, you may decide not to use derive_pll_clocks, and instead
cut-and-paste each create_generated_clock assignment into the SDC file. There is nothing wrong with
this, since the two are identical. The problem is that when you modifiy a PLL setting, you must remember
to change its generated clock in the SDC file. Examples of this type of change include modifying an
existing output clock, adding a new PLL output, or making a change to the PLL's hierarchy. Too many
designers forget to modify the SDC file and spend time debugging something that derive_pll_clocks
would have updated automatically.

Related Information

• Creating Base Clocks on page 7-11
• Deriving PLL Clocks on page 7-18

derive_clock_uncertainty

Add the following command to your SDC file:

derive_clock_uncertainty

This command calculates clock-to-clock uncertainties within the FPGA, due to characteristics like PLL
jitter, clock tree jitter, etc. This should be in all SDC files and the TimeQuest analyzer generates a warning
if this command is not found in your SDC files.

Related Information
Accounting for Clock Effect Characteristics on page 7-21

SDC Constraint Creation Summary
Those are the first three steps, which can usually be done very quickly. For a sample design with two
clocks coming into it, your SDC file might look like this example:

create_clock -period 20.00 -name adc_clk [get_ports adc_clk]
create_clock -period 8.00 -name sys_clk [get_ports sys_clk]

derive_pll_clocks

derive_clock_uncertainty

7-8 derive_pll_clocks
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set_clock_groups

With the constraintsdiscusssed previously, most, if not all, of the clocks in the design are now constrained.
In the TimeQuest analyzer, all clocks are related by default, and you must indicate which clocks are not
related. For example, if there are paths between an 8ns clock and 10ns clock, even if the clocks are
completely asynchronous, the TimeQuest analyzer attempts to meet a 2ns setup relationship between
these clocks unless you indicate that they are not related. The TimeQuest analyzer analyzes everything
known, rather than assuming that all clocks are unrelated and requiring that you relate them. The SDC
language has a powerful constraint for setting unrelated clocks called set_clock_groups. A template for
the the typical use of the set_clock_groups command is:

set_clock_groups -asynchronous -group {<clock1>...<clockn>} ... \
 -group {<clocka>...<clockn>}

The set_clock_groups command does not actually group clocks. Since the TimeQuest analyzer assumes
all clocks are related by default, all clocks are effectively in one big group. Instead, the set_clock_groups
command cuts timing between clocks in different groups.

There is no limit to the number of times you can specify a group option with -group {<group of
clocks>}. When entering constraints through the GUI with Edit > Insert Constraint, the Set Clock
Groups dialog box only permits two clock groups, but this is only a limitation of that dialog box. You can
always manually add more into the SDC file.

Any clock not listed in the assignment is related to all clocks. If you forget a clock, the TimeQuest analyzer
acts conservatively and analyzes that clock in context with all other domains to which it connects.

The set_clock_groups command requires either the -asynchronous or -exclusive option. The -
asynchronous flag means the clocks are both toggling, but not in a way that can synchronously pass data.
The -exclusive flag means the clocks do not toggle at the same time, and hence are mutually exclusive.
An example of this might be a clock multiplexor that has two generated clock assignments on its output.
Since only one can toggle at a time, these clocks are -exclusive. TimeQuest does not currently analyze
crosstalk explicitly. Instead, the timing models use extra guard bands to account for any potential
crosstalk-induced delays. TimeQuest treats the -asynchronous and -exclusive options the same.

A clock cannot be within multiple -group groupings in a single assignment, however, you can have
multiple set_clock_groups assignments.

Another way to cut timing between clocks is to use set_false_path. To cut timing between sys_clk and
dsp_clk, a user might enter:

set_false_path -from [get_clocks sys_clk] -to [get_clocks dsp_clk]

set_false_path -from [get_clocks dsp_clk] -to [sys_clk]

This works fine when there are only a few clocks, but quickly grows to a huge number of assignments that
are completely unreadable. In a simple design with three PLLs that have multiple outputs, the
set_clock_groups command can clearly show which clocks are related in less than ten lines, while
set_false_path may be over 50 lines and be very non-intuitive on what is being cut.

Related Information

• Creating Generated Clocks on page 7-15
• Relaxing Setup with set_multicyle_path on page 7-31
• Accounting for a Phase Shift on page 7-32

QPS5V3
2015.11.02 set_clock_groups 7-9

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tips for Writing a set_clock_groups Constraint
Since derive_pll_clocks creates many of the clock names, you may not know all of the clock names to use
in the clock groups.

A quick way to make this constraint is to use the SDC file you have created so far, with the three basic
constraints described in previous topics. Make sure you have added it to your project, then open the
TimeQuest timing analyzer GUI.

In the Task panel of the TimeQuestanalyzer, double-click on Report Clocks. This reads your existing
SDC and applies it to your design, then reports all the clocks. From that report, highlight all of the clock
names in the first column, and copy the names.

You have just copied all the clock names in your design in the exact format the TimeQuest analyzer
recognizes. Paste them into your SDC file to make a list of all clock names, one per line..

Format that list into the set_clock_groups command by cutting and pasting clock names into
appropriate groups. Then enter the following empty template in your SDC file::

set_clock_groups -asynchronous -group { \
} \
 -group { \
} \
-group { \
} \
-group { \
}

Cut and paste clocks into groups to define how they’re related, adding or removing groups as necessary.
Format to make the code readable.

Note: This command can be difficult to read on a single line. Instead, you should make use of the Tcl line
continuation character "\". By putting a space after your last character and then "\", the end-of-line
character is escaped. (And be careful not to have any whitespace after the escape character, or else
it will escape the whitespace, not the end-of-line character).

set_clock_groups -asynchronous \
 -group {adc_clk \
 the_adc_pll|altpll_component_autogenerated|pll|clk[0] \
 the_adc_pll|altpll_component_autogenerated|pll|clk[1] \
 the_adc_pll|altpll_component_autogenerated|pll|clk[2] \
 } \
 -group {sys_clk \
 the_system_pll|altpll_component_autogenerated|pll|clk[0] \
 the_system_pll|altpll_component_autogenerated|pll|clk[1] \
 } \
 -group {the_system_pll|altpll_component_autogenerated|pll|clk[2] \
 }

Note: The last group has a PLL output system_pll|..|clk[2] while the input clock and other PLL
outputs are in different groups. If PLLs are used, and the input clock frequency is not related to the
frequency of the PLL's outputs, they must be treated asynchronously. Usually most outputs of a
PLL are related and hence in the same group, but this is not a requirement, and depends on the
requirements of your design.

For designs with complex clocking, writing this constraint can be an iterative process. For example, a
design with two DDR3 cores and high-speed transceivers could easily have thirty or more clocks. In those
cases, you can just add the clocks you’ve created. Since clocks not in the command are still related to every
clock, you are conservatively grouping what is known. If there are still failing paths in the design between
unrelated clock domains, you can start adding in the new clock domains as necessary. In this case, a large
number of the clocks won't actually be in the set_clock_groups command, since they are either cut in

7-10 Tips for Writing a set_clock_groups Constraint
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the SDC file for the IP core (such as the SDC files generated by the DDR3 cores), or they only connect to
clock domains to which they are related.

For many designs, that is all that's necessary to constrain the core. Some common core constraints that
will not be covered in this quick start section that user's do are:

• Add multicycles between registers which can be analyzed at a slower rate than the default analysis, in
other words, increasing the time when data can be read, or 'opening the window'. For example, a 10ns
clock period will have a 10ns setup relationship. If the data changes at a slower rate, or perhaps the
registers toggle at a slower rate due to a clock enable, then you should apply a multicycle that relaxes
the setup relationship (opens the the window so that valid data can pass). This is a multiple of the clock
period, making the setup relationship 20ns, 40ns, etc., while keeping the hold relationship at 0ns.
These types of multicycles are generally applied to paths.

• The second common form of multicycle is when the user wants to advance the cycle in which data is
read, or 'shift the window'. This generally occurs when your design performs a small phase-shift on a
clock. For example, if your design has two 10ns clocks exiting a PLL, but the second clock has a 0.5ns
phase-shift, the default setup relationship from the main clock to the phase-shifted clock is 0.5ns and
the hold relationship is -9.5ns. It is almost impossible to meet a 0.5ns setup relationship, and most
likely you intend the data to transfer in the next window. By adding a multicycle from the main clock
to the phase-shifted clock, the setup relationship becomes 10.5ns and the hold relationship becomes
0.5ns. This multicycle is generally applied between clocks and is something the user should think about
as soon as they do a small phase-shift on a clock. This type of multicycle is called shifting the window.

• Add a create_generated_clock to ripple clocks. When a register's output drives the clk port of
another register, that is a ripple clock. Clocks do not propagate through registers, so all ripple clocks
must have a create_generated_clock constraint applied to them for correct analysis. Unconstrained
ripple clocks appear in the Report Unconstrained Paths report, so they are easily recognized. In
general, ripple clocks should be avoided for many reasons, and if possible, a clock enable should be
used instead.

• Add a create_generated_clock to clock mux outputs. Without this, all clocks propagate through the
mux and are related. TimeQuest analyze paths downstream from the mux where one clock input feeds
the source register and the other clock input feeds the destination, and vice-versa. Although it could be
valid, this is usually not preferred behavior. By putting create_generated_clock constraints on the
mux output, which relates them to the clocks coming into the mux, you can correctly group these
clocks with other clocks.

Creating Clocks and Clock Constraints
Clocks specify timing requirements for synchronous transfers and guide the Fitter optimization
algorithms to achieve the best possible placement for your design. You must define all clocks and any
associated clock characteristics, such as uncertainty or latency. The TimeQuest analyzer supports SDC
commands that accommodate various clocking schemes such as:

• Base clocks
• Virtual clocks
• Multifrequency clocks
• Generated clocks

Creating Base Clocks
Base clocks are the primary input clocks to the device. Unlike clocks that are generated in the device (such
as an on-chip PLL), base clocks are generated by off-chip oscillators or forwarded from an external device.
Define base clocks at the top of your SDC file, because generated clocks and other constraints often
reference base clocks. The TimeQuest timing analyzer ignores any constraints that reference a clock that
has not been defined.

QPS5V3
2015.11.02 Creating Clocks and Clock Constraints 7-11

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the create_clock command to create a base clock. Use other constraints, such as those described in
Accounting for Clock Effect Characteristics, to specify clock characteristics such as uncertainty and latency.

The following examples show the most common uses of the create_clock constraint:

 create_clock Command

To specify a 100 MHz requirement on a clk_sys input clock port you would enter the following in your
SDC file:

create_clock -period 10 -name clk_sys [get_ports clk_sys]

100 MHz Shifted by 90 Degrees Clock Creation

This example creates a 10 ns clock with a 50% duty cycle that is phase shifted by 90 degrees applied to port
clk_sys. This type of clock definition is most commonly used when the FPGA receives source synchro‐
nous, double-rate data that is center-aligned with respect to the clock.

create_clock -period 10 -waveform { 2.5 7.5 } [get_ports clk_sys]

Two Oscillators Driving the Same Clock Port

You can apply multiple clocks to the same target with the -add option. For example, to specify that the
same clock input can be driven at two different frequencies, enter the following commands in your SDC
file:

create_clock -period 10 -name clk_100 [get_ports clk_sys]
create_clock -period 5 -name clk_200 [get_ports clk_sys] -add

Although it is not common to have more than two base clocks defined on a port, you can define as many
as are appropriate for your design, making sure you specify -add for all clocks after the first.

Creating Multifrequency Clocks

You must create a multifrequency clock if your design has more than one clock source feeding a single
clock node in your design. The additional clock may act as a low-power clock, with a lower frequency
than the primary clock. If your design uses multifrequency clocks, use the set_clock_groups command
to define clocks that are exclusive.

To create multifrequency clocks, use the create_clock command with the -add option to create multiple
clocks on a clock node. You can create a 10 ns clock applied to clock port clk, and then add an additional
15 ns clock to the same clock port. The TimeQuest analyzer uses both clocks when it performs timing
analysis.

create_clock –period 10 –name clock_primary –waveform { 0 5 } \
 [get_ports clk]
create_clock –period 15 –name clock_secondary –waveform { 0 7.5 } \
 [get_ports clk] -add

Related Information

• Accounting for Clock Effect Characteristics on page 7-21
• create_clock
• get_ports

For more information about these commands, refer to Quartus Prime Help.

7-12 Creating Base Clocks
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_clock.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_clock.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Automatically Detecting Clocks and Creating Default Clock Constraints
To automatically create base clocks in your design, use the derive_clocks command. The
derive_clocks command is equivalent to using the create_clock command for each register or port
feeding the clock pin of a register. The derive_clocks command creates clock constraints on ports or
registers to ensure every register in your design has a clock constraints, and it applies one period to all
base clocks in your design.

You can have the TimeQuest analyzer create a base clock with a 100 Mhz requirement for unconstrained
base clock nodes.

derive_clocks -period 10

Warning: Do not use the derive_clocks command for final timing sign-off; instead, you should create
clocks for all clock sources with the create_clock and create_generated_clock commands.
If your design has more than a single clock, the derive_clocks command constrains all the
clocks to the same specified frequency. To achieve a thorough and realistic analysis of your
design’s timing requirements, you should make individual clock constraints for all clocks in
your design.

If you want to have some base clocks created automatically, you can use the -create_base_clocks
option to derive_pll_clocks. With this option, the derive_pll_clocks command automatically
creates base clocks for each PLL, based on the input frequency information specified when the PLL was
instantiated. The base clocks are named matching the port names. This feature works for simple port-to-
PLL connections. Base clocks are not automatically generated for complex PLL connectivity, such as
cascaded PLLs. You can also use the command derive_pll_clocks -create_base_clocks to create the
input clocks for all PLL inputs automatically.

Related Information
derive_clocks
For more information about this command, refer to Quartus Prime Help.

Creating Virtual Clocks
A virtual clock is a clock that does not have a real source in the design or that does not interact directly
with the design.

To create virtual clocks, use the create_clock command with no value specified for the <targets> option.

This example defines a 100Mhz virtual clock because no target is specified.

create_clock -period 10 -name my_virt_clk

I/O Constraints with Virtual Clocks

Virtual clocks are most commonly used in I/O constraints; they represent the clock at the external device
connected to the FPGA.

For the output circuit shown in the following figure, you should use a base clock to constrain the circuit in
the FPGA, and a virtual clock to represent the clock driving the external device. Examples of the base
clock, virtual clock, and output delay constraints for such a circuit are shown below.

QPS5V3
2015.11.02 Automatically Detecting Clocks and Creating Default Clock Constraints 7-13

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_derive_clocks.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-3: Virtual Clock Board Topology

Altera FPGA External Device

system_clk virt_clk

reg_a reg_b
dataout

datain

You can create a 10 ns virtual clock named virt_clk with a 50% duty cycle where the first rising edge
occurs at 0 ns by adding the following code to your SDC file. The virtual clock is then used as the clock
source for an output delay constraint.

Example 7-1: Virtual Clock

#create base clock for the design
create_clock -period 5 [get_ports system_clk]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk
#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]
set_output_delay -clock virt_clk -min 0.0 [get_ports dataout]

Related Information

• set_input_delay
• set_output_delay

For more information about these commands, refer to Quartus Prime Help.

Example of Specifying an I/O Interface Clock
To specify I/O interface uncertainty, you must create a virtual clock and constrain the input and output
ports with the set_input_delay and set_output_delay commands that reference the virtual clock.

When the set_input_delay or set_output_delay commands reference a clock port or PLL output, the
virtual clock allows the derive_clock_uncertainty command to apply separate clock uncertainties for
internal clock transfers and I/O interface clock transfers

Create the virtual clock with the same properties as the original clock that is driving the I/O port.

7-14 Example of Specifying an I/O Interface Clock
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-4: I/O Interface Clock Specifications

Altera FPGAExternal Device
data_in

clk_in

Q Q

reg2

D

reg1
D

100 MHz

Example 7-2: SDC Commands to Constrain the I/O Interface

Create the base clock for the clock port
create_clock -period 10 -name clk_in [get_ports clk_in]
Create a virtual clock with the same properties of the base clock
driving the source register
create_clock -period 10 -name virt_clk_in
Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay -clock clk_in <delay value>
[get_ports data_in]
set_input_delay -clock virt_clk_in <delay value> [get_ports data_in]

I/O Interface Uncertainty
Virtual clocks are recommended for I/O constraints because they most accurately represent the clocking
topology of the design. An additional benefit is that you can specify different uncertainty values on clocks
that interface with external I/O ports and clocks that feed register-to-register paths inside the FPGA.

Related Information
Clock Uncertainty on page 7-21
For more information about clock uncertainty and clock transfers.

Creating Generated Clocks
Define generated clocks on any nodes in your design which modify the properties of a clock signal,
including phase, frequency, offset, and duty cycle. Generated clocks are most commonly used on the
outputs of PLLs, on register clock dividers, clock muxes, and clocks forwarded to other devices from an
FPGA output port, such as source synchronous and memory interfaces. In the SDC file, create generated
clocks after the base clocks have been defined. Generated clocks automatically account for all clock delays
and clock latency to the generated clock target.

Use the create_generated_clock command to constrain generated clocks in your design.

The -source option specifies the name of a node in the clock path which is used as reference for your
generated clock. The source of the generated clock must be a node in your design netlist and not the name
of a previously defined clock. You can use any node name on the clock path between the input clock pin
of the target of the generated clock and the target node of its reference clock as the source node. A good
practice is to specify the input clock pin of the target node as the source of your new generated clock. That

QPS5V3
2015.11.02 I/O Interface Uncertainty 7-15

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

way, the source of the generated clock is decoupled from the naming and hierarchy of its clock source. If
you change its clock source, you don't have to edit the generated clock constraint.

If you have multiple base clocks feeding a node that is the source for a generated clock, you must define
multiple generated clocks. Each generated clock is associated to one base clock using the -master_clock
option in each generated clock statement. In some cases, generated clocks are generated with combina‐
tional logic. Depending on how your clock-modifying logic is synthesized, the name can change from
compile to compile. If the name changes after you write the generated clock constraint, the generated
clock is ignored because its target name no longer exists in the design. To avoid this problem, use a
synthesis attribute or synthesis assignment to keep the final combinational node of the clock-modifying
logic. Then use the kept name in your generated clock constraint. For details on keeping combinational
nodes or wires, refer to the Implement as Output of Logic Cell logic option topic in Quartus Prime Help.

When a generated clock is created on a node that ultimately feeds the data input of a register, this creates a
special case referred to as “clock-as-data”. Instances of clock-as-data are treated differently by TimeQuest.
For example, when clock-as-data is used with DDR, both the rise and the fall of this clock need to be
considered since it is a clock, and TimeQuest reports both rise and fall. With clock-as-data, the From
Node is treated as the target of the generated clock, and the Launch Clock is treated as the generated
clock. In the figure below, the first path is from toggle_clk (INVERTED) to clk, whereas the second path
is from toggle_clk to clk. The slack in both cases is slightly different due to the difference in rise and fall
times along the path; the ~5 ps difference can be seen in the Data Delay column. Only the path with the
lowest slack value need be considered. This would also be true if this were not a clock-as-data case, but
normally TimeQuest only reports the worst-case path between the two (rise and fall). In this example, if
the generated clock were not defined on the register output, then only one path would be reported and it
would be the one with the lowest slack value. If your design targets an Arria 10 device, the enhanced
timing algorithms remove all common clock pessimism on paths treated as clock-as-data.

Figure 7-5: Example of clock-as-data

The TimeQuest analyzer provides the derive_pll_clocks command to automatically generate clocks for
all PLL clock outputs. The properties of the generated clocks on the PLL outputs match the properties
defined for the PLL.

7-16 Creating Generated Clocks
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Deriving PLL Clocks on page 7-18
For more information about deriving PLL clock outputs.

• Implement as Output of Logic Cell logic option
For more information on keeping combinational nodes or wires, refer to Quartus Prime Help.

• create_generate_clock
• derive_pll_clocks
• create_generated_clocks

For information about these commands, refer to Quartus Prime Help.

Clock Divider Example
A common form of generated clock is a divide-by-two register clock divider. The following constraint
creates a half-rate clock on the divide-by-two register.

Figure 7-6: Clock Divider

reg

clk_sys

Figure 7-7: Clock Divider Waveform

1 2 3 4 5 6 7 8Edges

clk_sys

clk_div_2

0 10 20 30Time

create_clock -period 10 -name clk_sys [get_ports clk_sys]
create_generated_clock -name clk_div_2 -divide_by 2 -source \
 [get_ports clk_sys] [get_pins reg|q]

Or in order to have the clock source be the clock pin of the register you can use:

create_clock -period 10 -name clk_sys [get_ports clk_sys]
create_generated_clock -name clk_div_2 -divide_by 2 -source \
 [get_pins reg|clk] [get_pins reg|q]

Clock Multiplexor Example
Another common form of generated clock is on the output of a clock mux. One generated clock on the
output is requred for each input clock. The SDC example also includes the set_clock_groups command

QPS5V3
2015.11.02 Clock Divider Example 7-17

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#logicops/logicops/def_implement_as_lcell.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_create_generated_clock.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

to indicate that the two generated clocks can never be active simultaneously in the design, so the
TimeQuest analyzer does not analyze cross-domain paths between the generated clocks on the output of
the clock mux.

Figure 7-8: Clock Mux

clk_b
clk_a mux_out

create_clock -name clock_a -period 10 [get_ports clk_a]
create_clock -name clock_b -period 10 [get_ports clk_b]
create_generated_clock -name clock_a_mux -source [get_ports clk_a] \
 [get_pins clk_mux|mux_out]
create_generated_clock -name clock_b_mux -source [get_ports clk_b] \
 [get_pins clk_mux|mux_out] -add
set_clock_groups -exclusive -group clock_a_mux -group clock_b_mux

Deriving PLL Clocks
Use the derive_pll_clocks command to direct the TimeQuest analyzer to automatically search the
timing netlist for all unconstrained PLL output clocks. The derive_pll_clocks command detects your
current PLL settings and automatically creates generated clocks on the outputs of every PLL by calling the
create_generated_clock command.

Create Base Clock for PLL input Clock Ports

create_clock -period 10.0 -name fpga_sys_clk [get_ports fpga_sys_clk] \
 derive_pll_clocks

If your design contains transceivers, LVDS transmitters, or LVDS receivers, you must use the
derive_pll_clocks command. The command automatically constrains this logic in your design and
creates timing exceptions for those blocks.

Include the derive_pll_clocks command in your SDC file after any create_clock command Each time
the TimeQuest analyzer reads your SDC file, the appropriate generate clock is created for each PLL output
clock pin. If a clock exists on a PLL output before running derive_pll_clocks, the pre-existing clock has
precedence, and an auto-generated clock is not created for that PLL output.

A simple PLL design with a register-to-register path.

Figure 7-9: Simple PLL Design

reg_1 reg_2

pll_inclk pll_inst

dataout

The TimeQuest analyzer generates messages when you use the derive_pll_clocks command to
automatically constrain the PLL for a design similar to the previous image.

7-18 Deriving PLL Clocks
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 7-3: derive_pll_clocks Command Messages

Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source pll_inst|altpll_component|pll|inclk[0] -
divide_by 2 -name
pll_inst|altpll_component|pll|clk[0] pll_inst|altpll_component|pll|clk[0]
Info:

The input clock pin of the PLL is the node pll_inst|altpll_component|pll|inclk[0] which is used
for the -source option. The name of the output clock of the PLL is the PLL output clock node, pll_inst|
altpll_component|pll|clk[0].

If the PLL is in clock switchover mode, multiple clocks are created for the output clock of the PLL; one for
the primary input clock (for example, inclk[0]), and one for the secondary input clock (for example,
inclk[1]). You should create exclusive clock groups for the primary and secondary output clocks since
they are not active simultaneously.

Related Information

• Creating Clock Groups on page 7-19
For more information about creating exclusive clock groups.

• derive_pll_clocks
• Derive PLL Clocks

For more information about the derive_pll_clocks command.

Creating Clock Groups
The TimeQuest analyzer assumes all clocks are related unless constrained otherwise.

To specify clocks in your design that are exclusive or asynchronous, use the set_clock_groups
command. The set_clock_groups command cuts timing between clocks in different groups, and
performs the same analysis regardless of whether you specify -exclusive or -asynchronous. A group is
defined with the -group option. The TimeQuest analyzer excludes the timing paths between clocks for
each of the separate groups.

The following tables show examples of various group options for the set_clock_groups command.

Table 7-1: set_clock_groups -group A

Dest\Source A B C D

A Analyzed Cut Cut Cut

B Cut Analyzed Analyzed Analyzed

C Cut Analyzed Analyzed Analyzed

D Cut Analyzed Analyzed Analyzed

Table 7-2: set_clock_groups -group {A B}

Dest\Source A B C D

A Analyzed Analyzed Cut Cut

QPS5V3
2015.11.02 Creating Clock Groups 7-19

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/master.htm#mergedProjects/tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_pll_clocks.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/analyze/sta/sta_db_derive_pll_clocks.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

B Analyzed Analyzed Cut Cut

C Cut Cut Analyzed Analyzed

D Cut Cut Analyzed Analyzed

Table 7-3: set_clock_groups -group A -group B

Dest\Source A B C D

A Analyzed Cut Cut Cut

B Cut Analyzed Cut Cut

C Cut Cut Analyzed Analyzed

D Cut Cut Analyzed Analyzed

Table 7-4: set_clock_groups -group {A C} -group {B D}

Dest\Source A B C D

A Analyzed Cut Analyzed Cut

B Cut Analyzed Cut Analyzed

C Analyzed Cut Analyzed Cut

D Cut Analyzed Cut Analyzed

Table 7-5: set_clock_groups -group {A C D}

Dest\Source A B C D

A Analyzed Cut Analyzed Analyzed

B Cut Analyzed Cut Cut

C Analyzed Cut Analyzed Analyzed

D Analyzed Cut Analyzed Analyzed

Related Information
set_clock_groups
For more information about this command, refer to Quartus Prime Help.

Exclusive Clock Groups
Use the -exclusive option to declare that two clocks are mutually exclusive. You may want to declare
clocks as mutually exclusive when multiple clocks are created on the same node. This case occurs for
multiplexed clocks.

For example, an input port may be clocked by either a 25-MHz or a 50-MHz clock. To constrain this port,
create two clocks on the port, and then create clock groups to declare that they do not coexist in the
design at the same time. Declaring the clocks as mutually exclusive eliminates clock transfers that are
derived between the 25-MHz clock and the 50-MHz clock.

7-20 Exclusive Clock Groups
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_derive_clocks.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-10: Clock Mux with Synchronous Path Across the Mux

clk_b
clk_a mux_out

create_clock -period 40 -name clk_a [get_ports {port_a}]
create_clock -add -period 20 -name clk_b [get_ports {port_a}]
set_clock_groups -exclusive -group {clk_a} -group {clk_b}

Asynchronous Clock Groups
Use the -asynchronous option to create asynchronous clock groups. Asynchronous clock groups are
commonly used to break the timing relationship where data is transfered through a FIFO between clocks
running at different rates.

Related Information
set_clock_groups
For more information about this command, refer to Quartus Prime Help.

Accounting for Clock Effect Characteristics
The clocks you create with the TimeQuest analyzer are ideal clocks that do not account for any board
effects. You can account for clock effect characteristics with clock latency and clock uncertainty.

Clock Latency
There are two forms of clock latency, clock source latency and clock network latency. Source latency is the
propagation delay from the origin of the clock to the clock definition point (for example, a clock port).
Network latency is the propagation delay from a clock definition point to a register’s clock pin. The total
latency at a register’s clock pin is the sum of the source and network latencies in the clock path.

To specify source latency to any clock ports in your design, use the set_clock_latency command.

Note: The TimeQuest analyzer automatically computes network latencies; therefore, you only can
characterize source latency with the set_clock_latency command. You must use the -source
option.

Related Information
set_clock_latency
For more information about this command, refer to Quartus Prime Help.

Clock Uncertainty
When clocks are created, they are ideal and have perfect edges. It is important to add uncertainty to those
perfect edges, to mimic clock-level effects like jitter. You should include the derive_clock_uncertainty
command in your SDC file so that appropriate setup and hold uncertainties are automatically calculated
and applied to all clock transfers in your design. If you don't include the command, the TimeQuest
analyzer performs it anyway; it is a critical part of constraining your design correctly.

QPS5V3
2015.11.02 Asynchronous Clock Groups 7-21

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_groups.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_latency.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The TimeQuest analyzer subtracts setup uncertainty from the data required time for each applicable path
and adds the hold uncertainty to the data required time for each applicable path. This slightly reduces the
setup and hold slack on each path.

The TimeQuest analyzer accounts for uncertainty clock effects for three types of clock-to-clock transfers;
intraclock transfers, interclock transfers, and I/O interface clock transfers.

• Intraclock transfers occur when the register-to-register transfer takes place in the device and the source
and destination clocks come from the same PLL output pin or clock port.

• Interclock transfers occur when a register-to-register transfer takes place in the core of the device and
the source and destination clocks come from a different PLL output pin or clock port.

• I/O interface clock transfers occur when data transfers from an I/O port to the core of the device or
from the core of the device to the I/O port.

To manually specify clock uncertainty, use the set_clock_uncertainty command. You can specify the
uncertainty separately for setup and hold. You can also specify separate values for rising and falling clock
transitions, although this is not commonly used. You can override the value that was automatically
applied by the derive_clock_uncertainty command, or you can add to it.

The derive_clock_uncertainty command accounts for PLL clock jitter if the clock jitter on the input to
a PLL is within the input jitter specification for PLL's in the specified device. If the input clock jitter for
the PLL exceeds the specification, you should add additional uncertainty to your PLL output clocks to
account for excess jitter with the set_clock_uncertainty -add command. Refer to the device handbook
for your device for jitter specifications.

Another example is to use set_clock_uncertainty -add to add uncertainty to account for peak-to-peak
jitter from a board when the jitter exceeds the jitter specification for that device. In this case you would
add uncertainty to both setup and hold equal to 1/2 the jitter value:

set_clock_uncertainty –setup –to <clock name> \
 -setup –add <p2p jitter/2>

set_clock_uncertainty –hold –enable_same_physical_edge –to <clock name> \
 –add <p2p jitter/2>

There is a complex set of precedence rules for how the TimeQuest analyzer applies values from
derive_clock_uncertainty and set_clock_uncertainty, which depend on the order the commands
appear in your SDC files, and various options used with the commands. The Help topics referred to below
contain complete descriptions of these rules. These precedence rules are much simpler to understand and
implement if you follow these recommendations:

• If you want to assign your own clock uncertainty values to any clock transfers, the best practice is to
put your set_clock_uncertainty exceptions after the derive_clock_uncertainty command in
your SDC file.

• When you use the -add option for set_clock_uncertainty, the value you specify is added to the
value from derive_clock_uncertainty. If you don't specify -add, the value you specify replaces the
value from derive_clock_uncertainty.

Related Information

• set_clock_uncertainty
• derive_clock_uncertainty
• remove_clock_uncertainty

For more information about these commands, refer to Quartus Prime Help.

7-22 Clock Uncertainty
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_clock_uncertainty.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_derive_clock_uncertainty.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_remove_clock_uncertainty.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating I/O Requirements
The TimeQuest analyzer reviews setup and hold relationships for designs in which an external source
interacts with a register internal to the design. The TimeQuest analyzer supports input and output
external delay modeling with the set_input_delay and set_output_delay commands. You can specify
the clock and minimum and maximum arrival times relative to the clock.

You must specify timing requirements, including internal and external timing requirements, before you
fully analyze a design. With external timing requirements specified, the TimeQuest analyzer verifies the
I/O interface, or periphery of the device, against any system specification.

Input Constraints
Input constraints allow you to specify all the external delays feeding into the device. Specify input
requirements for all input ports in your design.

You can use the set_input_delay command to specify external input delay requirements. Use the -
clock option to reference a virtual clock. Using a virtual clock allows the TimeQuest analyzer to correctly
derive clock uncertainties for interclock and intraclock transfers. The virtual clock defines the launching
clock for the input port. The TimeQuest analyzer automatically determines the latching clock inside the
device that captures the input data, because all clocks in the device are defined.

Figure 7-11: Input Delay

External Device Altera Device

Oscillator

dd

cd_altrcd_ext

tco_ext

The calculation the TimeQuest analyzer performs to determine the typical input delay.

Figure 7-12: Input Delay Calculation

input delayMAX = (cd_extMAX – cd_altrMIN) + tco_extMAX + ddMAX

input delayMIN = (cd_extMIN – cd_altrMAX) + tco_extMIN + ddMIN

Output Constraints
Output constraints allow you to specify all external delays from the device for all output ports in your
design.

You can use the set_output_delay command to specify external output delay requirements. Use the -
clock option to reference a virtual clock. The virtual clock defines the latching clock for the output port.
The TimeQuest analyzer automatically determines the launching clock inside the device that launches the
output data, because all clocks in the device are defined. The following figure is an example of an output
delay referencing a virtual clock.

QPS5V3
2015.11.02 Creating I/O Requirements 7-23

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-13: Output Delay

External DeviceAltera Device

Oscillator

dd

cd_altr

cd_ext

tsu_ext/th_ext

The calculation the TimeQuest analyzer performs to determine the typical out delay.

Figure 7-14: Output Delay Calculation

output delayMAX = ddMAX + tsu_ext + (cd_altrMAX – cd_extMIN)
output delayMIN = (ddMIN – th_ext +(cd_altrMIN – cd_extMAX))

Related Information

• set_intput_delay
• set_output_delay

For more information about these commands, refer to Quartus Prime Help.

Creating Delay and Skew Constraints
The TimeQuest analyzer supports the Synopsys Design Constraint format for constraining timing for the
ports in your design. These constraints allow the TimeQuest analyzer to perform a system static timing
analysis that includes not only the device internal timing, but also any external device timing and board
timing parameters.

Advanced I/O Timing and Board Trace Model Delay
The TimeQuest analyzer can use advanced I/O timing and board trace model assignments to model I/O
buffer delays in your design.

If you change any advanced I/O timing settings or board trace model assignments, recompile your design
before you analyze timing, or use the -force_dat option to force delay annotation when you create a
timing netlist.

Example 7-4: Forcing Delay Annotation

create_timing_netlist -force_dat

Related Information

• Using Advanced I/O Timing
• I/O Management

For more information about advanced I/O timing.

7-24 Creating Delay and Skew Constraints
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_input_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_output_delay.htm
http://quartushelp.altera.com/current/master.htm#mergedProjects/optimize/ssn/ssn_pro_using_adv_io_analysis.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471036713/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Maximum Skew
To specify the maximum path-based skew requirements for registers and ports in the design and report
the results of maximum skew analysis, use the set_max_skew command in conjunction with the
report_max_skew command.

Use the set_max_skew constraint to perform maximum allowable skew analysis between sets of registers
or ports. In order to constrain skew across multiple paths, all such paths must be defined within a single
set_max_skew constraint. set_max_skew timing constraint is not affected by set_max_delay,
set_min_delay, and set_multicycle_path but it does obey set_false_path and set_clock_groups. If
your design targets an Arria 10 device, skew constraints are not affected by set_clock_groups.

Table 7-6: set_max_skew Options

Arguments Description

-h | -help Short help
-long_help Long help with examples and possible return values
-exclude <Tcl list> A Tcl list of parameters to exclude during skew analysis. This

list can include one or more of the following: utsu, uth, utco,
from_clock, to_clock, clock_uncertainty, ccpp, input_
delay, output_delay, odv.

Note: Not supported for Arria 10 devices.

-fall_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-fall_to_clock <names> Valid destination clocks (string patterns are matched using Tcl
string matching)

-from <names>(1) Valid sources (string patterns are matched using Tcl string
matching

-from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-get_skew_value_from_clock_period

<src_clock_period|dst_clock_

period|min_clock_period>

Option to interpret skew constraint as a multiple of the clock
period

-include <Tcl list> Tcl list of parameters to include during skew analysis. This list
can include one or more of the following: utsu, uth, utco,
from_clock, to_clock, clock_uncertainty, ccpp, input_
delay, output_delay, odv.

Note: Not supported for Arria 10 devices.

-rise_from_clock <names> Valid source clocks (string patterns are matched using Tcl
string matching)

-rise_to_clock <names> Valid destination clocks (string patterns are matched using Tcl
string matching)

(1) Legal values for the -from and -to options are collections of clocks, registers, ports, pins, cells or partitions in
a design.

QPS5V3
2015.11.02 Maximum Skew 7-25

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Arguments Description

-skew_value_multiplier

<multiplier>

Value by which the clock period should be multiplied to
compute skew requirement.

-to <names>(1) Valid destinations (string patterns are matched using Tcl string
matching)

-to_clock <names> Valid destination clocks (string patterns are matched using Tcl
string matching)

<skew> Required skew

Applying maximum skew constraints between clocks applies the constraint from all register or ports
driven by the clock specified with the -from option to all registers or ports driven by the clock specified
with the -to option.

Use the -include and -exclude options to include or exclude one or more of the following: register
micro parameters (utsu, uth, utco), clock arrival times (from_clock, to_clock), clock uncertainty
(clock_uncertainty), common clock path pessimism removal (ccpp), input and output delays
(input_delay, output_delay) and on-die variation (odv). Max skew analysis can include data arrival
times, clock arrival times, register micro parameters, clock uncertainty, on-die variation and ccpp
removal. Among these, only ccpp removal is disabled during the Fitter by default. When -include is
used, those in the inclusion list are added to the default analysis. Similarly, when -exclude is used, those
in the exclusion list are excluded from the default analysis. When both the -include and -exclude
options specify the same parameter, that parameter is excluded.

Note: If your design targets an Arria 10 device, -exclude and -include are not supported.

Use -get_skew_value_from_clock_period to set the skew as a multiple of the launching or latching
clock period, or whichever of the two has a smaller period. If this option is used, then -
skew_value_multiplier must also be set, and the positional skew option may not be set. If the set of
skew paths is clocked by more than one clock, TimeQuest uses the one with smallest period to compute
the skew constraint.

When this constraint is used, results of max skew analysis are displayed in the Report Max Skew
(report_max_skew) report from the TimeQuest Timing Analyzer. Since skew is defined between two or
more paths, no results are displayed if the -from/-from_clock and -to/-to_clock filters satisfy less than
two paths.

Related Information

• set_max_skew
• report_max_skew

For more information about these commands, refer to Quartus Prime Help.

Net Delay

Use the set_net_delay command to set the net delays and perform minimum or maximum timing
analysis across nets. The -from and -to options can be string patterns or pin, port, register, or net
collections. When pin or net collection is used, the collection should include output pins or nets.

7-26 Net Delay
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_min_skew.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_max_skew.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-7: set_net_delay Options

Arguments Description

-h | -help Short help
-long_help Long help with examples and possible return values
-from <names> Valid source pins, ports, registers or nets(string patterns are

matched using Tcl string matching)
-get_value_from_clock_period

<src_clock_period|dst_clock_

period|min_clock_period|max_

clock_period>

Option to interpret net delay constraint as a multiple of the
clock period.

-max Specifies maximum delay
-min Specifies minimum delay
-to <names>(2) Valid destination pins, ports, registers or nets (string patterns

are matched using Tcl string matching)
-value_multiplier <multiplier> Value by which the clock period should be multiplied to

compute net delay requirement.
<delay> Required delay

When you use the -min option, slack is calculated by looking at the minimum delay on the edge. If you
use -max option, slack is calculated with the maximum edge delay.

Use -get_skew_value_from_clock_period to set the net delay requirement as a multiple of the
launching or latching clock period, or whichever of the two has a smaller or larger period. If this option is
used, then -value_multiplier must also be set, and the positional delay option may not be set. If the set
of nets is clocked by more than one clock, TimeQuest uses the net with smallest period to compute the
constraint for a -max constraint, and the largest period for a -min constraint. If there are no clocks
clocking the endpoints of the net (e.g. if the endpoints of the nets are not registers or constraint ports),
then the net delay constraint will be ignored.

Related Information

• set_net_delay
• report_net_delay

For more information about these commands, refer to Quartus Prime Help.

Using create_timing_netlist
You can onfigure or load the timing netlist that the TimeQuest analyzer uses to calculate path delay data.

Your design should have a timing netlist before running the TimeQuest analyzer. You can use the Create
Timing Netlist dialog box or the Create Timing Netlist command in the Tasks pane. The command also
generates Advanced I/O Timing reports if you turned on Enable Advanced I/O Timing in the
TimeQuest Timing Analyzer page of the Settings dialog box.

Note: The timing netlist created is based on the initial configuration of the design. Any configuration
changes done by the design after the device enters user mode, for example, dynamic transceiver

(2) If the -to option is unused or if the -to filter is a wildcard ("*") character, all the output pins and registers on
timing netlist became valid destination points.

QPS5V3
2015.11.02 Using create_timing_netlist 7-27

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_set_net_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_report_net_delay.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

reconfiguration, are not reflected in the timing netlist. This applies to all device families except
transceivers on Arria 10 devices with the Multiple Reconfiguration Profiles feature.

The following diagram shows how the TimeQuest analyzer interprets and classifies timing netlist data for
a sample design.

Figure 7-15: How TimeQuest Interprets the Timing Netlist

Creating Timing Exceptions
Timing exceptions in the TimeQuest analyzer provide a way to modify the default timing analysis
behavior to match the analysis required by your design. Specify timing exceptions after clocks and input
and output delay constraints because timing exceptions can modify the default analysis.

Precedence
If a conflict of node names occurs between timing exceptions, the following order of precedence applies:

1. False path
2. Minimum delays and maximum delays
3. Multicycle path

The false path timing exception has the highest precedence. Within each category, assignments to
individual nodes have precedence over assignments to clocks. Finally, the remaining precedence for
additional conflicts is order-dependent, such that the assignments most recently created overwrite, or
partially overwrite, earlier assignments.

False Paths
Specifying a false path in your design removes the path from timing analysis.

Use the set_false_path command to specify false paths in your design. You can specify either a point-
to-point or clock-to-clock path as a false path. For example, a path you should specify as false path is a
static configuration register that is written once during power-up initialization, but does not change state
again. Although signals from static configuration registers often cross clock domains, you may not want
to make false path exceptions to a clock-to-clock path, because some data may transfer across clock
domains. However, you can selectively make false path exceptions from the static configuration register to
all endpoints.

7-28 Creating Timing Exceptions
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To make false path exceptions from all registers beginning with A to all registers beginning with B, use the
following code in your SDC file.

set_false_path -from [get_pins A*] -to [get_pins B*]

The TimeQuest analyzer assumes all clocks are related unless you specify otherwise. Clock groups are a
more efficient way to make false path exceptions between clocks, compared to writing multiple
set_false_path exceptions between every clock transfer you want to eliminate.

Related Information

• Creating Clock Groups on page 7-19
For more information about creating exclusive clock groups.

• set_false_path
For more information about this command, refer to Quartus Prime Help.

Minimum and Maximum Delays
To specify an absolute minimum or maximum delay for a path, use the set_min_delay command or the
set_max_delay commands, respectively. Specifying minimum and maximum delay directly overwrites
existing setup and hold relationships with the minimum and maximum values.

Use the set_max_delay and set_min_delay commands to create constraints for asynchronous signals
that do not have a specific clock relationship in your design, but require a minimum and maximum path
delay. You can create minimum and maximum delay exceptions for port-to-port paths through the device
without a register stage in the path. If you use minimum and maximum delay exceptions to constrain the
path delay, specify both the minimum and maximum delay of the path; do not constrain only the
minimum or maximum value.

If the source or destination node is clocked, the TimeQuest analyzer takes into account the clock paths,
allowing more or less delay on the data path. If the source or destination node has an input or output
delay, that delay is also included in the minimum or maximum delay check.

If you specify a minimum or maximum delay between timing nodes, the delay applies only to the path
between the two nodes. If you specify a minimum or maximum delay for a clock, the delay applies to all
paths where the source node or destination node is clocked by the clock.

You can create a minimum or maximum delay exception for an output port that does not have an output
delay constraint. You cannot report timing for the paths associated with the output port; however, the
TimeQuest analyzer reports any slack for the path in the setup summary and hold summary reports.
Because there is no clock associated with the output port, no clock is reported for timing paths associated
with the output port.

Note: To report timing with clock filters for output paths with minimum and maximum delay
constraints, you can set the output delay for the output port with a value of zero. You can use an
existing clock from the design or a virtual clock as the clock reference.

Related Information

• set_max_delay
• set_min_delay

For more information about these commands, refer to Quartus Prime Help.

Delay Annotation
To modify the default delay values used during timing analysis, use the set_annotated_delay and
set_timing_derate commands. You must update the timing netlist to see the results of these commands

QPS5V3
2015.11.02 Minimum and Maximum Delays 7-29

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_false_path.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_max_delay.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_min_delay.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify different operating conditions in a single SDC file, rather than having multiple SDC files that
specify different operating conditions, use the set_annotated_delay -operating_conditions
command.

Related Information

• set_timing_derate
• set_annotated_delay

For more information about these commands, refer to the Quartus Prime Help.

Multicycle Paths
By default, the TimeQuest analyzer performs a single-cycle analysis, which is the most restrictive type of
analysis. When analyzing a path, the setup launch and latch edge times are determined by finding the
closest two active edges in the respective waveforms.

For a hold analysis, the timing analyzer analyzes the path against two timing conditions for every possible
setup relationship, not just the worst-case setup relationship. Therefore, the hold launch and latch times
may be completely unrelated to the setup launch and latch edges. The TimeQuest analyzer does not report
negative setup or hold relationships. When either a negative setup or a negative hold relationship is
calculated, the TimeQuest analyzer moves both the launch and latch edges such that the setup and hold
relationship becomes positive.

A multicycle constraint adjusts setup or hold relationships by the specified number of clock cycles based
on the source (-start) or destination (-end) clock. An end setup multicycle constraint of 2 extends the
worst-case setup latch edge by one destination clock period. If -start and -end values are not specified,
the default constraint is -end.

Hold multicycle constraints are based on the default hold position (the default value is 0). An end hold
multicycle constraint of 1 effectively subtracts one destination clock period from the default hold latch
edge.

When the objects are timing nodes, the multicycle constraint only applies to the path between the two
nodes. When an object is a clock, the multicycle constraint applies to all paths where the source node (-
from) or destination node (-to) is clocked by the clock. When you adjust a setup relationship with a
multicycle constraint, the hold relationship is adjusted automatically.

You can use TimeQuest analyzer commands to modify either the launch or latch edge times that the uses
to determine a setup relationship or hold relationship.

Table 7-8: Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end <value> Latch edge time of the setup relationship
set_multicycle_path -setup -start<value> Launch edge time of the setup relationship
set_multicycle_path -hold -end <value> Latch edge time of the hold relationship
set_multicycle_path -hold -start <value> Launch edge time of the hold relationship

Common Multicycle Variations
Multicycle exceptions adjust the timing requirements for a register-to-register path, allowing the Fitter to
optimally place and route a design in a device. Multicycle exceptions also can reduce compilation time
and improve the quality of results, and can be used to change timing requirements. Two common

7-30 Multicycle Paths
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_timing_derate.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0_cmd_set_annotated_delay.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

multicycle variations are relaxing setup to allow a slower data transfer rate, and altering the setup to
account for a phase shift.

Relaxing Setup with set_multicyle_path
A common type of multicycle exception occurs when the data transfer rate is slower than the clock cycle.
Relaxing the setup relationship opens the window when data is accepted as valid.

In this example, the source clock has a period of 10 ns, but a group of registers are enabled by a toggling
clock, so they only toggle every other cycle. Since they are fed by a 10 ns clock, the TimeQuest analyzer
reports a set up of 10 ns and a hold of 0 ns, However, since the data is transferring every other cycle, the
relationships should be analyzed as if the clock were operating at 20 ns, which would result in a setup of
20 ns, while the hold remains 0 ns, in essence, extending the window of time when the data can be
recognized.

The following pair of multicycle assignments relax the setup relationship by specifying the -setup value
of N and the -hold value as N-1. You must specify the hold relationship with a -hold assignment to
prevent a positive hold requirement.

Relaxing Setup while Maintaining Hold

set_multicycle_path -setup -from src_reg* -to dst_reg* 2
set_multicycle_path -hold -from src_reg* -to dst_reg* 1

Figure 7-16: Relaxing Setup by Multiple Cycles

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

0 ns 10 ns 20 ns 30 ns

No Multicycles
(Default Relationship)

Setup = 10 ns
Hold = 0 ns

Setup = 2
Hold = 1

Setup = 20 ns
Hold = 0 ns

Setup = 3
Hold = 2

Setup = 30 ns
Hold = 0 ns

This pattern can be extended to create larger setup relationships in order to ease timing closure require‐
ments. A common use for this exception is when writing to asynchronous RAM across an I/O interface.
The delay between address, data, and a write enable may be several cycles. A multicycle exception to I/O
ports can allow extra time for the address and data to resolve before the enable occurs.

You can relax the setup by three cycles with the following code in your SDC file.

QPS5V3
2015.11.02 Relaxing Setup with set_multicyle_path 7-31

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Three Cycle I/O Interface Exception

set_multicycle_path -setup -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 3
set_multicycle_path -hold -to [get_ports {SRAM_ADD[*] SRAM_DATA[*]} 2

Accounting for a Phase Shift
In this example, the design contains a PLL that performs a phase-shift on a clock whose domain
exchanges data with domains that do not experience the phase shift. A common example is when the
destination clock is phase-shifted forward and the source clock is not, the default setup relationship
becomes that phase-shift, thus shifting the window when data is accepted as valid.

For example, the following code is a circumstance where a PLL phase-shifts one output forward by a small
amount, in this case 0.2 ns.

 Cross Domain Phase-Shift

create_generated_clock -source pll|inclk[0] -name pll|clk[0] pll|clk[0]
create_generated_clock -source pll|inclk[0] -name pll|clk[1] -phase 30 pll|clk[1]

The default setup relationship for this phase-shift is 0.2 ns, shown in Figure A, creating a scenario where
the hold relationship is negative, which makes achieving timing closure nearly impossible.

Figure 7-17: Phase-Shifted Setup and Hold

-10 ns 0 ns 10 ns 20 ns

-10 ns 0 ns 10 ns 20 ns

No Multicycles
(Default Relationship)

Setup = 0.2 ns
Hold = -9.8 ns

Setup = 2

Setup = 10.2 ns
Hold = 0.2 ns

Adding the following constraint in your SDC allows the data to transfer to the following edge.

set_multicycle_path -setup -from [get_clocks clk_a] -to [get_clocks clk_b] 2

The hold relationship is derived from the setup relationship, making a multicyle hold constraint unneces‐
sary.

Related Information

• Same Frequency Clocks with Destination Clock Offset on page 7-41
Refer to this topic for a more complete example.

• Same Frequency Clocks with Destination Clock Offset on page 7-41
Refer to this topic for a more complete example.

• set_multicycle_path
For more information about this command, refer to the Quartus Prime Help.

7-32 Accounting for a Phase Shift
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5_cmd_set_multicycle_path.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Examples of Basic Multicycle Exceptions
Each example explains how the multicycle exceptions affect the default setup and hold analysis in the
TimeQuest analyzer. The multicycle exceptions are applied to a simple register-to-register circuit. Both
the source and destination clocks are set to 10 ns.

Default Settings
By default, the TimeQuest analyzer performs a single-cycle analysis to determine the setup and hold
checks. Also, by default, the TimeQuest analyzer sets the end multicycle setup assignment value to one
and the end multicycle hold assignment value to zero.

The source and the destination timing waveform for the source register and destination register,
respectively where HC1 and HC2 are hold checks one and two and SC is the setup check.

Figure 7-18: Default Timing Diagram

-10 0 10 20
Current Launch

Current Latch

0 1 2

HC1 HC2SC

REG1.CLK

REG2.CLK

The calculation that the TimeQuest analyzer performs to determine the setup check.

Figure 7-19: Setup Check

setup check = current latch edge – closest previous launch edge
 = 10 ns – 0 ns
 = 10 ns

The most restrictive setup relationship with the default single-cycle analysis, that is, a setup relationship
with an end multicycle setup assignment of one, is 10 ns.

The setup report for the default setup in the TimeQuest analyzer with the launch and latch edges
highlighted.

QPS5V3
2015.11.02 Examples of Basic Multicycle Exceptions 7-33

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-20: Setup Report

The calculation that the TimeQuest analyzer performs to determine the hold check. Both hold checks are
equivalent.

Figure 7-21: Hold Check

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

The most restrictive hold relationship with the default single-cycle analysis, that a hold relationship with
an end multicycle hold assignment of zero, is 0 ns.

The hold report for the default setup in the TimeQuest analyzer with the launch and latch edges
highlighted.

7-34 Default Settings
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-22: Hold Report

End Multicycle Setup = 2 and End Multicycle Hold = 0
In this example, the end multicycle setup assignment value is two, and the end multicycle hold assignment
value is zero.

Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

Note: An end multicycle hold value is not required because the default end multicycle hold value is zero.

In this example, the setup relationship is relaxed by a full clock period by moving the latch edge to
the next latch edge. The hold analysis is unchanged from the default settings.

The setup timing diagram for the analysis that the TimeQuest analyzer performs. The latch edge is
a clock cycle later than in the default single-cycle analysis.

QPS5V3
2015.11.02 End Multicycle Setup = 2 and End Multicycle Hold = 0 7-35

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-23: Setup Timing Diagram

-10 0

0 1 2

10 20

SC

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

The calculation that the TimeQuest analyzer performs to determine the setup check.

Figure 7-24: Setup Check

setup check = current latch edge – closest previous launch edge
 = 20 ns – 0 ns
 = 20 ns

The most restrictive setup relationship with an end multicycle setup assignment of two is 20 ns.

The setup report in the TimeQuest analyzer with the launch and latch edges highlighted.

Figure 7-25: Setup Report

7-36 End Multicycle Setup = 2 and End Multicycle Hold = 0
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Because the multicycle hold latch and launch edges are the same as the results of hold analysis with
the default settings, the multicycle hold analysis in this example is equivalent to the single-cycle
hold analysis. The hold checks are relative to the setup check. Usually, the TimeQuest analyzer
performs hold checks on every possible setup check, not only on the most restrictive setup check
edges.

Figure 7-26: Hold Timing DIagram

-10 0 10 20
Current Launch

Current Latch

REG1.CLK

REG2.CLK

SCHC1Data HC2

The calculation that the TimeQuest analyzer performs to determine the hold check. Both hold
checks are equivalent.

Figure 7-27:

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 10 ns
 = –10 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 20 ns
 = –10 ns

The most restrictive hold relationship with an end multicycle setup assignment value of two and an
end multicycle hold assignment value of zero is 10 ns.

The hold report for this example in the TimeQuest analyzer with the launch and latch edges
highlighted.

QPS5V3
2015.11.02 End Multicycle Setup = 2 and End Multicycle Hold = 0 7-37

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-28: Hold Report

End Multicycle Setup = 2 and End Multicycle Hold = 1
In this example, the end multicycle setup assignment value is two, and the end multicycle hold assignment
value is one.

Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2
set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] -hold -end 1

In this example, the setup relationship is relaxed by two clock periods by moving the latch edge to the left
two clock periods. The hold relationship is relaxed by a full period by moving the latch edge to the
previous latch edge.

The setup timing diagram for the analysis that the TimeQuest analyzer performs.

7-38 End Multicycle Setup = 2 and End Multicycle Hold = 1
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-29: Setup Timing Diagram

-10 0

0 1 2

10 20

SC

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

The calculation that the TimeQuest analyzer performs to determine the setup check.

Figure 7-30: Setup Check

setup check = current latch edge – closest previous launch edge
 = 20 ns – 0 ns
 = 20 ns

The most restrictive hold relationship with an end multicycle setup assignment value of two is 20 ns.

The setup report for this example in the TimeQuest analyzer with the launch and latch edges highlighted.

Figure 7-31: Setup Report

QPS5V3
2015.11.02 End Multicycle Setup = 2 and End Multicycle Hold = 1 7-39

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The timing diagram for the hold checks for this example. The hold checks are relative to the setup check.

Figure 7-32: Hold Timing Diagram

-10 0 10 20

SRC.CLK

DST.CLK

Current
Launch

Current
Latch

SC
HC1

HC2

The calculation that the TimeQuest analyzer performs to determine the hold check. Both hold checks are
equivalent.

Figure 7-33: Hold Check

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

The most restrictive hold relationship with an end multicycle setup assignment value of two and an end
multicycle hold assignment value of one is 0 ns.

The hold report for this example in the TimeQuest analyzer with the launch and latch edges highlighted.

7-40 End Multicycle Setup = 2 and End Multicycle Hold = 1
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-34: Hold Report

Application of Multicycle Exceptions
This section shows the following examples of applications of multicycle exceptions. Each example
explains how the multicycle exceptions affect the default setup and hold analysis in the TimeQuest
analyzer. All of the examples are between related clock domains. If your design contains related clocks,
such as PLL clocks, and paths between related clock domains, you can apply multicycle constraints.

Same Frequency Clocks with Destination Clock Offset
In this example, the source and destination clocks have the same frequency, but the destination clock is
offset with a positive phase shift. Both the source and destination clocks have a period of 10 ns. The
destination clock has a positive phase shift of 2 ns with respect to the source clock.

An example of a design with same frequency clocks and a destination clock offset.

Figure 7-35: Same Frequency Clocks with Destination Clock Offset

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLR

clk1

In

clk0

Out

The timing diagram for default setup check analysis that the TimeQuest analyzer performs.

QPS5V3
2015.11.02 Application of Multicycle Exceptions 7-41

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-36: Setup Timing Diagram

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The calculation that the TimeQuest analyzer performs to determine the setup check.

Figure 7-37: Setup Check

setup check = current latch edge – closest previous launch edge
 = 2 ns – 0 ns
 = 2 ns

The setup relationship shown is too pessimistic and is not the setup relationship required for typical
designs. To correct the default analysis, you must use an end multicycle setup exception of two. A
multicycle exception used to correct the default analysis in this example in your SDC file.

 Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

The timing diagram for the preferred setup relationship for this example.

.

Figure 7-38: Preferred Setup Relationship

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

7-42 Same Frequency Clocks with Destination Clock Offset
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The timing diagram for default hold check analysis that the TimeQuest analyzer performs with an end
multicycle setup value of two.

Figure 7-39: Default Hold Check

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

The calculation that the TimeQuest analyzer performs to determine the hold check.

Figure 7-40: Hold Check

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 2 ns
 = –2 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 12 ns
 = –2 ns

In this example, the default hold analysis returns the preferred hold requirements and no multicycle hold
exceptions are required.

The associated setup and hold analysis if the phase shift is –2 ns. In this example, the default hold analysis
is correct for the negative phase shift of 2 ns, and no multicycle exceptions are required.

QPS5V3
2015.11.02 Same Frequency Clocks with Destination Clock Offset 7-43

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-41: Negative Phase Shift

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SCHC1 HC2

Destination Clock Frequency is a Multiple of the Source Clock Frequency
In this example, the destination clock frequency value of 5 ns is an integer multiple of the source clock
frequency of 10 ns. The destination clock frequency can be an integer multiple of the source clock
frequency when a PLL is used to generate both clocks with a phase shift applied to the destination clock.

An example of a design where the destination clock frequency is a multiple of the source clock frequency.

Figure 7-42: Destination Clock is Multiple of Source Clock

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The timing diagram for default setup check analysis that the TimeQuest analyzer performs.

Figure 7-43: Setup Timing Diagram

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The calculation that the TimeQuest analyzer performs to determine the setup check.

7-44 Destination Clock Frequency is a Multiple of the Source Clock Frequency
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-44: Setup Check

setup check = current latch edge – closest previous launch edge
 = 5 ns – 0 ns
 = 5 ns

The setup relationship demonstrates that the data does not need to be captured at edge one, but can be
captured at edge two; therefore, you can relax the setup requirement. To correct the default analysis, you
must shift the latch edge by one clock period with an end multicycle setup exception of two. The
multicycle exception assignment used to correct the default analysis in this example.

Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 2

The timing diagram for the preferred setup relationship for this example.

Figure 7-45: Preferred Setup Analysis

-10 0

1 2

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The timing diagram for default hold check analysis performed by the TimeQuest analyzer with an end
multicycle setup value of two.

Figure 7-46: Default Hold Check

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

SC
HC1

HC2

QPS5V3
2015.11.02 Destination Clock Frequency is a Multiple of the Source Clock Frequency 7-45

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The calculation that the TimeQuest analyzer performs to determine the hold check.

Figure 7-47: Hold Check

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 5 ns
 = –5 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

In this example, hold check one is too restrictive. The data is launched by the edge at 0 ns and should
check against the data captured by the previous latch edge at 0 ns, which does not occur in hold check
one. To correct the default analysis, you must use an end multicycle hold exception of one.

Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset

This example is a combination of the previous two examples. The destination clock frequency is an
integer multiple of the source clock frequency and the destination clock has a positive phase shift. The
destination clock frequency is 5 ns and the source clock frequency is 10 ns. The destination clock also has
a positive offset of 2 ns with respect to the source clock. The destination clock frequency can be an integer
multiple of the source clock frequency with an offset when a PLL is used to generate both clocks with a
phase shift applied to the destination clock. The following example shows a design in which the destina‐
tion clock frequency is a multiple of the source clock frequency with an offset.

Figure 7-48: Destination Clock is Multiple of Source Clock with Offset

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

The timing diagram for the default setup check analysis the TimeQuest analyzer performs.

7-46 Destination Clock Frequency is a Multiple of the Source Clock Frequency...
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-49: Setup Timing Diagram

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The calculation that the TimeQuest analyzer performs to determine the setup check.

Figure 7-50: Hold Check

setup check = current latch edge – closest previous launch edge
 = 2 ns – 0 ns
 = 2 ns

The setup relationship in this example demonstrates that the data does not need to be captured at edge
one, but can be captured at edge two; therefore, you can relax the setup requirement. To correct the
default analysis, you must shift the latch edge by one clock period with an end multicycle setup exception
of three.

The multicycle exception code you can use to correct the default analysis in this example.

Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -end 3

The timing diagram for the preferred setup relationship for this example.

Figure 7-51: Preferred Setup Analysis

SC

-10 0

1 2 3

10 20

REG1.CLK

REG2.CLK

Launch

Latch

QPS5V3
2015.11.02 Destination Clock Frequency is a Multiple of the Source Clock Frequency... 7-47

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The timing diagram for default hold check analysis the TimeQuest analyzer performs with an end
multicycle setup value of three.

Figure 7-52: Default Hold Check

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1
HC2

The calculation that the TimeQuest analyzer performs to determine the hold check.

Figure 7-53: Hold Check

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 5 ns
 = –5 ns

hold check 2 = next launch edge – current latch edge
 = 10 ns – 10 ns
 = 0 ns

In this example, hold check one is too restrictive. The data is launched by the edge at 0 ns and should
check against the data captured by the previous latch edge at 2 ns, which does not occur in hold check
one. To correct the default analysis, you must use an end multicycle hold exception of one.

Source Clock Frequency is a Multiple of the Destination Clock Frequency
In this example, the source clock frequency value of 5 ns is an integer multiple of the destination clock
frequency of 10 ns. The source clock frequency can be an integer multiple of the destination clock
frequency when a PLL is used to generate both clocks and different multiplication and division factors are
used.

An example of a design where the source clock frequency is a multiple of the destination clock frequency.

Figure 7-54: Source Clock Frequency is Multiple of Destination Clock Frequency

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

7-48 Source Clock Frequency is a Multiple of the Destination Clock Frequency
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The timing diagram for default setup check analysis performed by the TimeQuest analyzer.

Figure 7-55: Default Setup Check Analysis

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

The calculation that the TimeQuest analyzer performs to determine the setup check.

Figure 7-56: Setup Check

setup check = current latch edge – closest previous launch edge
 = 10 ns – 5 ns
 = 5 ns

The setup relationship shown demonstrates that the data launched at edge one does not need to be
captured, and the data launched at edge two must be captured; therefore, you can relax the setup require‐
ment. To correct the default analysis, you must shift the launch edge by one clock period with a start
multicycle setup exception of two.

The multicycle exception code you can use to correct the default analysis in this example.

Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -start 2

The timing diagram for the preferred setup relationship for this example.

QPS5V3
2015.11.02 Source Clock Frequency is a Multiple of the Destination Clock Frequency 7-49

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-57: Preferred Setup Check Analysis

SC

-10 0

2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

The timing diagram for default hold check analysis the TimeQuest analyzer performs for a start
multicycle setup value of two.

Figure 7-58: Default Hold Check

SC

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1 HC2

The calculation that the TimeQuest analyzer performs to determine the hold check.

Figure 7-59: Hold Check

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 0 ns
 = 0 ns

hold check 2 = next launch edge – current latch edge
 = 5 ns – 10 ns
 = –5 ns

In this example, hold check two is too restrictive. The data is launched next by the edge at 10 ns and
should check against the data captured by the current latch edge at 10 ns, which does not occur in hold
check two. To correct the default analysis, you must use a start multicycle hold exception of one.

7-50 Source Clock Frequency is a Multiple of the Destination Clock Frequency
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset
In this example, the source clock frequency is an integer multiple of the destination clock frequency and
the destination clock has a positive phase offset. The source clock frequency is 5 ns and destination clock
frequency is 10 ns. The destination clock also has a positive offset of 2 ns with respect to the source clock.
The source clock frequency can be an integer multiple of the destination clock frequency with an offset
when a PLL is used to generate both clocks, different multiplication.

Figure 7-60: Source Clock Frequency is Multiple of Destination Clock Frequency with Offset

REG1 REG2
Combinational

Logic
SET SET

D Q D Q

CLR CLRclk

In

clk0

clk1

Out

Timing diagram for default setup check analysis the TimeQuest analyzer performs.

Figure 7-61: Setup Timing Diagram

SC

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

The calculation that the TimeQuest analyzer performs to determine the setup check.

Figure 7-62: Setup Check

setup check = current latch edge – closest previous launch edge
 = 12 ns – 10 ns
 = 2 ns

The setup relationship in this example demonstrates that the data is not launched at edge one, and the
data that is launched at edge three must be captured; therefore, you can relax the setup requirement. To
correct the default analysis, you must shift the launch edge by two clock periods with a start multicycle
setup exception of three.

The multicycle exception used to correct the default analysis in this example.

QPS5V3
2015.11.02 Source Clock Frequency is a Multiple of the Destination Clock Frequency... 7-51

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Multicycle Exceptions

set_multicycle_path -from [get_clocks clk_src] -to [get_clocks clk_dst] \
 -setup -start 3

The timing diagram for the preferred setup relationship for this example.

Figure 7-63: Preferred Setup Check Analysis

-10 0

3 2 1

10 20

REG1.CLK

REG2.CLK

Launch

Latch

SC

The timing diagram for default hold check analysis the TimeQuest analyzer performs for a start
multicycle setup value of three.

Figure 7-64: Default Hold Check Analysis

-10 0 10 20

REG1.CLK

REG2.CLK

Current
Launch

Current
Latch

HC1

HC2

SC

The calculation that the TimeQuest analyzer performs to determine the hold check.

7-52 Source Clock Frequency is a Multiple of the Destination Clock Frequency...
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-65: Hold Check

hold check 1 = current launch edge – previous latch edge
 = 0 ns – 2 ns
 = –2 ns

hold check 2 = next launch edge – current latch edge
 = 5 ns – 12 ns
 = –7 ns

In this example, hold check two is too restrictive. The data is launched next by the edge at 10 ns and
should check against the data captured by the current latch edge at 12 ns, which does not occur in hold
check two. To correct the default analysis, you must use a start multicycle hold exception of one.

A Sample Design with SDC File
An example circuit that includes two clocks, a phase-locked loop (PLL), and other common synchronous
design elements helps demonstrate how to constrain your design with an SDC file.

Figure 7-66: TimeQuest Constraint Example

data1

data2

clk1

clk2

inst

inst1

inst2lpm_add_sub0 myfifo

altpll0

dataout

The following SDC file contains basic constraints for the example circuit.

Example 7-5: Basic SDC Constraints

Create clock constraints
create_clock -name clockone -period 10.000 [get_ports {clk1}]
create_clock -name clocktwo -period 10.000 [get_ports {clk2}]
Create virtual clocks for input and output delay constraints
create clock -name clockone_ext -period 10.000
create clock -name clockone_ext -period 10.000
derive_pll_clocks

QPS5V3
2015.11.02 A Sample Design with SDC File 7-53

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

derive clock uncertainty
derive_clock_uncertainty
Specify that clockone and clocktwo are unrelated by assinging
them to seperate asynchronus groups
set_clock_groups \
 -asynchronous \
 -group {clockone} \
 -group {clocktwo altpll0|altpll_component|auto_generated|pll1|clk[0]}

set input and output delays
set_input_delay -clock { clockone_ext } -max 4 [get_ports
{data1}]set_input_delay -clock { clockone_ext } -min -1 [get_ports {data1}]
set_input_delay -clock { clockone_ext } -max 4 [get_ports
{data2}]set_input_delay -clock { clockone_ext } -min -1 [get_ports {data2}]
set_output_delay -clock { clocktwo_ext } -max 6 [get_ports {dataout}]
set_output_delay -clock { clocktwo_ext } -min -3 [get_ports {dataout}]

The SDC file contains the following basic constraints you should include for most designs:

• Definitions of clockone and clocktwo as base clocks, and assignment of those settings to
nodes in the design.

• Definitions of clockone_ext and clocktwo_ext as virtual clocks, which represent clocks
driving external devices interfacing with the FPGA.

• Automated derivation of generated clocks on PLL outputs.
• Derivation of clock uncertainty.
• Specification of two clock groups, the first containing clockone and its related clocks, the

second containing clocktwo and its related clocks, and the third group containing the output
of the PLL. This specification overrides the default analysis of all clocks in the design as related
to each other.

• Specification of input and output delays for the design.

Related Information
Asynchronous Clock Groups on page 7-21
For more information about asynchronous clock groups.

Running the TimeQuest Analyzer
When you compile a design, the TimeQuest timing analyzer automatically performs multi-corner signoff
timing analysis after the Fitter has finished.

• To open the TimeQuest analyzer GUI directly from the Quartus Prime software GUI, click TimeQuest
Timing Analyzer on the Tools menu.

• To peform or repeat multi-corner timing analysis from the Quartus Prime GUI, click Processing >
Start > Start TimeQuest Timing Analyzer.

• To perform multi-corner timing analysis from a system command prompt, type quartus_sta
<options><project_name>.

• To run the TimeQuest analyzer as a stand-alone GUI application, type the following command at the
command prompt:quartus_staw.

• To run the TimeQuest analyzer in interactive command-shell mode, type the following command at a
system command prompt: quartus_sta -s <options><project_name>.

The following table lists the command-line options available for the quartus_sta executable.

7-54 Running the TimeQuest Analyzer
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 7-9: Summary of Command-Line Options

Command-Line Option Description

-h | --help Provides help information on quartus_sta.
-t <script file> |
--script=<script file>

Sources the <script file>.

-s | --shell Enters shell mode.
--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.
--do_report_timing For all clocks in the design, run the following

commands:

report_timing -npaths 1 -to_clock $clock
report_timing -setup -npaths 1 -to_
clock $clock
report_timing -hold -npaths 1 -to_clock
$clock
report_timing -recovery -npaths 1 -to_
clock $clock
report_timing -removal -npaths 1 -to_
clock $clock

--force_dat Forces an update of the project database with new
delay information.

--lower_priority Lowers the computing priority of the quartus_sta
process.

--post_map Uses the post-map database results.
--sdc=<SDC file> Specifies the SDC file to use.
--report_script=<script> Specifies a custom report script to call.
--speed=<value> Specifies the device speed grade used for timing

analysis.
--tq2pt Generates temporary files to convert the TimeQuest

analyzer SDC file(s) to a PrimeTime SDC file.
-f <argument file> Specifies a file containing additional command-line

arguments.
-c <revision name> |

--rev=<revision_name>

Specifies which revision and its associated Quartus
Prime Settings File(.qsf) to use.

--multicorner Specifies that all slack summary reports be
generated for both slow- and fast-corners.

--multicorner[=on|off] Turns off multicorner timing analysis.
--voltage=<value_in_mV> Specifies the device voltage, in mV used for timing

analysis.
--temperature=
<value_in_C>

Specifies the device temperature in degrees Celsius,
used for timing analysis.

--parallel

[=<num_processors>]
Specifies the number of computer processors to use
on a multiprocessor system.

QPS5V3
2015.11.02 Running the TimeQuest Analyzer 7-55

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command-Line Option Description

--64bit Enables 64-bit version of the executable.

Related Information

• Constraining and Analyzing with Tcl Commands on page 7-65
For more information about using Tcl commands to constrain and analyze your design

• Recommended Flow for First Time Users on page 7-2
For more information about steps to perform before opening the TimeQuest analyzer.

Quartus Prime Settings
Within the Quartus Prime software, there are a number of quick steps for setting up your design with
TimeQuest. You can modify the appropriate settings in Assignments > Settings.

In the Settings dialog box, select TimeQuest Timing Analyzer in the Category list.

The TimeQuest Timing Analyzer settings page is where you specify the title and location for a Synopsis
Design Constraint (SDC) file. The SDC file is an inudstry standard format for specifying timing
constraints. If no SDC file exists, you can create one based on the instructions in this document. The
Quartus Prime software provides an SDC template you can use to create your own.

The following TimeQuest options should be on by default:

• Enable multicorner timing analysis—Directs the TimeQuest analyzer to analyze all the timing models
of your FPGA against your constraints. This is required for final timing sign-off. Unchecked, only the
slow timing model is be analyzed.

• Enable common clock path pessimism removal— Prevents timing analysis from over-calculating the
effects of On-Die Variation. This makes timing better, and there really is no reason for this to be
disabled.

• Report worst-case paths during compilation—This optional setting displays summary of the worst
paths in your timing report. This type of path analysis is covered in more detail later in this document.
While useful, this summary can increase the size of the <project>.sta.rpt with all of these paths.

• Tcl script file for custom reports—This optional setting should prove useful later, allowing you to add
custom reports to create a custom analysis. For example, if you are only working on a portion of the
full FPGA, you may want additional timing reports that cover that hierarchy.

Note: In addition, certain values are set by default. The default duty-cycle is 50% and the default clock
frequency is 1Ghz.

SDC File Precedence
The Fitter and the TimeQuest analyzer process SDC files in the order you specify in the Quartus Prime
Settings File (.qsf). You can add and remove SDC files to process and specify the order they are processed
from the Assignments menu.

Click Settings, then TimeQuest Timing Analyzer and add or remove SDC files, or specify a processing
order in the SDC files to include in the project box. When you create a new SDC file for a project, you
must add it to the project for it to be read during fitting and timing analysis. If you use the Quartus Prime
Text Editor to create an SDC file, the option to add it to the project is enabled by default when you save
the file. If you use any other editor to create an SDC file, you must remember to add it to the project. If no
SDC files are listed in the .qsf, the Quartus Prime software looks for an SDC named <current revision>.sdc in
the project directory. When you use IP from Altera, and some third-parties, the SDC files are often
included in a project through an intermediate file called a Quartus Prime IP File (.qip). A .qip file points to
all source files and constraints for a particular IP. If SDC files for IP blocks in your design are included

7-56 Quartus Prime Settings
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

through with a .qip, do not re-add them manually. An SDC file can also be added from a Quartus Prime
IP File (.qip) included in the .qsf.

Figure 7-67: .sdc File Order of Precedence

Is one or more .sdc file specified in
the .qsf?

No

Yes

Does an .sdc named
<current revision>.sdc

exist in the project
directory?

No

Yes

Analyze the design

Note: If you type the read_sdc command at the command line without any arguments, the TimeQuest
analyzer reads constraints embedded in HDL files, then follows the SDC file precedence order.

The SDC file must contain only SDC commands that specify timing constraints. There are some
techniques to control which constraints are applied during different parts of the compilation flow. Tcl
commands to manipulate the timing netlist or control the compilation must be in a separate Tcl script.

Understanding Results
Knowing how your constraints are displayed when analyzing a path is one of the most important skills of
timing analysis. This information completes your understanding of timing analysis and lets you correlate
the SDC input to the back-end analysis, and determine how the delays in the FPGA affect timing.

Iterative Constraint Modification
Sometimes it is useful to change an SDC constraint and reanalyze the timing results. This flow is
particularly common when you are creating timing constraints and want to ensure that they will be
applied appropriately during compilation and timing analysis.

Use the following steps when you iteratvely modify constraints:

1. Open the TimeQuest Timing Analyzer
2. Generate the appropriate reports.
3. Analyze your results
4. Edit your SDC file and save
5. Double-click Reset Design
6. Generate the appropriate reports.
7. Analyze your results
8. Repeat steps 4-7 as necessary.

Open the TimeQuest Timing Analyzer—It is most common to use this interactive approach in the
TimeQuest GUI. You can also use the command-line shell mode, but it does not include some of the
time-saving automatic features in the GUI.

QPS5V3
2015.11.02 Understanding Results 7-57

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generate the appropriate reports —Use the Report All Summaries task under Macros to generate
setup, hold, recovery, and removal summaries, as well as minimum pulse width checks, and a list of all the
defined clocks. These summaries cover all constrained paths in your design. Especially when you are
modifying or correcting constraints, you should also perform the Diagnostic task to create reports to
identify unconstrained parts of your design, or ignored constraints. Double-click on any of the report
tasks to automatically run the three tasks under Netlist Setup if they haven't already run. One of those
tasks reads all SDC files.

Analyze your results—When you are modifying or correcting constraints, review the reports to find any
unexpected results. For example, a cross-domain path might indicate that you forgot to cut a transfer by
including a clock in a clock group.

Edit your SDC file and save it—Create or edit the appropriate constraints in your SDC files. If you edit
your SDC file in the Quartus Prime Tex Editor, you can benefit from tooltips showing constraint options,
and dialog boxes that guide you when creating constraints.

Reset the design—Double click Reset Design task to remove all constraints from your design. Removing
all constraints from your design prepares it to reread the SDC files, including your changes.

Be aware that this method just performs timing analysis using new constraints, but the fit being analyzed
has not changed. The place-and-route was performed with the old constraints, but you are analyzing with
new constraints, so if something is failing timing against these new constraints,you may need to run
place-and-route again.

For example, the Fitter may concentrate on a very long path in your design, trying to close timing. For
example, you may realize that a path runs at a lower rate, and so have added set_multicycle_path
assignments to relax the relationship (open the window when data is valid). When you perform
TimeQuest analysis iteratively with these new multicycles, new paths replace the old. The new paths may
have sub-optimal placement since the Fitter was concentrating on the previous paths when it ran, because
they were more critical. The iterative method is recommend for getting your SDC files correct, but you
should perform a full compilation to see what the Quartus Prime software can do with those constraints.

Related Information
Relaxing Setup with set_multicyle_path on page 7-31

Set Operating Conditions Dialog Box
You can select different operating conditions to analyze from those used to create the existing timing
netlist.

Operating conditions consist of voltage and temperature options that are used together. You can run
timing analysis for different delay models without having to delete the existing timing netlist. The
TimeQuest analyzer supports multi-corner timing analysis which you can turn on in the dialog box of the
command you are performing. A control has been added to the TimeQuest UI where you can select
operating conditions and analyze timing for combinations of corners.

Select a voltage/temperature combination and double-click Report Timing under Custom Reports in the
Tasks pane.

7-58 Set Operating Conditions Dialog Box
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reports that fail timing appear in red type, reports that pass appear in black type. Reports that have not
yet been run are in gold with a question mark (?). Selecting another voltage/temperature combination
creates a new report, but any reports previously run persist.

You can use the following context menu options to generate or regenerate reports in the Report window:

• Regenerate—Regenerate the selected report.
• Generate in All Corners—Generate a timing report using all corners.
• Regenerate All Out of Date—Regenerate all reports.
• Delete All Out of Date—Flush all the reports that have been run to clear the way for new reports with

modifications to timing.

Each operating condition generates its own set of reports which appear in their own folders under the
Reports list. Reports that have not yet been generated display a '?' icon in gold. As each report is
generated, the folder is updated with the appropriate output.

Note: Reports for a corner not being generated persist until that particular operating condition is
modifyed and a new report is created.

QPS5V3
2015.11.02 Set Operating Conditions Dialog Box 7-59

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Report Timing (Dialog Box)
Once you are comfortable with the Report All Summaries command, the next tool in the TimeQuest
analyzer toolbox is Report Timing....

The TimeQuest analyzer displays reports in the Report pane, and is similar to a table of contents for all
the reports created. Selecting any name in the Report panel displays that report in the main viewing pane.
Below is a design with the Summary (Setup) report highlighted:

The main viewing pane shows the Slack for every clock domain. Positive slack is good, saying these paths
meet timing by that much. The End Point TNS stands for Total Negative Slack, and is the sum of all slacks
for each destination and can be used as a relative assessment of how much a domain is failing.

However, this is just a summary. To get details on any domain, you can right-click that row and select
Report Timing….

The Report Timing dialog box appears, auto-filled with the Setup radio button selected and the To Clock
box filled with the selected clock. This occurs because you were viewing the Setup Summary report, and
right-clicked on that particular clock. As such, the worst 10 paths where that is the destination clock were
reported.You can modify the settingsin various ways, such as increasing the number of paths to report,
adding a Target filter, adding a From Clock, writing the report to a text file, etc.

Note that any report_timing command can be copied from the Console at the bottom into a user-
created Tcl file, so that you can analyze specific paths again in the future without having to negotiate the
TimeQuest analyzer UI. This is often done as users become more comfortable with TimeQuest and find
themselves analyzing the same problematic parts of their design over and over, but is not required. Many
complex designs successfully use TimeQuest as a diving tool, i.e. just starting with summaries and diving
down into the failing paths after each compile.

Analyzing Results with Report Timing
Report Timing is one of the most useful analysis tools in TimeQuest. Many designs require nothing but
this command. In the TimeQuest analyzer, this command can be accessed from the Tasks menu , from
the Reports > Custom Reports menu, or by right-clicking on nodes or assignments in TimeQuest.

You can review all of the options for Report Timing by typing report_timing -long_help in the
TimeQuest console.

Clocks

The From Clock and To Clock in the Clocks box are used to filter paths where the selected clock is used
as the launch or latch. The pull-down menu allows you to choose from existing clocks(although
admittedly has a "limited view" for long clock names).

Targets

The boxes in the Targets box are targets for the From Clock and To Clocksettings, and allow you to
report paths with only particular endpoints. These are usually filled with register names or I/O ports, and
can be wildcarded. For example, you might use the following to only report paths within a hierarchy of
interest:

report_timing -from *|egress:egress_inst|* -to *|egress:egress_inst|* -(other options)

If the From, To, or Through boxes are empty, then the TimeQuest analyzer assumes you are refering to
all possible targets in the device, which can also be represented with a wildcard (*). The From and To
options cover the majority of situations. TheThrough option is used to limit the report for paths that pass
through combinatorial logic, or a particular pin on a cell. This is seldom used, and may not be very
reliable due to combinatorial node name changes during synthesis. Clicking the browse Browse box after

7-60 Report Timing (Dialog Box)
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

each target opens the Name Finder dialog box to search for specific names. This is especially useful to
make sure the name being entered matches nodes in the design, since the Name Finder can immediately
show what matches a user's wildcard.

Analysis type

The Analysis type options are Setup, Hold, Recovery, or Removal. These will be explained in more detail
later, as understanding them is the underpinning of timing analysis.

Output

The Detail level, is an option often glanced over that should be understood. It has four options, but I will
only discuss three.

The first level is called Summary, and produces a report which only displays Summary information such
as

• Slack
• From Node
• To Node
• Launch Clock
• Latch Clock
• Relationship
• Clock Skew
• Data Delay
The Summary report is always reported with more detailed reports, so the user would choose this if they
want less info. A good use for summary detail is when writing the report to a text file, where Summary
can be quite brief.

The next level is Path only. This report displays all the detailed information, except the Data Path tab
displays the clock tree as one line item. This is useful when you know the clock tree is correct, details are
not relevant. This is common for most paths within the FPGA. A useful data point is to look at the Clock
Skew column in the Summary report, and if it's a small number, say less than +/-150ps, then the clock
tree is well balanced between source and destination.

If there is clock skew, you should select the Full path option.. This breaks the clock tree out into explicit
detail, showing every cell it goes through, including such things as the input buffer, PLL, global buffer
(called CLKCTRL_), and any logic. If there is clock skew, this is where you can determine what is causing
the clock skew in your design. The Full path option is also recommended for I/O analysis, since only the
source clock or destination clock is inside the FPGA, and therefore its delay plays a critical role in meeting
timing.

The Data Path tab of a detailed report gives the delay break-downs, but there is also useful information in
the Path Summary and Statistics tabs, while the Waveform tab is useful to help visualize the Data Path
analysis. I would suggest taking a few minutes to look at these in the user's design. The whole analysis
takes some time to get comfortable with, but hopefully is clear in what it's doing.

Enable multi corner reports allows you to enable or disable multi-corner timing analysis. This option is
on by default.

Report Timing also has the Report panel name, which displays the name used in TimeQuest's Report
section. There is also an optional File name switch, which allows you to write the information to a file. If
you append .htm as a suffix, the TimeQuest analyzer produces the report as HTML. The File options
radio buttons allow you to choose between Overwrite and Append when saving the file.

QPS5V3
2015.11.02 Analyzing Results with Report Timing 7-61

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Paths

The default value for Report number of paths is 10. Two endpoints may have a lot of combinatorial logic
between them and might have many different paths. Likewise, a single destination may have hundreds of
paths leading to it. Because of this, you might list hundreds of paths, many of which have the same
destination and might have the same source. By turning on Pairs only you can list only one path for each
pair of source and destination. An even more powerful way to filter the report is limit the Maximum
number of paths per endpoints. You can also filter paths by entering a value in the Maximum slack limit
field.

Tcl command

Finally, at the bottom is the Tcl commandfield, which displays the Tcl syntax of what is run in
TimeQuest. You can edit this directly before running the Report Timing command.

Note:
A useful addition is to addis the -false_path option to the command line string. With this option, only
false paths are listed. A false path is any path where the launch and latch clock have been defined, but the
path was cut with either a set_false_path assignment or set_clock_groups_assignment. Paths where
the launch or latch clock was never constrained are not considered false paths. This option is useful to see
if a false path assignment worked and what paths it covers, or to look for paths between clock domains
that should not exist. The Task window's Report False Path custom report is nothing more than Report
Timing with the -false_path flag enabled.

Correlating Constraints to the Timing Report
A critical part of timing analysis is how timing constraints appear in the Report Timing analysis. Most
constraints only affect the launch and latch edges. Specifically, create_clock and
create_generated_clock create clocks with default relationships. The command set_multicycle_path
will modify those default relationships, while set_max_delay and set_min_delay are low-level overrides
that explicitly tell TimeQuest what the launch and latch edges should be.

The folowing figures are from an example of the output of Report Timing on a particular path.

Initially, the design features a clock driving the source and destination registers with a period of 10ns. This
results in a setup relationship of 10ns (launch edge = 0ns, latch edge = 10ns) and hold relationship of 0ns
(launch edge = 0ns, latch edge = 0ns) from the command:

create_clock -name clocktwo -period 10.000 [get_ports {clk2}]

7-62 Correlating Constraints to the Timing Report
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-68: Setup Relationship 10ns, Hold Relationship 0ns

In the next figure, using set_multicycle_path adds multicycles to relax the setup relationship, or open
the window, making the setup relationship 20ns while the hold relationship is still 0ns:

set_multicycle_path -from clocktwo -to clocktwo -setup -end 2
set_multicycle_path -from clocktwo -to clocktwo -hold -end 1

QPS5V3
2015.11.02 Correlating Constraints to the Timing Report 7-63

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7-69: Setup Relationship 20ns

In the last figure, using the set_max_delay and set_min_delay constraints lets you explicitly override
the relationships. Note that the only thing changing for these different constraints is the Launch Edge
Time and Latch Edge Times for setup and hold analysis. Every other line item comes from delays inside
the FPGA and are static for a given fit. Whenever analyzing how your constraints affect the timing
requirements, this is the place to look.

Figure 7-70: Using set_max_delay and set_min_delay

7-64 Correlating Constraints to the Timing Report
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For I/O, this all holds true except we must add in the -max and -min values. They are displayed as iExt or
oExt in the Type column. An example would be an output port with a set_output_delay -max 1.0 and
set_output_delay -min -0.5:

Once again, the launch and latch edge times are determined by the clock relationships, multicycles and
possibly set_max_delay or set_min_delay constraints. The value of set_output_delay is also added in
as an oExt value. For outputs this value is part of the Data Required Path, since this is the external part of
the analysis. The setup report on the left will subtract the -max value, making the setup relationship harder
to meet, since we want the Data Arrival Path to be shorter than the Data Required Path. The -min value
is also subtracted, which is why a negative number makes hold timing more restrictive, since we want the
Data Arrival Path to be longer than the Data Required Path.

Related Information
Relaxing Setup with set_multicyle_path on page 7-31

Constraining and Analyzing with Tcl Commands
You can use Tcl commands from the Quartus Prime software Tcl Application Programming Interface
(API) to constrain, analyze, and collect information for your design. This section focuses on executing
timing analysis tasks with Tcl commands; however, you can perform many of the same functions in the
TimeQuest analyzer GUI. SDC commands are Tcl commands for constraining a design. SDC extension
commands provide additional constraint methods and are specific to the TimeQuest analyzer. Additional
TimeQuest analyzer commands are available for controlling timing analysis and reporting. These
commands are contained in the following Tcl packages available in the Quartus Prime software:

• ::quartus::sta

• ::quartus::sdc

• ::quartus::sdc_ext

QPS5V3
2015.11.02 Constraining and Analyzing with Tcl Commands 7-65

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• ::quartus::sta
For more information about TimeQuest analyzer Tcl commands and a complete list of commands,
refer to Quartus Prime Help.

• ::quartus::sdc
For more information about standard SDC commands and a complete list of commands, refer to
Quartus Prime Help.

• ::quartus::sdc_ext
For more information about Altera extensions of SDC commands and a complete list of commands,
refer to Quartus Prime Help.

Collection Commands
The TimeQuest analyzer Tcl commands often return data in an object called a collection. In your Tcl
scripts you can iterate over the values in collections to access data contained in them. The software returns
collections instead of Tcl lists because collections are more efficient than lists for large sets of data.

The TimeQuest analyzer supports collection commands that provide easy access to ports, pins, cells, or
nodes in the design. Use collection commands with any constraints or Tcl commands specified in the
TimeQuest analyzer.

Table 7-10: SDC Collection Commands

Command Description of the collection returned

all_clocks All clocks in the design.
all_inputs All input ports in the design.
all_outputs All output ports in the design.
all_registers All registers in the design.
get_cells Cells in the design. All cell names in the collection

match the specified pattern. Wildcards can be used
to select multiple cells at the same time.

get_clocks Lists clocks in the design. When used as an
argument to another command, such as the -from
or -to of set_multicycle_path, each node in the
clock represents all nodes clocked by the clocks in
the collection. The default uses the specific node
(even if it is a clock) as the target of a command.

get_nets Nets in the design. All net names in the collection
match the specified pattern. You can use wildcards
to select multiple nets at the same time.

get_pins Pins in the design. All pin names in the collection
match the specified pattern. You can use wildcards
to select multiple pins at the same time.

get_ports Ports (design inputs and outputs) in the design.

You can also examine collections and experiment with collections using wildcards in the TimeQuest
analyzer by clicking Name Finder from the View menu.

7-66 Collection Commands
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ver_1.5.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sdc_ext_ver_1.0.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Wildcard Characters
To apply constraints to many nodes in a design, use the “*” and “?” wildcard characters. The “*” wildcard
character matches any string; the “?” wildcard character matches any single character.

If you make an assignment to node reg*, the TimeQuest analyzer searches for and applies the assignment
to all design nodes that match the prefix reg with any number of following characters, such as reg, reg1,
reg[2], regbank, and reg12bank.

If you make an assignment to a node specified as reg?, the TimeQuest analyzer searches and applies the
assignment to all design nodes that match the prefix reg and any single character following; for example,
reg1, rega, and reg4.

Adding and Removing Collection Items
Wildcards used with collection commands define collection items identified by the command. For
example, if a design contains registers named src0, src1, src2, and dst0, the collection command
[get_registers src*] identifies registers src0, src1, and src2, but not register dst0. To identify
register dst0, you must use an additional command, [get_registers dst*]. To include dst0, you could
also specify a collection command [get_registers {src* dst*}].

To modify collections, use the add_to_collection and remove_from_collection commands. The
add_to_collection command allows you to add additional items to an existing collection.

 add_to_collection Command

add_to_collection <first collection> <second collection>
Note: The add_to_collection command creates a new collection that is the union of the two specified

collections.

The remove_from_collection command allows you to remove items from an existing collection.

 remove_from_collection Command

remove_from_collection <first collection> <second collection>
You can use the following code as an example for using add_to_collection for adding items to a
collection.

 Adding Items to a Collection

#Setting up initial collection of registers
set regs1 [get_registers a*]
#Setting up initial collection of keepers
set kprs1 [get_keepers b*]
#Creating a new set of registers of $regs1 and $kprs1
set regs_union [add_to_collection $kprs1 $regs1]
#OR
#Creating a new set of registers of $regs1 and b*
#Note that the new collection appends only registers with name b*
not all keepers
set regs_union [add_to_collection $regs1 b*]

In the Quartus Prime software, keepers are I/O ports or registers. A SDC file that includes get_keepers
can only be processed as part of the TimeQuest analyzer flow and is not compatible with third-party
timing analysis flows.

QPS5V3
2015.11.02 Wildcard Characters 7-67

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• add_to_collection
• remove_from_collection

For more information about theadd_to_collection and remove_from_collection commands, refer
to Quartus Prime Help.

Getting Other Information about Collections
You can display the contents of a collection with the query_collection command. Use the -
report_format option to return the contents in a format of one element per line. The -list_format
option returns the contents in a Tcl list.

query_collection -report_format -all $regs_union

Use the get_collection_size command to return the size of a collection; the number of items it
contains. If your collection is in a variable named col, it is more efficient to use set num_items
[get_collection_size $col] than set num_items [llength [query_collection -list_format
$col]]

Using the get_pins Command
The get_pins command supports options that control the matching behavior of the wildcard character
(*). Depending on the combination of options you use, you can make the wildcard character (*) respect or
ignore individual levels of hierarchy, which are indicated by the pipe character (|). By default, the wildcard
character (*) matches only a single level of hierarchy.

These examples filter the following node and pin names to illustrate function:

• foo (a hierarchy level named foo)
• foo|dataa (an input pin in the instance foo)
• foo|datab (an input pin in the instance foo)
• foo|bar (a combinational node named bar in the foo instance)
• foo|bar|datac (an input pin to the combinational node named bar)
• foo|bar|datad (an input pin to the combinational node bar)

Table 7-11: Sample Search Strings and Search Results

Search String Search Result

get_pins *|dataa foo|dataa

get_pins *|datac <empty>(3)

get_pins *|*|datac foo|bar|datac

get_pins foo*|* foo|dataa, foo|datab

get_pins -hierarchical *|*|datac <empty>(3)

get_pins -hierarchical foo|* foo|dataa, foo|datab

get_pins -hierarchical *|datac foo|bar|datac

(3) The search result is <empty> because the wildcard character (*) does not match more than one hierarchy
level, indicated by a pipe character (|), by default. This command would match any pin named datac in
instances at the top level of the design.

7-68 Getting Other Information about Collections
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_add_to_collection.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_remove_from_collection.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Search String Search Result

get_pins -hierarchical foo|*|datac <empty>(3)

get_pins -compatibility_mode *|datac foo|bar|datac (4)

get_pins -compatibility_mode *|*|datac foo|bar|datac

The default method separates hierarchy levels of instances from nodes and pins with the pipe character
(|). A match occurs when the levels of hierarchy match, and the string values including wildcards match
the instance and/or pin names. For example, the command get_pins <instance_name>|*|datac
returns all the datac pins for registers in a given instance. However, the command get_pins *|datac
returns and empty collection because the levels of hierarchy do not match.

Use the -hierarchical matching scheme to return a collection of cells or pins in all hierarchies of your
design.

For example, the command get_pins -hierarchical *|datac returns all the datac pins for all
registers in your design. However, the command get_pins -hierarchical *|*|datac returns an empty
collection because more than one pipe character (|) is not supported.

The -compatibility_mode option returns collections matching wildcard strings through any number of
hierarchy levels. For example, an asterisk can match a pipe character when using -compatibility_mode.

Identifying the Quartus Prime Software Executable from the SDC File
To identify which Quartus Prime software executable is currently running you can use the
$::TimeQuestInfo(nameofexecutable) variable from within an SDC file. This technique is most
commonly used when you want to use an overconstraint to cause the Fitter to work harder on a particular
path or set of paths in the design.

 Identifying the Quartus Prime Executable

#Identify which executable is running:
set current_exe $::TimeQuestInfo(nameofexecutable)
if { [string equal $current_exe "quartus_fit"] } {
 #Apply .sdc assignments for Fitter executable here
} else {
 #Apply .sdc assignments for non-Fitter executables here
}
if { ! [string equal "quartus_sta" $::TimeQuestInfo(nameofexecutable)] } {
 #Apply .sdc assignments for non-TimeQuest executables here
} else {
 #Apply .sdc assignments for TimeQuest executable here
}

Examples of different executable names are quartus_map for Analysis & Synthesis, quartus_fit for
Fitter, and quartus_sta for the TimeQuest analyzer.

Locating Timing Paths in Other Tools
You can locate paths and elements from the TimeQuest analyzer to other tools in the Quartus Prime
software.

(4) When you use -compatibility_mode, pipe characters (|) are not treated as special characters when
used with wildcards.

QPS5V3
2015.11.02 Identifying the Quartus Prime Software Executable from the SDC File 7-69

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the Locate or Locate Path command in the TimeQuest analyzer GUI or the locate command in the
Tcl console in the TimeQuest analyzer GUI. Right-click on most paths or node names in the TimeQuest
analyzer GUI to access the Locate or Locate Path options.

The following commands are examples of how to locate the ten paths with the worst timing slack from
TimeQuest analyzer to the Technology Map Veiwer and locate all ports matching data* in the Chip
Planner.

Example 7-6: Locating from the TimeQuest Analyzer

Locate in the Technology Map Viewer the ten paths with the worst slack
locate [get_timing_paths -npaths 10] -tmv
locate all ports that begin with data in the Chip Planner
locate [get_ports data*] -chip

Related Information

• Viewing Timing Analysis Results
For more information about locating paths from the TimeQuest analyzer, refer to Quartus Prime Help.

• locate
For more information on this command, refer to Quartus Prime Help.

Generating Timing Reports
The TimeQuest analyzer provides real-time static timing analysis result reports. The TimeQuest analyzer
does not automatically generate most reports; you must create each report individually in the TimeQuest
analyzer GUI or with command-line commands. You can customize in which report to display specific
timing information, excluding fields that are not required.

Some of the different command-line commands you can use to generate reports in the TimeQuest
analyzer and the equivalent reports shown in the TimeQuest analyzer GUI.

Table 7-12: TimeQuest Analyzer Reports

Command-Line Command Report

report_timing Timing report
report_exceptions Exceptions report
report_clock_transfers Clock Transfers report
report_min_pulse_width Minimum Pulse Width report
report_ucp Unconstrained Paths report

During compilation, the Quartus Prime software generates timing reports on different timing areas in the
design. You can configure various options for the TimeQuest analyzer reports generated during compila‐
tion.

You can also use the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS assignment to generate a report of
the worst-case timing paths for each clock domain. This report contains worst-case timing data for setup,
hold, recovery, removal, and minimum pulse width checks.

7-70 Generating Timing Reports
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_pro_view_result.htm
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0_cmd_locate.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignment to specify the number of paths
to report for each clock domain.

An example of how to use the TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS and
TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS assignments in the .qsf to generate reports.

Generating Worst-Case Timing Reports

#Enable Worst-Case Timing Report
set_global_assignment -name TIMEQUEST_REPORT_WORST_CASE_TIMING_PATHS ON
#Report 10 paths per clock domain
set_global_assignment -name TIMEQUEST_REPORT_NUM_WORST_CASE_TIMING_PATHS 10

Fmax Summary Report panel

Fmax Summary Report panel lists the maximum frequency of each clock in your design. In some designs
you may see a note indicating "Limit due to hold check. Typically, Fmax is not limited by hold checks,
because they are often same-edge relationships, and therefore independent of clock frequency, for
example, launch = 0, latch = 0. However, if you have an inverted clock transfer, or a multicycle transfer
such as setup=2, hold=0, then the hold relationship is no longer a same-edge transfer and changes as the
clock frequency changes. The value in the Restricted Fmax column incorporates limits due to hold time
checks in the situations described previously, as well as minimum period and pulse width checks. If hold
checks limit the Fmax more than setup checks, that is indicated in the Note: column as "Limit due to hold
check".

Related Information

• ::quartus::sta
For more information on this command, refer to Quartus Prime Help.

• TimeQuest Timing Analyzer Page
For more information about the options you can set to customize TimeQuest analyzer reports.

• Area and Timing Optimization
For more information about timing closure recommendations.

Document Revision History

Table 7-13: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Changed instances of Quartus II to Quartus Prime.
• Updated information on using Arria 10 devices with enhanced timing

algorithms.

2015.05.04 15.0.0 Added and updated contents in support of new timing algorithms for
Arria 10:

• Enhanced Timing Analysis for Arria 10
• Maximum Skew (set_max_skew command)
• Net Delay (set_net_delay command)
• Create Generated Clocks (clock-as-data example)

QPS5V3
2015.11.02 Document Revision History 7-71

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_sta_ver_1.0.htm
http://quartushelp.altera.com/current/index.htm#analyze/sta/sta_tqa_settings.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471203263/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

2014.12.15 14.1.0 Major reorganization. Revised and added content to the following topic
areas:

• Timing Constraints
• Create Clocks and Clock Constraints
• Creating Generated Clocks
• Creating Clock Groups
• Clock Uncertainty
• Running the TimeQuest Analyzer
• Generating Timing Reports
• Understanding Results
• Constraining and Analyzing with Tcl Commands

August
2014

14.0a10.
0

Added command line compliation requirements for Arria 10 devices.

June 2014 14.0.0 • Minor updates.
• Updated format.

November
2013

13.1.0 • Removed HardCopy device information.

June 2012 12.0.0 • Reorganized chapter.
• Added “Creating a Constraint File from Quartus Prime Templates with

the Quartus Prime Text Editor” section on creating an SDC constraints
file with the Insert Template dialog box.

• Added “Identifying the Quartus Prime Software Executable from the
SDC File” section.

• Revised multicycle exceptions section.

November
2011

11.1.0 • Consolidated content from the Best Practices for the Quartus Prime
TimeQuest Timing Analyzer chapter.

• Changed to new document template.

May 2011 11.0.0 • Updated to improve flow. Minor editorial updates.

December
2010

10.1.0 • Changed to new document template.
• Revised and reorganized entire chapter.
• Linked to Quartus Prime Help.

July 2010 10.0.0 Updated to link to content on SDC commands and the TimeQuest
analyzer GUI in Quartus Prime Help.

7-72 Document Revision History
QPS5V3

2015.11.02

Altera Corporation The Quartus Prime TimeQuest Timing Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November
2009

9.1.0 Updated for the Quartus Prime software version 9.1, including:

• Added information about commands for adding and removing items
from collections

• Added information about the set_timing_derate and report_skew
commands

• Added information about worst-case timing reporting
• Minor editorial updates

November
2008

8.1.0 Updated for the Quartus Prime software version 8.1, including:

• Added the following sections:

“set_net_delay” on page 7–42

“Annotated Delay” on page 7–49

“report_net_delay” on page 7–66
• Updated the descriptions of the -append and -file <name> options in

tables throughout the chapter
• Updated entire chapter using 8½” × 11” chapter template
• Minor editorial updates

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V3
2015.11.02 Document Revision History 7-73

The Quartus Prime TimeQuest Timing Analyzer Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20The%20Quartus%20Prime%20TimeQuest%20Timing%C2%A0Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PowerPlay Power Analysis 8
2015.11.02

QPS5V3 Subscribe Send Feedback

The PowerPlay Power Analysis tools allow you to estimate device power consumption accurately.

As designs grow larger and process technology continues to shrink, power becomes an increasingly
important design consideration. When designing a PCB, you must estimate the power consumption of a
device accurately to develop an appropriate power budget, and to design the power supplies, voltage
regulators, heat sink, and cooling system.

The following figure shows the PowerPlay Power Analysis tools ability to estimate power consumption
from early design concept through design implementation.

Figure 8-1: PowerPlay Power Analysis From Design Concept Through Design Implementation

User Input
Quartus Prime
Design Profile

Placement and
Routing
Results

Simulation
Results

PowerPlay Early Power Estimator

PowerPlay Power Analysis Input

Es
tim

at
ion

 Ac
cu

ra
cy

Quartus Prime PowerPlay Power Analyzer

Design ImplementationDesign Concept

Lo
we

r
Hi

gh
er

For the majority of the designs, the PowerPlay Power Analyzer and the PowerPlay EPE spreadsheet have
the following accuracy after the power models are final:

• PowerPlay Power Analyzer—±20% from silicon, assuming that the PowerPlay Power Analyzer uses
the Value Change Dump File (.vcd) generated toggle rates.

• PowerPlay EPE spreadsheet— ±20% from the PowerPlay Power Analyzer results using .vcd generated
toggle rates. 90% of EPE designs (using .vcd generated toggle rates exported from PPPA) are within
±30% silicon.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20PowerPlay%20Power%20Analysis&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

The toggle rates are derived using the PowerPlay Power Analyzer with a .vcd file generated from a gate
level simulation representative of the system operation.

Related Information

• PowerPlay Early Power Estimators (EPE) and Power Analyzer

Types of Power Analyses
Understanding the uses of power analysis and the factors affecting power consumption helps you to use
the PowerPlay Power Analyzer effectively. Power analysis meets the following significant planning
requirements:

• Thermal planning—Thermal power is the power that dissipates as heat from the FPGA. You must use
a heatsink or fan to act as a cooling solution for your device. The cooling solution must be sufficient to
dissipate the heat that the device generates. The computed junction temperature must fall within
normal device specifications.

• Power supply planning—Power supply is the power needed to run your device. Power supplies must
provide adequate current to support device operation.

Note: For power supply planning, use the PowerPlay EPE at the early stages of your design cycle. Use
the PowerPlay Power Analyzer reports when your design is complete to get an estimate of your
design power requirement.

The two types of analyses are closely related because much of the power supplied to the device dissipates
as heat from the device; however, in some situations, the two types of analyses are not identical. For
example, if you use terminated I/O standards, some of the power drawn from the power supply of the
device dissipates in termination resistors rather than in the device.

Power analysis also addresses the activity of your design over time as a factor that impacts the power
consumption of the device. The static power (PSTATIC) is the thermal power dissipated on chip,
independent of user clocks. PSTATIC includes the leakage power from all FPGA functional blocks, except
for I/O DC bias power and transceiver DC bias power, which are accounted for in the I/O and transceiver
sections. Dynamic power is the additional power consumption of the device due to signal activity or
toggling.

Related Information

• PowerPlay Early Power Estimator (EPE) User Guide

Differences between the PowerPlay EPE and the Quartus Prime PowerPlay Power
Analyzer

The following table lists the differences between the PowerPlay EPE and the Quartus Prime PowerPlay
Power Analyzer.

8-2 Types of Power Analyses
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://www.altera.com/literature/ug/ug_epe.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-1: Comparison of the PowerPlay EPE and Quartus Prime PowerPlay Power Analyzer

Characteristic PowerPlay EPE Quartus Prime PowerPlay Power
Analyzer

Phase in the design cycle Any time, but it is recommended to use
Quartus Prime PowerPlay Power Analyzer
for post-fit power analysis.

Post-fit

Tool requirements Spreadsheet program The Quartus Prime software

Accuracy Medium Medium to very high

Data inputs • Resource usage estimates
• Clock requirements
• Environmental conditions
• Toggle rate

• Post-fit design
• Clock requirements
• Signal activity defaults
• Environmental conditions
• Register transfer level

(RTL) simulation results
(optional)

• Post-fit simulation results
(optional)

• Signal activities per node or
entity (optional)

Data outputs (1) • Total thermal power dissipation
• Thermal static power
• Thermal dynamic power
• Off-chip power dissipation
• Current drawn from voltage supplies

• Total thermal power
• Thermal static power
• Thermal dynamic power
• Thermal I/O power
• Thermal power by design

hierarchy
• Thermal power by block

type
• Thermal power dissipation

by clock domain
• Off-chip (non-thermal)

power dissipation
• Device supply currents

The result of the PowerPlay Power Analyzer is only an estimation of power. Altera does not recommend
using the result as a specification. The purpose of the estimation is to help you establish guidelines for the
power budget of your design. It is important that you verify the actual power during device operation as
the information is sensitive to the actual device design and the environmental operating conditions.

(5) PowerPlay EPE and PowerPlay Power Analyzer outputs vary by device family. For more information, refer
to the device-specific PowerPlay Early Power Estimators (EPE) and Power Analyzer Page and PowerPlay
Power Analyzer Reports in the Quartus Prime Help.

QPS5V3
2015.11.02 Differences between the PowerPlay EPE and the Quartus Prime PowerPlay... 8-3

PowerPlay Power Analysis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The PowerPlay Power Analyzer does not include the transceiver power for features that can only be
enabled through dynamic reconfiguration (DFE, ADCE/AEQ, EyeQ). Use the EPE to estimate the
incremental power consumption by these features.

Related Information

• PowerPlay Early Power Estimators (EPE) and Power Analyzer Page
For more information, refer to the device-specific PowerPlay Early Power Estimators (EPE) page on
the Altera website.

• PowerPlay Power Analyzer Reports
For more information, refer to this page for device-specific information about the PowerPlay Early
Power Estimator.

Factors Affecting Power Consumption
Understanding the following factors that affect power consumption allows you to use the PowerPlay
Power Analyzer and interpret its results effectively:

• Device Selection
• Environmental Conditions
• Device Resource Usage
• Signal Activities

Device Selection
Device families have different power characteristics. Many parameters affect the device family power
consumption, including choice of process technology, supply voltage, electrical design, and device
architecture.

Power consumption also varies in a single device family. A larger device consumes more static power than
a smaller device in the same family because of its larger transistor count. Dynamic power can also increase
with device size in devices that employ global routing architectures.

The choice of device package also affects the ability of the device to dissipate heat. This choice can impact
your required cooling solution choice to comply to junction temperature constraints.

Process variation can affect power consumption. Process variation primarily impacts static power because
sub-threshold leakage current varies exponentially with changes in transistor threshold voltage. Therefore,
you must consult device specifications for static power and not rely on empirical observation. Process
variation has a weak effect on dynamic power.

Environmental Conditions
Operating temperature primarily affects device static power consumption. Higher junction temperatures
result in higher static power consumption. The device thermal power and cooling solution that you use
must result in the device junction temperature remaining within the maximum operating range for the
device. The main environmental parameters affecting junction temperature are the cooling solution and
ambient temperature.

The following table lists the environmental conditions that could affect power consumption.

8-4 Factors Affecting Power Consumption
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://quartushelp.altera.com/current/index.htm#report/rpt/rpt_file_powerplay_analyzer.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8-2: Environmental Conditions that Could Affect Power Consumption

Environmental Conditions Description

Airflow A measure of how quickly the device removes heated air from the vicinity
of the device and replaces it with air at ambient temperature.

You can either specify airflow as “still air” when you are not using a fan, or
as the linear feet per minute rating of the fan in the system. Higher airflow
decreases thermal resistance.

Heat Sink and Thermal
Compound

A heat sink allows more efficient heat transfer from the device to the
surrounding area because of its large surface area exposed to the air. The
thermal compound that interfaces the heat sink to the device also
influences the rate of heat dissipation. The case-to-ambient thermal
resistance (θCA) parameter describes the cooling capacity of the heat sink
and thermal compound employed at a given airflow. Larger heat sinks and
more effective thermal compounds reduce θCA.

Junction Temperature The junction temperature of a device is equal to:

TJunction = TAmbient + PThermal · θJA

in which θJA is the total thermal resistance from the device transistors to
the environment, having units of degrees Celsius per watt. The value θJA is
equal to the sum of the junction-to-case (package) thermal resistance (θJC)
, and the case-to-ambient thermal resistance (θCA) of your cooling
solution.

Board Thermal Model The junction-to-board thermal resistance (θJB) is the thermal resistance of
the path through the board, having units of degrees Celsius per watt. To
compute junction temperature, you can use this board thermal model
along with the board temperature, the top-of-chip θJA and ambient
temperatures.

Device Resource Usage
The number and types of device resources used greatly affects power consumption.

QPS5V3
2015.11.02 Device Resource Usage 8-5

PowerPlay Power Analysis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Number, Type, and Loading of I/O Pins—Output pins drive off-chip components, resulting in high-
load capacitance that leads to a high-dynamic power per transition. Terminated I/O standards require
external resistors that draw constant (static) power from the output pin.

• Number and Type of Hard Logic Blocks—A design with more logic elements (LEs), multiplier
elements, memory blocks, transceiver blocks or HPS system tends to consume more power than a
design with fewer circuit elements. The operating mode of each circuit element also affects its power
consumption. For example, a DSP block performing 18 × 18 multiplications and a DSP block
performing multiply-accumulate operations consume different amounts of dynamic power because of
different amounts of charging internal capacitance on each transition. The operating mode of a circuit
element also affects static power.

• Number and Type of Global Signals—Global signal networks span large portions of the device and
have high capacitance, resulting in significant dynamic power consumption. The type of global signal
is important as well. For example, Stratix V devices support global clocks and quadrant (regional)
clocks. Global clocks cover the entire device, whereas quadrant clocks only span one-fourth of the
device. Clock networks that span smaller regions have lower capacitance and tend to consume less
power. The location of the logic array blocks (LABs) driven by the clock network can also have an
impact because the Quartus Prime software automatically disables unused branches of a clock.

Signal Activities
The behavior of each signal in your design is an important factor in estimating power consumption. The
following table lists the two vital behaviors of a signal, which are toggle rate and static probability:

Table 8-3: Signal Behavior

Signal Behavior Description

Toggle rate • The toggle rate of a signal is the average number of times that the signal
changes value per unit of time. The units for toggle rate are transitions
per second and a transition is a change from 1 to 0, or 0 to 1.

• Dynamic power increases linearly with the toggle rate as you charge the
board trace model more frequently for logic and routing. The Quartus
Prime software models full rail-to-rail switching. For high toggle rates,
especially on circuit output I/O pins, the circuit can transition before
fully charging the downstream capacitance. The result is a slightly
conservative prediction of power by the PowerPlay Power Analyzer.

Static probability • The static probability of a signal is the fraction of time that the signal is
logic 1 during the period of device operation that is being analyzed. Static
probability ranges from 0 (always at ground) to 1 (always at logic-high).

• Static probabilities of their input signals can sometimes affect the static
power that routing and logic consume. This effect is due to state-
dependent leakage and has a larger effect on smaller process geometries.
The Quartus Prime software models this effect on devices at 90 nm or
smaller if it is important to the power estimate. The static power also
varies with the static probability of a logic 1 or 0 on the I/O pin when
output I/O standards drive termination resistors.

8-6 Signal Activities
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: To get accurate results from the power analysis, the signal activities for analysis must represent the
actual operating behavior of your design. Inaccurate signal toggle rate data is the largest source of
power estimation error.

PowerPlay Power Analyzer Flow
The PowerPlay Power Analyzer supports accurate power estimations by allowing you to specify the
important design factors affecting power consumption. The following figure shows the high-level
PowerPlay Power Analyzer flow.

Figure 8-2: PowerPlay Power Analyzer High-Level Flow

PowerPlay
Power Analyzer

Operating
Conditions

User Design
(Post-Fit)

Power Analysis
Report

Signal
Activities

Operating condition specifications are available for
only some device families. For more information,
refer to “Performing Power Analysis with the
PowerPlay Power Analyzer” in Quartus Prime Help.

To obtain accurate I/O power estimates, the PowerPlay Power Analyzer requires you to synthesize your
design and then fit your design to the target device. You must specify the electrical standard on each I/O
cell and the board trace model on each I/O standard in your design.

Operating Settings and Conditions
You can specify device power characteristics, operating voltage conditions, and operating temperature
conditions for power analysis in the Quartus Prime software.

On the Operating Settings and Conditions page of the Settings dialog box, you can specify whether the
device has typical power consumption characteristics or maximum power consumption characteristics.

On the Voltage page of the Settings dialog box, you can view the operating voltage conditions for each
power rail in the device, and specify supply voltages for power rails with selectable supply voltages.

QPS5V3
2015.11.02 PowerPlay Power Analyzer Flow 8-7

PowerPlay Power Analysis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Quartus Prime Fitter may override some of the supply voltages settings specified in this
chapter. For example, supply voltages for several Stratix V transceiver power supplies depend on
the data rate used. If the Fitter detects that voltage required is different from the one specified in
the Voltage page, it will automatically set the correct voltage for relevant rails. The Quartus Prime
PowerPlay Power Analyzer uses voltages selected by the Fitter if they conflict with the settings
specified in the Voltage page.

On the Temperature page of the Settings dialog box, you can specify the thermal operating conditions of
the device.

Related Information

• Operating Settings and Conditions Page (Settings Dialog Box)
• Voltage Page (Settings Dialog Box)
• Temperature Page (Settings Dialog Box)

Signal Activities Data Sources
The PowerPlay Power Analyzer provides a flexible framework for specifying signal activities. The
framework reflects the importance of using representative signal-activity data during power analysis. Use
the following sources to provide information about signal activity:

• Simulation results
• User-entered node, entity, and clock assignments
• User-entered default toggle rate assignment
• Vectorless estimation

The PowerPlay Power Analyzer allows you to mix and match the signal-activity data sources on a signal-
by-signal basis. The following figure shows the priority scheme applied to each signal.

Figure 8-3: Signal-Activity Data Source Priority Scheme

Node or entity
assignment?

Simulation
data?

Is primary
input?

Vectorless
supported and

enabled?
Use vectorless

estimation

Use default
assignment

Use simulation
data

Use node or
entity assignment

Start

Yes Yes Yes No

YesNoNoNo

8-8 Signal Activities Data Sources
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions.htm
http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions-voltage.htm
http://quartushelp.altera.com/current/optimize/pwr/pwr_tab_pppa_operating_conditions-temperature.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Simulation Results

The PowerPlay Power Analyzer directly reads the waveforms generated by a design simulation. Static
probability and toggle rate can be calculated for each signal from the simulation waveform. Power analysis
is most accurate when you use representative input stimuli to generate simulations.

The PowerPlay Power Analyzer reads results generated by the following simulators:

• ModelSim®

• ModelSim-Altera
• QuestaSim
• Active-HDL
• NCSim
• VCS
• VCS MX
• Riviera-PRO

Signal activity and static probability information are derived from a Verilog Value Change Dump File
(.vcd). For more information, refer to Signal Activities on page 8-6.

For third-party simulators, use the EDA Tool Settings to specify the Generate Value Change Dump
(VCD) file script option in the Simulation page of the Settings dialog box. These scripts instruct the third-
party simulators to generate a .vcd that encodes the simulated waveforms. The Quartus Prime PowerPlay
Power Analyzer reads this file directly to derive the toggle rate and static probability data for each signal.

Third-party EDA simulators, other than those listed, can generate a .vcd that you can use with the
PowerPlay Power Analyzer. For those simulators, you must manually create a simulation script to
generate the appropriate .vcd.

Note: You can use a .vcd created for power analysis to optimize your design for power during fitting by
utilizing the appropriate settings in the PowerPlay power optimization list, available from
Assignments > Settings > Compiler Settings > Advanced Settings (Fitter).

Using Simulation Files in Modular Design Flows
A common design practice is to create modular or hierarchical designs in which you develop each design
entity separately, and then instantiate these modules in a higher-level entity to form a complete design.
You can perform simulation on a complete design or on each module for verification. The PowerPlay
Power Analyzer supports modular design flows when reading the signal activities from simulation files.
The following figure shows an example of a modular design flow.

QPS5V3
2015.11.02 Simulation Results 8-9

PowerPlay Power Analysis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-4: Modular Simulation Flow

Parameter
Input

Video
Processing

Column
Driver

Memory
Interface

Video
Source

Interface
Timing
Control

system.vcd
video_gizmo.vcd
output_driver.vcd
video_input.vcd

When specifying a simulation file (a .vcd), the software provides support to specify an associated design
entity name, such that the PowerPlay Power Analyzer imports the signal activities derived from that file
for the specified design entity. The PowerPlay Power Analyzer also supports the specification of
multiple .vcd files for power analysis, with each having an associated design entity name to enable the
integration of partial design simulations into a complete design power analysis. When specifying
multiple .vcd files for your design, more than one simulation file can contain signal-activity information
for the same signal.

Note: When you apply multiple .vcd files to the same design entity, the signal activity used in the power
analysis is the equal-weight arithmetic average of each .vcd.

Note: When you apply multiple simulation files to design entities at different levels in your design
hierarchy, the signal activity in the power analysis derives from the simulation file that applies to
the most specific design entity.

The following figure shows an example of a hierarchical design. The top-level module of your design,
called Top, consists of three 8b/10b decoders, followed by a mux. The software then encodes the output of
the mux to produce the final output of the top-level module. An error-handling module handles any
8b/10b decoding errors. The Top module contains the top-level entity of your design and any logic not
defined as part of another module. The design file for the top-level module might be a wrapper for the
hierarchical entities below it, or it might contain its own logic. The following usage scenarios show
common ways that you can simulate your design and import the .vcd into the PowerPlay Power Analyzer.

8-10 Using Simulation Files in Modular Design Flows
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8-5: Example Hierarchical Design

8b10b_dec:decode1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_rxerr:err1

mux:mux1

8b10b_enc:encode1

Top

Complete Design Simulation
You can simulate the entire design and generate a .vcd from a third-party simulator. The PowerPlay
Power Analyzer can then import the .vcd (specifying the top-level design). The resulting power analysis
uses the signal activities information from the generated .vcd, including those that apply to submodules,
such as decode [1-3], err1, mux1, and encode1.

Modular Design Simulation
You can independently simulate of the top-level design, and then import all the resulting .vcd files into
the PowerPlay Power Analyzer. For example, you can simulate the 8b10b_dec independent of the entire
design and mux, 8b10b_rxerr, and 8b10b_enc. You can then import the .vcd files generated from each
simulation by specifying the appropriate instance name. For example, if the files produced by the
simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and mux.vcd, you can use the import
specifications in the following table:

Table 8-4: Import Specifications

File Name Entity

8b10b_dec.vcd Top|8b10b_dec:decode1

8b10b_dec.vcd Top|8b10b_dec:decode2

8b10b_dec.vcd Top|8b10b_dec:decode3

8b10b_rxerr.vcd Top|8b10b_rxerr:err1

8b10b_enc.vcd Top|8b10b_enc:encode1

mux.vcd Top|mux:mux1

The resulting power analysis applies the simulation vectors in each file to the assigned entity. Simulation
provides signal activities for the pins and for the outputs of functional blocks. If the inputs to an entity
instance are input pins for the entire design, the simulation file associated with that instance does not

QPS5V3
2015.11.02 Complete Design Simulation 8-11

PowerPlay Power Analysis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

provide signal activities for the inputs of that instance. For example, an input to an entity such as mux1 has
its signal activity specified at the output of one of the decode entities.

Multiple Simulations on the Same Entity
You can perform multiple simulations of an entire design or specific modules of a design. For example, in
the process of verifying the top-level design, you can have three different simulation testbenches: one for
normal operation, and two for corner cases. Each of these simulations produces a separate .vcd. In this
case, apply the different .vcd file names to the same top-level entity, as shown in the following table.

Table 8-5: Multiple Simulation File Names and Entities

File Name Entity

normal.vcd Top

corner1.vcd Top

corner2.vcd Top

The resulting power analysis uses an arithmetic average of the signal activities calculated from each
simulation file to obtain the final signal activities used. If a signal err_out has a toggle rate of zero
transition per second in normal.vcd, 50 transitions per second in corner1.vcd, and 70 transitions per
second in corner2.vcd, the final toggle rate in the power analysis is 40 transitions per second.

If you do not want the PowerPlay Power Analyzer to read information from multiple instances and take
an arithmetic average of the signal activities, use a .vcd that includes only signals from the instance that
you care about.

Overlapping Simulations
You can perform a simulation on the entire design, and more exhaustive simulations on a submodule,
such as 8b10b_rxerr. The following table lists the import specification for overlapping simulations.

Table 8-6: Overlapping Simulation Import Specifications

File Name Entity

full_design.vcd Top

error_cases.vcd Top|8b10b_rxerr:err1

In this case, the software uses signal activities from error_cases.vcd for all the nodes in the generated .vcd
and uses signal activities from full_design.vcd for only those nodes that do not overlap with nodes in
error_cases.vcd. In general, the more specific hierarchy (the most bottom-level module) derives signal
activities for overlapping nodes.

Partial Simulations
You can perform a simulation in which the entire simulation time is not applicable to signal-activity
calculation. For example, if you run a simulation for 10,000 clock cycles and reset the chip for the first
2,000 clock cycles. If the PowerPlay Power Analyzer performs the signal-activity calculation over all
10,000 cycles, the toggle rates are only 80% of their steady state value (because the chip is in reset for the

8-12 Multiple Simulations on the Same Entity
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

first 20% of the simulation). In this case, you must specify the useful parts of the .vcd for power analysis.
The Limit VCD Period option enables you to specify a start and end time when performing signal-
activity calculations.

Specifying Start and End Time when Performing Signal-Activity Calculations using the Limit VCD
Period Option

To specify a start and end time when performing signal-activity calculations using the Limit VCD period
option, follow these steps:

1. In the Quartus Prime software, on the Assignments menu, click Settings.
2. Under the Category list, click PowerPlay Power Analyzer Settings.
3. Turn on the Use input file(s) to initialize toggle rates and static probabilities during power analysis

option.
4. Click Add.
5. In the File name and Entity fields, browse to the necessary files.
6. Under Simulation period, turn on VCD file and Limit VCD period options.
7. In the Start time and End time fields, specify the desired start and end time.
8. Click OK.

You can also use the following tcl or qsf assignment to specify .vcd files:

set_global_assignment -name POWER_INPUT_FILE_NAME "test.vcd" -section_id test.vcd

set_global_assignment -name POWER_INPUT_FILE_TYPE VCD -section_id test.vcd

set_global_assignment -name POWER_VCD_FILE_START_TIME "10 ns" -section_id test.vcd

set_global_assignment -name POWER_VCD_FILE_END_TIME "1000 ns" -section_id test.vcd

set_instance_assignment -name POWER_READ_INPUT_FILE test.vcd -to test_design

Related Information

• set_power_file_assignment
• Add/Edit Power Input File Dialog Box

Node Name Matching Considerations
Node name mismatches happen when you have .vcd applied to entities other than the top-level entity. In
a modular design flow, the gate-level simulation files created in different Quartus Prime projects might
not match their node names with the current Quartus Prime project.

For example, you may have a file named 8b10b_enc.vcd, which the Quartus Prime software generates in a
separate project called 8b10b_enc while simulating the 8b10b encoder. If you import the .vcd into
another project called Top, you might encounter name mismatches when applying the .vcd to the
8b10b_enc module in the Top project. This mismatch happens because the Quartus Prime software might
name all the combinational nodes in the 8b10b_enc.vcd differently than in the Top project.

You can avoid name mismatching with only RTL simulation data, in which register names do not change,
or with an incremental compilation flow that preserves node names along with a gate-level simulation.

Note: To ensure accuracy, Altera recommends that you use an incremental compilation flow to preserve
the node names of your design.

QPS5V3
2015.11.02 Specifying Start and End Time when Performing Signal-Activity... 8-13

PowerPlay Power Analysis Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_project_ui_ver_1.0_cmd_set_power_file_assignment.htm
http://quartushelp.altera.com/current/index.htm#optimize/pwr/pwr_db_add_power_input_file.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Glitch Filtering
The PowerPlay Power Analyzer defines a glitch as two signal transitions so closely spaced in time that the
pulse, or glitch, occurs faster than the logic and routing circuitry can respond. The output of a transport
delay model simulator contains glitches for some signals. The logic and routing structures of the device
form a low-pass filter that filters out glitches that are tens to hundreds of picoseconds long, depending on
the device family.

Some third-party simulators use different models than the transport delay model as the default model.
Different models cause differences in signal activity and power estimation. The inertial delay model,
which is the ModelSim default model, filters out more glitches than the transport delay model and usually
yields a lower power estimate.

Note: Altera recommends that you use the transport simulation model when using the Quartus Prime
software glitch filtering support with third-party simulators. Simulation glitch filtering has little
effect if you use the inertial simulation model.

Glitch filtering in a simulator can also filter a glitch on one logic element (LE) (or other circuit element)
output from propagating to downstream circuit elements to ensure that the glitch does not affect
simulated results. Glitch filtering prevents a glitch on one signal from producing non-physical glitches on
all downstream logic, which can result in a signal toggle rate and a power estimate that are too high.
Circuit elements in which every input transition produces an output transition, including multipliers and
logic cells configured to implement XOR functions, are especially prone to glitches. Therefore, circuits
with such functions can have power estimates that are too high when glitch filtering is not used.

Note: Altera recommends that you use the glitch filtering feature to obtain the most accurate power
estimates. For .vcd files, the PowerPlay Power Analyzer flows support two levels of glitch filtering.

Enabling First Level of Glitch Filtering

To enable the first level of glitch filtering in the Quartus Prime software for supported third-party
simulators, follow these steps:

1. On the Assignments menu, click Settings.
2. In the Category list, select Simulation under EDA Tool Settings.
3. Select the Tool name to use for the simulation.
4. Turn on Enable glitch filtering.

Enabling Second Level of Glitch Filtering

The second level of glitch filtering occurs while the PowerPlay Power Analyzer is reading the .vcd
generated by a third-party simulator. To enable the second level of glitch filtering, follow these steps:

1. On the Assignments menu, click Settings.
2. In the Category list, select PowerPlay Power Analyzer Settings.
3. Under Input File(s), turn on Perform glitch filtering on VCD files.

The .vcd file reader performs filtering complementary to the filtering performed during simulation and is
often not as effective. While the .vcd file reader can remove glitches on logic blocks, the file reader cannot
determine how a given glitch affects downstream logic and routing, and may eliminate the impact of the
glitch completely. Filtering the glitches during simulation avoids switching downstream routing and logic
automatically.

8-14 Glitch Filtering
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When running simulation for design verification (rather than to produce input to the PowerPlay
Power Analyzer), Altera recommends that you turn off the glitch filtering option to produce the
most rigorous and conservative simulation from a functionality viewpoint. When performing
simulation to produce input for the PowerPlay Power Analyzer, Altera recommends that you turn
on the glitch filtering to produce the most accurate power estimates.

Node and Entity Assignments
You can assign toggle rates and static probabilities to individual nodes and entities in the design. These
assignments have the highest priority, overriding data from all other signal-activity sources.

You must use the Assignment Editor or Tcl commands to create the Power Toggle Rate and Power Static
Probability assignments. You can specify the power toggle rate as an absolute toggle rate in transitions
per second using the Power Toggle Rate assignment, or you can use the Power Toggle Rate Percentage
assignment to specify a toggle rate relative to the clock domain of the assigned node for a more specific
assignment made in terms of hierarchy level.

Note: If you use the Power Toggle Rate Percentage assignment, and the node does not have a clock
domain, the Quartus Prime software issues a warning and ignores the assignment.

Assigning toggle rates and static probabilities to individual nodes and entities is appropriate for signals in
which you have knowledge of the signal or entity being analyzed. For example, if you know that a 100
MHz data bus or memory output produces data that is essentially random (uncorrelated in time), you can
directly enter a 0.5 static probability and a toggle rate of 50 million transitions per second.

The PowerPlay Power Analyzer treats bidirectional I/O pins differently. The combinational input port
and the output pad for a pin share the same name. However, those ports might not share the same signal
activities. For reading signal-activity assignments, the PowerPlay Power Analyzer creates a distinct name
<node_name~output> when configuring the bidirectional signal as an output and <node_name~result>
when configuring the signal as an input. For example, if a design has a bidirectional pin named MYPIN,
assignments for the combinational input use the name MYPIN~result, and the assignments for the output
pad use the name MYPIN~output.

Note: When you create the logic assignment in the Assignment Editor, you cannot find the
MYPIN~result and MYPIN~output node names in the Node Finder. Therefore, to create the logic
assignment, you must manually enter the two differentiating node names to create the assignment
for the input and output port of the bidirectional pin.

Related Information
Constraining Designs

For more information about how to use the Assignment Editor in the Quartus Prime software, refer to
this document.

Timing Assignments to Clock Nodes

For clock nodes, the PowerPlay Power Analyzer uses timing requirements to derive the toggle rate when
neither simulation data nor user-entered signal-activity data is available. fMAX requirements specify full
cycles per second, but each cycle represents a rising transition and a falling transition. For example, a
clock fMAX requirement of 100 MHz corresponds to 200 million transitions per second for the clock node.

QPS5V3
2015.11.02 Node and Entity Assignments 8-15

PowerPlay Power Analysis Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470989443/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Default Toggle Rate Assignment
You can specify a default toggle rate for primary inputs and other nodes in your design. The PowerPlay
Power Analyzer uses the default toggle rate when no other method specifies the signal-activity data.

The PowerPlay Power Analyzer specifies the toggle rate in absolute terms (transitions per second), or as a
fraction of the clock rate in effect for each node. The toggle rate for a clock derives from the timing
settings for the clock. For example, if the PowerPlay Power Analyzer specifies a clock with an fMAX
constraint of 100 MHz and a default relative toggle rate of 20%, nodes in this clock domain transition in
20% of the clock periods, or 20 million transitions occur per second. In some cases, the PowerPlay Power
Analyzer cannot determine the clock domain for a node because either the PowerPlay Power Analyzer
cannot determine a clock domain for the node, or the clock domain is ambiguous. For example, the
PowerPlay Power Analyzer may not be able to determine a clock domain for a node if the user did not
specify sufficient timing assignments. In these cases, the PowerPlay Power Analyzer substitutes and
reports a toggle rate of zero.

Vectorless Estimation
For some device families, the PowerPlay Power Analyzer automatically derives estimates for signal activity
on nodes with no simulation or user-entered signal-activity data. Vectorless estimation statistically
estimates the signal activity of a node based on the signal activities of nodes feeding that node, and on the
actual logic function that the node implements. Vectorless estimation cannot derive signal activities for
primary inputs. Vectorless estimation is accurate for combinational nodes, but not for registered nodes.
Therefore, the PowerPlay Power Analyzer requires simulation data for at least the registered nodes and
I/O nodes for accuracy.

The PowerPlay Power Analyzer Settings dialog box allows you to disable vectorless estimation. When
turned on, vectorless estimation takes precedence over default toggle rates. Vectorless estimation does not
override clock assignments.

To disable vectorless estimation, perform the following steps:

1. In the Quartus Prime software, on the Assignments menu, click Settings.
2. In the Category list, select PowerPlay Power Analyzer Settings.
3. Turn off the Use vectorless estimation option.

Using the PowerPlay Power Analyzer
For flows that use the PowerPlay Power Analyzer, you must first synthesize your design, and then fit it to
the target device. You must either provide timing assignments for all the clocks in your design, or use a
simulation-based flow to generate activity data. You must specify the I/O standard on each device input
and output and the board trace model on each output in your design.

Common Analysis Flows
You can use the analysis flows in this section with the PowerPlay Power Analyzer. However, vectorless
activity estimation is only available for some device families.

8-16 Default Toggle Rate Assignment
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation

In the functional simulation flow, simulation provides toggle rates and static probabilities for all pins and
registers in your design. Vectorless estimation fills in the values for all the combinational nodes between
pins and registers, giving good results. This flow usually provides a compilation time benefit when you use
the third-party RTL simulator.

RTL Simulation Limitation

RTL simulation may not provide signal activities for all registers in the post-fitting netlist because
synthesis loses some register names. For example, synthesis might automatically transform state machines
and counters, thus changing the names of registers in those structures.

Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities

The vectorless estimation flow provides a low level of accuracy, because vectorless estimation for registers
is not entirely accurate.

Signal Activities from User Defaults Only

The user defaults only flow provides the lowest degree of accuracy.

Importance of .vcd
Altera recommends that you use a .vcd or a .saf generated by gate-level timing simulation for an accurate
power estimation because gate-level timing simulation takes all the routing resources and the exact logic
array resource usage into account.

Generating a .vcd
In previous versions of the Quartus Prime software, you could use either the Quartus Prime simulator or
an EDA simulator to perform your simulation. The Quartus Prime software no longer supports a built-in
simulator, and you must use an EDA simulator to perform simulation. Use the .vcd as the input to the
PowerPlay Power Analyzer to estimate power for your design.

To create a .vcd for your design, follow these steps:

1. On the Assignments menu, click Settings.
2. In the Category list, under EDA Tool Settings, click Simulation.
3. In the Tool name list, select your preferred EDA simulator.
4. In the Format for output netlist list, select Verilog HDL, or SystemVerilog HDL, or VHDL.
5. Turn on Generate Value Change Dump (VCD) file script.

This option turns on the Map illegal HDL characters and Enable glitch filtering options. The Map
illegal HDL characters option ensures that all signals have legal names and that signal toggle rates are
available later in the PowerPlay Power Analyzer. The Enable glitch filtering option directs the EDA
Netlist Writer to perform glitch filtering when generating VHDL Output Files, Verilog Output Files,
and the corresponding Standard Delay Format Output Files for use with other EDA simulation tools.
This option is available regardless of whether or not you want to generate .vcd scripts.

Note: When performing simulation using ModelSim, the +nospecify option for the vsim command
disables the specify path delays and timing checks option in ModelSim. By enabling glitch
filtering on the Simulation page, the simulation models include specified path delays. Thus,
ModelSim might fail to simulate a design if you enabled glitch filtering and specified the

QPS5V3
2015.11.02 Signal Activities from RTL (Functional) Simulation, Supplemented by... 8-17

PowerPlay Power Analysis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

+nospecify option. Altera recommends that you remove the +nospecify option from the
ModelSim vsim command to ensure accurate simulation for power estimation.

6. Click Script Settings. Select the signals that you want to output to the .vcd.
With All signals selected, the generated script instructs the third-party simulator to write all connected
output signals to the .vcd. With All signals except combinational lcell outputs selected, the generated
script tells the third-party simulator to write all connected output signals to the .vcd, except logic cell
combinational outputs.

Note: The file can become extremely large if you write all output signals to the file because the file size
depends on the number of output signals being monitored and the number of transitions that
occur.

7. Click OK.
8. In the Design instance name box, type a name for your testbench.
9. Compile your design with the Quartus Prime software and generate the necessary EDA netlist and

script that instructs the third-party simulator to generate a .vcd.
10.Perform a simulation with the third-party EDA simulation tool. Call the generated script in the

simulation tool before running the simulation. The simulation tool generates the .vcd and places it in
the project directory.

Generating a .vcd from ModelSim Software

To generate a .vcd with the ModelSim software, follow these steps:

1. In the Quartus Prime software, on the Assignments menu, click Settings.
2. In the Category list, under EDA Tool Settings, click Simulation.
3. In the Tool name list, select your preferred EDA simulator.
4. In the Format for output netlist list, select Verilog HDL, or SystemVerilog HDL, or VHDL.
5. Turn on Generate Value Change Dump (VCD) file script.
6. To generate the .vcd, perform a full compilation.
7. In the ModelSim software, compile the files necessary for simulation.
8. Load your design by clicking Start Simulation on the Tools menu, or use the vsim command.
9. Use the .vcd script created in step 6 using the following command:

source <design>_dump_all_vcd_nodes.tcl

10.Run the simulation (for example, run 2000ns or run -all).
11.Quit the simulation using the quit -sim command, if required.
12.Exit the ModelSim software.

If you do not exit the software, the ModelSim software might end the writing process of the .vcd
improperly, resulting in a corrupt .vcd.

Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation

To successfully generate a .vcd from the full post-fit Netlist (zero delay) simulation, follow these steps:

1. Compile your design in the Quartus Prime software to generate the Netlist <project_name>.vo.
2. In <project_name>.vo, search for the include statement for <project_name>.sdo, comment the

statement out, and save the file.

8-18 Generating a .vcd from ModelSim Software
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Altera recommends that you use the Standard Delay Format Output File (.sdo) for gate-level timing
simulation. The .sdo contains the delay information of each architecture primitive and routing
element in your design; however, you must exclude the .sdo for zero delay simulation.

3. Generate a .vcd for power estimation by performing the steps in Generating a .vcd on page 8-17.

PowerPlay Power Analyzer Compilation Report
The following table list the items in the Compilation Report of the PowerPlay Power Analyzer section.

Section Description

Summary The Summary section of the report shows the estimated total thermal power
consumption of your design. This includes dynamic, static, and I/O thermal
power consumption. The I/O thermal power includes the total I/O power drawn
from the VCCIO and VCCPD power supplies and the power drawn from VCCINT in
the I/O subsystem including I/O buffers and I/O registers. The report also
includes a confidence metric that reflects the overall quality of the data sources
for the signal activities. For example, a Low power estimation confidence value
reflects that you have provided insufficient toggle rate data, or most of the signal-
activity information used for power estimation is from default or vectorless
estimation settings. For more information about the input data, refer to the
PowerPlay Power Analyzer Confidence Metric report.

Settings The Settings section of the report shows the PowerPlay Power Analyzer settings
information of your design, including the default input toggle rates, operating
conditions, and other relevant setting information.

Simulation Files Read The Simulation Files Read section of the report lists the simulation output file
that the .vcd used for power estimation. This section also includes the file ID, file
type, entity, VCD start time, VCD end time, the unknown percentage, and the
toggle percentage. The unknown percentage indicates the portion of the design
module unused by the simulation vectors.

Operating Conditions
Used

The Operating Conditions Used section of the report shows device characteris‐
tics, voltages, temperature, and cooling solution, if any, during the power
estimation. This section also shows the entered junction temperature or auto-
computed junction temperature during the power analysis.

Thermal Power
Dissipated by Block

The Thermal Power Dissipated by Block section of the report shows estimated
thermal dynamic power and thermal static power consumption categorized by
atoms. This information provides you with estimated power consumption for
each atom in your design.

By default, this section does not contain any data, but you can turn on the report
with the Write power dissipation by block to report file option on the
PowerPlay Power Analyzer Settings page.

QPS5V3
2015.11.02 PowerPlay Power Analyzer Compilation Report 8-19

PowerPlay Power Analysis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Section Description

Thermal Power
Dissipation by Block
Type (Device Resource
Type)

This Thermal Power Dissipation by Block Type (Device Resource Type) section
of the report shows the estimated thermal dynamic power and thermal static
power consumption categorized by block types. This information is further
categorized by estimated dynamic and static power and provides an average
toggle rate by block type. Thermal power is the power dissipated as heat from the
FPGA device.

Thermal Power
Dissipation by
Hierarchy

This Thermal Power Dissipation by Hierarchy section of the report shows
estimated thermal dynamic power and thermal static power consumption
categorized by design hierarchy. This information is further categorized by the
dynamic and static power that was used by the blocks and routing in that
hierarchy. This information is useful when locating modules with high power
consumption in your design.

Core Dynamic
Thermal Power
Dissipation by Clock
Domain

The Core Dynamic Thermal Power Dissipation by Clock Domain section of the
report shows the estimated total core dynamic power dissipation by each clock
domain, which provides designs with estimated power consumption for each
clock domain in the design. If the clock frequency for a domain is unspecified by
a constraint, the clock frequency is listed as “unspecified.” For all the combina‐
tional logic, the clock domain is listed as no clock with zero MHz.

Current Drawn from
Voltage Supplies

The Current Drawn from Voltage Supplies section of the report lists the current
drawn from each voltage supply. The VCCIO and VCCPD voltage supplies are
further categorized by I/O bank and by voltage. This section also lists the
minimum safe power supply size (current supply ability) for each supply voltage.
Minimum current requirement can be higher than user mode current require‐
ment in cases in which the supply has a specific power up current requirement
that goes beyond user mode requirement, such as the VCCPD power rail in Stratix
III and Stratix IV devices, and the VCCIO power rail in Stratix IV devices.

The I/O thermal power dissipation on the summary page does not correlate
directly to the power drawn from the VCCIO and VCCPD voltage supplies listed in
this report. This is because the I/O thermal power dissipation value also includes
portions of the VCCINT power, such as the I/O element (IOE) registers, which are
modeled as I/O power, but do not draw from the VCCIO and VCCPD supplies.

The reported current drawn from the I/O Voltage Supplies (ICCIO and ICCPD)
as reported in the PowerPlay Power Analyzer report includes any current drawn
through the I/O into off-chip termination resistors. This can result in ICCIO and
ICCPD values that are higher than the reported I/O thermal power, because this
off-chip current dissipates as heat elsewhere and does not factor in the calcula‐
tion of device temperature. Therefore, total I/O thermal power does not equal
the sum of current drawn from each VCCIO and VCCPD supply multiplied by
VCCIO and VCCPD voltage.

For SoC devices or for Arria V SoC and Cyclone V SoC devices, there is no
standalone ICC_AUX_SHARED current drawn information. The ICC_AUX_
SHARED is reported together with ICC_AUX.

8-20 PowerPlay Power Analyzer Compilation Report
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Section Description

Confidence Metric
Details

The Confidence Metric is defined in terms of the total weight of signal activity
data sources for both combinational and registered signals. Each signal has two
data sources allocated to it; a toggle rate source and a static probability source.

The Confidence Metric Details section also indicates the quality of the signal
toggle rate data to compute a power estimate. The confidence metric is low if the
signal toggle rate data comes from poor predictors of real signal toggle rates in
the device during an operation. Toggle rate data that comes from simulation,
user-entered assignments on specific signals or entities are reliable. Toggle rate
data from default toggle rates (for example, 12.5% of the clock period) or
vectorless estimation are relatively inaccurate. This section gives an overall
confidence rating in the toggle rate data, from low to high. This section also
summarizes how many pins, registers, and combinational nodes obtained their
toggle rates from each of simulation, user entry, vectorless estimation, or default
toggle rate estimations. This detailed information helps you understand how to
increase the confidence metric, letting you determine your own confidence in
the toggle rate data.

Signal Activities The Signal Activities section lists toggle rates and static probabilities assumed by
power analysis for all signals with fan-out and pins. This section also lists the
signal type (pin, registered, or combinational) and the data source for the toggle
rate and static probability. By default, this section does not contain any data, but
you can turn on the report with the Write signal activities to report file option
on the PowerPlay Power Analyzer Settings page.

Altera recommends that you keep the Write signal activities to report file
option turned off for a large design because of the large number of signals
present. You can use the Assignment Editor to specify that activities for
individual nodes or entities are reported by assigning an on value to those nodes
for the Power Report Signal Activities assignment.

Messages The Messages section lists the messages that the Quartus Prime software
generates during the analysis.

Scripting Support
You can run procedures and create settings described in this chapter in a Tcl script. You can also run
some procedures at a command prompt. For more information about scripting command options, refer
to the Quartus Prime Command-Line and Tcl API Help browser. To run the Help browser, type the
following command at the command prompt:

quartus_sh --qhelp ←

Related Information

• Tcl Scripting
• API Functions for Tcl

QPS5V3
2015.11.02 Scripting Support 8-21

PowerPlay Power Analysis Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
http://quartushelp.altera.com/current/tafs/tafs/tcl_list_of_packages.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Quartus Prime Settings File Reference Manual
• Command-Line Scripting

Running the PowerPlay Power Analyzer from the Command–Line
The executable to run the PowerPlay Power Analyzer is quartus_pow. For a complete listing of all
command–line options supported by quartus_pow, type the following command at a system command
prompt:

quartus_pow --help ←

or-

quartus_sh --qhelp ←

The following lists the examples of using the quartus_pow executable. Type the command listed in the
following section at a system command prompt. These examples assume that operations are performed
on Quartus Prime project called sample.

To instruct the PowerPlay Power Analyzer to generate a PowerPlay EPE File:

quartus_pow sample --output_epe=sample.csv ←

To instruct the PowerPlay Power Analyzer to generate a PowerPlay EPE File without performing the
power estimate:

quartus_pow sample --output_epe=sample.csv --estimate_power=off ←

To instruct the PowerPlay Power Analyzer to use a .vcd as input (sample.vcd):

quartus_pow sample --input_vcd=sample.vcd ←

To instruct the PowerPlay Power Analyzer to use two .vcd files as input files (sample1.vcd and
sample2.vcd), perform glitch filtering on the .vcd and use a default input I/O toggle rate of 10,000
transitions per second:

quartus_pow sample --input_vcd=sample1.vcd --input_vcd=sample2.vcd \
--vcd_filter_glitches=on --\
default_input_io_toggle_rate=10000transitions/s ←

To instruct the PowerPlay Power Analyzer to not use an input file, a default input I/O toggle rate of
60%, no vectorless estimation, and a default toggle rate of 20% on all remaining signals:

quartus_pow sample --no_input_file --default_input_io_toggle_rate=60% \
--use_vectorless_estimation=off --default_toggle_rate=20% ←

Note: No command–line options are available to specify the information found on the PowerPlay Power
Analyzer Settings Operating Conditions page. Use the Quartus Prime GUI to specify these
options.

The quartus_pow executable creates a report file, <revision name>.pow.rpt. You can locate the report file
in the main project directory. The report file contains the same information in PowerPlay Power
Analyzer Compilation Report on page 8-19.

8-22 Running the PowerPlay Power Analyzer from the Command–Line
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958382198/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History
The following table lists the revision history for this chapter.

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2014.12.15 14.1.0 • Removed Signal Activities from Full Post-Fit Netlist (Timing)
Simulation and Signal Activities from Full Post-Fit Netlist (Zero
Delay) Simulation sections as these are no longer supported.

• Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

2014.08.18 14.0a10.0 Updated "Current Drawn from Voltage Supplies" to clarify that for SoC
devices or for Arria V SoC and Cyclone V SoC devices, there is no
standalone ICC_AUX_SHARED current drawn information. The ICC_
AUX_SHARED is reported together with ICC_AUX.

November 2012 12.1.0 • Updated “Types of Power Analyses” on page 8–2, and “Confidence
Metric Details” on page 8–23.

• Added “Importance of .vcd” on page 8–20, and “Avoiding Power
Estimation and Hardware Measurement Mismatch” on page 8–24

June 2012 12.0.0 • Updated “Current Drawn from Voltage Supplies” on page 8–22.
• Added “Using the HPS Power Calculator” on page 8–7.

November 2011 10.1.1 • Template update.
• Minor editorial updates.

December 2010 10.1.0 • Added links to Quartus Prime Help, removed redundant material.
• Moved “Creating PowerPlay EPE Spreadsheets” to page 8–6.
• Minor edits.

July 2010 10.0.0 • Removed references to the Quartus Prime Simulator.
• Updated Table 8–1 on page 8–6, Table 8–2 on page 8–13, and Table

8–3 on page 8–14.
• Updated Figure 8–3 on page 8–9, Figure 8–4 on page 8–10, and

Figure 8–5 on page 8–12.

QPS5V3
2015.11.02 Document Revision History 8-23

PowerPlay Power Analysis Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November 2009 9.1.0 • Updated “Creating PowerPlay EPE Spreadsheets” on page 8–6 and
“Simulation Results” on page 8–10.

• Added “Signal Activities from Full Post-Fit Netlist (Zero Delay)
Simulation” on page 8–19 and “Generating a .vcd from Full Post-Fit
Netlist (Zero Delay) Simulation” on page 8–21.

• Minor changes to “Generating a .vcd from ModelSim Software” on
page 8–21.

• Updated Figure 11–8 on page 11–24.

March 2009 9.0.0 • This chapter was chapter 11 in version 8.1.
• Removed Figures 11-10, 11-11, 11-13, 11-14, and 11-17 from 8.1

version.

November 2008 8.1.0 • Updated for the Quartus Prime software version 8.1.
• Replaced Figure 11-3.
• Replaced Figure 11-14.

May 2008 8.0.0 • Updated Figure 11–5.
• Updated “Types of Power Analyses” on page 11–5.
• Updated “Operating Conditions” on page 11–9.
• Updated “PowerPlay Power Analyzer Compilation Report” on page

11–31.
• Updated “Current Drawn from Voltage Supplies” on page 11–32.

8-24 Document Revision History
QPS5V3

2015.11.02

Altera Corporation PowerPlay Power Analysis

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20PowerPlay%20Power%20Analysis%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Debugging Tools Overview 9
2015.11.02

QPS5V3 Subscribe Send Feedback

About Altera System Debugging Tools
The Altera® system debugging tools help you verify your FPGA designs. As your product requirements
continue to increase in complexity, the time you spend on design verification continues to rise. This
manual provides a quick overview of the tools available in the system debugging suite and discusses the
criteria for selecting the best tool for your design.

System Debugging Tools Portfolio
The Quartus Prime software provides a portfolio of system design debugging tools for real-time
verification of your design. Each tool in the system debugging portfolio uses a combination of available
memory, logic, and routing resources to assist in the debugging process. The tools provide visibility by
routing (or “tapping”) signals in your design to debugging logic. The debugging logic is then compiled
with your design and downloaded into the FPGA or CPLD for analysis. Because different designs can
have different constraints and requirements, such as the number of spare pins available or the amount of
logic or memory resources remaining in the physical device, you can choose a tool from the available
debugging tools that matches the specific requirements for your design.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20System%20Debugging%20Tools%20Overview&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

System Debugging Tools Comparison

Table 9-1: Debugging Tools Portfolio

Tool Description Typical Usage

System Console Uses a Tcl interpreter to communi‐
cate with hardware modules
instantiated in your design. You can
use it with the Transceiver Toolkit
to monitor or debug your design.

System Console provides real-time
in-system debugging capabilities.
Using System Console, you can read
from and write to Memory Mapped
components in our system without
the help of a processor or additional
software.

System Console uses Tcl as the
fundamental infrastructure which
means you can source scripts, set
variables, write procedures, and take
advantage of all the features of the
Tcl scripting language.

You need to perform system-
level debugging. For example, if
you have an Avalon-MM slave
or Avalon-ST interfaces, you can
debug your design at a transac‐
tion level. The tool supports
JTAG connectivity and TCP/IP
connectivity to the target FPGA
you wish to debug.

Transceiver Toolkit The Transceiver Toolkit allows you
to test and tune transceiver link
signal quality. You can use a
combination of bit error rate (BER),
bathtub curve, and eye contour
graphs as quality metrics. Auto
Sweeping of physical medium
attachment (PMA) settings allows
you to quickly find an optimal
solution.

You need to debug or optimize
signal integrity of your board
layout even before the actual
design to be run on the FPGA is
ready.

SignalTap ® II Logic Analyzer This logic analyzer uses FPGA
resources to sample test nodes and
outputs the information to the
Quartus Prime software for display
and analysis.

You have spare on-chip memory
and you want functional verifica‐
tion of your design running in
hardware.

9-2 System Debugging Tools Comparison
QPS5V3

2015.11.02

Altera Corporation System Debugging Tools Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tool Description Typical Usage

SignalProbe This tool incrementally routes
internal signals to I/O pins while
preserving results from your last
place-and-routed design.

You have spare I/O pins and you
would like to check the
operation of a small set of
control pins using either an
external logic analyzer or an
oscilloscope.

Logic Analyzer Interface (LAI) This tool multiplexes a larger set of
signals to a smaller number of spare
I/O pins. LAI allows you to select
which signals are switched onto the
I/O pins over a JTAG connection.

You have limited on-chip
memory, and have a large set of
internal data buses that you
would like to verify using an
external logic analyzer. Logic
analyzer vendors, such as
Tektronics and Agilent, provide
integration with the tool to
improve the usability of the tool.

In-System Sources and Probes This tool provides an easy way to
drive and sample logic values to and
from internal nodes using the JTAG
interface.

You want to prototype a front
panel with virtual buttons for
your FPGA design.

In-System Memory Content
Editor

This tool displays and allows you to
edit on-chip memory.

You would like to view and edit
the contents of on-chip memory
that is not connected to a Nios II
processor. You can also use the
tool when you do not want to
have a Nios II debug core in your
system.

Virtual JTAG Interface This megafunction allows you to
communicate with the JTAG
interface so that you can develop
your own custom applications.

You have custom signals in your
design that you want to be able
to communicate with.

Altera JTAG Interface (AJI)
With the exception of SignalProbe, each of the on-chip debugging tools uses the JTAG port to control and
read back data from debugging logic and signals under test. System Console uses JTAG and other
interfaces as well. The JTAG resource is shared among all of the on-chip debugging tools.

Required Arbitration Logic
For all system debugging tools except System Console, the Quartus Prime software compiles logic into
your design automatically to distinguish between data and control information and each of the debugging
logic blocks, when the JTAG resource is required. This arbitration logic, also known as the System-Level
Debugging (SLD) infrastructure, is shown in the design hierarchy of your compiled project as

QPS5V3
2015.11.02 Altera JTAG Interface (AJI) 9-3

System Debugging Tools Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

sld_hub:sld_hub_inst. The SLD logic allows you to instantiate multiple debugging blocks into your
design and run them simultaneously. For System Console, you must explicitly insert debug IP cores into
your design to enable debugging.

Debugging Ecosystem
To maximize debugging closure, the Quartus Prime software allows you to use a combination of the
debugging tools in tandem to fully exercise and analyze the logic under test. All of the tools have basic
analysis features built in; that is, all of the tools enable you to read back information collected from the
design nodes that are connected to the debugging logic. Out of the set of debugging tools, the SignalTap II
Logic Analyzer, the LAI, and the SignalProbe feature are general purpose debugging tools optimized for
probing signals in your register transfer level (RTL) netlist. In-System Sources and Probes, the Virtual
JTAG Interface, System Console, Transceiver Toolkit, and In-System Memory Content Editor, allow you
to read back data from the debugging breakpoints, and to input values into your design during runtime.

Taken together, the set of on-chip debugging tools form a debugging ecosystem. The set of tools can
generate a stimulus to and solicit a response from the logic under test, providing a complete debugging
solution.

Figure 9-1: Debugging Ecosystem

In-System Sources and Probes
In-System Memory Content Editor

VJI

SignalTap II Logic Analyzer
In-System Memory Content Editor

Transceiver Toolkit - System Console
LAI

Design
Under Test

JTAG

FPGA

Quartus Prime Software

About Analysis Tools for RTL Nodes
The SignalTap II Logic Analyzer, SignalProbe, and LAI are designed specifically for probing and
debugging RTL signals at system speed. They are general-purpose analysis tools that enable you to tap and
analyze any routable node from the FPGA or CPLD. If you have spare logic and memory resources, the

9-4 Debugging Ecosystem
QPS5V3

2015.11.02

Altera Corporation System Debugging Tools Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SignalTap II Logic Analyzer is useful for providing fast functional verification of your design running on
actual hardware.

Conversely, if logic and memory resources are tight and you require the large sample depths associated
with external logic analyzers, both the LAI and the SignalProbe make it easy to view internal design
signals using external equipment.

Note: The SignalTap II Logic Analyzer is not supported on CPLDs, because there are no memory
resources available on these devices.

Resource Usage
The most important selection criteria for these three tools are the available resources remaining on your
device after implementing your design and the number of spare pins available. You should evaluate your
preferred debugging option early on in the design planning process to ensure that your board, your
Quartus Prime project, and your design are all set up to support the appropriate options. Planning early
can reduce time spent during debugging and eliminate the necessary late changes to accommodate your
preferred debugging methodologies.

Figure 9-2: Resource Usage per Debugging Tool

Memory

Lo
gic

SignalTap II

Signal
Probe

Lo
gic

 An
aly

ze
r

In
te

rfa
ce

Overhead Logic
Any debugging tool that requires the use of a JTAG connection requires the SLD infrastructure logic, for
communication with the JTAG interface and arbitration between any instantiated debugging modules.
This overhead logic uses around 200 logic elements (LEs), a small fraction of the resources available in any
of the supported devices. The overhead logic is shared between all available debugging modules in your
design. Both the SignalTap II Logic Analyzer and the LAI use a JTAG connection.

For SignalProbe
SignalProbe requires very few on-chip resources. Because it requires no JTAG connection, SignalProbe
uses no logic or memory resources. SignalProbe uses only routing resources to route an internal signal to
a debugging test point.

For Logic Analyzer Interface
The LAI requires a small amount of logic to implement the multiplexing function between the signals
under test, in addition to the SLD infrastructure logic. Because no data samples are stored on the chip, the
LAI uses no memory resources.

QPS5V3
2015.11.02 Resource Usage 9-5

System Debugging Tools Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For SignalTap II
The SignalTap II Logic Analyzer requires both logic and memory resources. The number of logic
resources used depends on the number of signals tapped and the complexity of the trigger logic. However,
the amount of logic resources that the SignalTap II Logic Analyzer uses is typically a small percentage of
most designs. A baseline configuration consisting of the SLD arbitration logic and a single node with basic
triggering logic contains approximately 300 to 400 Logic Elements (LEs). Each additional node you add to
the baseline configuration adds about 11 LEs. Compared with logic resources, memory resources are a
more important factor to consider for your design. Memory usage can be significant and depends on how
you configure your SignalTap II Logic Analyzer instance to capture data and the sample depth that your
design requires for debugging. For the SignalTap II Logic Analyzer, there is the added benefit of requiring
no external equipment, as all of the triggering logic and storage is on the chip.

Resource Estimation
The resource estimation feature for the SignalTap II Logic Analyzer and the LAI allows you to quickly
judge if enough on-chip resources are available before compiling the tool with your design.

Figure 9-3: Resource Estimator

Pin Usage

For SignalProbe
The ratio of the number of pins used to the number of signals tapped for the SignalProbe feature is one-
to-one. Because this feature can consume free pins quickly, a typical application for this feature is routing
control signals to spare pins for debugging.

For Logic Analyzer Interface
The ratio of the number of pins used to the number of signals tapped for the LAI is many-to-one. It can
map up to 256 signals to each debugging pin, depending on available routing resources. The control of the
active signals that are mapped to the spare I/O pins is performed via the JTAG port. The LAI is ideal for
routing data buses to a set of test pins for analysis.

For SignalTap II
Other than the JTAG test pins, the SignalTap II Logic Analyzer uses no additional pins. All data is
buffered using on-chip memory and communicated to the SignalTap II Logic Analyzer GUI via the JTAG
test port.

Usability Enhancements
The SignalTap II Logic Analyzer, SignalProbe, and LAI tools can be added to your existing design with
minimal effects. With the node finder, you can find signals to route to a debugging module without
making any changes to your HDL files. SignalProbe inserts signals directly from your post-fit database.
The SignalTap II Logic Analyzer and LAI support inserting signals from both pre-synthesis and post-fit
netlists.

9-6 For SignalTap II
QPS5V3

2015.11.02

Altera Corporation System Debugging Tools Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Incremental Compilation
All three tools allow you to find and configure your debugging setup quickly. In addition, the Quartus
Prime incremental compilation feature and the Quartus Prime incremental routing feature allow for a fast
turnaround time for your programming file, increasing productivity and enabling fast debugging closure.

Both the LAI and SignalTap II Logic Analyzer support incremental compilation. With incremental
compilation, you can add a SignalTap II Logic Analyzer instance or an LAI instance incrementally into
your placed-and-routed design. This has the benefit of both preserving your timing and area optimiza‐
tions from your existing design, and decreasing the overall compilation time when any changes are
necessary during the debugging process. With incremental compilation, you can save up to 70% compile
time of a full compilation.

Incremental Routing
SignalProbe uses the incremental routing feature. The incremental routing feature runs only the Fitter
stage of the compilation. This leaves your compiled design untouched, except for the newly routed node
or nodes. With SignalProbe, you can save as much as 90% compile time of a full compilation.

Automation Via Scripting
As another productivity enhancement, all tools in the on-chip debugging tool set support scripting via the
quartus_stp Tcl package. For the SignalTap II Logic Analyzer and the LAI, scripting enables user-
defined automation for data collection while debugging in the lab. The System Console includes a full Tcl
interpreter for scripting.

Remote Debugging
You can perform remote debugging of your system with the Quartus Prime software via the System
Console. This feature allows you to debug equipment deployed in the field through an existing TCP/IP
connection.

There are two Application Notes available to assist you.

• Application Note 624 describes how to set up your NIOS II system to use the System Console to
perform remote debugging.

• Application Note 693 describes how to set up your Altera SoC to use the SLD tools to perform remote
debugging.

Related Information

• Application Note 624: Debugging with System Console over TCP/IP
• Application Note 693: Remote Debugging over TCP/IP for Altera SoC

QPS5V3
2015.11.02 Incremental Compilation 9-7

System Debugging Tools Overview Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/an/an_693.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Suggested On-Chip Debugging Tools for Common Debugging Features

Table 9-2: Tools for Common Debugging Features (1)

Feature SignalProbe Logic Analyzer
Interface (LAI)

SignalTap II Logic
Analyzer

Description

Large Sample
Depth

N/A X — An external logic
analyzer used
with the LAI has
a bigger buffer to
store more
captured data
than the
SignalTap II
Logic Analyzer.
No data is
captured or
stored with
SignalProbe.

Ease in
Debugging
Timing Issue

X X — External
equipment, such
as oscilloscopes
and mixed signal
oscilloscopes
(MSOs), can be
used with either
LAI or SignalP‐
robe. When used
with the LAI,
external
equipment
provides you with
access to timing
mode, which
allows you to
debug combined
streams of data.

9-8 Suggested On-Chip Debugging Tools for Common Debugging Features
QPS5V3

2015.11.02

Altera Corporation System Debugging Tools Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature SignalProbe Logic Analyzer
Interface (LAI)

SignalTap II Logic
Analyzer

Description

Minimal Effect
on Logic Design

X X (2) X (2) The LAI adds
minimal logic to
a design,
requiring fewer
device resources.
The SignalTap II
Logic Analyzer
has little effect on
the design,
because it is set as
a separate design
partition.
SignalProbe
incrementally
routes nodes to
pins, not affecting
the design at all.

Short Compile
and Recompile
Time

X X (2) X (2) SignalProbe
attaches
incrementally
routed signals to
previously
reserved pins,
requiring very
little recompila‐
tion time to make
changes to source
signal selections.
The SignalTap II
Logic Analyzer
and the LAI can
refit their own
design partitions
to decrease
recompilation
time.

Triggering
Capability

N/A N/A X The SignalTap II
Logic Analyzer
offers triggering
capabilities that
are comparable to
commercial logic
analyzers.

QPS5V3
2015.11.02 Suggested On-Chip Debugging Tools for Common Debugging Features 9-9

System Debugging Tools Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature SignalProbe Logic Analyzer
Interface (LAI)

SignalTap II Logic
Analyzer

Description

I/O Usage — — X No additional
output pins are
required with the
SignalTap II
Logic Analyzer.
Both the LAI and
SignalProbe
require I/O pin
assignments.

Acquisition
Speed

N/A — X The SignalTap II
Logic Analyzer
can acquire data
at speeds of over
200 MHz. The
same acquisition
speeds are
obtainable with
an external logic
analyzer used
with the LAI, but
might be limited
by signal integrity
issues.

No JTAG
Connection
Required

X — X A FPGA design
with the LAI
requires an active
JTAG connection
to a host running
the Quartus
Prime software.
SignalProbe and
SignalTap II do
not require a host
for debugging
purposes.

9-10 Suggested On-Chip Debugging Tools for Common Debugging Features
QPS5V3

2015.11.02

Altera Corporation System Debugging Tools Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature SignalProbe Logic Analyzer
Interface (LAI)

SignalTap II Logic
Analyzer

Description

No External
Equipment
Required

— — X The SignalTap II
Logic Analyzer
logic is
completely
internal to the
programmed
FPGA device. No
extra equipment
is required other
than a JTAG
connection from
a host running
the Quartus
Prime software or
the stand-alone
SignalTap II
Logic Analyzer
software. SignalP‐
robe and the LAI
require the use of
external
debugging
equipment, such
as multimeters,
oscilloscopes, or
logic analyzers.

Notes to Table:

1. • X indicates the recommended tools for the feature.
• — indicates that while the tool is available for that feature, that tool might not give the best results.
• N/A indicates that the feature is not applicable for the selected tool.

2. When used with incremental compilation.

About Stimulus‑Capable Tools
The In-System Memory Content Editor, In-System Sources and Probes, and Virtual JTAG interface
enable you to use the JTAG interface as a general-purpose communication port. Though all three tools
can be used to achieve the same results, there are some considerations that make one tool easier to use in
certain applications than others. In-System Sources and Probes is ideal for toggling control signals. The
In-System Memory Content Editor is useful for inputting large sets of test data. Finally, the Virtual JTAG
interface is well suited for more advanced users who want to develop their own customized JTAG
solution.

System Console provides system-level debugging at a transaction level, such as with Avalon-MM slave or
Avalon-ST interfaces. You can communicate to a chip through JTAG, and TCP/IP protocols. System

QPS5V3
2015.11.02 About Stimulus‑Capable Tools 9-11

System Debugging Tools Overview Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Console uses a Tcl interpreter to communicate with hardware modules that you have instantiated into
your design.

In-System Sources and Probes
In-System Sources and Probes is an easy way to access JTAG resources to both read and write to your
design. You can start by instantiating a megafunction into your HDL code. The megafunction contains
source ports and probe ports for driving values into and sampling values from the signals that are
connected to the ports, respectively. Transaction details of the JTAG interface are abstracted away by the
megafunction. During runtime, a GUI displays each source and probe port by instance and allows you to
read from each probe port and drive to each source port. The GUI makes this tool ideal for toggling a set
of control signals during the debugging process.

Push Button Functionality
A good application of In-System Sources and Probes is to use the GUI as a replacement for the push
buttons and LEDs used during the development phase of a project. Furthermore, In-System Sources and
Probes supports a set of scripting commands for reading and writing using quartus_stp. When used
with the Tk toolkit, you can build your own graphical interfaces. This feature is ideal for building a virtual
front panel during the prototyping phase of the design.

In-System Memory Content Editor
The In-System Memory Content Editor allows you to quickly view and modify memory content either
through a GUI interface or through Tcl scripting commands. The In-System Memory Content Editor
works by turning single-port RAM blocks into dual-port RAM blocks. One port is connected to your
clock domain and data signals, and the other port is connected to the JTAG clock and data signals for
editing or viewing.

Generate Test Vectors
Because you can modify a large set of data easily, a useful application for the In-System Memory Content
Editor is to generate test vectors for your design. For example, you can instantiate a free memory block,
connect the output ports to the logic under test (using the same clock as your logic under test on the
system side), and create the glue logic for the address generation and control of the memory. At runtime,
you can modify the contents of the memory using either a script or the In-System Memory Content
Editor GUI and perform a burst transaction of the data contents in the modified RAM block synchronous
to the logic being tested.

Virtual JTAG Interface Megafunction
The Virtual JTAG Interface megafunction provides the finest level of granularity for manipulating the
JTAG resource. This megafunction allows you to build your own JTAG scan chain by exposing all of the
JTAG control signals and configuring your JTAG Instruction Registers (IRs) and JTAG Data Registers
(DRs). During runtime, you control the IR/DR chain through a Tcl API, or with System Console. This
feature is meant for users who have a thorough understanding of the JTAG interface and want precise
control over the number and type of resources used.

System Console
System Console is a framework that you can launch from the Quartus Prime software to start services for
performing various debugging tasks. System Console provides you with Tcl scripts and a GUI to access
the Qsys system integration tool to perform low-level hardware debugging of your design, as well as
identify a module by its path, and open and close a connection to a Qsys module. You can access your

9-12 In-System Sources and Probes
QPS5V3

2015.11.02

Altera Corporation System Debugging Tools Overview

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

design at a system level for purposes of loading, unloading, and transferring designs to multiple devices.
Also, System Console supports the Tk toolkit for building graphical interfaces.

Test Signal Integrity
System Console also allows you to access commands that allow you to control how you generate test
patterns, as well as verify the accuracy of data generated by test patterns. You can use JTAG debug
commands in System Console to verify the functionality and signal integrity of your JTAG chain. You can
test clock and reset signals.

Board Bring-Up and Verification
You can use System Console to access programmable logic devices on your development board, perform
board bring-up, and perform verification. You can also access software running on a Nios II or Altera SoC
processor, as well as access modules that produce or consume a stream of bytes.

Test Link Signal Integrity with Transceiver Toolkit
Transceiver Toolkit runs from the System Console framework, and allows you to run automatic tests of
your transceiver links for debugging and optimizing your transceiver designs. You can use the Transceiver
Toolkit GUI to set up channel links in your transceiver devices, and then automatically run EyeQ and
Auto Sweep testing to view a graphical representation of your test data.

Document Revision History
Table 9-3: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to
Quartus Prime.

June 2014 14.0.0 Added information that System Console
supports the Tk toolkit.

November 2013 13.1.0 Dita conversion. Added link to Remote
Debugging over TCP/IP for Altera SoC
Application Note.

June 2012 12.0.0 Maintenance release.

November 2011 10.0.2 Maintenance release. Changed to new
document template.

December 2010 10.0.1 Maintenance release. Changed to new
document template.

July 2010 10.0.0 Initial release

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V3
2015.11.02 Test Signal Integrity 9-13

System Debugging Tools Overview Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20System%20Debugging%20Tools%20Overview%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Analyzing and Debugging Designs with System
Console 10

2015.11.02

QPS5V3 Subscribe Send Feedback

Introduction to System Console
System Console provides visibility into your design and allows you to perform low-level debugging on an
FPGA running in real-time. System Console performs tests on debug-enabled Qsys instantiated IP cores.
A variety of debug services provide read and write access to elements in you design to facilitate debugging.

You can perform the following tasks with System Console and the tools built on top of System Console:

• Bring up boards with both finalized and partially complete designs.
• Perform remote debug with internet access.
• Automate run-time verification through scripting across multiple devices in your system.
• Test serial links with point-and-click configuration tuning in the Transceiver Toolkit.
• Debug memory interfaces with the External Memory Interface Toolkit.
• Integrate your debug IP into the debug platform.
• Test the performance of your ADC and analog chain on a MAX® 10 device with the ADC Toolkit.
• Perform system verification with MATLABS/Simulink.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

In the diagram below, tools are graphical interface, such as Bus Analyzer, that you use in conjunction with
the System Console GUI interface.

Tcl Console is a command-line interface that provides you access to the System Console core. API
supports services and enables communication with hardware, such as, Ethernet, processor, master, and
bytestream services.

Some service have hardware requirements, for example the master service requires a JTAG Master or Nios
II with JTAG Debug, or simular. The Bytestream service requires a JTAG UART.

Note: You use debug links to connect the host to the target that you are debugging.

Related Information

• External Memory Interface Documentation
• Debugging Transceiver Links Documentation on page 11-1
• Application Note 693: Remote Hardware Debugging over TCP/IP for Altera SoC
• Application Note 624: Debugging with System Console over TCP/IP
• White Paper 01208: Hardware in the Loop from the MATLAB/Simulink Environment
• System Console Online Training

10-2 Introduction to System Console
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://www.altera.com/literature/hb/external-memory/emi.pdf
http://www.altera.com/literature/an/an_693.pdf
http://www.altera.com/literature/an/an624.pdf
http://www.altera.com/literature/wp/wp-01208-hardware-in-the-loop.pdf
http://www.altera.com/education/training/courses/OEMB1117
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hardware Requirements for System Console
System Console runs on your host computer and communicates with your running design through debug
agents. Debug agents are soft-logic embedded in some IP cores that enable debug communication with
the host computer.

You instantiate debug IP cores using the Qsys IP Catalog. Some IP cores are enabled for debug by default,
while others are enabled for debug with options in the parameter editor. You can use some debug agents,
such as the Nios II processor with debug enabled, for multiple purposes. For example, debugging the
hardware in your design, as well as debugging the code running on the Nios II processor.

When you use IP cores with embedded debug in your design, you can make large portions of the design
accessible. Debug agents allow you to read and write to memory and alter peripheral registers from the
host computer. For example, when you add a JTAG to Avalon Master Bridge instance to a Qsys system,
you can read and write to memory-mapped slaves connected to the bridge.

Services associated with debug agents in the running design can be directly opened and closed as needed
for debugging. System Console is responsible for determining and using the communication protocol
with the debug agent. The communication protocol determines the best board connection to use for
command and data transmission.

The Programmable SRAM Object File (.sof) provides System Console with channel communication
information. When System Console opens in the Quartus Prime software or Qsys while your design is
open, any existing .sof is automatically found and linked to the detected running device. You can may
need to link the design and device manuallly in a complex system.

Note: The following IP cores in the IP Catalog do not support VHDL simulation generation in the
current version of the Quartus Prime software:

• JTAG Debug Link
• SLD Hub Controller System
• USB Debug Link

Related Information
WP-01170 System-Level Debugging and Monitoring of FPGA Designs

IP Cores that Interact with System Console
To facilitate debugging your design with the System Console, you can include IP cores with debug
interfaces that the System Console can use to send commands and receive data. By adding the appropriate
debug agent to your design, System Console services can use the associated capabilities of the debug agent.

Table 10-1: Common Services for System Console

Service Function Debug Agent Providing Service

master Access memory-mapped (Avalon-MM or
AXI) slaves connected to the master
interface.

• Nios II with debug
• JTAG to Avalon Master Bridge
• USB Debug Master

QPS5V3
2015.11.02 Hardware Requirements for System Console 10-3

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

http://www.altera.com/literature/wp/wp-01170-system-console.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Service Function Debug Agent Providing Service

slave Allows the host to access a single slave
without needing to know the location of
the slave in the host's memory map. Any
slave that is accessible to a System Console
master can provide this service.

• NiosII with debug
• JTAG to Avalon Master Bridge
• USB Debug Master

If an SRAM Object File (.sof) is
loaded, then slaves controlled by a
debug master provide the slave
service.

processor • Start, stop, or step the processor.
• Read and write processor registers.

Nios II with debug

JTAG UART The JTAG UART is an Avalon-MM slave
device that you can use in conjunction with
System Console to send and receive byte
streams.

JTAG UART

Related Information

• System Console Examples and Tutorials on page 10-77
• System Console Commands on page 10-8

System Console Flow
1. Add an IP Core to your Qsys system.
2. Generate your Qsys system.
3. Compile your design in the Quartus Prime software.
4. Connect a board and program the FPGA.
5. Start System Console.
6. Locate and open a System Console service.
7. Perform debug operation(s) with the service.
8. Close the service.

Starting System Console
In the System Console, you use Tcl scripting commands to interact with your design in both graphical and
command-line interface modes. The System Console GUI panes provide design information for
debugging your design.

Related Information

• System Console Commands on page 10-8
• Scripting Reference Manual

Information about Tcl scripting support
• Introduction to Tcl Online Training

10-4 System Console Flow
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/education/training/courses/ODSW1180
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Customizing Startup
You can customize your System Console environment, as follows:

• Adding commands to the system_console_rc configuration file located at:

• <$HOME>/system_console/system_console_rc.tcl

The file in this location is the user configuration file, which only affects the owner of the home
directory.

• Specifying your own design startup configuration file with the command-line argument --
rc_script=<path_to_script>, when you launch System Console from the Nios II command shell.

• Using the system_console_rc.tcl file in combination with your custom rc_script.tcl file. In this case, the
system_console_rc.tcl file performs System Console actions, and the rc_script.tcl file performs your
debugging actions.

On startup, System Console automatically runs the Tcl commands in these files. The commands in the
system_console_rc.tcl file run first, followed by the commands in the rc_script.tcl file.

Starting System Console from Nios II Command Shell
1. On the Windows Start menu, click All Programs > Altera > Nios II EDS <version> > Nios

II<version> > Command Shell..
2. Type system-console.
3. Type -- help for System Console help.
4. Type system-console --project_dir=<project directory> to point to a directory

that contains .qsf or .sof files.

Starting System Console Stand-Alone
You can get the stand-alone version of System Console as part of the Quartus Prime software
Programmer and Tools installer on the Altera website.

1. Navigate to the Altera Download Center page and click the Additional Software tab.
2. On the Windows Start menu, click All Programs > Altera <version> > Programmer and Tools >

System Console

Related Information

• Altera Download Center

Starting System Console from Qsys
• Click Tools > System Console.

Starting System Console from
• Click Tools > System Debugging Tools > System Console.

System Console GUI
The System Console GUI consists of a main window with multiple panes, and allows you to interact with
the design currently running on the host computer.

QPS5V3
2015.11.02 Customizing Startup 10-5

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

http://dl.altera.com/?edition=subscription
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• System Explorer—Displays the hierarchy of the System Console virtual file system in your design,
including board connections, devices, designs, and scripts.

• Toolkits—Displays available toolkits including the ADC Toolkit, Transceiver Toolkit, Toolkits, GDB
Server Control Panel, and Bus Analyzer. Click the Tools menu to launch applications.

• Tcl Console—A window that allows you to interact with your design using Tcl scripts, for example,
sourcing scripts, writing procedures, and using System Console API.

• Messages—Displays status, warning, and error messages related to connections and debug actions.

Figure 10-1: System Console GUI

10-6 System Console GUI
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

System Explorer Pane
The System Explorer pane displays the virtual file system for all connected debugging IP cores, and
contains the following information:

• Devices folder—Contains information about each device connected to System Console.
• Scripts folder—Stores scripts for easy execution.
• Connections folder—Displays information about the board connections which are visible to System

Console, such as USB Blaster. Multiple connections are possible.
• Designs folder—Displays information about project designs connected to System Console. Each

design represents a .sof file that is loaded.

The Devices contains a sub-folder for each device currently connected to System Console. Each device
sub-folder contains a (link) folder and sometimes contains a (files) folder. The (link) folder shows debug
agents (and other hardware) that System Console can access. The (files) folder contains information
about the design files loaded from the project for the device.

Figure 10-2: System Explorer Pane

QPS5V3
2015.11.02 System Explorer Pane 10-7

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The figure above shows the EP4SGX230 folder under the Device folder, which contains a (link) folder.
The (link) folder contains a JTAG folder, which describes the active debug connections to this device,
for example, JTAG, USB, Ethernet, and agents connected to the EP4SGX230 device via a JTAG
connection.

• Folders with a context menu display a context menu icon. Right-click these folders to view the context
menu. For example, the Connections folder above shows a context menu icon.

• Folders that have messages display a message icon. Mouse-over these folders to view the messages. For
example, the Scripts folder above a message icon.

• Debug agents that sense the clock and reset state of the target show an information or error message
with a clock status icon. The icon indicates whether the clock is running (information, green), stopped
(error, red), or running but in reset (error, red). For example, the trace_system_jtag_link.h2t folder
above has a running clock.

System Console Commands
The console commands enable testing. Use console commands to identify a service by its path, and to
open and close the connection. The path that identifies a service is the first argument to most System
Console commands.

To initiate a service connection, do the following:

1. Identify a service by specifying its path with the get_service_paths command.
2. Open a connection to the service with the claim_service command.
3. Use Tcl and System Console commands to test the connected device.
4. Close a connection to the service with the close_service command

Note: For all Tcl commands, the <format> argument must come first.

Table 10-2: System Console Commands

Command Arguments Function

get_service_types N/A Returns a list of service types that System Console
manages. Examples of service types include master,
bytestream, processor, sld, jtag_debug, device, and
design.

10-8 System Console Commands
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

get_service_paths • <service-type>
• <device>—Returns

services in the same
specified device.
The argument can
be a device or
another service in
the device.

• <hpath>—Returns
services whose
hpath starts with
the specified prefix.

• <type>—Returns
services whose
debug type matches
this value. Particu‐
larly useful when
opening slave
services.

• <type>—Returns
services on the
same development
boards as the
argument. Specify a
board service, or
any other service
on the same board.

Allows you to filter the services which are returned.

claim_service • <service-type>
• <service-path>
• <claim-group>
• <claims>

Provides finer control of the portion of a service you
want to use.

claim_service returns a new path which represents
a use of that service. Each use is independent. Calling
claim_service multiple times returns different values
each time, but each allows access to the service until
closed.

close_service • <service-type>
• <service-path>

Closes the specified service type at the specified path.

is_service_open • <service-type>
• <service-type>

Returns 1 if the service type provided by the path is
open, 0 if the service type is closed.

get_services_to_add N/A Returns a list of all services that are instantiable with
the add_service command.

QPS5V3
2015.11.02 System Console Commands 10-9

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

add_service • <service-type>
• <instance-name>
• optional-parameters

Adds a service of the specified service type with the
given instance name. Run get_services_to_add to
retrieve a list of instantiable services. This command
returns the path where the service was added.

Run help add_service <service-type> to get
specific help about that service type, including any
parameters that might be required for that service.

add_service gdbserver • <Processor Service>
• <port number>

Instantiates a gdbserver.

add_service tcp • <instance name>
• <ip_addr>
• <port_number>

Allows you to connect to a TCP/IP port that provides
a debug link over ethernet. See AN693 (Remote
Hardware Debugging over TCP/IP for Altera SoC) for
more information.

add_service

transceiver_channel_

rx

• <data_pattern_
checker>

• <path>
• <transceiver path>
• <transceiver

channel address>
• <reconfig path>
• <reconfig channel

address>

Instantiates a Transceiver Toolkit receiver channel.

add_service

transceiver_channel_

tx

• <data_pattern_
generator>

• <path>
• <transceiver path>
• <transceiver

channel address>
• <reconfig path>
• <reconfig channel

address>

Instantiates a Transceiver Toolkit transmitter
channel.

add_service

transceiver_debug_

link

• <transceiver_
channel_tx path>

• <transceiver_
channel_rx path>

Instantiates a Transceiver Toolkit debug link.

get_version N/A Returns the current System Console version and
build number.

10-10 System Console Commands
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

get_claimed_services • <claim> For the given claim group, returns a list of services
claimed. The returned list consists of pairs of paths
and service types. Each pair is one claimed service.

refresh_connections N/A Scans for available hardware and updates the
available service paths if there have been any
changes.

send_message • <level>
• <message>

Sends a message of the given level to the message
window. Available levels are info, warning, error, and
debug.

Related Information

• Starting System Console on page 10-4
• Remote Hardware Debugging over TCP/IP for Altera SoC

Running System Console in Command-Line Mode
You can run System Console in command line mode and work interactively or run a Tcl script. The
System Console prints responses to your commands in the console window.

• --cli—Runs System Console in command-line mode.
• --project_dir=<project dir>—Directs System Console to the location of your hardware project.

Also works in GUI mode.
• --script=<your script>.tcl—Directs System Console to run your Tcl script.
• --help— Lists all available commands. Typing --help <command name> provides the syntax and

arguments of the command. System Console provides command completion if you type the beginning
letters of a command and then press the Tab key.

Locating, Opening, and Closing System Console Services
System Console services allow you to access different parts of your running design. For example, the
services you can access to memory-mapped slave interfaces. With processor services, you can access
embedded processor controls. Services do not inter-mix, but a single IP core can provide multiple
services. For example, the Nios II processor contains a debug core and has a memory-mapped master
interface that can connect to slaves. The master service can access the memory-mapped slaves that
connect to the Nios II processor. You can also use the processor service to debug your design.

Locating Available Services
System Console uses a virtual file system to organize the available services, which is similar to the /dev
location on Linux systems. Board connection, device type, and IP names are all part of a service path.
Instances of services are referred to by their unique service path in the file system. You can retrieve service
paths for a particular service with the command get_service_paths <service-type>.

QPS5V3
2015.11.02 Running System Console in Command-Line Mode 10-11

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410816339044/mwh1410816322090/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 10-1: Locating a Service Path

#We are interested in master services.
set service_type "master"

#Get all the paths as a list.
set master_service_paths [get_service_paths $service_type]

#We are interested in the first service in the list.
set master_index 0

#The path of the first master.
set master_path [lindex $master_service_paths $master_index]

#Or condense the above statements into one statement:
set master_path [lindex [get_service_paths master] 0]

System Console commands require service paths to identify the service instance you want to access. The
paths for different components can change between runs of System Console and between versions. Use
get_service_paths to obtain service paths rather than hard coding them into your Tcl scripts.

The string values of service paths change with different releases of the tool, so you should not infer
meaning from the actual strings within the service path. Use marker_node_info to get information from
the path.

System Console automatically discovers most services at startup. System Console automatically scans for
all JTAG and USB-based service instances and retrieves their service paths. System Console does not
automatically discover some services, such as TCP/IP. Use add_service to inform System Console about
those services.

Example 10-2: Marker_node_info

You can also use the marker_node_info command to get information about the discovered
services so you can choose the right one.

set slave_path [get_service_paths -type altera_avalon_uart.slave slave]
array set uart_info [marker_node_info $slave_path]
echo $uart_info(full_hpath)

Opening and Closing Services
After you have a service path to a particular service instance, you can access the service for use.

The claim_service command directs System Console to start using a particular service instance, and
with no additional arguments, claims a service instance for exclusive use.

Example 10-3: Opening a Service

set service_type "master"
set claim_path [claim_service $service_type $master_path mylib];#Claims
service.

You can pass additional arguments to the claim_service command to direct System Console to start
accessing a particular portion of a service instance. For example, if you use the master service to access

10-12 Opening and Closing Services
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

memory, then use claim_service to only access the address space between 0x0 and 0x1000. System
Console then allows other users to access other memory ranges, and denies access to the claimed memory
range. The claim_service command returns a newly created service path that you can use to access your
claimed resources.

You can access a service after you open it. When you finish accessing a service instance, use the
close_service command to direct System Console to make this resource available to other users.

Example 10-4: Closing a Service

close_service master $claim_path; #Closes the service.

System Console Services
Altera's System Console services provide access to hardware modules instantiated in your FPGA. Services
vary in the type of debug access they provide.

SLD Service
The SLD Service shifts values into the instruction and data registers of SLD nodes and captures the
previous value. When interacting with a SLD node, start by acquiring exclusive access to the node on an
opened service.

Example 10-5: SLD Service

set timeout_in_ms 1000
set lock_failed [sld_lock $sld_service_path $timeout_in_ms]

This code attempts to lock the selected SLD node. If it is already locked, sld_lock waits for the
specified timeout. Confirm the procedure returns non-zero before proceeding. Set the instruction
register and capture the previous one:

if {$lock_failed} {
 return
}
set instr 7
set delay_us 1000
set capture [sld_access_ir $sld_service_path $instr $delay_us]

The 1000 microsecond delay guarantees that the following SLD command executes least 1000
microseconds later. Data register access works the same way.

set data_bit_length 32
set delay_us 1000
set data_bytes [list 0xEF 0xBE 0xAD 0xDE]
set capture [sld_access_dr $sld_service_path $data_bit_length $delay_us \
$data_bytes]

QPS5V3
2015.11.02 System Console Services 10-13

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Shift count is specified in bits, but the data content is specified as a list of bytes. The capture
return value is also a list of bytes. Always unlock the SLD node once finished with the SLD service.

sld_unlock $sld_service_path

Related Information

• SLD Commands on page 10-14
• Virtual JTAG Megafunction documentation

SLD Commands

Table 10-3: SLD Commands

Command Arguments Function

sld_access_ir <claim-path>

<ir-value>

<delay> (in µs)

Shifts the instruction value into
the instruction register of the
specified node. Returns the
previous value of the instruction.

If the <delay> parameter is non-
zero, then the JTAG clock is
paused for this length of time
after the access.

sld_access_dr <service-path>

<size_in_bits>

<delay-in-µs>,

<list_of_byte_values>

Shifts the byte values into the
data register of the SLD node up
to the size in bits specified.

If the <delay> parameter is non-
zero, then the JTAG clock is
paused for at least this length of
time after the access.

Returns the previous contents of
the data register.

sld_lock <service-path>

<timeout-in-milliseconds>

Locks the SLD chain to
guarantee exclusive access.

Returns 0 if successful. If the
SLD chain is already locked by
another user, tries for <timeout>
ms before throwing a Tcl error.
You can use the catch command
if you want to handle the error.

sld_unlock <service-path> Unlocks the SLD chain.

10-14 SLD Commands
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://www.altera.com/literature/ug/ug_virtualjtag.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
SLD Service on page 10-13

In-System Sources and Probes Service
The In-System Sources and Probes (ISSP) service provides scriptable access to the altsource_probe IP
core in a similar manner to using the In-System Sources and Probes Editor in the Quartus Prime
software.

Example 10-6: ISSP Service

Before you use the ISSP service, ensure your design works in the In-System Sources and Probes
Editor. In System Console, open the service for an ISSP instance.

set issp_index 0
set issp [lindex [get_service_paths issp] 0]
set claimed_issp [claim_service issp $issp mylib]

View information about this particular ISSP instance.

array set instance_info [issp_get_instance_info $claimed_issp]
set source_width $instance_info(source_width)
set probe_width $instance_info(probe_width)

The Quartus Prime software reads probe data as a single bitstring of length equal to the probe
width.

set all_probe_data [issp_read_probe_data $claimed_issp]

As an example, you can define the following procedure to extract an individual probe line's data.

proc get_probe_line_data {all_probe_data index} {
 set line_data [expr { ($all_probe_data >> $index) & 1 }]
 return $line_data
}
set initial_all_probe_data [issp_read_probe_data $claim_issp]
set initial_line_0 [get_probe_line_data $initial_all_probe_data 0]
set initial_line_5 [get_probe_line_data $initial_all_probe_data 5]
...
set final_all_probe_data [issp_read_probe_data $claimed_issp]
set final_line_0 [get_probe_line_data $final_all_probe_data 0]

Similarly, the Quartus Prime software writes source data as a single bitstring of length equal to the
source width.

set source_data 0xDEADBEEF
issp_write_source_data $claimed_issp $source_data

The currently set source data can also be retrieved.

set current_source_data [issp_read_source_data $claimed_issp]

QPS5V3
2015.11.02 In-System Sources and Probes Service 10-15

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

As an example, you can invert the data for a 32-bit wide source by doing the following:

set current_source_data [issp_read_source_data $claimed_issp]
set inverted_source_data [expr { $current_source_data ^ 0xFFFFFFFF }]
issp_write_source_data $claimed_issp $inverted_source_data

Related Information
In-System Sources and Probes Commands on page 10-16

In-System Sources and Probes Commands

Note: The valid values for ISSP claims include read_only, normal, and exclusive.

Table 10-4: In-System Sources and Probes Commands

Command Arguments Function

issp_get_instance_info <service-path> Returns a list of the configura‐
tions of the In-System Sources
and Probes instance, including:

instance_index

instance_name

source_width

probe_width

issp_read_probe_data <service-path> Retrieves the current value of the
probe input. A hex string is
returned representing the probe
port value.

issp_read_source_data <service-path> Retrieves the current value of the
source output port. A hex string
is returned representing the
source port value.

issp_write_source_data <service-path>
<source-value>

Sets values for the source output
port. The value can be either a
hex string or a decimal value
supported by the System
Console Tcl interpreter.

Related Information
In-System Sources and Probes Service on page 10-15

Monitor Service
The monitor service builds on top of the master service to allow reads of Avalon-MM slaves at a regular
interval. The service is fully software-based. The monitor service requires no extra soft-logic. This service

10-16 In-System Sources and Probes Commands
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

streamlines the logic to do interval reads, and it offers better performance than exercising the master
service manually for the reads.

Example 10-7: Monitor Service

Start by determining a master and a memory address range that you are interested in polling
continuously.

set master_index 0
set master [lindex [get_service_paths master] $master_index]
set address 0x2000
set bytes_to_read 100
set read_interval_ms 100

You can use the first master to read 100 bytes starting at address 0x2000 every 100 milliseconds.
Open the monitor service:

set monitor [lindex [get_service_paths monitor] 0]
set claimed_monitor [claim_service monitor $monitor mylib]

Notice that the master service was not opened. The monitor service opens the master service
automatically. Register the previously-defined address range and time interval with the monitor
service:

monitor_add_range $claimed_monitor $master $address $bytes_to_read
monitor_set_interval $claimed_monitor $read_interval_ms

You can add more ranges. You must define the result at each interval:

global monitor_data_buffer
set monitor_data_buffer [list]
proc store_data {monitor master address bytes_to_read} {
 global monitor_data_buffer
 set data [monitor_read_data $claimed_monitor $master $address $bytes_to_read]
 lappend monitor_data_buffer $data
}

The code example above, gathers the data and appends it with a global variable. monitor_read_data
returns the range of data polled from the running design as a list. In this example, data will be a 100-
element list. This list is then appended as a single element in the monitor_data_buffer global list. If this
procedure takes longer than the interval period, the monitor service may have to skip the next one or
more calls to the procedure. In this case, monitor_read_data will return the latest data polled. Register
this callback with the opened monitor service:

set callback [list store_data $claimed_monitor $master $address $bytes_to_read]
monitor_set_callback $claimed_monitor $callback

Use the callback variable to call when the monitor finishes an interval. Start monitoring:

monitor_set_enabled $claimed_monitor 1

Immediately, the monitor reads the specified ranges from the device and invokes the callback at the
specified interval. Check the contents of monitor_data_buffer to verify this. To turn off the monitor, use
0 instead of 1 in the above command.

QPS5V3
2015.11.02 Monitor Service 10-17

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Monitor Commands on page 10-18

Monitor Commands
You can use the Monitor commands to read many Avalon-MM slave memory locations at a regular
interval.

Under normal load, the monitor service reads the data after each interval and then calls the callback. If the
value you read is timing sensitive, you can use the monitor_get_read_interval command to read the
exact time between the intervals at which the data was read.

Under heavy load, or with a callback that takes a long time to execute, the monitor service skips some
callbacks. If the registers you read do not have side effects (for example, they read the total number of
events since reset), skipping callbacks has no effect on your code. The monitor_read_data command and
monitor_get_read_interval command are adequate for this scenario.

If the registers you read have side effects (for example, they return the number of events since the last
read), you must have access to the data that was read, but for which the callback was skipped. The
monitor_read_all_data and monitor_get_all_read_intervals commands provide access to this
data.

Table 10-5: Main Monitoring Commands

Command Arguments Function

monitor_add_range <service-path>
<target-path>
<address>
<size>

Adds a contiguous memory
address into the monitored
memory list.

<service path> is the value
returned when you opened the
service.

<target-path> argument is the
name of a master service to read.
The address is within the address
space of this service. <target-
path> is returned from [lindex
[get_service_paths master]

n] where n is the number of the
master service.

<address> and <size> are
relative to the master service.

monitor_set_callback <service-path>
<Tcl-expression>

Defines a Tcl expression in a
single string that will be
evaluated after all the memories
monitored by this service are
read. Typically, this expression
should be specified as a Tcl
procedure call with necessary
argument passed in.

10-18 Monitor Commands
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

monitor_set_interval <service-path>
<interval>

Specifies the frequency of the
polling action by specifying the
interval between two memory
reads. The actual polling
frequency varies depending on
the system activity. The monitor
service will try to keep it as close
to this specification as possible.

monitor_get_interval <service-path> Returns the current interval set
which specifies the frequency of
the polling action.

monitor_set_enabled <service-path>
<enable(1)/disable(0)>

Enables and disables monitoring.
Memory read starts after this is
enabled, and Tcl callback is
evaluated after data is read.

Table 10-6: Monitor Callback Commands

Command Arguments Function

monitor_add_range <service-path> <target-path>
<address> <size>

Adds contiguous memory
addresses into the monitored
memory list.

The <target-path> argument is
the name of a master service to
read. The address is within the
address space of this service.

monitor_set_callback <service-path>
<Tcl-expression>

Defines a Tcl expression in a
single string that will be
evaluated after all the memories
monitored by this service are
read. Typically, this expression
should be specified as a Tcl
procedure call with necessary
argument passed in.

monitor_read_data <service-path> <target-path>
<address> <size>

Returns a list of 8-bit values read
from the most recent values read
from device. The memory range
specified must be the same as the
monitored memory range as
defined by monitor_add_range.

QPS5V3
2015.11.02 Monitor Commands 10-19

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

monitor_read_all_data <service-path> <target-path>
<address> <size>

Returns a list of 8-bit values read
from all recent values read from
device since last Tcl callback.
The memory range specified
must be within the monitored
memory range as defined by
monitor_add_range.

monitor_get_read_interval <service-path> <target-path>
<address> <size>

Returns the number of millisec‐
onds between last two data reads
returned by monitor_read_
data.

monitor_get_all_read_

intervals
<service-path> <target-path>
<address> <size>

Returns a list of intervals in
milliseconds between two reads
within the data returned by
monitor_read_all_data.

monitor_get_missing_event_

count
<service-path> Returns the number of callback

events missed during the
evaluation of last Tcl callback
expression.

Related Information
Monitor Service on page 10-16

Device Service
The device service supports device-level actions.

Example 10-8: Programming

You can use the device service with Tcl scripting to perform device programming.

set device_index 0 ; #Device index for target
set device [lindex [get_service_paths device] $device_index]
set sof_path [file join project_path output_files project_name.sof]
device_download_sof $device $sof_path

To program, all you need are the device service path and the file system path to a .sof. Ensure that
no other service (e.g. master service) is open on the target device or else the command fails.
Afterwards, you may do the following to check that the design linked to the device is the same one
programmed:

device_get_design $device

Related Information
Device Commands on page 10-21

10-20 Device Service
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device Commands
The device commands provide access to programmable logic devices on your board. Before you use these
commands, identify the path to the programmable logic device on your board using the
get_service_paths.

Table 10-7: Device Commands

Command Arguments Function

device_download_sof <service_path>
<sof-file-path>

Loads the specified .sof to the
device specified by the path.

device_get_connections <service_path> Returns all connections which go
to the device at the specified
path.

device_get_design <device_path> Returns the design this device is
currently linked to.

Related Information
Device Service on page 10-20

Design Service
You can use design service commands to work with design information.

Example 10-9: Load

When you open System Console from the software or Qsys, the current project's debug informa‐
tion is sourced automatically if the .sof has been built. In other situations, you can load manually.

set sof_path [file join project_dir output_files project_name.sof]
set design [design_load $sof_path]

System Console is now aware that this particular .sof has been loaded.

Example 10-10: Linking

Once a .sof is loaded, System Console automatically links design information to the connected
device. The resultant link persists and you can choose to unlink or reuse the link on an equivalent
device with the same .sof.

You can perform manual linking.

set device_index 0; # Device index for our target
set device [lindex [get_service_paths device] $device_index]
design_link $design $device

Manually linking fails if the target device does not match the design service.

Linking fails even if the .sof programmed to the target is not the same as the design .sof.

QPS5V3
2015.11.02 Device Commands 10-21

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Design Service Commands on page 10-22

Design Service Commands
Design service commands load and work with your design at a system level.

Table 10-8: Design Service Commands

Command Arguments Function

design_load <quartus-project-path>,
<sof-file-path>,
or <qpf-file-path>

Loads a model of a design into
System Console. Returns the
design path.

For example, if your Project File
(.qpf) is in c:/projects/loopback,
type the following command:
design_load {c:\projects\

loopback\}

design_link <design-path>
<device-service-path>

Links a logical design with a
physical device.

For example, you can link a
design called 2c35_quartus_
design to a 2c35 device. After
you create this link, System
Console creates the appropriate
correspondences between the
logical and physical submodules
of the project.

design_extract_debug_files <design-path>
<zip-file-name>

Extracts debug files from a .sof to
a zip file which can be emailed to
Altera Support for analysis.

You can specify a design path of
{} to unlink a device and to
disable auto linking for that
device.

design_get_warnings <design-path> Gets the list of warnings for this
design. If the design loads
correctly, then an empty list
returns.

Related Information
Design Service on page 10-21

10-22 Design Service Commands
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bytestream Service
The bytestream service provides access to modules that produce or consume a stream of bytes. You can
use the bytestream service to communicate directly to the IP core that provides bytestream interfaces,
such as the Altera JTAG UART or the Avalon-ST JTAG interface.

Example 10-11: Bytestream Service

The following code finds the bytestream service for your interface and opens it.

set bytestream_index 0
set bytestream [lindex [get_service_paths bytestream] $bytestream_index]
set claimed_bytestream [claim_service bytestream $bytestream mylib]

To specify the outgoing data as a list of bytes and send it through the opened service:

set payload [list 1 2 3 4 5 6 7 8]
bytestream_send $claimed_bytestream $payload

Incoming data also comes as a list of bytes.

set incoming_data [list]
while {[llength $incoming_data] ==0} {
 set incoming_data [bytestream_receive $claimed_bytestream 8]
}

Close the service when done.

close_service bytestream $claimed_bytestream

Related Information
Bytestream Commands on page 10-23

Bytestream Commands

Table 10-9: Bytestream Commands

Command Arguments Function

bytestream_send <service-path>
<values>

Sends the list of bytes to the
specified bytestream service.
Values argument is the list of
bytes to send.

bytestream_receive <service-path>
<length>

Returns a list of bytes currently
available in the specified services
receive queue, up to the specified
limit. Length argument is the
maximum number of bytes to
receive.

QPS5V3
2015.11.02 Bytestream Service 10-23

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Bytestream Service on page 10-23

JTAG Debug Service
The JTAG Debug service allows you to check the state of clocks and resets within your design.

The following is a JTAG Debug design flow example.

1. To identify available JTAG Debug paths:

get_service_paths jtag_debug

2. To select a JTAG Debug path:

set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]

3. To claim a JTAG Debug service path:

 set claim_jtag_path [claim_service jtag_debug$jtag_debug_path mylib]

4. Running the JTAG Debug service:

jtag_debug_reset_system $claim_jtag_path
jtag_debug_loop $claim_jtag_path [list 1 2 3 4 5]

JTAG Debug Commands

JTAG Debug commands help debug the JTAG Chain connected to a device.

Table 10-10: JTAG Debug Commands

Command Argument Function

jtag_debug_loop <service-path>
<list_of_byte_values>

Loops the specified list of bytes
through a loopback of tdi and
tdo of a system-level debug
(SLD) node. Returns the list of
byte values in the order that they
were received. Blocks until all
bytes are received. Byte values
have the 0x (hexadecimal) prefix
and are delineated by spaces.

jtag_debug_sample_clock <service-path> Returns the value of the clock
signal of the system clock that
drives the module's system
interface. The clock value is
sampled asynchronously;
consequently, you may need to
sample the clock several times to
guarantee that it is toggling.

10-24 JTAG Debug Service
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Argument Function

jtag_debug_sample_reset <service-path> Returns the value of the reset_n
signal of the Avalon-ST JTAG
Interface core. If reset_n is low
(asserted), the value is 0 and if
reset_n is high (deasserted), the
value is 1.

jtag_debug_sense_clock <service-path> Returns the result of a sticky bit
that monitors for system clock
activity. If the clock has toggled
since the last execution of this
command, the bit is 1. Returns
true if the bit has ever toggled
and otherwise returns false.
The sticky bit is reset to 0 on
read.

jtag_debug_reset_system <service-path> Issues a reset request to the
specified service. Connectivity
within your device determines
which part of the system is reset.

Related Information
Verifying Clock and Reset Signals on page 10-79

Working with Toolkits
You can use Toolkit API to create tools to visualize and interact with design debug data.

Graphical widgets in the form of buttons and text fields can leverage user input to interact with debug
logic. Toolkit API is the successor to the Dashboard service. Use Toolkit API with the Quartus Prime
software versions 14.1 and later.

Toolkits require the following files:

• XML file that describes the plugin (.toolkit file)
• Tcl file that implements the toolkit GUI

Registering a Toolkit
Use the toolkit_register command to register a System Console toolkit. You must also specify the path
to the .toolkit file when you use the toolkit_register command.

When you open System Console, toolkits that appear with the .toolkit extention in the $HOME/system_
console/toolkits/ directory appear in the Tools > Toolkits menu.

Opening a Toolkit
You can use the Toolkits tab in System Console to launch available toolkits. Each toolkit has a
description, detected hardware list, and a launch button.

QPS5V3
2015.11.02 Working with Toolkits 10-25

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To launch a toolkit from the Quartus Prime software:

1. Click Tools > System Debugging Tools > System Console.
2. In System Console, to view available toolkits, click Tools > Toolkits.

You can also use following command-line command to open a System Console toolkit:

toolkit_open <toolkit_name>, where <toolkit_name> is the name in the .toolkit file.

Note: You can launch a toolkit in the context of a hardware resource associated with a toolkit type. If you
use the command toolkit_open <toolkit_name> <context>, the toolkit Tcl can retrieve the
<context> with the set context [toolkit_get_context]command.

Creating a Toolkit Description File
The Toolkit Description File (.toolkit) provides the registration data for a toolkit. It does not create an
instance of the toolkit GUI.

The toolkit file includes the following attributes:

• Unique <toolkit name>.toolkit name that describes the toolkit type.
• Internal toolkit file name.
• Toolkit display name that appears in the GUI.
• Whether the System Console Tools > Toolkits Tools menu displays the toolkit.
• Path to the .tcl file that implements the toolkit.
• Description of the purpose of the toolkit (optional).
• Path to an icon to display as the toolkit launcher button in System Console (optional).

Note: The .png format 64x64 is preferred. If the icon does not take up the whole space, then be sure
that the background is transparent.

• Requirement is a toolkit that displays as associated hardware for the toolkit (optional).

Note: If this toolkit works with a particular type of hardware, specify the debug type name of the
hardware with the requirement property. This enables automatic discovery of the toolkit. The
debug type name of a toolkit is the name of the hw.tcl component, a dot, and the name of the
interface within that component which the toolkit will use, for example, <hw.tcl name><interface
name>.

Related Information

• Toolkit API GUI Example .toolkit File on page 10-32
• Toolkit API GUI Example .tcl File on page 10-32

Matching Toolkits with IP Cores
You can match any toolkit with any IP core.

• When the toolkit searches for IP, it looks for debug markers and matches IP cores to the toolkit
requirements. In the toolkit file, use the requirement attribute to specify a debug type, as follows:

<requirement><type>debug.type-name</type></requirement

• You can create debug assignments in the hw.tcl for an IP core. hw.tcl files are available when you load
the design in System Console.

• System Console discovers debug markers from identifiers in the hardware and associates with IP
without direct knowledge of the design.

10-26 Creating a Toolkit Description File
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Toolkit API
The Toolkit API service enables you to construct GUIs for visualizing and interacting with debug data.
Toolkit API is a graphical pane for the layout of your graphical widgets, which can include buttons and
text fields. Widgets can pull data from other System Console services. Similarly, widgets can leverage user
input to act on debug logic in your design through services.

Properties

Widget properties can push and pull information to the user interface. Widgets have properties specific to
their type. For example, the button property onClick performs an action when the button is clicked. A
label widget does not have the same property because it does not perform an action when clicked.
However, both the button and label widgets have the text property to display text strings.

Layout

The Toolkit API service creates a widget hierarchy where the toolkit is at the top-level. The service can
implement group-type widgets that contain child widgets. Layout properties dictate layout actions
performed by a parent on its children.

The expandableX property when set as True, expands the widget horizontally to encompass all of the
available space. The visible property when set as True allows a widget to display in the GUI.

User Input

Some widgets allow user interaction. For example, the textField widget is a text box that allows user
entries. You access the contents of the box with the text property. A Tcl script can either get or set the
contents of the textField widget with the text property.

Callbacks

Some widgets can perform user-specified actions, referred to as callbacks. The textField widget has the
onChange property, which is called when text contents change. The button widget has the onClick
property, which is called when a button is clicked. Callbacks may update widgets or interact with services
based on the contents of a text field, or the state of any other widget.

Customizing Toolkit API Widgets
Use toolkit_set_property command to interact with the widgets that you instantiate. The
toolkit_set_property command is most useful when you change part of the execution of a callback.

Toolkit API Script Examples

Note: To convert your Dashboard scripts to Toolkit API, do the following:

1. Add a .toolkit file.
2. Remove the add_service dashboard <name of service> command.
3. Change dashboard_<command> to toolkit_<command>.
4. Change open_service to claim_service, for example:

Before:

open_service slave $path
master_read_memory $path address count

QPS5V3
2015.11.02 Toolkit API 10-27

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After:

set c [claim_service slave $path lib {}]
master_read_memory $c address count

Example 10-12: Registering the Service

Toolkit API is not initialized by default. You must register the service before you can use it.

toolkit_register <toolkit_file>

Example 10-13: Making the Toolkit Visible in System Console

Once you register a toolkit, you must explicitly make the toolkit visible. Use the
toolkit_set_property command to modify the visible property of the root toolkit.

toolkit_set_property $toolkit root_widget visible true

In this command, $toolkit represents the Toolkit API service. root_widget is the name of the
root toolkit widget. visible is the property that allows the toolkit to be visible in System Console.

Example 10-14: Adding Widgets

Use the toolkit_add command to add widgets.

toolkit_add my_button button "parentGroup"

Use the following commands to add a label widget "my_label" to the root toolkit. In the GUI, it
appears as "Widget Label."

set content "Text to display goes here"
toolkit_set_property $dash $name text $content

This command sets the text property to that string. In the GUI, the displayed text changes to the
new value. Add one more label:

toolkit_add $dash my_label_2 label self
toolkit_set_property $dash my_label_2 text "Another label"

Notice the new label appears to the right of the first label. Cause the layout to put the label below
instead:

toolkit_set_property $dash self itemsPerRow 1

Example 10-15: Gathering Input

Incorporate user input into your Toolkit API:

set name "my_text_field"
set widget_type "textField"

10-28 Toolkit API Script Examples
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set parent "self"
toolkit_add $dash $name $widget_type $parent

The widget appears, but it is very small. Make the widget fill the horizontal space:

toolkit_set_property $dash my_text_field expandableX true

Now the text field is fully visible. Text can be typed into it once clicked. Type a sentence. Now,
retrieve the contents of the field:

set content [toolkit_get_property $dash my_text_field text]
puts $content

This prints the contents into the console.

Example 10-16: Updating Widgets Upon User Events

You can make Toolkit API perform actions without interactive typing. Use callbacks to
accomplish this. Start by defining a procedure that updates the first label with the text field
contents:

proc update_my_label_with_my_text_field {dash} {
 set content [toolkit_get_property $dash my_text_field text]
 toolkit_set_property $dash my_label text $content
}

Run the update_my_label_with_my_text_field $dash command in the Tcl Console. Notice
that the first label now matches the text field contents. Have the
update_my_label_with_my_text_field $dash command called whenever the text field
changes:

toolkit_set_property $dash my_text_field onChange \
"update_my_label_with_my_text_field $dash"

The onChange property is executed each time the text field changes. The effect is the first field
changes to match what is typed.

Example 10-17: Buttons

You can use buttons to trigger actions. Create a button that changes the second label:

proc append_to_my_label_2 {dash suffix} {
 set old_text [toolkit_get_property $dash my_label_2 text]
 set new_text "${old_text}${suffix}"
 toolkit_set_property $dash my_label_2 text $new_text
}
set text_to_append ", and more"
toolkit_add $dash my_button button self
toolkit_set_property $dash my_button onClick [list append_to_my_label_2 \
$dash $text_to_append]

Click the button and the second label gets some text appended to it.

QPS5V3
2015.11.02 Toolkit API Script Examples 10-29

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 10-18: Groups

The property itemsPerRow dictates how widgets are laid out in a group. For more complicated
layouts where the number of widgets per row is different per row, use nested groups. Add a new
group with more widgets per row:

toolkit_add $dash my_inner_group group self
toolkit_set_property $dash my_inner_group itemsPerRow 2
toolkit_add $dash inner_button_1 button my_inner_group
toolkit_add $dash inner_button_2 button my_inner_group

There is now a row with a group of two buttons. You can remove the border with the group name
to make the nested group more seamless.

toolkit_set_property $dash inner_group title ""

The title property can be set to any other string to have the border and title text show up.

Example 10-19: Tabs

GUIs do not require all the widgets to be visible at the same time. Tabs accomplish this.

toolkit_add $dash my_tabs tabbedGroup self
toolkit_set_property $dash my_tabs expandableX true
toolkit_add $dash my_tab_1 group my_tabs
toolkit_add $dash my_tab_2 group my_tabs
toolkit_add $dash tabbed_label_1 label my_tab_1
toolkit_add $dash tabbed_label_2 label my_tab_2
toolkit_set_property $dash tabbed_label_1 text "in the first tab"
toolkit_set_property $dash tabbed_label_2 text "in the second tab"

This adds a set of two tabs, each with a group containing a label. Clicking on the tabs changes the
displayed group/label.

Toolkit API GUI Example
The Toolkit API GUI example creates a button in the Toolkits pane in the System Console window,
which registers the toolkit. Clicking the Launch button under Toolkit Example opens a GUI window that
provides debug interaction with your design.

The Toolkit Example includes the .toolkit and .tcl files so that you can reconstruct the example on your
local system.

10-30 Toolkit API GUI Example
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Register Toolkit API in System Console

QPS5V3
2015.11.02 Toolkit API GUI Example 10-31

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Toolkit API GUI Example

Toolkit API GUI Example .toolkit File
The .toolkit files registers the Toolkit API to appear in the System Console.

<?xml version="1.0" encoding="UTF-8"?>
<toolkit name="toolkit_example" displayName="Toolkit Example" addMenuItem="true">
 <file> toolkit_example.tcl </file>
</toolkit>

Related Information
Creating a Toolkit Description File on page 10-26

Toolkit API GUI Example .tcl File
The Toolkit API .tcl file creates the GUI window that provides debug interaction with your design.

namespace eval Test {

 variable ledValue 0
 variable dashboardActive 0
 variable Switch_off 1

 proc toggle { position } {
 set ::Test::ledValue ${position}

10-32 Toolkit API GUI Example .toolkit File
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 ::Test::updateDashboard

 }

 proc sendText {} {
 set sendText [toolkit_get_property sendTextText text]
 toolkit_set_property receiveTextText text $sendText
}

 proc dashBoard {} {

 if { ${::Test::dashboardActive} == 1 } {
 return -code ok "dashboard already active"
 }

 set ::Test::dashboardActive 1
 #
 # top group widget
 #
 toolkit_add topGroup group self
 toolkit_set_property topGroup expandableX false
 toolkit_set_property topGroup expandableY false
 toolkit_set_property topGroup itemsPerRow 1
 toolkit_set_property topGroup title ""

 #
 # leds group widget
 #
 toolkit_add ledsGroup group topGroup
 toolkit_set_property ledsGroup expandableX false
 toolkit_set_property ledsGroup expandableY false
 toolkit_set_property ledsGroup itemsPerRow 2
 toolkit_set_property ledsGroup title "LED State"

 #
 # leds widgets
 #
 toolkit_add led0Button button ledsGroup
 toolkit_set_property led0Button enabled true
 toolkit_set_property led0Button expandableY false
 toolkit_set_property led0Button expandableY false
 toolkit_set_property led0Button text "Toggle"
 toolkit_set_property led0Button onClick {::Test::toggle 1}

 toolkit_add led0LED led ledsGroup
 toolkit_set_property led0LED expandableX false
 toolkit_set_property led0LED expandableY false
 toolkit_set_property led0LED text "LED 0"
 toolkit_set_property led0LED color "green_off"

 toolkit_add led1Button button ledsGroup
 toolkit_set_property led1Button enabled true
 toolkit_set_property led1Button expandableY false
 toolkit_set_property led1Button expandableY false
 toolkit_set_property led1Button text "Turn ON"
 toolkit_set_property led1Button onClick {::Test::toggle 2}

 toolkit_add led1LED led ledsGroup
 toolkit_set_property led1LED expandableX false
 toolkit_set_property led1LED expandableY false
 toolkit_set_property led1LED text "LED 1"
 toolkit_set_property led1LED color "green_off"

 #

QPS5V3
2015.11.02 Toolkit API GUI Example .tcl File 10-33

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 # sendText widgets
 #
 toolkit_add sendTextGroup group topGroup
 toolkit_set_property sendTextGroup expandableX false
 toolkit_set_property sendTextGroup expandableY false
 toolkit_set_property sendTextGroup itemsPerRow 1
 toolkit_set_property sendTextGroup title "Send Data"

 toolkit_add sendTextText text sendTextGroup
 toolkit_set_property sendTextText expandableX false
 toolkit_set_property sendTextText expandableY false
 toolkit_set_property sendTextText preferredWidth 200
 toolkit_set_property sendTextText preferredHeight 200
 toolkit_set_property sendTextText editable true
 toolkit_set_property sendTextText htmlCapable false
 toolkit_set_property sendTextText text ""

 toolkit_add sendTextButton button sendTextGroup
 toolkit_set_property sendTextButton enabled true
 toolkit_set_property sendTextButton expandableY false
 toolkit_set_property sendTextButton expandableY false
 toolkit_set_property sendTextButton text "Send Now"
 toolkit_set_property sendTextButton onClick {::Test::sendText}

 #
 # receiveText widgets
 #
 toolkit_add receiveTextGroup group topGroup
 toolkit_set_property receiveTextGroup expandableX false
 toolkit_set_property receiveTextGroup expandableY false
 toolkit_set_property receiveTextGroup itemsPerRow 1
 toolkit_set_property receiveTextGroup title "Receive Data"

 toolkit_add receiveTextText text receiveTextGroup
 toolkit_set_property receiveTextText expandableX false
 toolkit_set_property receiveTextText expandableY false
 toolkit_set_property receiveTextText preferredWidth 200
 toolkit_set_property receiveTextText preferredHeight 200
 toolkit_set_property receiveTextText editable false
 toolkit_set_property receiveTextText htmlCapable false
 toolkit_set_property receiveTextText text ""

 return -code ok
 }

 proc updateDashboard {} {

 if { ${::Test::dashboardActive} > 0 } {

 toolkit_set_property ledsGroup title "LED State"
 if { [expr ${::Test::ledValue} & 0x01 & ${::Test::Switch_off}] } {
 toolkit_set_property led0LED color "green"
 set ::Test::Switch_off 0
 } else {
 toolkit_set_property led0LED color "green_off"
 set ::Test::Switch_off 1
 }
 if { [expr ${::Test::ledValue} & 0x02] } {
 toolkit_set_property led1LED color "green"
 } else {
 toolkit_set_property led1LED color "green_off"

 }

 }
 }
}

10-34 Toolkit API GUI Example .tcl File
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

::Test::dashBoard

Related Information
Creating a Toolkit Description File on page 10-26

Toolkit API Commands
Toolkit API commands run in the context of a unique toolkit instance.

toolkit_register on page 10-36

toolkit_open on page 10-37

get_quartus_ini on page 10-38

toolkit_get_context on page 10-39

toolkit_get_types on page 10-40

toolkit_get_properties on page 10-41

toolkit_add on page 10-42

toolkit_get_property on page 10-43

toolkit_set_property on page 10-44

toolkit_remove on page 10-45

toolkit_get_widget_dimensions on page 10-46

QPS5V3
2015.11.02 Toolkit API Commands 10-35

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_register

Description

Point to the XML file that describes the plugin (.toolkit file) .

Usage

toolkit_register <toolkit_file>

Returns

No return value.

Arguments

<toolkit_file>
Path to the toolkit definition file.

Example

toolkit_register /data/trogdor/toolkits/burninator.xml

10-36 toolkit_register
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_open

Description

Opens an instance of a toolkit in System Console.

Usage

toolkit_open <toolkit_id> [<context>]

Returns

No return value.

Arguments

<toolkit_id>
Name of the toolkit type to open.

<context>
An optional context, such as a service path for a hardware resource that is associated with
the toolkit that opens.

Example

toolkit_open my_toolkit_id

QPS5V3
2015.11.02 toolkit_open 10-37

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

get_quartus_ini

Description

Returns a value from the software .ini file.

Usage

get_quartus_ini <ini> <type>

Returns

No return value.

Arguments

<ini>
Name of the software .ini setting.

<type>
(Optional) Type of .ini setting. The known types are string and enabled. If the type is
enabled, the value of the .ini setting returns 1, or 0 if not enabled.

Example

set my_ini_enabled [get_quartus_ini my_ini enabled]

set my_ini_raw_value [get_quartus_ini my_ini]

10-38 get_quartus_ini
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_get_context

Description

Returns the context that was specified when the toolkit was opened. If no context was specified, returns an
empty string.

Usage

toolkit_get_context

Returns

Returns the context.

Arguments

None
N/A

Example

set context [toolkit_get_context]

QPS5V3
2015.11.02 toolkit_get_context 10-39

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_get_types

Description

Returns a list of widget types.

Usage

toolkit_get_types

Returns

No return value.

Arguments

None
N/A

Example

set widget_names [toolkit_get_types]

10-40 toolkit_get_types
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_get_properties

Description

Returns a list of toolkit properties for a type of widget.

Usage

toolkit_get_properties <widgetType>

Returns

No return value.

Arguments

<widgetType>
Name of a type of widget.

Example

set widget_properties [toolkit_get_properties xyChart]

QPS5V3
2015.11.02 toolkit_get_properties 10-41

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_add

Description

Adds a widget to the current toolkit.

Usage

toolkit_add <id> <type><groupid>

Returns

No return value.

Arguments

<id>
A unique ID for the widget being added.

<type>
The type of widget that is being added.

<groupid>
The ID for the parent group that will contain the new widget.

Example

toolkit_add my_button button "parentGroup"

10-42 toolkit_add
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_get_property

Description

Returns the value of a property for a specific widget.

Usage

toolkit_get_property <id> <propertyName>

Returns

No return value.

Arguments

<id>
A unique ID for the widget being queried.

<tpropertyName>
The name of the widget property being queried.

Example

set enabled [toolkit_get_property my_button enabled]

QPS5V3
2015.11.02 toolkit_get_property 10-43

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_set_property

Description

Sets the value of a property for a specific widget.

Usage

toolkit_set_property <id><propertyName> <value>

Returns

No return value.

Arguments

id>
A unique ID for the widget being modified.

<propertyName>
The name of the widget property being set.

<value>
The new value for the widget property.

Example

toolkit_set_property my_button enabled false

10-44 toolkit_set_property
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_remove

Description

Removes a widget from the specified toolkit.

Usage

toolkit_remove <id>

Returns

No return value.

Arguments

<id>
A unique ID for the widget being removed.

Example

toolkit_remove my_button

QPS5V3
2015.11.02 toolkit_remove 10-45

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

toolkit_get_widget_dimensions

Description

Returns the width and height of the specified widget.

Usage

toolkit_get_widget_dimensions <id>

Returns

No return value.

Arguments

<id>
A unique ID for the widget being added.

Example

set dimensions [toolkit_get_widget_dimensions my_button]

10-46 toolkit_get_widget_dimensions
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Toolkit API Properties

Widget Types and Properties on page 10-48

barChart Properties on page 10-49

button Properties on page 10-50

checkBox Properties on page 10-51

comboBox Properties on page 10-52

dial Properties on page 10-53

fileChooserButton Properties on page 10-54

group Properties on page 10-55

label Properties on page 10-56

led Properties on page 10-57

lineChart Properties on page 10-58

list Properties on page 10-59

pieChart Properties on page 10-60

tableProperties on page 10-61

text Properties on page 10-62

textField Properties on page 10-63

timeChart Properties on page 10-64

xyChart Properties on page 10-65

QPS5V3
2015.11.02 Toolkit API Properties 10-47

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Widget Types and Properties

Table 10-11: Toolkit API Widget Types and Properties

Name Description

enabled Enables or disables the widget.
expandable Allows the widget to be expanded.
expandableX Allows the widget to be resized horizontally if there is space

available in the cell where it resides.
expandableY Allows the widget to be resized vertically if there is space

available in the cell where it resides.
foregroundColor Sets the foreground color.
maxHeight If the widget's expandableY is set, this is the maximum height

in pixels that the widget can take.
minHeight If the widget's expandableY is set, this is the minimum height

in pixels that the widget can take.
maxWidth If the widget's expandableX is set, this is the maximum width in

pixels that the widget can take.
minWidth If the widget's expandableX is set, this is the minimum width in

pixels that the widget can take.
preferredHeight The height of the widget if expandableY is not set.
preferredWidth The width of the widget if expandableX is not set.
toolTip Implements a mouse-over tooltip.
visible Displays the widget.

10-48 Widget Types and Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

barChart Properties

Table 10-12: Toolkit API barChart Properties

Name Description

title Chart title.
labelX X-axis label text.
label X-axis label text.
range Y-axis value range. By default, it is auto range. Range is

specified in a Tcl list, for example:

[list lower_numerical_value upper_numerical_value]

itemValue Value is specified in a Tcl list, for example:

[list bar_category_str numerical_value]

QPS5V3
2015.11.02 barChart Properties 10-49

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

button Properties

Table 10-13: Toolkit API button Properties

Name Description

onClick A Tcl command to run, usually a proc, every time the button is
clicked.

text The text on the button.

10-50 button Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

checkBox Properties

Table 10-14: Toolkit API checkBox Properties

Name Description

checked If true, the checkbox is checked. If false, the checkbox is not
checked.

onClick A Tcl command to run, usually a proc, every time the checkbox
is clicked.

text The text on the checkbox.

QPS5V3
2015.11.02 checkBox Properties 10-51

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

comboBox Properties

Table 10-15: Toolkit API comboBox Properties

Name Description

onChange A Tcl callback to run when the value of the combo box changes.
options A list of options to display in the combo box.
selected The index of the selected item in the combo box.

10-52 comboBox Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

dial Properties

Table 10-16: Toolkit API dial Properties

Name Description

max The maximum value that the dial can show.
min The minimum value that the dial can show. .
ticksize The space between the different tick marks of the dial.
title The title of the dial.
value The value that the dial's needle should mark. It must be

between min and max.

QPS5V3
2015.11.02 dial Properties 10-53

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

fileChooserButton Properties

Table 10-17: Toolkit API fileChooserButton Properties

Name Description

text The text on the button.
onChoose A Tcl command to run, usually a proc, every time the button is

clicked.
title The dialog box title.
chooserButtonText chooserButtonText
filter The file filter based on extension. Only one extension is

supported. By default, all file names are allowed. The filter is
specified as [list filter_description file_extension],
for example:

[list "Text Document (.txt)" "txt"]

mode Specifies what kind of files or directories can be selected. The
default is files_only. Possible options are files_only and
directories_only.

multiSelectionEnabled Controls whether multiple files can be selected. False, by
default.

paths Returns a list of file paths selected in the file chooser dialog box.
This property is read-only. It is most useful when used within
the onClick script or a procedure when the result is freshly
updated after the dialog box closes.

10-54 fileChooserButton Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

group Properties

Table 10-18: Toolkit API group Properties

Name Description

itemsPerRow The number of widgets the group can position in one row,
from left to right, before moving to the next row.

title The number of widgets the group can position in one row,
from left to right, before moving to the next row.

QPS5V3
2015.11.02 group Properties 10-55

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

label Properties

Table 10-19: Toolkit API label Properties

Name Description

text The text to show in the label.

10-56 label Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

led Properties

Table 10-20: Toolkit API led Properties

Name Description

color The color of the LED. The options are: red_off, red, yellow_
off, yellow, green_off, green, blue_off, blue, and black.

text The color of the LED. The options are: red_off, red, yellow_
off, yellow, green_off, green, blue_off, blue, and black.

QPS5V3
2015.11.02 led Properties 10-57

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

lineChart Properties

Table 10-21: Toolkit API lineChart Properties

Name Description

title Chart title.
labelX X-axis label text.
labelY Y-axis label text.
range Y-axis value range. By default, it is auto range. You specify

range in a Tcl list, for example:

[list lower_numerical_value upper_numerical_value]

Y-axis value range. By default,

it is auto range. Range is

specified in a Tcl list, for

example [list lower_numerical_

value upper_numerical_value].

Y-axis value range. By default, it is auto range. You specify
range in a Tcl list, for example:

[list lower_numerical_value upper_numerical_value]

10-58 lineChart Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

list Properties

Table 10-22: Toolkit API list Properties

Name Description

selected Index of the selected item in the combo box.
options List of options to display.
onChange A Tcl callback to run when the selected item in the list changes.

QPS5V3
2015.11.02 list Properties 10-59

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

pieChart Properties

Table 10-23: Toolkit API pieChart Properties

Name Description

title Chart title.
itemValue Item value. Value is specified in a Tcl list, for example:

[list bar_category_str numerical_value]

10-60 pieChart Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

tableProperties

Table 10-24: Toolkit API tableProperties

Name Description

columnCount The number of columns (Mandatory) (0, by default).
rowCount The number of rows (Mandatory) (0, by default).
headerReorderingAllowed Controls whether you can drag the columns (false, by default)

.
headerResizingAllowed Controls whether you can resize all column widths. (false, by

default).

Note: You can resize each column individually with the
columnWidthResizable property.

rowSorterEnabled Controls whether you can sort the cell values in a column
(false, by default).

showGrid Controls whether to draw both horizontal and vertical lines
(true, by default).

showHorizontalLines Controls whether to draw horizontal line (true, by default).
rowIndex Current row index. Zero-based. This value affects some

properties below (0, by default).
columnIndex Current column index. Zero-based. This value affects all

column specific properties below (0, by default).
cellText Specifies the text to be filled in the cell specified in the current

rowIndex and columnIndex (Empty, by default).
selectedRows Control or retrieve row selection.
columnHeader The text to be filled in the column header.
columnHeaders A list of names to define the columns for the table.
columnHorizontalAlignment The cell text alignment in the specified column. Supported

types are leading (default), left, center, right, trailing.
columnRowSorterType The type of sorting method used. This is applicable only if

rowSorterEnabled is true. Each column has its own sorting
type. Supported types are string (default), int, and float.

columnWidth The number of pixels used for the column width.
columnWidthResizable Controls whether the column width is resizable by you (false,

by default).
contents The contents of the table as a list. For a table with columns A,

B, and C, the format of the list will be {A1 B1 C1 A2 B2
C2 ...}.

QPS5V3
2015.11.02 tableProperties 10-61

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

text Properties

Table 10-25: Toolkit API text Properties

Name Description

editable Controls whether the text box is editable.
htmlCapable Controls whether the text box can format HTML.
text The text to show in the text box.

10-62 text Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

textField Properties

Table 10-26: Toolkit API textField Properties

Name Description

editable Controls whether the text box is editable.
onChange A Tcl callback to run when the contents of the text box is

changed.
text The text to show in the text box.

QPS5V3
2015.11.02 textField Properties 10-63

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

timeChart Properties

Table 10-27: Toolkit API timeChart Properties

Name Description

labelX The label for the X-axis.
labelY The label for the Y-axis.
latest The latest value in the series.
maximumItemCount The number of sample points to display in the historic record.
title The title of the chart.
range Sets the range for the chart. The range is of the form {low,

high}. The low/high values are interpreted as doubles.
showLegend Sets whether a legend for the series should be shown in the

graph.

10-64 timeChart Properties
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

xyChart Properties

Table 10-28: Toolkit API xyChart Properties

Name Properties

title Chart title
labelX X-Axis label text.
labelY Y-Axis label text.
range Sets the range for the chart. The range is of the form {low,

high}. The low/high values are interpreted as doubles.
maximumItemCount Sets the maximum number of data values to keep in a series of

data. Setting this does not affect the current data, only new data
added to the chart. If a series is added that has more values than
the maximum count, the last-maximumItemCount number of
entries will be kept.

series Adds a series of data to the chart. The first value in the spec is
the identifier for the series. If the same identifier is set twice,
the most-recently used series data wins. If the identifier does
not come with series data, that series is removed from the chart.
The series is in a format such as the following: {identifier,
x-1 y-1, x-2 y-2}.

showLegend Sets whether a legend for the series should be shown in the
graph.

ADC Toolkit
The ADC Toolkit is designed to work with MAX 10 devices and helps you understand the performance of
the analog signal chain as seen by the on-board ADC hardware. The GUI displays the performance of the
ADC using industry standard metrics. You can export the collected data to a .csv file and process this raw
data yourself. The ADC Toolkit is built on the System Console framework and can only be operated using
the GUI. There is no Tcl support for the tool.

Prerequisites for Using the ADC Toolkit

• Altera Modular ADC IP core

• External Reference Voltage if you select External in the Altera Modular ADC IP parameters
• Reference signal

The ADC Toolkit needs a sine wave signal to be fed to the analog inputs. You need the capability to
precisely set the level and frequency of the reference signal. A high-precision sine wave is needed for
accurate test results; however, there are useful things that can be read in Scope mode with any input
signal.

To achieve the best testing results, the reference signal should have less distortions than the device ADC is
able to resolve. If this is not the case, then you will be adding distortions from the source into the resulting
ADC distortion measurements. The limiting factor is based on hardware precision.

Note: When applying a sine wave, the ADC should sample at 2x the fundamental sine wave frequency.
There should be a low-pass filter, 3dB point set to the fundamental frequency.

QPS5V3
2015.11.02 xyChart Properties 10-65

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Configuring the Altera Modular ADC IP Core

The Altera Modular ADC IP core needs to be included in your design. You can instantiate this IP core
from the IP Catalog. When you configure this IP core in the Parameter Editor, you need to enable the
Debug Path option located under Core Configuration.

There are two limitations in the software v14.1 for the Altera Modular ADC IP core. The ADC Toolkit
does not support the ADC control core only option under Core Configuration. You must select a core
variant that uses the standard sequencer in order for the Altera Modular ADC IP core to work with ADC
Toolkit. Also, if an Avalon Master is not connected to the sequencer, you must manually start the
sequencer before the ADC Toolkit will work.

Figure 10-3: Altera Modular ADC Core

Starting the ADC Toolkit

You can launch the ADC Toolkit from System Console. Before starting the ADC toolkit, you need to
verify that your board is programmed. You can then load your .sof by clicking File > Load Design. If
System Console was started with an active project, your design is auto-loaded when you start System
Console.

There are two methods to start the ADC Toolkit. Both methods require you to have a MAX 10 device
connected, programmed with a project, and linked to this project. However, the Launch command only
shows up if these requirements are met. You can always start the ADC Toolkit from the Tools menu, but
if the above requirements are not met, no connection will be made.

• Click Tools > ADC Toolkit
• Alternatively, click Launch from the Toolkits tab. The path for the device is displayed above the

Launch button.

Note: Only one ADC Toolkit enabled device can be connected at a time.

Upon starting the ADC Toolkit, an identifier path on the ADC Toolkit tab shows you which ADC on the
device is being used for this instance of the ADC Toolkit.

10-66 ADC Toolkit
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-4: Launching ADC Toolkit

ADC Toolkit Flow

The ADC Toolkit GUI consists of four panels: Frequency Selection, Scope, Signal Quality, and
Linearity.

1. Use the Frequency Selection panel to calculate the required sine wave frequency for proper signal
quality testing. The ADC Toolkit will give you the nearest ideal frequency based on your desired
reference signal frequency.

2. Use the Scope panel to tune your signal generator or inspect input signal characteristics.
3. Use the Signal Quality panel to test the performance of your ADC using industry standard metrics.
4. Use the Linearity panel to test the linearity performance of your ADC and display differential and

integral non-linearity results.

QPS5V3
2015.11.02 ADC Toolkit 10-67

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-5: ADC Toolkit GUI

Related Information

• Using the ADC Toolkit in MAX 10 Devices online training
• MAX 10 FPGA Device Overview
• MAX 10 FPGA Device Datasheet
• MAX 10 FPGA Design Guidelines
• MAX 10 Analog to Digital Converter User Guide
• Additional information about sampling frequency

Nyquist sampling theorem and how it relates to the nominal sampling interval required to avoid
aliasing.

ADC Toolkit Terms

Table 10-29: ADC Toolkit Terms

Term Description

SNR The ratio of the output signal voltage level to the output noise
level.

THD The ratio of the sum of powers of the harmonic frequency
components to the power of the fundamental/original
frequency component.

SFDR Characterizes the ratio between the fundamental signal and the
highest spurious in the spectrum.

10-68 ADC Toolkit Terms
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://wl.altera.com/education/training/courses/OMAXADC103
http://www.altera.com/literature/hb/max-10/m10_overview.pdf
http://www.altera.com/literature/hb/max-10/m10_datasheet.pdf
http://www.altera.com/literature/hb/max-10/m10_guidelines.pdf
http://www.altera.com/literature/hb/max-10/ug_m10_adc.pdf
http://redwood.berkeley.edu/bruno/npb261/aliasing.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Term Description

SINAD The ratio of the RMS value of the signal amplitude to the RMS
value of all other spectral components, including harmonics,
but excluding DC.

ENOB The number of bits with which the ADC behaves.
DNL The maximum and minimum difference in the step width

between actual transfer function and the perfect transfer
function

INL The maximum vertical difference between the actual and the
ideal curve. It indicates the amount of deviation of the actual
curve from the ideal transfer curve.

Setting the Frequency of the Reference Signal
You use the Frequency Selection panel to compute the required reference signal frequency to run the
ADC performance tests. The sine wave frequency is critical and affects the validity of your test results.

Figure 10-6: Frequency Selection Panel

To set the frequency of the reference signal:

1. On ADC Channel, select the ADC channel that you plan to test.
The tool populates the Sample Size and Sample Frequency fields.

2. Enter the Desired Frequency. This is your desired frequency for testing. You need to complete this
procedure to calculate the frequency that you set your signal generator to, which will differ depending
on the type of test you want to do with the ADC Toolkit.

3. Click Calculate.

QPS5V3
2015.11.02 Setting the Frequency of the Reference Signal 10-69

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The closest frequency for valid testing near your desired frequency displays under both Signal
Quality Test and Linearity Test.

• The nearest required sine wave frequencies are different for the signal quality test and linearity test.
4. Set your signal generator to the precise frequency given by the tool based on the type of test you want

to run.

Tuning the Signal Generator
You use the Scope panel to tune your signal generator in order to achieve the best possible performance
from the ADC.

Figure 10-7: Scope Mode Panel

To tune your signal generator:

1. On ADC Channel, select the ADC channel that you plan to test.
2. Enter your reference Sample Frequency (unless the tool can extract this value from your IP).
3. Enter your Ref Voltage (unless the tool can extract this value from your IP).
4. Click Run.

The tool will repeatedly capture a buffer worth of data and display the data as a waveform and display
additional information under Signal Information.

5. Tune your signal generator to use the maximum dynamic range of the ADC without clipping. Avoid
hitting 0 or 4095 because your signal will likely be clipping. Look at the displayed sine wave under

10-70 Tuning the Signal Generator
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Oscilloscope to see that the top and bottom peaks are evenly balanced to ensure you have selected the
optimum value.

• For MAX 10 devices, you want to get as close to Min Code = 0 and Max Code = 4095 without
actually hitting those values.

• The frequency should be set precisely to the value needed for testing such that coherent sampling is
observed in the test window. Before moving forward, follow the suggested value for signal quality
testing or linearity testing, which is displayed next to the actual frequency that is detected.

• From the Raw Data tab, you can export your data as a .csv file.

Related Information
Additional information about coherent sampling vs window sampling

Running a Signal Quality Test
The available performance metrics in signal quality test mode are the following: signal to noise ratio
(SNR), total harmonic distortion (THD), spurious free dynamic range (SFDR), signal to noise and
distortion ratio (SINAD), effective number of bits (ENOB), and a frequency response graph.
The frequency response graph shows the signal, noise floor, and any spurs or harmonics.

The signal quality parameters are measurements relative to the carrier signal and not the full scale of the
ADC.

Before you begin

Before running a signal quality test, ensure that you have set up the frequency of the reference signal using
Scope mode.

QPS5V3
2015.11.02 Running a Signal Quality Test 10-71

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

http://www.maximintegrated.com/en/app-notes/index.mvp/id/1040
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-8: Signal Quality Panel

To run a signal quality test:

1. On ADC Channel, select the ADC channel that you plan to test.
2. Click Run.

From the Raw Data tab, you can export your data as a .csv file.

For signal quality tests, the signal must be coherently sampled. Based on the sampling rate and number of
samples to test, specific input frequencies are required for coherent sampling.

The sample frequency for each channel is calculated based on the ADC sequencer configuration.

Related Information
Additional information about dynamic parameters such as SNR, THD, etc

Running a Linearity Test
The linearity test determines the linearity of the step sizes of each ADC code. It uses a histogram testing
method which requires sinusoidal inputs which are easier to source from signal generators and DACs
than other test methods.

When using Linearity test mode, your reference signal must meet specific requirements.

10-72 Running a Linearity Test
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://www.cse.psu.edu/~chip/course/analog/lecture/SFDR1.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The signal source covers the full code range of the ADC. Results improve if the time spent at code end
is equivalent, by tuning the reference signal in Scope mode.

• You have to make sure if using code ends that you are not clipping the signal. Look at the signal in
Scope mode to see that it does not look flat at the top or bottom. It may be desirable to back away from
code ends and test a smaller range within the desired operating range of the ADC input signal.

• Choosing a frequency that is not an integer multiple of the sample rate and buffer size helps to ensure
all code bins are filled relatively evenly to the probability density function of a sine wave. If an integer
multiple is selected, some bins may be skipped entirely while others are over populated. This makes the
tests results invalid. Use the frequency calculator feature to determine a good signal frequency near
your desired frequency.

To run a linearity test:

1. On ADC Channel, select the ADC channel that you plan to test.
2. Enter the test sample size in Burst Size. Larger samples increase the confidence in the test results.
3. Click Run.

• You can stop the test at anytime, as well as click Run again to continue adding to the aggregate
data. To start fresh, click Reset after you stop a test. Anytime you change the input signal or
channel, you should click Reset so your results are correct for a particular input.

• There are three graphical views of the data: Histogram view, DNL view, and INL view.
• From the Raw Data tab, you can export your data as a .csv file.

ADC Toolkit Data Views

Histogram View

The Histogram view shows how often each code appears. The graph updates every few seconds as it
collects data. You can use the Histogram view to quickly check if your test signal is set up appropriately.

QPS5V3
2015.11.02 ADC Toolkit Data Views 10-73

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-9: Example of Pure Sine Wave Histogram

The figure below shows the shape of a pure sine wave signal. Your reference signal should look similar.

If your reference signal is not a relatively smooth line, but has jagged edges with some bins having a value
of 0, and adjacent bins with a much higher value, then the test signal frequency is not adequate. Use Scope
mode to help choose a good frequency for linearity testing.

10-74 ADC Toolkit Data Views
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-10: Examples of (Left) Poor Frequency Choice vs (Right) Good Frequency Choice

QPS5V3
2015.11.02 ADC Toolkit Data Views 10-75

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Differential Non-linearity View

Figure 10-11: Example of Good Differential Non-linearity

The DNL view shows the currently collected data. Ideally, you want your data to look like a straight line
through the 0 on the x-axis. When there are not enough samples of data, the line appears rough. The line
improves as more data is collected and averaged.

Each point in the graph represents how many LSB values a particular code differs from the ideal step size
of 1 LSB. The Results box shows the highest positive and negative DNL values.

10-76 ADC Toolkit Data Views
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Integral Non-linearity View

Figure 10-12: Example of Good Integral Non-linearity

The INL view shows currently collected data. Ideally, with a perfect ADC and enough samples, the graph
appears as a straight line through 0 on the x-axis.

Each point in the graph represents how many LSB values a particular code differs from its expected point
in the voltage slope. The Results box shows the highest positive and negative INL values.

System Console Examples and Tutorials
Altera provides examples for performing board bring-up, creating a simple dashboard, and programming
a Nios II processor. The System_Console.zip file contains design files for the board bring-up example. The
Nios II Ethernet Standard .zip files contain the design files for the Nios II processor example.

Note: The instructions for these examples assume that you are familiar with the software, Tcl commands,
and Qsys.

Related Information
On-Chip Debugging Design Examples Website
Contains the design files for the example designs that you can download.

QPS5V3
2015.11.02 System Console Examples and Tutorials 10-77

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Board Bring-Up with System Console Tutorial
You can perform low-level hardware debugging of Qsys systems with System Console. You can debug
systems that include IP cores instantiated in your Qsys system or perform initial bring-up of your PCB.
This board bring-up tutorial uses a Nios II Embedded Evaluation Kit (NEEK) board and USB cable. If you
have a different development kit, you need to change the device and pin assignments to match your board
and then recompile the design.

1. Setting Up the Board Bring-Up Design Example on page 10-78
To load the design example into the software and program your device, follow these steps:

2. Verifying Clock and Reset Signals on page 10-79
You can use the System Explorer pane to verify clock and reset signals.

3. Verifying Memory and Other Peripheral Interfaces on page 10-79
The Avalon-MM service accesses memory-mapped slaves via a suitable Avalon-MM master, which can
be controlled by the host.

4. Qsys Modules for Board Bring-up Example on page 10-85

Related Information

• Use Cases for System Console
• Faster Board Bring-Up with System Console Demo Video

Setting Up the Board Bring-Up Design Example
To load the design example into the software and program your device, follow these steps:

1. Unzip the System_Console.zip file to your local hard drive.
2. Click File > Open Project and select Systemconsole_design_example.qpf with the software.
3. Change the device and pin assignments (LED, clock, and reset pins) in the Systemconsole_design_

example.qsf file to match your board.
4. Click Processing > Start Compilation
5. To Program your device, follow these steps:

a. Click Tools >Programmer.
b. Click Hardware Setup.
c. Click the Hardware Settings tab.
d. Under Currently selected hardware, click USB-Blaster, and click Close.

Note: If you do not see the USB-Blaster option, then your device was not detected. Verify that the
USB-Blaster driver is installed, your board is powered on, and the USB cable is intact.

This design example uses a USB-Blaster cable. If you do not have a USB-Blaster cable and you are
using a different cable type, then select your cable from the Currently selected hardware options.

e. Click Auto Detect, and then select your device.
f. Double-click your device under File.
g. Browse to your project folder and click Systemconsole_design_example.sof in the subdirectory

output_files.

10-78 Board Bring-Up with System Console Tutorial
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://www.altera.com/products/software/quartus-ii/subscription-edition/qsys/systems/qts-systems-console.html?GSA_pos=7&WT.oss_r=1&WT.oss=system%20console%20video
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

h. Turn on the Program/Configure option.
i. Click Start.
j. Close the Programmer.

6. Click Tools > System Debugging Tools > System Console.

Related Information
System_Console.zip file
Contains the design files for this tutorial.

Verifying Clock and Reset Signals
You can use the System Explorer pane to verify clock and reset signals.

Open the appropriate node and check for either a green clock icon or a red clock icon. You can use JTAG
Debug command to verify clock and reset signals.

Related Information

• System Explorer Pane on page 10-7
• JTAG Debug Commands on page 10-24

Verifying Memory and Other Peripheral Interfaces
The Avalon-MM service accesses memory-mapped slaves via a suitable Avalon-MM master, which can be
controlled by the host. You can use Tcl commands to read and write to memory with a master service.

Locating and Opening the Master Service

#Select the master service type and check for available service paths.
set service_paths [get_service_paths master]

#Set the master service path.
set master_service_path [lindex $service_paths 0]

#Open the master service.
set claim_path [claim_service master $master_service_path mylib]

Avalon-MM Slaves
The Address Map tab shows the address range for every Qsys component. The Avalon-MM master
communicates with slaves using these addresses.

The register maps for all Altera components are in their respective Data Sheets.

Figure 10-13: Address Map

Related Information
Data Sheets Website

QPS5V3
2015.11.02 Verifying Clock and Reset Signals 10-79

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

http://www.altera.com/support/examples/download/System_Console.zip
http://www.altera.com/literature/lit-ds.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Avalon-MM Commands
Using the 8, 16, or 32 versions of the master_read or master_write commands is less efficient than
using the master_write_memory or master_read_memory commands. Master commands can also be
used on slave services. If you are working on a slave service, the address field can be a register (if the slave
defines register names). (6)

Table 10-30: Avalon-MM Commands

Command Arguments Function

master_write_memory <service-path>
<address>
<list_of_byte_values>
<format>

Writes the list of byte values.
Starts at the specified base
address using the most efficient
accesses possible with the
selected master.

The <format> argument makes
this command accept data as 16
or 32-bit, instead of as bytes.

For example:

master_read_memory -
format 16 <service_
path> <addr> <count>

master_write_8 <service-path>
<address>
<list_of_byte_values>

Writes the list of byte values,
starting at the specified base
address, using 8-bit accesses.

master_write_16 <service-path>
<address>
<list_of_16_bit_words>

Writes the list of 16-bit values,
starting at the specified base
address, using 16-bit accesses.

master_write_from_file <service-path>
<file-name>
<address>

Writes the entire contents of the
file through the master, starting
at the specified address. The file
is treated as a binary file
containing a stream of bytes.

master_write_32 <service-path>
<address>
<list_of_32_bit_words>

Writes the list of 32-bit values,
starting at the specified base
address, using 32-bit accesses.

(6) Transfers performed in 16- and 32-bit sizes are packed in little-endian format.

10-80 Avalon-MM Commands
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

master_read_memory <service-path>
<address>
<size_in_bytes>
<format>

Returns a list of <size> bytes.
Read from memory starts at the
specified base address.

The <format> argument makes
this command accept data as 16
or 32-bit, instead of as bytes.

master_read_8 <service-path>
<address>
<size_in_bytes>

Returns a list of <size> bytes.
Read from memory starts at the
specified base address, using 8-
bit accesses.

master_read_16 <service-path>
<address>
<size_in_multiples_of_16_bits>

Returns a list of <size> 16-bit
values. Read from memory starts
at the specified base address,
using 16-bit accesses.

master_read_32 <service-path>
<address>
<size_in_multiples_of_32_bits>

Returns a list of <size> 32-bit
values. Read from memory starts
at the specified base address,
using 32-bit accesses.

master_read_to_file <service-path>
<file-name>
<address>
<count>

Reads the number of bytes
specified by <count> from the
memory address specified and
creates (or overwrites) a file
containing the values read. The
file is written as a binary file.

master_get_register_names <service-path> When a register map is defined,
returns a list of register names in
the slave.

Testing the PIO component
In this example design, the PIO connects to the LEDs of the board. Test if this component is operating
properly and the LEDs are connected, by driving the outputs with the Avalon-MM master.

Table 10-31: Register Map for the PIO Core

Offset Register Name R/W
Fields

(n-1) ... 2 1 0

0 data
read access R Data value currently on PIO inputs.
write access W New value to drive on PIO outputs.

1 direction R/W Individual direction control for each I/O port. A value of 0 sets the
direction to input; 1 sets the direction to output.

QPS5V3
2015.11.02 Testing the PIO component 10-81

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Offset Register Name R/W
Fields

(n-1) ... 2 1 0

2 interruptmask R/W IRQ enable/disable for each input port. Setting a bit to 1 enables
interrupts for the corresponding port.

3 edgecapture R/W Edge detection for each input port.

#Write the driver output values for the Parallel I/O component.
set offset 0x0; #Register address offset.
set value 0x7; #Only set bits 0, 1, and 2.
master_write_8 $claim_path $offset $value

#Read back the register value.
set offset 0x0
set count 0x1
master_read_8 $claim_path $offset $count

master_write_8 $claim_path 0x0 0x2; #Only set bit 1.

master_write_8 $claim_path 0x0 0xe; #Only set bits 1, 2, 3.

master_write_8 $claim_path 0x0 0x7; #Only set bits 0, 1, 2.

#Observe the LEDs turn on and off as you execute these Tcl commands.
#The LED is on if the register value is zero and off if the register value is one.
#LED 0, LED 1, and LED 2 connect to the PIO.
#LED 3 connects to the interrupt signal of the CheckSum Accelerator.

Testing On-chip Memory
Test the memory with a recursive function that writes to incrementing memory addresses.

#Load the design example utility procedures for writing to memory.
source set_memory_values.tcl

#Write to the on-chip memory.
set base_address 0x80
set write_length 0x80
set value 0x5a5a5a5a
fill_memory $claim_path $base_address $write_length $value

#Verify the memory was written correctly.
#This utility proc returns 0 if the memory range is not uniform with this value.
verify_memory $claim_path $base_address $write_length $value

#Check that the memory is re-initialized when reset.
#Trigger reset then observe verify_memory returns 0.
set jtag_debug_path [lindex [get_service_paths jtag_debug] 0]
set claim_jtag_debug_path [claim_service jtag_debug $jtag_debug_path mylib]
jtag_debug_reset_system $claim_jtag_debug_path; #Reset the connected on-chip memory
#peripheral.
close_service jtag_debug $claim_jtag_debug_path
verify_memory $claim_path $base_address $write_length $value

#The on-chip memory component was parameterized to re-initialized to 0 on reset.
#Check the actual value.
master_read_8 $claim_path 0x0 0x1

Testing the Checksum Accelerator
The Checksum Accelerator calculates the checksum of a data buffer in memory. It calculates the value for
a specified memory buffer, sets the DONE bit in the status register, and asserts the interrupt signal. You

10-82 Testing On-chip Memory
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

should only read the result from the controller when both the DONE bit and the interrupt signal are
asserted. The host should assert the interrupt enable control bit in order to check the interrupt signal.

Table 10-32: Register Map for Checksum Component

Offset
(Bytes)

Hexadecimal
value (after

adding offset)
Register Access

Bits (32 bits)

31-9 8 7-5 4 3 2 1 0

0 0x20 Status Read/
Write to
clear

BUSY DON
E

4 0x24 Address Read/
Write

Read Address

12 0x2C Length Read/
Write

Length in bytes

24 0x38 Control Read/
Write

Fixed
Read
Address
Bit

Interrup
t Enable

G
O

INV Clear

28 0x3C Result Read Checksum result (upper 16 bits are zero)

1.
#Pass the base address of the memory buffer Checksum Accelerator.
set base_address 0x20
set offset 4
set address_reg [expr {$base_address + $offset}]
set memory_address 0x80
master_write_32 $claim_path $address_reg $memory_address

#Pass the memory buffer to the Checksum Accelerator.
set length_reg [expr {$base_address + 12}]
set length 0x20
master_write_32 $claim_path $length_reg $length

#Write clear to status and control registers.
#Status register:
set status_reg $base_address
master_write_32 $claim_path $status_reg 0x0
#Control register:
set clear 0x1
set control_reg [expr {$base_address + 24}]
master_write_32 $claim_path $control_reg $clear

#Write GO to the control register.
set go 0x8
master_write_32 $claim_path $control_reg $go

#Cross check if the checksum DONE bit is set.
master_read_32 $claim_path $status_reg 0x1

#Is the DONE bit set?
#If yes, check the result and you are finished with the board bring-up design
example.

QPS5V3
2015.11.02 Testing the Checksum Accelerator 10-83

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set result_reg [expr {$base_address + 28}]
master_read_16 $claim_path $result_reg 0x1

2. If the result is zero and the JTAG chain works properly, the clock and reset signals work properly, and
the memory works properly, then the problem is the Checksum Accelerator component.

#Confirm if the DONE bit in the status register (bit 0)
#and interrupt signal are asserted.
#Status register:
master_read_32 $claim_path $status_reg 0x1
#Check DONE bit should return a one.

#Enable interrupt and go:
set interrupt_and_go 0x18
master_write_32 $claim_path $control_reg $interrupt_and_go

3. Check the control enable to see the interrupt signal. LED 3 (MSB) should be off. This indicates the
interrupt signal is asserted.

4. You have narrowed down the problem to the data path. View the RTL to check the data path.
5. Open the Checksum_transform.v file from your project folder.

• <unzip dir>/System_Console/ip/checksum_accelerator/checksum_accelerator.v
6. Notice that the data_out signal is grounded in Figure 10-14 (uncommented line 87 and comment line

88). Fix the problem.
7. Save the file and regenerate the Qsys system.
8. Re-compile the design and reprogram your device.
9. Redo the above steps, starting with Verifying Memory and Other Peripheral Interfaces on page 10-

79 or run the Tcl script included with this design example.

source set_memory_and_run_checksum.tcl

10-84 Testing the Checksum Accelerator
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-14: Checksum.v File

Qsys Modules for Board Bring-up Example

Figure 10-15: Qsys Modules for Board Bring-up Example

The Qsys design for this example includes the following modules:

• JTAG to Avalon Master Bridge—Provides System Console host access to the memory-mapped IP in
the design via the JTAG interface.

• On-chip memory—Simplest type of memory for use in an FPGA-based embedded system. The
memory is implemented on the FPGA; consequently, external connections on the circuit board are not
necessary.

• Parallel I/O (PIO) module—Provides a memory-mapped interface for sampling and driving general
I/O ports.

• Checksum Accelerator—Calculates the checksum of a data buffer in memory. The Checksum Acceler‐
ator consists of the following:

• Checksum Calculator (checksum_transform.v)
• Read Master (slave.v)
• Checksum Controller (latency_aware_read_master.v)

Checksum Accelerator Functionality
The base address of the memory buffer and data length passes to the Checksum Controller from a
memory-mapped master. The Read Master continuously reads data from memory and passes the data to
the Checksum Calculator. When the checksum calculations finish, the Checksum Calculator issues a valid
signal along with the checksum result to the Checksum Controller. The Checksum Controller sets the

QPS5V3
2015.11.02 Qsys Modules for Board Bring-up Example 10-85

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

DONE bit in the status register and also asserts the interrupt signal. You should only read the result from
the Checksum Controller when the DONE bit and interrupt signal are asserted.

Nios II Processor Example
This example programs the Nios II processor on your board to run the count binary software example
included in the Nios II installation. This is a simple program that uses an 8-bit variable to repeatedly
count from 0x00 to 0xFF. The output of this variable is displayed on the LEDs on your board. After
programming the Nios II processor, you use System Console processor commands to start and stop the
processor.

To run this example, perform the following steps:

1. Download the Nios II Ethernet Standard Design Example for your board from the Altera website.
2. Create a folder to extract the design. For this example, use C:\Count_binary.
3. Unzip the Nios II Ethernet Standard Design Example into C:\Count_binary.
4. In a Nios II command shell, change to the directory of your new project.
5. Program your board. In a Nios II command shell, type the following:

nios2-configure-sof niosii_ethernet_standard_<board_version>.sof

6. Using Nios II Software Build Tools for Eclipse, create a new Nios II Application and BSP from
Template using the Count Binary template and targeting the Nios II Ethernet Standard Design
Example.

7. To build the executable and linkable format (ELF) file (.elf) for this application, right-click the Count
Binary project and select Build Project.

8. Download the .elf file to your board by right-clicking Count Binary project and selecting Run As,
Nios II Hardware.

• The LEDs on your board provide a new light show.
9. Type the following:

system-console; #Start System Console.

#Set the processor service path to the Nios II processor.
set niosii_proc [lindex [get_service_paths processor] 0]

set claimed_proc [claim_service processor $niosii_proc mylib]; #Open the service.

processor_stop $claimed_proc; #Stop the processor.
#The LEDs on your board freeze.

processor_run $claimed_proc; #Start the processor.
#The LEDs on your board resume their previous activity.

processor_stop $claimed_proc; #Stop the processor.

close_service processor $claimed_proc; #Close the service.

• The processor_step, processor_set_register, and processor_get_register commands
provide additional control over the Nios II processor.

Related Information

• Processor Commands on page 10-87
• Nios II Ethernet Standard Design Example
• Nios II Software Build Tools User Guide

10-86 Nios II Processor Example
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://www.altera.com/support/examples/nios2/exm-net-std-de.html
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Processor Commands

Table 10-33: Processor Commands

Command (7) Arguments Function

processor_download_elf <service-path>
<elf-file-path>

Downloads the given Executable
and Linking Format File (.elf) to
memory using the master service
associated with the processor.
Sets the processor's program
counter to the .elf entry point.

processor_in_debug_mode <service-path> Returns a non-zero value if the
processor is in debug mode.

processor_reset <service-path> Resets the processor and places it
in debug mode.

processor_run <service-path> Puts the processor into run
mode.

processor_stop <service-path> Puts the processor into debug
mode.

processor_step <service-path> Executes one assembly instruc‐
tion.

processor_get_register_

names
<service-path> Returns a list with the names of

all of the processor's accessible
registers.

processor_get_register <service-path>
<register_name>

Returns the value of the specified
register.

processor_set_register <service-path>
<register_name>
<value>

Sets the value of the specified
register.

Related Information
Nios II Processor Example on page 10-86

(7) If your system includes a Nios II/f core with a data cache, it may complicate the debugging process. If you
suspect the Nios II/f core writes to memory from the data cache at nondeterministic intervals; thereby,
overwriting data written by the System Console, you can disable the cache of the Nios II/f core while
debugging.

QPS5V3
2015.11.02 Processor Commands 10-87

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

On-Board USB Blaster II Support
System Console supports an On-Board USB-BlasterTM II circuit via the USB Debug Master IP
component. This IP core supports the master service.

Not all Stratix V boards support the On-Board USB-Blaster II. For example, the transceiver signal
integrity board does not support the On-Board USB-Blaster II.

About Using MATLAB and Simulink in a System Verification Flow
System Console can be used with MATLAB and Simulink to perform system development testing. You
can use the Altera Hardware in the Loop (HIL) tools to set up a system verification flow. In this approach,
the design is deployed to hardware and runs in real time. The surrounding components in your system
are simulated in a software environment. The HIL approach allows you to use the flexibility of software
tools with the real-world accuracy and speed of hardware. You can gradually introduce more hardware
components to your system verification testbench. This gives you more control over the integration
process as you tune and validate your system. When your full system is integrated, the HIL approach
allows you to provide stimuli via software to test your system under a variety of scenarios.

Advantages of HIL Approach

• Avoid long computational delays for algorithms with high processing rates
• API helps to control, debug, visualize, and verify FPGA designs all within the MATLAB environment
• FPGA results are read back by the MATLAB software for further analysis and display

Required Tools and Components

• MATLAB software
• DSP Builder software
• software
• Altera FPGA

Note: The System Console MATLAB API is included in the DSP Builder installation bundle.

10-88 On-Board USB Blaster II Support
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10-16: Hardware in the Loop Host-Target Setup

Supported MATLAB API Commands

You can perform your work from the MATLAB environment and leverage the capability of System
Console to read and write to masters and slaves. By using the supported MATLAB API commands, you
do not have to launch the System Console software. The supported commands are the following:

• SystemConsole.refreshMasters;

• M = SystemConsole.openMaster(1);

• M.write (type, byte address, data);

• M.read (type, byte address, number of words);

• M.close

Example 10-20: MATLAB API Script Example

SystemConsole.refreshMasters; %Investigate available targets
M = SystemConsole.openMaster(1); %Creates connection with FPGA target
%%%%%%%% User Application %%%%%%%%%%%%
....
M.write('uint32',write_address,data); %Send data to FPGA target
....
data = M.read('uint32',read_address,size); %Read data from FPGA target
....
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M.close; %Terminates connection to FPGA target

QPS5V3
2015.11.02 About Using MATLAB and Simulink in a System Verification Flow 10-89

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

High-Level Flow

1. Install the DSP Builder software so you have the necessary libraries to enable this flow
2. Build your design using Simulink and the DSP Builder libraries (DSP Builder helps to convert the

Simulink design to HDL)
3. Include Avalon-MM components in your design (DSP Builder can port non-Avalon-MM

components)
4. Include Signals and Control blocks in your design
5. Use boundary blocks to separate synthesizable and non-synthesizable logic
6. Integrate your DSP system in Qsys
7. Program your Altera FPGA
8. Use the supported MATLAB API commands to interact with your Altera FPGA

Related Information

• Hardware in the Loop from the MATLAB/Simulink Environment white paper
• System in the Loop - Enabling Real-Time FPGA Verification within MATLAB website
• DSP Builder website

Deprecated Commands
The table lists commands that have been deprecated. These commands are currently supported, but are
targeted for removal from System Console.

Note: All dashboard_<name> commands are deprecated and replaced with toolkit_<name> commands
for Quartus Prime software15.1, and later.

Table 10-34: Deprecated Commands

Command Arguments Function

open_service <service_type>
<service_path>

Opens the specified service type
at the specified path.

Calls to open_service may be
replaced with calls to claim_
service providing that the
return value from claim_
service is stored and used to
access and close the service.

10-90 Deprecated Commands
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://www.altera.com/literature/wp/wp-01208-hardware-in-the-loop.pdf
http://www.altera.com/technology/dsp/system-in-the-loop/fpga-verification-matlab.html
http://www.altera.com/technology/dsp/advanced-blockset/dsp-advanced-blockset.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History
Table 10-35: Document Revision History

Date Version Changes

2015.11.02 15.1.0 • Edits to Toolkit API content and command format.
• Added Tookkit API design example.
• Added graphic to Introduction to System Console.
• Deprecated Dashboard.
• Changed instances of Quartus II to Quartus Prime.

2015.11.02 15.1.0 • Edits to Toolkit API content and command format.
• Added Tookkit API design example.
• Added graphic to Introduction to System Console.
• Deprecated Dashboard.
• Changed instances of Quartus II to Quartus Prime.

October 2015 15.1.0 • Added content for Toolkit API

• Required .toolkit and Tcl files
• Registering and launching the toolkit
• Toolkit discovery and matching toolkits to IP
• Toolkit API commands table

May 2015 15.0.0 Added information about how to download and start System Console
stand-alone.

December
2014

14.1.0 • Added overview and procedures for using ADC Toolkit on MAX 10
devices.

• Added overview for using MATLABS/Simulink Environment with
System Console for system verification.

June 2014 14.0.0 Updated design examples for the following: board bring-up, dashboard
service, Nios II processor, design service, device service, monitor service,
bytestream service, SLD service, and ISSP service.

November
2013

13.1.0 Re-organization of sections. Added high-level information with block
diagram, workflow, SLD overview, use cases, and example Tcl scripts.

June 2013 13.0.0 Updated Tcl command tables. Added board bring-up design example.
Removed SOPC Builder content.

November
2012

12.1.0 Re-organization of content.

August 2012 12.0.1 Moved Transceiver Toolkit commands to Transceiver Toolkit chapter.

June 2012 12.0.0 Maintenance release. This chapter adds new System Console features.

QPS5V3
2015.11.02 Document Revision History 10-91

Analyzing and Debugging Designs with System Console Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

November
2011

11.1.0 Maintenance release. This chapter adds new System Console features.

May 2011 11.0.0 Maintenance release. This chapter adds new System Console features.

December
2010

10.1.0 Maintenance release. This chapter adds new commands and references for
Qsys.

July 2010 10.0.0 Initial release. Previously released as the System Console User Guide,
which is being obsoleted. This new chapter adds new commands.

Related Information
Quartus Handbook Archive
For previous versions of the Handbook, refer to the Quartus Handbook Archive.

10-92 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Analyzing and Debugging Designs with System Console

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Analyzing%20and%20Debugging%20Designs%20with%20System%20Console%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Debugging Transceiver Links 11
2015.11.02

QPS5V3 Subscribe Send Feedback

The Transceiver Toolkit helps you to optimize high-speed serial links in your board design. The
Transceiver Toolkit provides real-time control, monitoring, and debugging of the transceiver links
running on your board.

Once you correctly configure a debugging system, you can control the transmitter or receiver channels to
optimize transceiver settings and hardware features. The toolkit tests bit-error rate (BER) while running
multiple links at target data rate. Run auto sweep tests to identify the best physical media attachment
(PMA) settings for each link. EyeQ graphs display the receiver horizontal and vertical eye margin during
testing. The toolkit supports testing of multiple devices across multiple boards simultaneously.

Figure 11-1: Transceiver Toolkit Channel Manager

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Debugging%20Transceiver%20Links&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Transceiver Toolkit User Interface

• System Explorer—displays design components and hardware connections.
• Channel Manager—control multiple channels simultaneously.
• Tcl Console—script control of the Transceiver Toolkit.
• Messages—displays information, warning, and error messages.

Quick Start

The Transceiver Toolkit user interface helps you to visualize and debug transceiver links in your design.
To launch the toolkit, click Tools > System Debugging Tools > Transceiver Toolkit. Alternatively, you
can run Tcl scripts from the command-line:

system-console --script=<name of script>

Get started quickly by downloading Transceiver Toolkit design examples from the On-Chip Debugging
Design Examples website. For an online demonstration of how to use the Transceiver Toolkit to run a
high-speed link test with one of the design examples, refer to the Transceiver Toolkit Online Demo on
the Altera website.

Transceiver Debugging Flow
Testing transceiver links involves configuring your system for debug, and then running various link tests.

Table 11-1: Transceiver Link Debugging Flow

Flow Description

System
Configuration
Steps

1. Use one of the following methods to define a system that includes necessary
transceiver debugging components:

• Download Transceiver Toolkit design examples from the On-Chip Debugging
Design Examples website. Modify Altera design examples to fit your design.

• Integrate debugging components into your own design. Click Tools > IP Catalog
to select IP cores and define them in the parameter editor.

2. Click Assignments > Pin Planner to assign device I/O pins to match your device and
board.

3. Click Processing > Start Compilation to compile your design.
4. Connect your target device to Altera programming hardware.
5. Click Tools > Programmer and then program the target device with the debugging

system.

11-2 Transceiver Debugging Flow
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/customertraining/webex/Transceiver_Toolkit/player.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Flow Description

Link
Debugging
Steps

1. Click File > Load Design, and select the SRAM Object File (.sof) generated for your
transceiver design. If you start the toolkit while a project is open, the project loads in
the toolkit automatically.

2. (Optional) Create additional links between transmitter and receiver channels.
3. Run any of the following tests:

• Run BER with various combinations of PMA settings.
• Run PRBS Signal eye tests.
• Run custom traffic tests.
• Run link optimization tests.
• Directly control PMA analog settings to experiment with settings while the link is

running.

Configuring Systems for Transceiver Debug
To debug transceivers, you must first configure a system that includes the appropriate Altera IP core(s)
that support each debugging operation. You can either modify an Altera design example, or configure
your own system with required debugging IP components.The debugging system configuration varies by
device family. Refer to the appropriate setup information to correctly configure or adapt a system for your
target device.

Related Information
Configuring Your Own Debugging System on page 11-6

Configuring an Altera Design Example
Altera provides design examples to help you quickly test your own design. You can experiment with
Altera design examples and modify them for your own application. Refer to the readme.txt of each design
example for more information. Download the Transceiver Toolkit design examples from the On-Chip
Debugging Design Examples page of the Altera website.

Use the design examples as a starting point to work with a particular signal integrity development board.
The design examples provide the components to quickly test the functionality of the receiver and
transmitter channels in your design. Change the transceiver settings in the design examples and observe
the effects on transceiver link performance. Isolate and verify the high-speed serial links without
debugging other logic in your design. You can modify and customize the design examples to match your
intended transceiver design.

Once you download the design examples, open the Quartus Prime and click Project > Restore Archived
Project to restore the design example project archive. If you have access to the same development board
with the same device as mentioned in the readme.txt file of the example, you can directly program the
device with the provided programming file in that example. If you want to recompile the design, you must
make your modifications to the system configuration in Qsys, regenerate in Qsys, and recompile the
design in the Quartus Prime software to generate a new programming file.

If you have the same board as mentioned in the readme.txt file, but a different device on your board, you
must choose the appropriate device and recompile the design. For example, some early development
boards are shipped with engineering sample devices.

QPS5V3
2015.11.02 Configuring Systems for Transceiver Debug 11-3

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can make changes to the design examples so that you can use a different development board or a
different device. If you have a different board, you must edit the necessary pin assignments and recompile
the design examples.

Related Information

• On-Chip Debugging Design Examples

Modifying Stratix V Design Examples
You can adapt Altera design examples to experiment with various configurations that match your own
design. For example, you can change data rate, number of lanes, PCS-PMA width, FPGA-fabric interface
width, or input reference clock frequency. To modify the design examples, modify the IP core parameters
and regenerate the system in Qsys. Next, you modify the top-level design file, and re-assign device I/O
pins as necessary.

To modify a Stratix V design example PHY block to match your design, follow these steps:

1. Determine the number of channels required by your design.
2. Open the <project name>.qpf for the design example in the Quartus Prime software.
3. Click Tools > Qsys.
4. On the System Contents tab, right-click the PHY block and click Edit. Specify options for the PHY

block to match your design requirement for number of lanes, data rate, PCS-PMA width, FPGA-fabric
interface width, and input reference clock frequency.

5. Specify a multiple of the FPGA-fabric interface data width for Avalon Data Symbol Size. The available
values are 8 or 10. Click Finish.

6. Delete any timing adapter from the design. The timing adaptors are not required.
7. From the IP Catalog, add one Data Pattern Generator and Data Pattern Checker for each transmitter

and receiver lane.
8. Right-click Data Pattern Generator and click Edit. Specify a value for ST_DATA_W that matches the

FPGA-fabric interface width.
9. Right-click Data Pattern Checker and click Edit. Specify a value for ST_DATA_W that matches the

FPGA-fabric interface width.
10.From the IP Catalog, add a Transceiver Reconfiguration Controller.
11.Right-click Transceiver Reconfiguration Controller and click Edit. Specify 2* number of lanes for the

number of reconfigurations interfaces. Click finish.
12.Create connections for the data pattern generator and data pattern checker components. Right-click

the net name in the System Contents tab and specify the following connections.

From To

Block Name Net Name Block Name Net Name

clk_100 clk data_pattern_generator csr_clk

clk_100 clk_reset data_pattern_generator csr_clk_reset

master_0 master data_pattern_generator csr_slave

xcvr_*_phy_0 tx_clk_out0 data_pattern_generator pattern_out_clk

xcvr_*_phy_0 tx_parallel_data0 data_pattern_generator pattern_out

clk_100 clk data_pattern_checker csr_clk

11-4 Modifying Stratix V Design Examples
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

From To

clk_100 clk_reset data_pattern_checker csr_clk_reset

master_0 master data_pattern_checker csr_slave

xcvr_*_phy_0 rx_clk_out0 data_pattern_checker pattern_in_clk

xcvr_*_phy_0 rx_parallel_data0 data_pattern_checker pattern_in

13.Click System > Assign Base Addresses.
14.Connect the reset port of timing adapters to clk_reset of clk_100.
15.To implement the changes to the system, click Generate > Generate HDL.
16.If you modify the number of lanes in the PHY, you must update the top-level file accordingly. The

following example shows Verilog HDL code for a two-channel design that declares input and output
ports in the top-level design. The example design includes the low latency PHY IP core. If you modify
the PHY parameters, you must modify the top-level design with the correct port names. Qsys displays
an example of the PHY, click Generate > HDL Example.

module low_latency_10g_1ch DUT (
 input wire GXB_RXL11,
 input wire GXB_RXL12,
 output wire GXB_TXL11,
 output wire GXB_TX12
);
.....

low_latency_10g_1ch DUT (

 .xcvr_low_latency_phy_0_tx_serial_data_export ({GXB_TXL11,
GXB_TXL12}),
 .xcvr_low_latency_phy_0_rx_serial_data_export ({GXB_RXL11,
GXB_TXL12}),

);

17.From the Quartus Prime software, click Assignments > Pin Planner and update pin assignments to
match your board.

18.Edit the design’s Synopsys Design Constraints (.sdc) to reflect the reference clock change. Ignore the
reset warning messages.

19.Click Start > Start Compilation to recompile the design.

Generating reconfig_clk from an Internal PLL
You can use an internal PLL to generate the reconfig_clk. You implement this by changing the Qsys
connections to delay offset cancellation until the generated clock is stable.

• If there is no free running clock within the required frequency range of the reconfiguration clock, you
can add a PLL to the top-level of the design example. The frequency range varies depending on the
device family. Refer to the device family data sheet for your device.

• When using an internal PLL, hold off offset cancellation until the generated clock is stable. You do this
by connecting the pll_locked signal of the internal PLL to the .clk_clk_in_reset_n port of the
Qsys system, instead of the system_reset signal.

• Implement the filter logic, inverter, and synchronization to the reconfig_clk outside of the Qsys
system with your own logic.

QPS5V3
2015.11.02 Generating reconfig_clk from an Internal PLL 11-5

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can find the support solution in the Altera Knowledge Base. The solution applies to only Arria V,
Cyclone V, Stratix IV GX/GT, and Stratix V devices.

Configuring Your Own Debugging System
Rather than modifying the Altera Debugging Design Examples, you can integrate debugging IP
components into your own design. Refer to the appropriate system configuration steps for your target
device.

Related Information

• Arria 10 Debug System Configuration on page 11-6
• Stratix V Debug System Configuration on page 11-12

Arria 10 Debug System Configuration
For Arria 10 designs, the Transceiver Toolkit configuration requires instantiation of the Arria 10
Transceiver Native PHY IP core, and use of the built-in Altera Debug Master Endpoint (ADME). Qsys
system generation automatically instantiates the JTAG debug link. You enable the ADME features by
enabling specific parameters in the Transceiver Native PHY IP core.

Click Tools > IP Catalog to parameterize, generate, and instantiate the following debugging components.

Table 11-2: Arria 10 / 20nm Transceiver Toolkit IP Core Configuration

Component Debugging Functions Parameterization Notes

Transceiver Native
PHY

Supports all debugging
functions

On the Dynamic Reconfiguration tab:

• Turn on Enable dynamic reconfiguration.
• Turn on Enable odi acceleration logic.
• Turn on Enable Altera Debug Master Endpoint.
• Turn on Enable capability registers.
• Turn on Enable control and status registers.
• Turn on Enable prbs soft accumulators (enables

hard PRBS Generator and Checker).

Transceiver ATX PLL Required for Arria 10 On the Dynamic Reconfiguration tab:

• Turn on Enable dynamic reconfiguration
(required for System Console read/write access).

• Turn on Enable Altera Debug Master Endpoint
(required for System Console read/write access).

Transceiver PHY
Reset Controller

N/A N/A

11-6 Configuring Your Own Debugging System
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

http://www.altera.com/support/kdb/solutions/rd12172009_309.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Component Debugging Functions Parameterization Notes

Altera Debug Master
Endpoint (ADME)

• Supports control of
PMA analog settings,
ADCE settings, DFE
settings, and EyeQ.

• discovers PHY and
use toolkit on designs
not using Qsys.

• Optionally, turn off
to save resource
count. (only an
option if you
instantiate the JTAG
to Avalon Master
Bridge. Otherwise,
Transceiver Toolkit
cannot function).

• Enabled from the Arria 10 Transceiver Native PHY
Parameter Editor, Dynamic Reconfiguration tab.

JTAG Debug Link Required for Arria 10. For Qsys projects, the JTAG Debug Link is auto-
instantiated.

Enabling Altera Master Debug Endpoint (Arria 10)

The Altera Debug Master Endpoint (ADME) connects to the host link via the system level debug fabric
for debugging Arria 10 designs. The ADME provides Avalon-MM Master capability, and is discoverable
by System Console. To enable ADME for Arria 10 designs, you must set specific parameters when
defining the Arria 10 Transceiver Native PHY and Arria 10 Transceiver ATX PLL IP cores. Click Tools >
IP Catalog to select and define the following IP core parameters. Once properly configured, project
synthesis inserts the ADME, debug fabric, and embedded logic.

QPS5V3
2015.11.02 Enabling Altera Master Debug Endpoint (Arria 10) 11-7

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-2: Altera Debug Master Endpoint Block Diagram

JTAG
Master 0 User Logic

JTAG
Master 1

PreSICE
(Nios II)

ADME

Channel
DPRIO

Hard PRBS Generator

Arria 10 Transceiver
Arria 10 Native PHY

Debug Fabric

Host Link

Altera IP User Logic

Hard PRBS Checker

Optional Soft Logic
Arbitration

User
Avalon-MM

Table 11-3: Enabling ADME IP Core Parameters for Arria 10 Designs

IP Core Parameter Setting Location

Arria 10
Transceiver
Native PHY

• Turn on Enable dynamic
reconfiguration

• Turn on Enable Altera
Debug Master Endpoint

• Turn on Enable prbs soft
accumulators

Dynamic Reconfiguration tab

Arria 10
Transceiver ATX
PLL

• Turn on Enable capability
registers

• Turn on Enable control and
status registers

Dynamic Reconfiguration tab

11-8 Enabling Altera Master Debug Endpoint (Arria 10)
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-3: Enabling ADME in A10 Transceiver Native PHY IP Core

Figure 11-4: Enabling ADME in ATX PLL IP Core

Link Testing Configuration (Arria 10)
Use the following system configuration for BER, PRBS, and link optimization testing in Arria 10 devices.
To perform BER or PRBS testing of Arria 10 designs, use the PRBS Generator and PRBS Checker
functions of the Transceiver Native PHY IP core. You enable the built-in hard PRBS Generator and
Checker by turning on Enable prbs soft accumulators when configuring the IP core. The Transceiver
Toolkit performs required read-write-modify operations on the tested channel(s).

QPS5V3
2015.11.02 Link Testing Configuration (Arria 10) 11-9

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For more information, refer to the Arria 10 Transceiver Native PHY User Guide, Enabling the PRBS
and Square Wave Data Generator and Enabling the PRBS Data Checker sections in the Reconfigura‐
tion Interface and Dynamic Configuration chapter.

The built-in hard PRBS Data Pattern Generator and Checker requires no separate IP instantiation. The
hard PRBS Data Pattern Generator and Checker does not support error injection. To use error injection
for Arria 10 designs, use the Data Pattern Generator and Checker IP cores in your Arria 10 system design
configuration.

Figure 11-5: BER, PRBS, and Link Optimization Test Configuration (Arria 10)

Your Design
Logic

Hard PRBS Generator

Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

Table 11-4: System Connections: BER and PRBS Testing (Arria 10)

From To

Your design logic • Transceiver Native PHY Hard PRBS Generator
• Transceiver Native PHY Hard PRBS Checker

11-10 Link Testing Configuration (Arria 10)
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Custom Traffic Signal Eye Test Configuration (Arria 10)
Use the following configuration for custom traffic signal eye tests in Arria 10 devices.

Figure 11-6: Custom Traffic Signal Eye Test Configuration for Arria 10 / Generation 10 / 20nm

Your Design Logic
(Custom Traffic)

Hard PRBS Generator

Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

Table 11-5: System Connections: Custom Traffic Signal Eye Test (Arria 10)

From To

Your design logic custom
traffic

• Transceiver Native PHY

PMA Analog Setting Control Configuration (Arria 10)
Use the following configuration to control PMA analog settings in Arria 10 devices.

Figure 11-7: System Configuration: PMA Analog Setting Control (Arria 10)

Hard PRBS Generator

Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

QPS5V3
2015.11.02 Custom Traffic Signal Eye Test Configuration (Arria 10) 11-11

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Stratix V Debug System Configuration
For Stratix V designs, the Transceiver Toolkit configuration requires instantiation of the JTAG to Avalon
Bridge and Reconfiguration Controller IP cores. Click Tools > IP Catalog to parameterize, generate, and
instantiate the following debugging components for Stratix V designs.

Table 11-6: Stratix V / 28nm Transceiver Toolkit IP Core Configuration

Component Debugging
Functions

Parameterization Notes Connect To

Transceiver
Native PHY

Supports all
debugging
functions

• If Enable 10G PCS is enabled, 10G
PCS protocol mode must be set to
basic on the 10G PCS tab.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

Custom PHY Test all possible
transceiver
parallel data
widths

• Set lanes, group size, serialization
factor, data rate, and input clock
frequency to match your application.

• Turn on Avalon data interfaces.
• Disable 8B/10B.
• Set Word alignment mode to manual.
• Disable rate match FIFO.
• Disable byte ordering block.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

Low Latency
PHY

Test at more than
8.5 Gbps in GT
devices or use of
PMA direct mode
(such as when
using six channels
in one quad)

• Set Phase compensation FIFO mode
to EMBEDDED above certain data
rates and set to NONE for PMA direct
mode (Stratix IV designs only).

• Turn on Avalon data interfaces.
• Set serial loopback mode to enable

serial loopback controls in the toolkit.

• Avalon-ST Data
Pattern Checker

• Avalon-ST Data
Pattern Generator

• JTAG to Avalon
Master Bridge

• Reconfiguration
controller

Altera-Avalon
Data Pattern
Generator

Generates
standard data test
patterns at
Avalon-ST source
ports

• Select PRBS7, PRBS15, PRBS23,
PRBS31, high frequency, or low
frequency patterns.

• Turn on Enable Bypass interface for
connection to design logic.

• PHY input port
• JTAG to Avalon

Master Bridge
• Your design logic

11-12 Stratix V Debug System Configuration
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Component Debugging
Functions

Parameterization Notes Connect To

Altera-Avalon
Data Pattern
Checker

Validates
incoming data
stream against
test patterns
accepted on
Avalon streaming
sink ports

• Specify a value for ST_DATA_W that
matches the FPGA-fabric interface
width.

• PHY output port
• JTAG to Avalon

Master Bridge

Reconfigura‐
tion Controller

Supports PMA
control and other
transceiver
settings

• Connect the reconfiguration controller
to

• Connect reconfig_from_xcvr to
reconfig_to_xcvr.

• Enable Analog controls.
• Turn on Enable EyeQ block to enable

signal eye analysis
• Turn on Enable Bit Error Rate Block

for BER testing
• Turn on Enable decision feedback

equalizer (DFE) block for link
optimization

• Enable DFE block

• PHY input port
• JTAG to Avalon

Master Bridge

JTAG to
Avalon Master
Bridge

Accepts encoded
streams of bytes
with transaction
data and initiates
Avalon-MM
transactions

N/A • PHY input port
• Avalon-ST Data

Pattern Checker
• Avalon-ST Data

Pattern Generator
• Reconfiguration

Controller

QPS5V3
2015.11.02 Stratix V Debug System Configuration 11-13

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Error Rate Test Configuration (Stratix V)
Use the following configuration to perform bit rate error testing in Stratix V designs.

Figure 11-8: Bit Error Rate Test Configuration (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR Reconfig
Controller

Table 11-7: System Connections: Bit Error Rate Tests

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Checker

JTAG to Avalon Master Bridge PHY input port

Data Pattern Checker PHY output port

Transceiver Reconfiguration Controller PHY input port

Related Information
Running BER Tests on page 11-27

11-14 Bit Error Rate Test Configuration (Stratix V)
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PRBS Signal Eye Test Configuration (Stratix V)
Use the following configuration to perform PRBS signal eye testing in Stratix V designs.

Figure 11-9: PRBS Signal Eye Test Configuration (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR
 Reconfiguration

 Controller

Table 11-8: System Connections: PRBS Signal Eye Tests (Stratix V)

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Checker

Data Pattern Checker PHY output port

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information
Running PRBS Signal Eye Tests on page 11-28

QPS5V3
2015.11.02 PRBS Signal Eye Test Configuration (Stratix V) 11-15

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Enabling Serial Bit Comparator Mode (Stratix V)
Serial bit comparator mode allows you to run EyeQ diagnostic features with any PRBS patterns or user-
design data, without disrupting the data path. For Stratix V devices, you must enable Serial bit
comparator mode. For Arria 10 design, Serial bit comparator automatically enables through the
standard Arria 10 system configuration.

To enable this mode for Stratix V devices, you must enable the following debugging component options
when configuring the debugging system:

Table 11-9: Component Settings for Serial Bit Comparator Mode

Debugging Component Setting for Serial Bit Mode(8)

Transceiver Reconfiguration
Controller

Turn on Enable EyeQ block and Enable Bit Error Rate Block

Data Pattern Generator(9) Turn on Enable Bypass interface

Serial bit comparator mode is less accurate than Data pattern checker mode for single bit error
checking. Do not use Serial bit comparator mode if you require an exact error rate. Use the Serial bit
comparator mode for checking a large window of error. The toolkit does not read the bit error counter in
real-time because it reads through the memory-mapped interface. Serial bit comparator mode has the
following hardware limitations for Stratix V devices:

• Toolkit uses serial bit checker only on a single channel per reconfiguration controller at a time.
• When the serial bit checker is running on channel n, you can change only the VOD, pre-emphasis, DC

gain, and EyeQ settings on that channel. Changing or enabling DFE or CTLE can cause corruption of
the serial bit checker results.

• When the serial bit checker is running on a channel, you cannot change settings on any other channel
on the same reconfiguration controller.

• When the serial bit checker is running on a channel, you cannot open any other channel in the
Transceiver Toolkit.

• When the serial bit checker is running on a channel, you cannot copy PMA settings from any channel
on the same reconfiguration controller.

(8) Settings in Table 11-9 are supported in Stratix V devices only.
(9) Limited support for Data Pattern Generator or data pattern in Serial Bit Mode.

11-16 Enabling Serial Bit Comparator Mode (Stratix V)
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Custom Traffic Signal Eye Test Configuration (Stratix V)
Use the following configuration to perform custom traffic signal eye testing in Stratix V designs.

Figure 11-10: System Configuration: Custom Traffic Signal Eye Tests (Stratix V)

JTAG-to-Avalon
Master Bridge Custom PHY

IP Core
or

Low-Latency
PHY IP Core

Your Design Logic
(Custom Traffic)

XCVR
 Reconfiguration

 Controller

Table 11-10: System Connections: Custom Traffic Signal Eye Tests (Stratix V)

From To

Your design logic with custom traffic PHY input port

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information
Running Custom Traffic Tests on page 11-29

QPS5V3
2015.11.02 Custom Traffic Signal Eye Test Configuration (Stratix V) 11-17

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Link Optimization Test Configuration (Stratix V)
Use the following configuration for link optimization tests in Stratix V devices.

Figure 11-11: System Configuration: Link Optimization Tests (Stratix V)

JTAG-to-Avalon
Master Bridge

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Your Design Logic

XCVR
 Reconfiguration

 Controller

From To

Your Design Logic Data Pattern Generator bypass port

Data Pattern Generator PHY input port

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Generator

JTAG to Avalon Master Bridge Altera Avalon Data Pattern Checker

Data Pattern Checker PHY output port

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information
Running Link Optimization Tests on page 11-30

11-18 Link Optimization Test Configuration (Stratix V)
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PMA Analog Setting Control Configuration (Stratix V)
Use the following configuration to control PMA Analog settings in Stratix V designs.

Figure 11-12: System Configuration: PMA Analog Setting Control (Stratix V)

JTAG-to-Avalon
Master Bridge Custom PHY

IP Core
or

Low-Latency
PHY IP Core

XCVR
 Reconfiguration

 Controller

Table 11-11: System Connections: PMA Analog Setting Control (Stratix V)

From To

JTAG to Avalon Master Bridge Transceiver Reconfiguration Controller

JTAG to Avalon Master Bridge PHY input port

Transceiver Reconfiguration Controller PHY input port

Related Information
Controlling PMA Analog Settings on page 11-30

Managing Transceiver Channels
The Channel Manager allows you to configure and control large numbers of channels in a spreadsheet
view. You can view all the PMA and sweep settings for all channels. You can copy, paste, import, and
export settings to and from channels. You can also start and stop sweeps for any or all channels. Right-
click in the Channel Manager to view additional channel commands. The columns in the Channel
Manager are movable, resizable, and sortable.

QPS5V3
2015.11.02 PMA Analog Setting Control Configuration (Stratix V) 11-19

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-13: Channel Manager GUI

Copying and Pasting Settings

You can copy PMA and/or sweep settings from a selected row. You can paste PMA and/or sweep settings
to one or more rows.

Importing and Exporting Settings

You can select a row in the Channel Manager to export your PMA settings to a text file. You can then
select one or more rows in the Channel Manager to apply the PMA settings from a text file. The PMA
settings in the text file apply to a single channel. When you import the PMA settings from a text file, you
are duplicating one set of PMA settings for all selected channels.

Starting and Stopping Tests

The Channel Manager allows you to start and stop tests by right-clicking the channels. You can select
several rows in the Channel Manager to start or stop test for multiple channels.

Channel Display Modes
The three display modes are Current, Min/Max, and Best. The default display mode is Current.

• Current—shows the current values from the device. The blue color text indicates that the settings are
live.

• Min/Max—shows the minimum and maximum values to be used in the auto sweep.
• Best—shows the best tested values from the last completed auto sweep run.

11-20 Channel Display Modes
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Transmitter Channels tab only shows the Current display mode. Auto sweep cannot be
performed on only a transmitter channel; a receiver channel is required to perform an auto sweep
test.

Creating Links
The toolkit automatically creates links when a receiver and transmitter share a transceiver channel. You
can also manually create and delete links between transmitter and receiver channels. You create links in
the Setup dialog.

Setup Dialog

Click Setup from the Channel Manager to open the Setup dialog box.

Table 11-12: Setup Dialog Popup Menu

Command Name Action When Clicked Enabled If

Edit Transmitter Alias Starts the inline edit of the alias of the selected
row.

Only enabled if one row is
selected.

Edit Receiver Alias Starts the inline edit of the alias of the selected
row.

Only enabled if one row is
selected.

Edit Transceiver Link
Alias

Starts the inline edit of the alias of the selected
row.

Only enabled if one row is
selected.

Copy Copies the text of the selected row(s) to the
clipboard. The text copied depends on the
column clicked on. The text copied to the
clipboard is newline delimited.

Enabled if one or more rows
are selected.

Controlling Transceiver Channels
You can directly control and monitor transmitters, receivers, and links running on the board in real time.
You can transmit a data pattern across the transceiver link, and then report the signal quality of the
received data in terms of bit error rate or eye margin with EyeQ.

Click Control Transmitter Channel (Transmitter Channels tab), Control Receiver Channel (Receiver
Channels tab), or Control Transceiver Link (Transceiver Links tab) to adjust transmitter or receiver
settings while the channels are running.

Debugging Transceiver Links
The Transceiver Toolkit allows you to control and monitor the performance of high-speed serial links
running on your board in real-time. You can identify the transceiver links in your design, transmit a data
pattern across the transceiver link, and report the signal quality of the received data in terms of bit error
rate, bathtub curve, heat map, or EyeQ graph (for supported families).

The toolkit automatically identifies the transceiver links in your design, or you can manually create
transceiver links. You can then run auto sweep to help you quickly identify the best PMA settings for each
link. You can directly control the transmitter/receiver channels to experiment with various settings
suggested by auto sweep. The EyeQ graph allows you to visualize the estimated horizontal and vertical eye
opening at the receiver.

QPS5V3
2015.11.02 Creating Links 11-21

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Transceiver Toolkit supports various transceiver link testing configurations. You can identify and test
the transceiver link between two Altera devices, or you can transmit a test pattern with a third-party
device and monitor the data on an Altera device receiver channel. If a third-party chip includes self-test
capability, then you can send the test pattern from the Altera device and monitor the signal integrity at the
third-party device receiver channel. If the third-party device supports reverse serial loopback, you can run
the test entirely within the Transceiver Toolkit.

Before you can monitor transceiver channels, you must configure a system with debugging components,
and program the design into an FPGA. Once those steps are complete, use the following flow to test the
channels:

1. Load the design in Transceiver Toolkit
2. Link hardware resources
3. Verify hardware connections
4. Identify transceiver channels
5. Run link tests or control PMA analog settings
6. View results

Step 1: Load Your Design
The Transceiver Toolkit automatically loads the last compiled design upon opening. To load any design
into the toolkit, click File > Load Design and select the .sof programming file generated for your
transceiver design. Loading the .sof automatically links the design to the target hardware in the toolkit.
The toolkit automatically discovers links between transmitter and receiver of the same channel. The
System Explorer displays information about the loaded design.

Step 2: Link Hardware Resources
The toolkit automatically discovers connected hardware and designs. You can also manually link a design
to connected hardware resources in the System Explorer.

If you are using more than one Altera board, you can set up a test with multiple devices linked to the same
design. This setup is useful when you want to perform a link test between a transmitter and receiver on
two separate devices. You can also load multiple Quartus Prime projects and make links between different
systems. You can perform tests on completely separate and unrelated systems in a single tool instance.

Note: Prior to the Transceiver Toolkit version 11.1, you must manually load and link your design to
hardware. In version 11.1 and later, the Transceiver Toolkit automatically links any device
programmed with a project.

11-22 Step 1: Load Your Design
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-14: One Channel Loopback Mode for Stratix V / 28nm

JTAG-to-Avalon
Master Bridge

Loopback
on board

Top-Level Design (FPGA)

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Transceiver Toolkit
host computer

XCVR
Reconfiguration

Controller

Figure 11-15: One Channel Loopback Mode for Arria 10 / 20nm

Transceiver Toolkit
Host Computer

Top-Level Design (FPGA)

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

QPS5V3
2015.11.02 Step 2: Link Hardware Resources 11-23

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-16: Four Channel Loopback Mode for Stratix V / 28nm

JTAG-to-Avalon
Master Bridge

Top-Level Design (FPGA)

Custom PHY
IP Core

or
Low-Latency
PHY IP Core

Transceiver Toolkit
host computer

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Avalon-ST Data
Pattern Generator

Avalon-ST Data
Pattern Checker

Loopback
on board

Loopback
on board

Loopback
on board

Loopback
on board

XCVR
Reconfiguration

Controller

11-24 Step 2: Link Hardware Resources
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-17: Four Channel Loopback Mode for Arria 10 / Generation 10 / 20nm

Transceiver Toolkit
Host Computer

Top-Level Design (FPGA)

Loopback
On Board

Hard PRBS Generator

Hard PRBS Checker

Altera Debug Master
Endpoint (ADME)

Transceiver Native PHY IP

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker Loopback

On BoardHard PRBS Generator
Hard PRBS Checker

Loopback
On Board

Hard PRBS Generator
Hard PRBS Checker

Linking One Design to One Device
To link one design to one device by one USB-Blaster download cable, follow these steps:

1. Load the design for your Quartus Prime project.
2. Link each device to an appropriate design if the design has not auto-linked.
3. Create the link between channels on the device to test.

Linking Two Designs to Two Devices
To link two designs to two separate devices on the same board, connected by one USB-Blaster download
cable, follow these steps:

1. Load the design for all the Quartus Prime project files you might need.
2. Link each device to an appropriate design if the design has not auto-linked.
3. Open the project for the second device.
4. Link the second device on the JTAG chain to the second design (unless the design auto-links).
5. Create a link between the channels on the devices you want to test.

Linking Designs and Devices on Separate Boards
To link two designs to two separate devices on separate boards, connected to separate USB-Blaster
download cables, follow these steps:

QPS5V3
2015.11.02 Linking One Design to One Device 11-25

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Load the design for all the Quartus Prime project files you might need.
2. Link each device to an appropriate design if the design has not auto-linked.
3. Create the link between channels on the device to test.
4. Link the device you connected to the second USB-Blaster download cable to the second design.
5. Create a link between the channels on the devices you want to test.

Linking One Design on Two Devices
To link the same design on two separate devices, follow these steps:

1. In the Transceiver Toolkit, open the .sof you are using on both devices.
2. Link the first device to this design instance.
3. Link the second device to the design.
4. Create a link between the channels on the devices you want to test.

Step 3: Verify Hardware Connections
After you load your design and link your hardware, verify that the channels are connected correctly and
looped back properly on the hardware. Use the toolkit to send data patterns and receive them correctly.
Verifying your link and correct channel before you perform Auto Sweep or EyeQ tests can save time in
the work flow.

After you have verified that the transmitter and receiver are communicating with each other, you can
create a link between the two transceivers so that you can perform Auto Sweep and EyeQ tests with this
pair.

Step 4: Identify Transceiver Channels
The Transceiver Toolkit automatically displays recognized transmitter and receiver channels. The toolkit
identifies a channel automatically whenever a receiver and transmitter share a transceiver channel. You
can also manually identify the transmitter and receiver in a transceiver channel and create a link between
the two for testing.

When you run link tests, channel color highlights indicate the test status:

Table 11-13: Channel Color Highlights

Color Transmitter Channel Receiver Channel

Red Channel is closed or generator clock is not
running

Channel is closed or checker clock is not
running

Green Generator is sending a pattern Checker is checking and data pattern is
locked

Neutral Channel is open, generator clock is
running, and generator is not sending a
pattern

Channel is open, checker clock is running,
and checker is not checking

Yellow N/A Checker is checking and data pattern is
not locked

11-26 Linking One Design on Two Devices
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Step 5: Run Link Tests
Once you identify the transceiver channels for debugging, you can run various link tests in the toolkit.

Use the Transceiver Links tab to control link tests. For example, use the Auto Sweep feature to sweep
transceiver settings to determine the parameters that support the best BER value. Click Link Auto Sweep,
Link EyeQ or Link Auto Sweep & EyeQ to adjust the PMA settings and run tests.

Running BER Tests
You can run BER tests across your transceiver link. After programming the FPGA with your debugging
design, loading the design in the toolkit, and linking hardware, follow these steps to run BER tests:

1. Click Setup.
a. Select the generator and checker you want to control.
b. Select the transmitter and receiver pair you want to control.
c. Click Create Transceiver Link and click Close

2. Click Control Transceiver Link, and specify a PRBS Test pattern and Data pattern checker for
Checker mode. The checker mode option is only available after you turn on Enable EyeQ block and
Enable Bit Error Rate Block in the Reconfiguration Controller component.
If you select Bypass for the Test pattern, the toolkit bypasses the PRBS generator and runs your design
through the link. The bypass option is only available after you turn on Enable Bypass interface in the
Reconfiguration Controller component.

3. Experiment with Reconfiguration, Generator, or Checker settings.
4. Click Start to run the pattern with your settings. You can then click Inject Error to inject error bits,

Reset the counter, or Stop the test.

Note: Arria 10 devices do not support Inject Error if you use the hard PRBS Pattern Generator and
Checker in the system configuration.

Related Information

• Bit Error Rate Test Configuration (Stratix V) on page 11-14
• Link Testing Configuration (Arria 10) on page 11-9

Signal Eye Margin Testing
Some Altera devices include EyeQ circuitry that allows visualization of the horizontal and vertical eye
margin at the receiver. For supported devices, use signal eye tests to tune the PMA settings of your
transceiver. This results in the best eye margin and BER at high data rates. The toolkit disables signal eye
testing for unsupported devices.

The EyeQ graph can display a bathtub curve, eye diagram representing eye margin, or heat map display.
The run list displays the statistics of each EyeQ test. When PMA settings are suitable, the bathtub curve is
wide, with sharp slopes near the edges. The curve is up to 30 units wide. If the bathtub is narrow, then the
signal quality is poor. The wider the bathtub curve, the wider the eye. The smaller the bathtub curve, the
smaller the eye. The eye contour shows the estimated horizontal and vertical eye opening at the receiver.

You can right-click any of the test runs in the list, and then click Apply Settings to Device to quickly
apply those PMA setting to your device. You can also click Export, Import, or Create Report.

QPS5V3
2015.11.02 Step 5: Run Link Tests 11-27

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-18: EyeQ Settings and Status Showing Results of Two Test Runs

Figure 11-19: Heat Map Display and Bathtub Curve Through Eye

Running PRBS Signal Eye Tests
You can run PRBS signal eye tests to visualize the estimated horizontal and vertical eye opening at the
receiver.After programming the FPGA with your debugging design, loading the design in the toolkit, and
linking hardware, follow these steps to run PRBS signal eye tests:

1. Click Setup.

11-28 Running PRBS Signal Eye Tests
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Select the generator and checker you want to control.
b. Select the transmitter and receiver pair you want to control.
c. Click Create Transceiver Link and click Close.

2. Click Link EyeQ, and select EyeQ as the Test mode. The EyeQ mode displays test results as a bathtub
curve, heat map, or eye contour representing bit error and phase offset data.

3. Specify the PRBS Test pattern and the Checker mode. Use Serial bit comparator checker mode only
for checking a large window of error with custom traffic.
The checker mode option is only available after you turn on Enable EyeQ block and Enable Bit Error
Rate Block in the Reconfiguration Controller component. (Stratix V designs only)

4. Specify Run length and EyeQ settings to control the test coverage and type of EyeQ results displayed,
respectively.

5. Click Start to run the pattern with your settings. EyeQ uses the current channel settings to start a
phase sweep of the channel. The phase sweep runs 32 iterations. As the run progresses, view the status
under EyeQ status. Use this diagram to compare PMA settings for the same channel and to choose the
best combination of PMA settings for a particular channel.

6. When the run completes, the chart displays the characteristics of each run. Click Stop to halt the test,
change the PMA settings, and re-start the test. Click Create Report to export data to a table format for
further viewing.

Related Information

• PRBS Signal Eye Test Configuration (Stratix V) on page 11-15
• Link Testing Configuration (Arria 10) on page 11-9

Running Custom Traffic Tests
After programming the FPGA with your debugging design, loading the design in the toolkit, and linking
hardware, follow these steps to run custom traffic tests:

1. Click Setup and specify the following:
a. Select the associated reconfiguration controller.
b. Click Create Transceiver Link and click Close.

2. Click the Receiver EyeQ, and select EyeQ as the Test mode. The EyeQ mode displays test results as a
bathtub curve, heat map, or eye contour representing bit error and phase offset data.

3. Specify the PRBS Test pattern.
4. For Checker mode, select Serial bit comparator.

The checker mode option is only available after you turn on Enable EyeQ block and Enable Bit Error
Rate Block for the Reconfiguration Controller component.

5. Specify Run length and EyeQ settings to control the test coverage and type of EyeQ results displayed,
respectively.

6. Click Start to run the pattern with your settings. EyeQ uses the current channel settings to start a
phase sweep of the channel. The phase sweep runs 32 iterations. As the run progresses, view the status
under EyeQ status.

7. When the run completes, the chart displays the characteristics of each run. Click Stop to halt the test,
change the PMA settings, and re-start the test. Click Create Report to export data to a table format for
further viewing.

QPS5V3
2015.11.02 Running Custom Traffic Tests 11-29

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Custom Traffic Signal Eye Test Configuration (Stratix V) on page 11-17
• Custom Traffic Signal Eye Test Configuration (Arria 10) on page 11-11

Auto Sweep Testing
Use the auto sweep feature to automatically sweep ranges for the best transceiver PMA settings. Store a
history of the test runs and keep a record of the best PMA settings. Use the best settings the toolkit
determines in your final design for improved signal integrity.

Running Link Optimization Tests
After programming the FPGA with your debugging design, loading the design in the toolkit, and linking
hardware, follow these steps to run link optimization tests:

1. Click the Transceiver Links tab, and select the channel you want to control.
2. Click Link Auto Sweep. The Advanced tab appears with Auto sweep as Test mode.
3. Specify the PRBS Test pattern.
4. Specify Run length, experiment with the Transmitter settings, and Receiver settings to control the

test coverage and PMA settings, respectively.
5. Click Start to run all combinations of tests meeting the PMA parameter limits.
6. When the run completes the chart is displayed and the characteristics of each run are listed in the run

list. You can click Stop to halt the test, change the PMA settings, and re-start the test. Click Create
Report to export data to a table format for further viewing.

7. To use decision feedback equalization (DFE) to determine the best tap settings, follow these steps:
a. Use Auto Sweep to find optimal PMA settings while leaving the DFE mode set to Off.
b. If BER = 0, use the best PMA settings achieved.
c. If BER > 0, use this PMA setting, and set the minimum and maximum values obtained from Auto

Sweep to match this setting. Set the maximum DFE range to limits for each of the three DFE
settings.

d. Run Create Report to view the results and determine which DFE setting has the best BER. Use
these settings in conjunction with the PMA settings for the best results.

Related Information

• Link Optimization Test Configuration (Stratix V) on page 11-18
• Link Testing Configuration (Arria 10) on page 11-9

Controlling PMA Analog Settings
You can directly control PMA analog settings to experiment with settings while the link is running. To
control PMA analog settings, follow these steps:

1. Click Setup.

11-30 Auto Sweep Testing
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Click the Transmitter Channels tab, define a transmitter without a generator, and click Create
Transmitter Channel.

b. Click the Receiver Channels tab, define a receiver without a generator, and click Create Receiver
Channel.

c. Click the Transceiver Links tab, select the transmitter and receivers you want to control, and click
Create Transceiver Link.

d. Click Close.
2. Click Control Receiver Channel, Control Transmitter Channel, or Control Transceiver Link to

directly control the PMA settings while running.
Figure 11-20: Controlling Transmitter Channel

QPS5V3
2015.11.02 Controlling PMA Analog Settings 11-31

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-21: Controlling Receiver Channel

11-32 Controlling PMA Analog Settings
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11-22: Controlling Transceiver Link

Related Information

• PMA Analog Setting Control Configuration (Stratix V) on page 11-19
• PMA Analog Setting Control Configuration (Arria 10) on page 11-11

QPS5V3
2015.11.02 Controlling PMA Analog Settings 11-33

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Troubleshooting Common Errors
• Missing high-speed link pin connections

The pin connections to identify high-speed links (tx_p/n and rx_p/n) could be missing. When porting
an older design to the latest version of the Quartus Prime software, please make sure your connections
were preserved.

• Reset Issues

Ensure that the reset input to the Transceiver Native PHY, Transceiver Reset Controller, and ATX PLL
IP cores is not held active (1'b1). The Transceiver Toolkit highlights in red, all the Transceiver Native
PHY channels which you are trying to set up.

• Unconnected reconfig_clk

The reconfig_clk input to the Transceiver Native PHY and ATX PLL IP cores need to be connected
and driven. Otherwise, the transceiver link channel will not be displayed.

User Interface Settings Reference
The following settings are available for interaction with the transmitter channels or receiver channels or
transceiver links in the Transceiver Toolkit user interface.

Table 11-14: Transceiver Toolkit Control Panel Settings

Setting Description Control Panel

1-D EyeQ mode Use when DFE is on and the EyeQ mode is set to
Bathtub curve. Ignores the vertical step settings for
EyeQ (Stratix V only).

Receiver

Transceiver Link

Alias Name you choose for the channel. Transmitter

Receiver

Transceiver Link

Auto sweep status Reports the current and best tested bits, errors, bit
error rate, and case count for the current auto sweep
test.

Receiver

Transceiver Link

Bit error rate (BER) Specifies errors divided by bits tested since the last
reset of the checker.

Receiver

Transceiver Link

Channel address Logical address number of the transceiver channel. Transmitter

Receiver

Transceiver Link

11-34 Troubleshooting Common Errors
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Control Panel

Checker mode Specify Data pattern checker or Serial bit
comparator for BER tests.

If you enable Serial bit comparator the Data Pattern
Generator sends the PRBS pattern, but the pattern is
checked by the serial bit comparator.

In Bypass mode, clicking Start begins counting on the
Serial bit comparator.

For BER testing:

• Arria 10 devices supports the Data Pattern Checker
and the Hard PRBS.

• Stratix V supports the Data Pattern Checker and
the Serial Bit Checker.

For EyeQ testing:

• Arria 10 devices Arria 10 support the Serial Bit
Checker.

• Stratix V devices support the Data Pattern Checker
and the Serial Bit Checker.

Receiver

Transceiver Link

Data rate Data rate of the channel as read from the project file
or data rate as measured by the frequency detector.

To use the frequency detector, turn on Enable
Frequency Counter in the Data Pattern Checker IP
core and/or Data Pattern Generator IP core,
regenerate the IP cores, and recompile the design.

The measured data rate depends on the Avalon
management clock frequency as read from the project
file.

Click the refresh button next to the measured Data
rate if you make changes to your settings and want to
sample the data rate again.

Transmitter

Receiver

Transceiver Link

DC gain Circuitry that provides an equal boost to the incoming
signal across the frequency spectrum.

Receiver

Transceiver Link

QPS5V3
2015.11.02 User Interface Settings Reference 11-35

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Control Panel

DFE mode

• Values 1-5
(Stratix V
devices)

• Values 1-11
(Arria 10
devices)

Decision feedback equalization (DFE) for improving
signal quality. DFE modes are Off, Manual and
Continuous Adaptation in Arria 10 devices.
Continuous mode DFE automatically tries to find the
best tap values.

Stratix V devices also support One-time adaptive
mode DFE.

Receiver

Transceiver Link

Enable word
aligner

Forces the transceiver channel to align to the word
you specify (Stratix V only feature).

Receiver

Transceiver Link

Equalization
control

Boosts the high-frequency gain of the incoming
signal, thereby compensating for the low-pass filter
effects of the physical medium. When used with DFE,
use DFE in Manual or Continuous mode.

In Stratix V devices, AEQ one-time adaptation is
supported in Auto Sweep.

Receiver

Transceiver Link

Equalization mode You can set Equalization Mode to Manual or
Triggered for Arria 10 devices.

In Stratix V devices, Adaptive equalization (AEQ)
automatically evaluates and selects the best combina‐
tion of equalizer settings. When turned on, it
automatically turns off Equalization Control. The
one-time selection determines the best setting and
stops searching. You can use AEQ for multiple,
independently controlled receiver channels.

Receiver

Transceiver Link

Error rate limit Turns on or off error rate limits. Start checking after
waits until the set number of bits are satisfied until it
starts looking at the bit error rate (BER) for the next
two checks.

Bit error rate achieves below sets upper bit error rate
limits. If the error rate is better than the set error rate,
the test ends.

Bit error rate exceeds Sets lower bit error rate limits.
If the error rate is worse than the set error rate, the
test ends.

Receiver

Transceiver Link

EyeQ mode Allows you to specify Eye contour or Bathtub curve as
the type of EyeQ graph generated by the test.

Transmitter

Receiver

Transceiver Link

11-36 User Interface Settings Reference
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Control Panel

EyeQ phase step Sets the phase step for sampling the data from an
offset of the CDR (clock data recovery) data path; set
to Off to use the regular clock data recovery (CDR)
data path.

Receiver

Transceiver Link

EyeQ status Displays a graphical representation of signal integrity
as an eye contour, bathtub curve plot, or heat map.

Transmitter

Receiver

Transceiver Link

EyeQ vertical step Sets the voltage threshold of the sampler to report the
height of the eye. Negative numbers are allowed for
vertical steps to capture asymmetric eye.

Receiver

Transceiver Link

Horizontal phase
step interval

Specify the number of horizontal steps to increment
when performing a sweep. Increasing the value
increases the speed of the test but at a lower
resolution. This option only applies to eye contour.

Transmitter

Receiver

Transceiver Link

Increase test range Right-click in the Advanced panel to use the span
capabilities of Auto Sweep to automatically increase
the span of tests by one unit down for the minimum
and one unit up for the maximum, for the selected set
of controls. You can span either PMA Analog controls
(non-DFE controls), or the DFE controls. You can
quickly set up a test to check if any PMA setting
combinations near your current best could yield better
results.

Receiver

Transceiver Link

Inject Error Flips one bit to the output of the data pattern
generator to introduce an artificial error (Stratix V
only feature).

Transmitter

Transceiver Link

Maximum tested
bits

Sets the maximum number of tested bits for each test
iteration.

Receiver

Transceiver Link

Number of bits
tested

Specifies the number of bits tested since the last reset
of the checker.

Receiver

Transceiver Link

Number of error
bits

Specifies the number of error bits encountered since
the last reset of the checker.

Receiver

Transceiver Link

QPS5V3
2015.11.02 User Interface Settings Reference 11-37

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Control Panel

Number of
preamble beats

The number of clock cycles to which the preamble
word is sent before the test pattern begins (Stratix V
only feature).

Transmitter

Transceiver Link

PLL refclk freq Channel reference clock frequency as read from the
project file or measured reference clock frequency as
calculated from the measured data rate.

Transmitter

Receiver

Transceiver Link

Populate with Right-click in the Advanced panel to load current
values on the device as a starting point, or initially
load the best settings determined through auto sweep.
The Quartus Prime software automatically applies the
values you specify in the drop-down lists for the
Transmitter settings and Receiver settings.

Receiver

Transceiver Link

Preamble word Word to send out if you use the preamble mode (only
if you use soft PRBS Data Pattern Generator and
Checker).

Transmitter

Transceiver Link

Pre-emphasis The programmable pre-emphasis module in each
transmit buffer boosts high frequencies in the
transmit data signal, which may be attenuated in the
transmission media. Using pre-emphasis can
maximize the data eye opening at the far-end receiver.

Transmitter

Transceiver Link

Receiver channel Specifies the name of the selected receiver channel. Receiver

Transceiver Link

Refresh Button After loading the .pof, loads fresh settings from the
registers after running dynamic reconfiguration.

Transmitter

Receiver

Transceiver Link

Reset Resets the current test. Receiver

Transceiver Link

11-38 User Interface Settings Reference
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Control Panel

Rules Based
Configuration
(RBC) validity
checking

Displays invalid combination of settings in red in each
list under Transmitter settings and Receiver settings,
based on previous settings. If selected, the settings
remain in red to indicate the currently selected
combination is invalid. This avoids manually testing
invalid settings that you cannot compile for your
design. This prevents setting the device into an invalid
mode for extended periods of time and potentially
damaging the circuits.

Receiver

Transceiver Link

Run length Sets coverage parameters for test runs. Transmitter

Receiver

Transceiver Link

Run results table Lists the statistics of each EyeQ test run. The run
results table is sortable. You can right-click any of the
tests in the table and then click Apply Settings to
Device to quickly apply the chosen PMA settings to
your device. You can click Import to load reports
from previously generated EyeQ runs into the run
results table. You can click Export to export single or
multiple runs from the run results table to a report.

Transmitter

Receiver

Transceiver Link

RX CDR PLL
status(10)

Shows the receiver in lock-to-reference (LTR) mode.
When in auto-mode, if data cannot be locked, this
signal alternates in LTD mode if the CDR is locked to
data.

Receiver

Transceiver Link

RX CDR data status Shows the receiver in lock-to-data (LTD) mode.
When in auto-mode, if data cannot be locked, the
signal stays high when locked to data and never
toggles.

Receiver

Transceiver Link

Serial loopback
enabled

Inserts a serial loopback before the buffers, allowing
you to form a link on a transmitter and receiver pair
on the same physical channel of the device.

Transmitter

Receiver

Transceiver Link

Start Starts the pattern generator or checker on the channel
to verify incoming data.

Transmitter

Receiver

Transceiver Link

(10) For Stratix V devices, the Phase Frequency Detector (PFD) is inactive in LTD mode. The rx_is_
lockedtoref status signal toggles randomly and is not significant in LTD mode.

QPS5V3
2015.11.02 User Interface Settings Reference 11-39

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Control Panel

Stop Stops generating patterns and testing the channel. Transmitter

Receiver

Transceiver Link

Target bit error rate Finds the contour edge of the bit error rate that you
select. This option only applies to eye contour mode.

Transmitter

Receiver

Transceiver Link

Test mode Allows you to specify the Auto sweep, EyeQ, or Auto
sweep and EyeQ test mode.

Receiver

Transceiver Link

Test pattern Test pattern sent by the transmitter channel. Arria 10
devices support PRBS9, PRBS15, PRBS23, and
PRBS31).

Stratix V devices support PRBS7, PRBS15,
PRBS23, PRBS31, LowFrequency, HighFrequency,
and Bypass mode. The Data Pattern Checker self-
aligns both high and low frequency patterns. Use
Bypass mode to send user-design data.

Transmitter

Receiver

Transceiver Link

Time limit Specifies the time limit unit and value to have a
maximum bounds time limit for each test iteration

Receiver

Transceiver Link

Transmitter
channel

Specifies the name of the selected transmitter channel. Transmitter

Transceiver Link

TX/CMU PLL
status

Provides status of whether the transmitter channel
PLL is locked to the reference clock.

Transmitter

Transceiver Link

Use preamble upon
start

If turned on, sends the preamble word before the test
pattern. If turned off, starts sending the test pattern
immediately.

Transmitter

Transceiver Link

Vertical phase step
interval

Specify the number of vertical steps to increment
when performing a sweep. Increasing the value
increases the speed of the test but at a lower
resolution. This option only applies to the eye
contour.

Transmitter

Receiver

Transceiver Link

11-40 User Interface Settings Reference
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Setting Description Control Panel

VGA The variable gain amplifier (VGA) amplifies the signal
amplitude and ensures a constant voltage swing before
the data is fed to the CDR for sampling. This
assignment controls the VGA output voltage swing
and can be set to any value from 0 to 7.

Note: Supports Arria 10 devices only

Receiver

Transceiver Link

VOD control Programmable transmitter differential output voltage. Transmitter

Transceiver Link

Scripting API Reference
You can alternatively use Tcl commands to access Transceiver Toolkit functions, rather than using the
GUI. You can script various tasks, such as loading a project, creating design instances, linking device
resources, and identifying high-speed serial links. You can save your project setup in a Tcl script for use in
subsequent testing sessions. You can also build a custom test routine script.

After you set up and define links that describe the entire physical system, you can click Save Tcl Script to
save the setup for future use. To run the scripts, double-click script names in the System Explorer scripts
folder.

View a list of the available Tcl commands in the Tcl Console window. Select Tcl commands in the list to
view descriptions, including example usage.

To view Tcl command descriptions from the Tcl Console window:

1. Type help help. The Console displays all Transceiver Toolkit Tcl commands.
2. Type help <command name>. The Console displays the command description.

Transceiver Toolkit Commands
The following tables list the available Transceiver Toolkit scripting commands.

Table 11-15: Transceiver Toolkit Channel_rx Commands

Command Arguments Function

transceiver_channel_rx_

get_data

<service-path> Returns a list of the current checker data.
The results are in the order of number of
bits, number of errors, and bit error rate.

transceiver_channel_rx_

get_dcgain

<service-path> Gets the DC gain value on the receiver
channel.

transceiver_channel_rx_

get_dfe_tap_value

<service-path> <tap position> Gets the current tap value of the specified
channel at the specified tap position.

QPS5V3
2015.11.02 Scripting API Reference 11-41

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

transceiver_channel_rx_

get_eqctrl

<service-path> Gets the equalization control value on the
receiver channel.

transceiver_channel_rx_

get_pattern

<service-path> Returns the current data checker pattern by
name.

transceiver_channel_rx_

has_dfe

<service-path> Gets whether this channel has the DFE
feature available.

transceiver_channel_rx_

has_eyeq

<service-path> Gets whether the EyeQ feature is available
for the specified channel.

transceiver_channel_rx_

is_checking

<service-path> Returns non-zero if the checker is running.

transceiver_channel_rx_

is_dfe_enabled

<service-path> Gets whether the DFE feature is enabled on
the specified channel.

transceiver_channel_rx_

is_locked

<service-path> Returns non-zero if the checker is locked
onto the incoming data.

transceiver_channel_rx_

reset_counters

<service-path> Resets the bit and error counters inside the
checker.

transceiver_channel_rx_

reset

<service-path> Resets the specified channel.

transceiver_channel_rx_

set_dcgain

<service-path> <value> Sets the DC gain value on the receiver
channel.

transceiver_channel_rx_

set_dfe_enabled

<service-path><disable(0)/
enable(1)>

Enables or disables the DFE feature on the
specified channel.

transceiver_channel_rx_

set_dfe_tap_value

<service-path> <tap position>
<tap value>

Sets the current tap value of the specified
channel at the specified tap position to the
specified value.

transceiver_channel_rx_

set_dfe_adaptive

<service-path> Sets the mode of DFE adaptation. 0=off,
1=adaptive, 2= one-time adaptive

transceiver_channel_rx_

set_eqctrl

<service-path> <value> Sets the equalization control value on the
receiver channel.

transceiver_channel_rx_

start_checking

<service-path> Starts the checker.

11-42 Transceiver Toolkit Commands
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

transceiver_channel_rx_

stop_checking

<service-path> Stops the checker.

transceiver_channel_rx_

get_eyeq_phase_step

<service-path> Gets the current phase step of the specified
channel.

transceiver_channel_rx_

set_pattern

<service-path> <pattern-
name>

Sets the expected pattern to the one
specified by the pattern name.

transceiver_channel_rx_

is_eyeq_enabled

<service-path> Gets whether the EyeQ feature is enabled on
the specified channel.

transceiver_channel_rx_

set_eyeq_enabled

<service-path> <disable(0)/
enable(1)>

Enables or disables the EyeQ feature on the
specified channel.

transceiver_channel_rx_

set_eyeq_phase_step

<service-path><phase step> Sets the phase step of the specified channel.

transceiver_channel_rx_

set_word_aligner_

enabled

<service-path><disable(0)/
enable(1)>

Enables or disables the word aligner of the
specified channel.

transceiver_channel_rx_

is_word_aligner_enabled

<service-path><disable(0)/
enable(1)>

Gets whether the word aligner feature is
enabled on the specified channel.

transceiver_channel_rx_

is_locked

<service-path> Returns non-zero if the checker is locked
onto the incoming signal.

transceiver_channel_rx_

is_rx_locked_to_data

<service-path> Returns 1 if transceiver is in lock to data
(LTD) mode. Otherwise 0.

transceiver_channel_rx_

is_rx_locked_to_ref

<service-path> Returns 1 if transceiver is in lock to
reference (LTR) mode. Otherwise 0.

transceiver_channel_rx_

has_eyeq_1d

<service-path> Detects whether the eye viewer pointed to
by <service-path> supports 1D-EyeQ mode.

transceiver_channel_rx_

set_1deye_mode

<service-path><disable(0)/
enable(1)>

Enables or disables 1D-EyeQ mode.

transceiver_channel_rx_

get_1deye_mode

<service-path> Returns the current on or off status of 1D-
EyeQ mode.

QPS5V3
2015.11.02 Transceiver Toolkit Commands 11-43

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-16: Transceiver Toolkit Channel _tx Commands

Command Arguments Function

transceiver_channel_tx_

disable_preamble

<service-path> Disables the preamble mode at
the beginning of generation.

transceiver_channel_tx_

enable_preamble

<service-path> Enables the preamble mode at
the beginning of generation.

transceiver_channel_tx_get_

number_of_preamble_beats

<service-path> Returns the currently set number
of beats to send out the preamble
word.

transceiver_channel_tx_get_

pattern

<service-path> Returns the currently set pattern.

transceiver_channel_tx_get_

preamble_word

<service-path> Returns the currently set
preamble word.

transceiver_channel_tx_get_

preemph0t

<service-path> Gets the pre-emphasis pre-tap
value on the transmitter channel.

transceiver_channel_tx_get_

preemph1t

<service-path> Gets the pre-emphasis first post-
tap value on the transmitter
channel.

transceiver_channel_tx_get_

preemph2t

<service-path> Gets the pre-emphasis second
post-tap value on the transmitter
channel.

transceiver_channel_tx_get_

vodctrl

<service-path> Gets the VOD control value on
the transmitter channel.

transceiver_channel_tx_

inject_error

<service-path> Injects a 1-bit error into the
generator's output.

transceiver_channel_tx_is_

generating

<service-path> Returns non-zero if the
generator is running.

transceiver_channel_tx_is_

preamble_enabled

<service-path> Returns non-zero if preamble
mode is enabled.

transceiver_channel_tx_set_

number_of_preamble_beats

<service-path><number-of-
preamble-beats>

Sets the number of beats to send
out the preamble word.

11-44 Transceiver Toolkit Commands
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

transceiver_channel_tx_set_

pattern

<service-path><pattern-name> Sets the output pattern to the
one specified by the pattern
name.

transceiver_channel_tx_set_

preamble_word

<service-path><preamble-word> Sets the preamble word to be
sent out.

transceiver_channel_tx_set_

preemph0t

<service-path><preemph0t value> Sets the pre-emphasis pre-tap
value on the transmitter channel.

transceiver_channel_tx_set_

preemph1t

<service-path><preemph1t value> Sets the pre-emphasis first post-
tap value on the transmitter
channel.

transceiver_channel_tx_set_

preemph2t

<service-path><preemph2t value> Sets the pre-emphasis second
post-tap value on the transmitter
channel.

transceiver_channel_tx_set_

vodctrl

<service-path><vodctrl value> Sets the VOD control value on
the transmitter channel.

transceiver_channel_tx_

start_generation

<service-path> Starts the generator.

transceiver_channel_tx_

stop_generation

<service-path> Stops the generator.

Table 11-17: Transceiver Toolkit Transceiver Toolkit Debug_Link Commands

Command Arguments Function

transceiver_debug_link_get_

pattern

<service-path> Gets the currently set pattern the
link uses to run the test.

transceiver_debug_link_is_

running

<service-path> Returns non-zero if the test is
running on the link.

transceiver_debug_link_set_

pattern

<service-path> <data pattern> Sets the pattern the link uses to
run the test.

transceiver_debug_link_

start_running

<service-path> Starts running a test with the
currently selected test pattern.

transceiver_debug_link_

stop_running

<service-path> Stops running the test.

QPS5V3
2015.11.02 Transceiver Toolkit Commands 11-45

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-18: Transceiver Toolkit Reconfig_Analog Commands

Command Arguments Function

transceiver_reconfig_

analog_get_logical_channel_

address

<service-path> Gets the transceiver logical
channel address currently set.

transceiver_reconfig_

analog_get_rx_dcgain

<service-path> Gets the DC gain value on the
receiver channel specified by the
current logical channel address.

transceiver_reconfig_

analog_get_rx_eqctrl

<service-path> Gets the equalization control
value on the receiver channel
specified by the current logical
channel address.

transceiver_reconfig_

analog_get_tx_preemph0t

<service-path> Gets the pre-emphasis pre-tap
value on the transmitter channel
specified by the current logical
channel address.

transceiver_reconfig_

analog_get_tx_preemph1t

<service-path> Gets the pre-emphasis first post-
tap value on the transmitter
channel specified by the current
logical channel address.

transceiver_reconfig_

analog_get_tx_preemph2t

<service-path> Gets the pre-emphasis second
post-tap value on the transmitter
channel specified by the current
logical channel address.

transceiver_reconfig_

analog_get_tx_vodctrl

<service-path> Gets the VOD control value on
the transmitter channel specified
by the current logical channel
address.

transceiver_reconfig_

analog_set_logical_channel_

address

<service-path><logical channel
address>

Sets the transceiver logical
channel address.

transceiver_reconfig_

analog_set_rx_dcgain

<service-path><dc_gain value> Sets the DC gain value on the
receiver channel specified by the
current logical channel address

transceiver_reconfig_

analog_set_rx_eqctrl

<service-path> <eqctrl value> Sets the equalization control
value on the receiver channel
specified by the current logical
channel address.

11-46 Transceiver Toolkit Commands
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

transceiver_reconfig_

analog_set_tx_preemph0t

<service-path><preemph0t value> Sets the pre-emphasis pre-tap
value on the transmitter channel
specified by the current logical
channel address.

transceiver_reconfig_

analog_set_tx_preemph1t

<service-path><preemph1t value> Sets the pre-emphasis first post-
tap value on the transmitter
channel specified by the current
logical channel address.

transceiver_reconfig_

analog_set_tx_preemph2t

<service-path> <preemph2t value> Sets the pre-emphasis second
post-tap value on the transmitter
channel specified by the current
logical channel address.

transceiver_reconfig_

analog_set_tx_vodctrl

<service-path> <vodctrl value> Sets the VOD control value on
the transmitter channel specified
by the current logical channel
address.

.

Table 11-19: Transceiver Toolkit Decision Feedback Equalization (DFE) Commands

Command Arguments Function

alt_xcvr_reconfig_dfe_get_

logical_channel_address

<service-path> Gets the logical channel address
that other alt_xcvr_reconfig_
dfe commands use to apply.

alt_xcvr_reconfig_dfe_is_

enabled

<service-path> Gets whether the DFE feature is
enabled on the previously
specified channel.

alt_xcvr_reconfig_dfe_set_

enabled

<service-path> <disable(0)/enable(1)
>

Enables or disables the DFE
feature on the previously
specified channel.

alt_xcvr_reconfig_dfe_set_

logical_channel_address

<service-path> <logical channel
address>

Sets the logical channel address
that other alt_xcvr_reconfig_
eye_viewer commands use.

alt_xcvr_reconfig_dfe_set_

tap_value

<service-path> <tap position> <tap
value>

Sets the tap value at the
previously specified channel at
specified tap position and value.

QPS5V3
2015.11.02 Transceiver Toolkit Commands 11-47

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11-20: Transceiver Toolkit Eye Monitor Commands

Command Arguments Function

alt_xcvr_custom_is_word_

aligner_enabled
<service-path> <disable(0)/enable(1)
>

Gets whether the word aligner
feature is enabled on the
previously specified channel.

alt_xcvr_custom_set_word_

aligner_enabled

<service-path> <disable(0)/enable(1)
>

Enables or disables the word
aligner of the previously
specified channel.

alt_xcvr_custom_is_rx_

locked_to_data

<service-path> Returns whether the receiver
CDR is locked to data.

alt_xcvr_custom_is_rx_

locked_to_ref

<service-path> Returns whether the receiver
CDR PLL is locked to the
reference clock.

alt_xcvr_custom_is_serial_

loopback_enabled

<service-path> Returns whether the serial
loopback mode of the previously
specified channel is enabled.

alt_xcvr_custom_set_serial_

loopback_enabled

<service-path> <disable(0)/enable(1)
>

Enables or disables the serial
loopback mode of the previously
specified channel.

alt_xcvr_custom_is_tx_pll_

locked

<service-path> Returns whether the transmitter
PLL is locked to the reference
clock.

alt_xcvr_reconfig_eye_

viewer_get_logical_channel_

address

<service-path> Gets the logical channel address
on which other alt_reconfig_
eye_viewer commands will use
to apply.

alt_xcvr_reconfig_eye_

viewer_get_phase_step

<service-path> Gets the current phase step of
the previously specified channel.

alt_xcvr_reconfig_eye_

viewer_is_enabled

<service-path> Gets whether the EyeQ feature is
enabled on the previously
specified channel.

11-48 Transceiver Toolkit Commands
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

alt_xcvr_reconfig_eye_

viewer_set_enabled

<service-path> <disable(0)/enable(1)
>

Enables or disables the EyeQ
feature on the previously
specified channel.

Setting a value of 2 enables both
EyeQ and the Serial Bit
Comparator.

alt_xcvr_reconfig_eye_

viewer_set_logical_channel_

address

<service-path> <logical channel
address>

Sets the logical channel address
on which other alt_reconfig_
eye_viewer commands will use
to apply.

alt_xcvr_reconfig_eye_

viewer_set_phase_step

<service-path> <phase step> Sets the phase step of the
previously specified channel.

alt_xcvr_reconfig_eye_

viewer_has_ber_checker

<service-path> Detects whether the eye viewer
pointed to by <service-path>
supports the Serial Bit
Comparator.

alt_xcvr_reconfig_eye_

viewer_ber_checker_is_

enabled

<service-path> Detects whether the Serial Bit
Comparator is enabled.

alt_xcvr_reconfig_eye_

viewer_ber_checker_start

<service-path> Starts the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_

viewer_ber_checker_stop

<service-path> Stops the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_

viewer_ber_checker_reset_

counters

<service-path> Resets the Serial Bit Comparator
counters.

alt_xcvr_reconfig_eye_

viewer_ber_checker_is_

running

<service-path> Gets whether the Serial Bit
Comparator counters are
currently running or not.

alt_xcvr_reconfig_eye_

viewer_ber_checker_get_data

<service-path> Gets the current total bit, error
bit, and exception counts for the
Serial Bit Comparator.

alt_xcvr_reconfig_eye_

viewer_has_1deye

<service-path> Detects whether the eye viewer
pointed to by <service-path>
supports 1D-EyeQ mode.

QPS5V3
2015.11.02 Transceiver Toolkit Commands 11-49

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

alt_xcvr_reconfig_eye_

viewer_set_1deye_mode

<service-path> <disable(0)/enable(1) Enables or disables 1D-EyeQ
mode.

alt_xcvr_reconfig_eye_

viewer_get_1deye_mode

<service-path> Gets the enable or disabled state
of 1D-EyeQ mode.

Table 11-21: Channel Type Commands

Command Arguments Function

get_channel_type <service-path><logical-channel-
num>

Reports the detected type (GX/
GT) of channel <logical-channel-
num > for the reconfiguration
block located at <service-path>.

set_channel_type <service-path><logical-channel-
num> <channel-type>

Overrides the detected channel
type of channel <logical-channel-
num > for the reconfiguration
block located at <service-path>
to the type specified (0:GX,
1:GT).

Table 11-22: Loopback Commands

Command Arguments Function

loopback_get <service-path> Returns the value of a setting or
result on the loopback channel.
Available results include:

• Status—running or stopped.
• Bytes—number of bytes sent

through the loopback
channel.

• Errors—number of errors
reported by the loopback
channel.

• Seconds—number of seconds
since the loopback channel
was started.

11-50 Transceiver Toolkit Commands
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

loopback_set <service-path> Sets the value of a setting
controlling the loopback
channel. Some settings are only
supported by particular channel
types. Available settings include:

• Timer—number of seconds
for the test run.

• Size—size of the test data.
• Mode—mode of the test.

loopback_start <service-path> Starts sending data through the
loopback channel.

loopback_stop <service-path> Stops sending data through the
loopback channel.

Data Pattern Generator Commands
You can use Data Pattern Generator commands to control data patterns for debugging transceiver
channels. You must instantiate the Data Pattern Generator component to support these commands.

Table 11-23: Soft Data Pattern Generator Commands

Command Arguments Function

data_pattern_generator_

start

<service-path> Starts the data pattern generator.

data_pattern_generator_stop <service-path> Stops the data pattern generator.

data_pattern_generator_is_

generating

<service-path> Returns non-zero if the
generator is running.

data_pattern_generator_

inject_error

<service-path> Injects a 1-bit error into the
generator output.

QPS5V3
2015.11.02 Data Pattern Generator Commands 11-51

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

data_pattern_generator_set_

pattern

<service-path> <pattern-name> Sets the output pattern specified
by the <pattern-name>. In all, 6
patterns are available, 4 are
pseudo-random binary
sequences (PRBS), 1 is high
frequency and 1 is low
frequency.

The PRBS7, PRBS15, PRBS23,
PRBS31, HF (outputs high
frequency, constant pattern of
alternating 0s and 1s), and LF
(outputs low frequency, constant
pattern of 10b’1111100000 for
10-bit symbols and 8b’11110000
for 8-bit symbols) pattern names
are defined.

PRBS files are clear text and you
can modify the PRBS files.

data_pattern_generator_get_

pattern

<service-path> Returns currently selected
output pattern.

data_pattern_generator_get_

available_patterns

<service-path> Returns a list of available data
patterns by name.

data_pattern_generator_

enable_preamble

<service-path> Enables the preamble mode at
the beginning of generation.

data_pattern_generator_

disable_preamble

<service-path> Disables the preamble mode at
the beginning of generation.

data_pattern_generator_is_

preamble_enabled

<service-path> Returns a non-zero value if
preamble mode is enabled.

data_pattern_generator_set_

preamble_word

<preamble-word> Sets the preamble word (could
be 32-bit or 40-bit).

data_pattern_generator_get_

preamble_word

<service-path> Gets the preamble word.

data_pattern_generator_set_

preamble_beats

<service-path><number-of-
preamble- beats>

Sets the number of beats to send
out in the preamble word.

11-52 Data Pattern Generator Commands
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

data_pattern_generator_get_

preamble_beats

<service-path> Returns the currently set number
of beats to send out in the
preamble word.

data_pattern_generator_

fcnter_start

<service-path><max-cycles> Sets the max cycle count and
starts the frequency counter.

data_pattern_generator_

check_status

<service-path> Queries the data pattern
generator for current status.
Returns a bitmap indicating the
status, with bits defined as
follows: [0]-enabled, [1]-bypass
enabled, [2]-avalon, [3]-sink
ready, [4]-source valid, and [5]-
frequency counter enabled.

data_pattern_generator_

fcnter_report

<service-path><force-stop> Reports the current measured
clock ratio, stopping the
counting first depending on
<force-stop>.

Table 11-24: Hard Data Pattern Generator Commands

Command Arguments Function

hard_prbs_generator_start <service-path> Starts the specified generator.

hard_prbs_generator_stop <service-path> Stops the specified generator.

hard_prbs_generator_is_

generating

<service-path> Checks the generation status.
Returns 1 if generating, 0
otherwise.

hard_prbs_generator_set_

pattern

<service-path> <pattern> Sets the pattern of the specified
hard PRBS generator to
parameter pattern.

hard_prbs_generator_get_

pattern

<service-path> Returns the current pattern for a
given hard PRBS generator.

hard_prbs_generator_get_

available_patterns

<service-path> Returns the available patterns for
a given hard PRBS generator.

QPS5V3
2015.11.02 Data Pattern Generator Commands 11-53

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data Pattern Checker Commands
You can use Data Pattern Checker commands to verify your generated data patterns. You must instantiate
the Data Pattern Checker component to support these commands.

Table 11-25: Soft Data Pattern Checker Commands

Command Arguments Function

data_pattern_checker_start <service-path> Starts the data pattern checker.

data_pattern_checker_stop <service-path> Stops the data pattern checker.

data_pattern_checker_is_

checking

<service-path> Returns a non-zero value if the
checker is running.

data_pattern_checker_is_

locked

<service-path> Returns non-zero if the checker
is locked onto the incoming data.

data_pattern_checker_set_

pattern

<service-path> <pattern-name> Sets the expected pattern to the
one specified by the <pattern-
name>.

data_pattern_checker_get_

pattern

<service-path> Returns the currently selected
expected pattern by name.

data_pattern_checker_get_

available_patterns

<service-path> Returns a list of available data
patterns by name.

data_pattern_checker_get_

data

<service-path> Returns a list of the current
checker data. The results are in
the following order: number of
bits, number of errors, and bit
error rate.

data_pattern_checker_reset_

counters

<service-path> Resets the bit and error counters
inside the checker.

data_pattern_checker_

fcnter_start

<service-path><max-cycles> Sets the max cycle count and
starts the frequency counter.

11-54 Data Pattern Checker Commands
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Arguments Function

data_pattern_checker_check_

status

<service-path>

<service-path>
Queries the data pattern checker
for current status. Returns a
bitmap indicating status, with
bits defined as follows: [0]-
enabled, [1]-locked, [2]-bypass
enabled, [3]-avalon, [4]-sink
ready, [5]-source valid, and [6]-
frequency counter enabled.

data_pattern_checker_

fcnter_report

<service-path><force-stop> Reports the current measured
clock ratio, stopping the
counting first depending on
<force-stop>.

Table 11-26: Hard Data Pattern Checker Commands

Command Arguments Function

hard_prbs_checker_start <service-path> Starts the specified hard PRBS
checker.

hard_prbs_checker_stop <service-path> Stops the specified hard PRBS
checker.

hard_prbs_checker_is_

checking

<service-path> Checks the running status of the
specified hard PRBS checker.
Returns a non-zero value if the
checker is running.

hard_prbs_checker_set_

pattern

<service-path> <pattern> Sets the pattern of the specified
hard PRBS checker to parameter
<pattern>.

hard_prbs_checker_get_

pattern

<service-path> Returns the current pattern for a
given hard PRBS checker.

hard_prbs_checker_get_

available_patterns

<service-path> Returns the available patterns for
a given hard PRBS checker.

hard_prbs_checker_get_data <service-path> Returns the current bit and error
count data from the specified
hard PRBS checker.

hard_prbs_checker_reset_

counters

<service-path> Resets the bit and error counts of
the specified hard PRBS checker.

QPS5V3
2015.11.02 Data Pattern Checker Commands 11-55

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 11-27: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

• Added description of new Refresh button.
• Added description of VGA dialog box.
• Added two tables in Transceiver Toolkit Commands section.

• Hard Data Pattern Generator Commands
• Hard Data Pattern Checker Commands

• Separated Arria 10 and Stratix V system configuration steps.

2015.11.02 15.1.0 • Added description of new Refresh button.
• Added description of VGA dialog box.
• Added two tables in Transceiver Toolkit Commands section.

• Hard Data Pattern Generator Commands
• Hard Data Pattern Checker Commands

• Separated Arria 10 and Stratix V system configuration steps.

11-56 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2015 15.0.0 • Added section about Implementation Differences Between Stratix V and
Arria 10.

• Added section about Recommended Flow for Arria 10 Transceiver Toolkit
Design with the Quartus Prime Software.

• Added section about Transceiver Toolkit Troubleshooting
• Updated the following sections with information about using the

Transceiver Toolkit with Arria 10 devices:

• Serial Bit Comparator Mode
• Arria 10 Support and Limitations
• Configuring BER Tests
• Configuring PRBS Signal Eye Tests
• Adapting Altera Design Examples
• Modifying Design Examples
• Configuring Custom Traffic Signal Eye Tests
• Configuring Link Optimization Tests
• Configuring PMA Analog Setting Control
• Running BER Tests
• Toolkit GUI Setting Reference

• Reworked Table: Transceiver Toolkit IP Core Configuration
• Replaced Figure: EyeQ Settings and Status Showing Results of Two Test

Runs with Figure: EyeQ Settings and Status Showing Results of Three Test
Runs.

• Added Figure: Arria 10 Altera Debug Master Endpoint Block Diagram.
• Added Figure: BER Test Configuration (Arria10/ Gen 10/ 20nm) Block

Diagram.
• Added Figure: PRBS Signal Test Configuration (Arria 10/ 20nm) Block

Diagram.
• Added Figure: Custom Traffic Signal Eye Test Configuration (Arria 10/ Gen

10/ 20nm) Block Diagram.
• Added Figure: PMA Analog Setting Control Configuration (Arria 10/ Gen

10/ 20nm) Block Diagram.
• Added Figure: One Channel Loopback Mode (Arria 10/ 20nm) Block

Diagram.
• Added Figure: Four Channel Loopback Mode (Arria 10/ Gen 10/ 20nm)

Block Diagram.

Software Version 15.0 Limitations

• Transceiver Toolkit supports EyeQ for Arria 10 designs.
• Supports optional hard acceleration for EyeQ. This allows for much faster

EyeQ data collection. Enable this in the Arria 10 Transceiver Native PHY IP
core under the Dynamic Configuration tab. Turn on Enable ODI accelera‐
tion logic.

QPS5V3
2015.11.02 Document Revision History 11-57

Debugging Transceiver Links Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

December,
2014

14.1.0 • Added section about Arria 10 support and limitations.

June, 2014 14.0.0 • Updated GUI changes for Channel Manager with popup menus, IP Catalog,
Quartus Prime, and Qsys.

• Added ADME and JTAG debug link info for Arria 10.
• Added instructions to run Tcl script from command line.
• Added heat map display option.
• Added procedure to use internal PLL to generate reconfig_clk.
• Added note stating RX CDR PLL status can toggle in LTD mode.

November,
2013

13.1.0 • Reorganization and conversion to DITA.

May, 2013 13.0.0 • Added Conduit Mode Support, Serial Bit Comparator, Required Files and
Tcl command tables.

November,
2012

12.1.0 • Minor editorial updates. Added Tcl help information and removed Tcl
command tables. Added 28-Gbps Transceiver support section.

August, 2012 12.0.1 • General reorganization and revised steps in modifying Altera example
designs.

June, 2012 12.0.0 • Maintenance release for update of Transceiver Toolkit features.

November,
2011

11.1.0 • Maintenance release for update of Transceiver Toolkit features.

May, 2011 11.0.0 • Added new Tcl scenario.

December,
2010

10.1.0 • Changed to new document template. Added new 10.1 release features.

August, 2010 10.0.1 • Corrected links.

July 2010 10.0.0 • Initial release.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

11-58 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Debugging Transceiver Links

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Transceiver%20Links%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quick Design Debugging Using SignalProbe 12
2015.11.02

QPS5V3 Subscribe Send Feedback

Quick Design Debugging Using SignalProbe
The SignalProbe incremental routing feature helps reduce the hardware verification process and time-to-
market for system-on-a-programmable-chip (SOPC) designs. Easy access to internal device signals is
important in the design or debugging process. The SignalProbe feature makes design verification more
efficient by routing internal signals to I/O pins quickly without affecting the design. When you start with a
fully routed design, you can select and route signals for debugging to either previously reserved or
currently unused I/O pins.

The SignalProbe feature supports the Arria® series, Cyclone® series, MAX® II, and Stratix® series device
families.

Related Information

• System Debugging Tools Overview documentation on page 9-1
Overview and comparison of all the tools available in the Quartus Prime software

Design Flow Using SignalProbe
The SignalProbe feature allows you to reserve available pins and route internal signals to those reserved
pins, while preserving the behavior of your design. SignalProbe is an effective debugging tool that
provides visibility into your FPGA.

You can reserve pins for SignalProbe and assign I/O standards after a full compilation. Each SignalProbe-
source to SignalProbe-pin connection is implemented as an engineering change order (ECO) that is
applied to your netlist after a full compilation.

To route the internal signals to the device’s reserved pins for SignalProbe, perform the following tasks:

1. Perform a full compilation.
2. Reserve SignalProbe Pins.
3. Assign SignalProbe sources.
4. Add registers between pipeline paths and Signalprobe pins.
5. Perform a SignalProbe compilation.
6. Analyze the results of a SignalProbe compilation.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Quick%20Design%20Debugging%20Using%20SignalProbe&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Perform a Full Compilation
You must complete a full compilation to generate an internal netlist containing a list of internal nodes to
probe.

To perform a full compilation, on the Processing menu, click Start Compilation.

Reserve SignalProbe Pins
SignalProbe pins can only be reserved after a full compilation. You can also probe any unused I/Os of the
device. Assigning sources is a simple process after reserving SignalProbe pins. The sources for SignalProbe
pins are the internal nodes and registers in the post-compilation netlist that you want to probe.

Note: Although you can reserve SignalProbe pins using many features within the Quartus Prime
software, including the Pin Planner and the Tcl interface, you should use the SignalProbe Pins
dialog box to create and edit your SignalProbe pins.

Assign SignalProbe Sources
A SignalProbe source can be any combinational node, register, or pin in your post-compilation netlist. To
find a SignalProbe source, in the Node Finder, use the SignalProbe filter to remove all sources that cannot
be probed. You might not be able to find a particular internal node because the node can be optimized
away during synthesis, or the node cannot be routed to the SignalProbe pin. For example, you cannot
probe nodes and registers within Gigabit transceivers in Stratix IV devices because there are no physical
routes available to the pins.

Note: To probe virtual I/O pins generated in low-level partitions in an incremental compilation flow,
select the source of the logic that feeds the virtual pin as your SignalProbe source pin.

Because SignalProbe pins are implemented and routed as ECOs, turning the SignalProbe enable option
on or off is the same as selecting Apply Selected Change or Restore Selected Change in the Change
Manager window. If the Change Manager window is not visible at the bottom of your screen, on the View
menu, point to Utility Windows and click Change Manager.

Related Information

• SignalProbe Pins Dialog Box online help
• Add SignalProbe Pins Dialog Box online help
• Engineering Change Management with the Chip Planner documentation

Add Registers Between Pipeline Paths and SignalProbe Pins
You can specify the number of registers placed between a SignalProbe source and a SignalProbe pin. The
registers synchronize data to a clock and control the latency of the SignalProbe outputs. The SignalProbe
feature automatically inserts the number of registers specified into the SignalProbe path.

The figure shows a single register between the SignalProbe source Reg_b_1 and SignalProbe SignalP-
robe_Output_2 output pin added to synchronize the data between the two SignalProbe output pins.

Note: When you add a register to a SignalProbe pin, the SignalProbe compilation attempts to place the
register to best meet timing requirements. You can place SignalProbe registers either near the
SignalProbe source to meet fMAX requirements, or near the I/O to meet tCO requirements.

12-2 Perform a Full Compilation
QPS5V3

2015.11.02

Altera Corporation Quick Design Debugging Using SignalProbe

Send Feedback

http://quartushelp.altera.com/current/index.htm#program/sipro/comp_db_pin_assignments.htm
http://quartushelp.altera.com/current/index.htm#program/sipro/sipro_db_add_sipro_pin.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471341583/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-1: Synchronizing SignalProbe Outputs with a SignalProbe Register

Reg_b_1

SignalProbe
Pipeline
Register

SignalProbe_Output_1

SignalProbe_Output_2

D Q

DFF

Reg_b_2

D Q

DFF

D Q

D Q

DFF

Reg_a_1

D Q

DFF
Reg_a_2

Logic

Logic

Logic

Logic

In addition to clock input for pipeline registers, you can also specify a reset signal pin for pipeline
registers. To specify a reset pin for pipeline registers, use the Tcl command make_sp.

Related Information
Add SignalProbe Pins Dialog Box online help
Information about how to pipeline an existing SignalProbe connection

Perform a SignalProbe Compilation
Perform a SignalProbe compilation to route your SignalProbe pins. A SignalProbe compilation saves and
checks all netlist changes without recompiling the other parts of the design. A SignalProbe compilation
takes a fraction of the time of a full compilation to finish. The design’s current placement and routing are
preserved.

To perform a SignalProbe compilation, on the Processing menu, point to Start and click Start SignalP‐
robe Compilation.

Analyze the Results of a SignalProbe Compilation
After a SignalProbe compilation, the results are available in the compilation report file. Each SignalProbe
pin is displayed in the SignalProbe Fitting Result page in the Fitter section of the Compilation Report.
To view the status of each SignalProbe pin in the SignalProbe Pins dialog box, on the Tools menu, click
SignalProbe Pins.

The status of each SignalProbe pin appears in the Change Manager window . If the Change Manager
window is not visible at the bottom of your GUI, from the View menu, point to Utility Windows and
click Change Manager.

QPS5V3
2015.11.02 Perform a SignalProbe Compilation 12-3

Quick Design Debugging Using SignalProbe Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#program/sipro/sipro_db_add_sipro_pin.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12-2: Change Manager Window with SignalProbe Pins

To view the timing results of each successfully routed SignalProbe pin, on the Processing menu, point to
Start and click Start Timing Analysis.

Related Information
Engineering Change Management with the Chip Planner documentation

What a SignalProbe Compilation Does
After a full compilation, you can start a SignalProbe compilation either manually or automatically. A
SignalProbe compilation performs the following functions:

• Validates SignalProbe pins
• Validates your specified SignalProbe sources
• Adds registers into SignalProbe paths, if applicable
• Attempts to route from SignalProbe sources through registers to SignalProbe pins

To run the SignalProbe compilation immediately after a full compilation, on the Tools menu, click
SignalProbe Pins. In the SignalProbe Pins dialog box, click Start Check & Save All Netlist Changes.

To run a SignalProbe compilation manually after a full compilation, on the Processing menu, point to
Start and click Start SignalProbe Compilation.

Note: You must run the Fitter before a SignalProbe compilation. The Fitter generates a list of all internal
nodes that can serve as SignalProbe sources.

Turn the SignalProbe enable option on or off in the SignalProbe Pins dialog box to enable or disable
each SignalProbe pin.

Understanding the Results of a SignalProbe Compilation
After a SignalProbe compilation, the results appear in two sections of the compilation report file. The
fitting results and status of each SignalProbe pin appears in the SignalProbe Fitting Result screen in the
Fitter section of the Compilation Report.

Table 12-1: Status Values

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

12-4 What a SignalProbe Compilation Does
QPS5V3

2015.11.02

Altera Corporation Quick Design Debugging Using SignalProbe

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471341583/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Status Description

Failed to Route Failed routing during last SignalProbe compilation

Need to Compile Assignment changed since last SignalProbe
compilation

Figure 12-3: SignalProbe Fitting Results Page in the Compilation Report Window

The SignalProbe source to output delays screen in the Timing Analysis section of the Compilation
Report displays the timing results of each successfully routed SignalProbe pin.

Figure 12-4: SignalProbe Source to Output Delays Page in the Compilation Report Window

QPS5V3
2015.11.02 Understanding the Results of a SignalProbe Compilation 12-5

Quick Design Debugging Using SignalProbe Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: After a SignalProbe compilation, the processing screen of the Messages window also provides the
results for each SignalProbe pin and displays slack information for each successfully routed
SignalProbe pin.

Analyzing SignalProbe Routing Failures
A SignalProbe compilation can fail for any of the following reasons:

• Route unavailable—the SignalProbe compilation failed to find a route from the SignalProbe source to
the SignalProbe pin because of routing congestion.

• Invalid or nonexistent SignalProbe source—you entered a SignalProbe source that does not exist or
is invalid.

• Unusable output pin—the output pin selected is found to be unusable.

Routing failures can occur if the SignalProbe pin’s I/O standard conflicts with other I/O standards in the
same I/O bank.

If routing congestion prevents a successful SignalProbe compilation, you can allow the compiler to
modify routing to the specified SignalProbe source. On the Tools menu, click SignalProbe Pins and turn
on Modify latest fitting results during SignalProbe compilation. This setting allows the Fitter to modify
existing routing channels used by your design.

Note: Turning on Modify latest fitting results during SignalProbe compilation can change the
performance of your design.

Scripting Support
You can also run some procedures at a command prompt. For detailed information about scripting
command options, refer to the Quartus Prime command-line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp

Note: The Tcl commands in this section are part of the ::quartus::chip_planner Quartus Prime Tcl
API. Source or include the ::quartus::chip_planner Tcl package in your scripts to make these
commands available.

Related Information

• Tcl Scripting documentation
• Quartus Prime Settings File Reference Manual

Information about all settings and constraints in the Quartus Prime software
• Command-Line Scripting documentation

Making a SignalProbe Pin
To make a SignalProbe pin, type the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src_name <source name>

12-6 Analyzing SignalProbe Routing Failures
QPS5V3

2015.11.02

Altera Corporation Quick Design Debugging Using SignalProbe

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Deleting a SignalProbe Pin
To delete a SignalProbe pin, type the following Tcl command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name>

Enabling a SignalProbe Pin
To enable a SignalProbe pin, type the following Tcl command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name>

Disabling a SignalProbe Pin
To disable a SignalProbe pin, type the following Tcl command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name>

Performing a SignalProbe Compilation
To perform a SignalProbe compilation, type the following command:

quartus_sh --flow signalprobe <project name>

Script Example

The example shows a script that creates a SignalProbe pin called sp1 and connects the sp1 pin to source
node reg1 in a project that was already compiled.

 Creating a SignalProbe Pin Called sp1

package require ::quartus::chip_planner
project_open project
read_netlist
make_sp -pin_name sp1 -src_name reg1
check_netlist_and_save
project_close

Reserving SignalProbe Pins
To reserve a SignalProbe pin, add the commands shown in the example to the Quartus Prime Settings File
(.qsf) for your project.

 Reserving a SignalProbe Pin

set_location_assignment <location> -to <SignalProbe pin name>
set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <SignalProbe pin name>

Valid locations are pin location names, such as Pin_A3.

Common Problems When Reserving a SignalProbe Pin
If you cannot reserve a SignalProbe pin in the Quartus Prime software, it is likely that one of the following
is true:

QPS5V3
2015.11.02 Deleting a SignalProbe Pin 12-7

Quick Design Debugging Using SignalProbe Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You have selected multiple pins.
• A compilation is running in the background. Wait until the compilation is complete before reserving

the pin.
• You have the Quartus Prime Lite Edition software, in which the SignalProbe feature is not enabled by

default. You must turn on TalkBack to enable the SignalProbe feature in the Quartus Prime Lite
Edition software.

• You have not set the pin reserve type to As Signal Probe Output. To reserve a pin, on the Assignments
menu, in the Assign Pins dialog box, select As SignalProbe Output.

• The pin is reserved from a previous compilation. During a compilation, the Quartus Prime software
reserves each pin on the targeted device. If you end the Quartus Prime process during a compilation,
for example, with the Windows Task Manager End Process command or the UNIX kill command,
perform a full recompilation before reserving pins as SignalProbe outputs.

• The pin does not support the SignalProbe feature. Select another pin.
• The current device family does not support the SignalProbe feature.

Adding SignalProbe Sources
To assign the node name to a SignalProbe pin, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_SOURCE <node name> \
-to <SignalProbe pin name>

The next command turns on SignalProbe routing. To turn off individual SignalProbe pins, specify OFF
instead of ON with the following command:

set_instance_assignment -name SIGNALPROBE_ENABLE ON \
-to <SignalProbe pin name>

Related Information

• SignalProbe Pins Dialog Box online help
• Add SignalProbe Pins Dialog Box online help

Information about how to pipeline an existing SignalProbe connection

Assigning I/O Standards
To assign an I/O standard to a pin, type the following Tcl command:

set_instance_assignment -name IO_STANDARD <I/O standard> -to <SignalProbe pin name>

Related Information
I/O Standards online help

Adding Registers for Pipelining
To add registers for pipelining, type the following Tcl command:

set_instance_assignment -name SIGNALPROBE_CLOCK <clock name> \
-to <SignalProbe pin name>

set_instance_assignment \
-name SIGNALPROBE_NUM_REGISTERS <number of registers> -to <SignalProbe pin name>

12-8 Adding SignalProbe Sources
QPS5V3

2015.11.02

Altera Corporation Quick Design Debugging Using SignalProbe

Send Feedback

http://quartushelp.altera.com/current/index.htm#program/sipro/comp_db_pin_assignments.htm
http://quartushelp.altera.com/current/index.htm#program/sipro/sipro_db_add_sipro_pin.htm
http://quartushelp.altera.com/current/index.htm#reference/glossary/def_iostandard.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running SignalProbe Immediately After a Full Compilation
To run SignalProbe immediately after a full compilation, type the following Tcl command:

set_global_assignment -name SIGNALPROBE_DURING_NORMAL_COMPILATION ON

Running SignalProbe Manually
To run SignalProbe as part of a scripted flow using Tcl, use the following in your script:

execute_flow -signalprobe

To perform a Signal Probe compilation interactively at a command prompt, type the following command:

quartus_sh_fit --flow signalprobe <project name>

Enabling or Disabling All SignalProbe Routing
Use the Tcl command in the example to turn on or turn off SignalProbe routing. When using this
command, to turn SignalProbe routing on, specify ON. To turn SignalProbe routing off, specify OFF.

 Turning SignalProbe On or Off with Tcl Commands

set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {
 set signalprobe_pin_name [lindex $asgn 2]
 set_instance_assignment -name SIGNALPROBE_ENABLE \
-to $signalprobe_pin_name <ON|OFF> }

Allowing SignalProbe to Modify Fitting Results
To turn on Modify latest fitting results, type the following Tcl command:

set_global_assignment -name SIGNALPROBE_ALLOW_OVERUSE ON

Document Revision History

Table 12-2: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 Dita conversion.

May 2013 13.0.0 Changed sequence of flow to clarify that you need to perform a full compilation
before reserving SignalProbe pins. Affected sections are “Debugging Using the
SignalProbe Feature” on page 12–1 and “Reserving SignalProbe Pins” on page 12–
2. Moved “Performing a Full Compilation” on page 12–2 before “Reserving
SignalProbe Pins” on page 12–2.

June 2012 12.0.0 Removed survey link.

QPS5V3
2015.11.02 Running SignalProbe Immediately After a Full Compilation 12-9

Quick Design Debugging Using SignalProbe Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

November 2011 10.0.2 Template update.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Revised for new UI.
• Removed section SignalProbe ECO flows
• Removed support for SignalProbe pin preservation when recompiling with

incremental compilation turned on.
• Removed outdated FAQ section.
• Added links to Quartus Prime Help for procedural content.

November 2009 9.1.0 • Removed all references and procedures for APEX devices.
• Style changes.

March 2009 9.0.0 • Removed the “Generate the Programming File” section
• Removed unnecessary screenshots
• Minor editorial updates

November 2008 8.1.0 • Modified description for preserving SignalProbe connections when using
Incremental Compilation

• Added plausible scenarios where SignalProbe connections are not reserved in
the design

May 2008 8.0.0 • Added “Arria GX” to the list of supported devices
• Removed the “On-Chip Debugging Tool Comparison” and replaced with a

reference to the Section V Overview on page 13–1
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

12-10 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Quick Design Debugging Using SignalProbe

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Quick%20Design%20Debugging%20Using%20SignalProbe%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Debugging Using the SignalTap II Logic
Analyzer 13

2015.11.02

QPS5V3 Subscribe Send Feedback

About the SignalTap II Logic Analyzer
The SignalTap® II Logic Analyzer is a next-generation, system-level debugging tool that captures and
displays real-time signal behavior in an FPGA design. You can examine the behavior of internal signals,
without using extra I/O pins, while the design is running at full speed on an FPGA.

The SignalTap II Logic Analyzer is scalable, easy to use, and available as a stand-alone package or with a
software subscription. You can debug an FPGA design by probing the state of the design's internal signals
without external equipment. Define custom trigger-condition logic for greater accuracy and improved
ability to isolate problems. The SignalTap II Logic Analyzer does not require external probes or design file
changes to capture the state of the internal nodes or I/O pins in the design. All captured signal data is
conveniently stored in device memory until you are ready to read and analyze the data.

The SignalTap II Logic Analyzer supports the highest number of channels, largest sample depth, and
fastest clock speeds of any logic analyzer in the programmable logic market.

Figure 13-1: SignalTap II Logic Analyzer Block Diagram

Design Logic

1 2 30

1 2 30

SignalTap II
 Instances

JTAG
Hub

Altera
Programming

Hardware

Quartus Prime
Software

Buffers (Device Memory)

FPGA Device

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Note to figure:

1. This diagram assumes that you compiled the SignalTap II Logic Analyzer with the design as a separate
design partition using the Quartus Prime incremental compilation feature. If you do not use
incremental compilation, the SignalTap II logic is integrates with the design.

This chapter is intended for any designer who wants to debug an FPGA design during normal device
operation without the need for external lab equipment. Because the SignalTap II Logic Analyzer is similar
to traditional external logic analyzers, familiarity with external logic analyzer operations is helpful, but not
necessary. To take advantage of faster compile times when making changes to the SignalTap II Logic
Analyzer, knowledge of the Quartus Prime incremental compilation feature is helpful.

Note: The Quartus Prime Pro Edition software uses a new methodology for settings and assignments. For
example, SignalTap II assignments include only the instance name, not the entity:instance
name. Refer to Migrating to Quartus Prime Pro Edition for more information on migrating
existing .stp files to Quartus Prime Pro Edition.

Hardware and Software Requirements
You need the following hardware and software to perform logic analysis with the SignalTap II Logic
Analyzer:

• SignalTap software
• Download/upload cable
• Altera® development kit or your design board with JTAG connection to device under test

Use the SignalTap software that is included with the following software:

• Quartus Prime design software
• Quartus Prime Lite Edition (with the TalkBack feature enabled)

Alternatively, use the SignalTap II Logic Analyzer standalone software and standalone Programmer
software.

Note: The Quartus Prime Lite Edition software does not support incremental compilation integration
with the SignalTap II Logic Analyzer.

The memory blocks of the device store captured data. The memory blocks transfer the data to the Quartus
Prime software waveform display over a JTAG communication cable, such as EthernetBlaster or USB-
Blaster®.

Table 13-1: SignalTap II Logic Analyzer Features and Benefits

Feature Benefit

Quick access toolbar Single-click operation of commonly used menu items. Hover over the
icons to see tool tips.

Multiple logic analyzers in a single
device

Captures data from multiple clock domains in a design at the same
time.

Multiple logic analyzers in multiple
devices in a single JTAG chain

Simultaneously captures data from multiple devices in a JTAG chain.

Nios II plug-in support Easily specifies nodes, triggers, and signal mnemonics for IP, such as
the Nios® II processor.

13-2 Hardware and Software Requirements
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Benefit

Up to 10 basic or advanced trigger
conditions for each analyzer
instance

Enables sending more complex data capture commands to the logic
analyzer, providing greater accuracy and problem isolation.

Power-up trigger Captures signal data for triggers that occur after device programming,
but before manually starting the logic analyzer.

Custom trigger HDL object You can code your own trigger in Verilog HDL or VHDL and tap
specific instances of modules located anywhere in the hierarchy of your
design without needing to manually route all the necessary
connections. This simplifies the process of tapping nodes spread out
across your design.

State-based triggering flow Enables you to organize your triggering conditions to precisely define
what your logic analyzer captures.

Incremental compilation Modifies the SignalTap II Logic Analyzer monitored signals and
triggers without performing a full compilation, saving time.

Incremental route with rapid
recompile

Manually allocate trigger input, data input, storage filter input node
count, and perform a full compilation to include the SignalTap II Logic
Analyzer in your design. Then, you can selectively connect, disconnect,
and swap to different nodes in your design. Use Rapid Recompile to
perform incremental routing and gain a 2-4x speedup over the initial
full compilation.

Flexible buffer acquisition modes The buffer acquisition control allows you to precisely control the data
that is written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard
data samples that are not relevant to the debugging of your design.

MATLAB integration with
included MEX function

Collects the SignalTap II Logic Analyzer captured data into a MATLAB
integer matrix.

Up to 2,048 channels per logic
analyzer instance

Samples many signals and wide bus structures.

Up to 128K samples in each device Captures a large sample set for each channel.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving
the logic under test.

Resource usage estimator Provides estimate of logic and memory device resources used by
SignalTap II Logic Analyzer configurations.

No additional cost The SignalTap II Logic Analyzer is included with a Quartus Prime
subscription and with the Quartus Prime Lite Edition (with TalkBack
enabled).

Compatibility with other on-chip
debugging utilities

You can use the SignalTap II Logic Analyzer in tandem with any
JTAG-based on-chip debugging tool, such as an In-System Memory
Content editor, allowing you to change signal values in real-time while
you are running an analysis with the SignalTap II Logic Analyzer.

QPS5V3
2015.11.02 Hardware and Software Requirements 13-3

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Benefit

Floating-Point Display Format To enable, click Edit > Bus Display Format > Floating-point

Supports the following:

• Single-precision floating-point format IEEE754 Single (32-bit)
• Double-precision floating-point format IEEE754 Double (64-bit)

Related Information

• System Debugging Tools Overview documentation on page 9-1
Overview and comparison of all tools available in the In-System Verification Tool set

Design Flow Using the SignalTap II Logic Analyzer
Add a SignalTap II file (.stp) and enable it in your project, or instantiate a SignalTap II IP core created
with the parameter editor. Figure 13-2 shows the flow of operations from initially adding the SignalTap II
Logic Analyzer to your design to final device configuration, testing, and debugging.

Figure 13-2: SignalTap II FPGA Design and Debugging Flow

Fitter
Place-and-Route

Analysis and Synthesis

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Assembler

Timing Analyzer

Yes

SignalTap II File (.stp)
or SignalTap II

IP Core

Debug Source File No

End

Configuration

Functionality
Satisfied?

13-4 Design Flow Using the SignalTap II Logic Analyzer
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SignalTap II Logic Analyzer Task Flow Overview
To use the SignalTap II Logic Analyzer to debug your design, you perform a number of tasks to add,
configure, and run the logic analyzer.

Figure 13-3: SignalTap II Logic Analyzer Task Flow

End

Create New Project or
Open Existing Project

Yes

No

No

Functionality
Satisfied or Bug

Fixed?

Add SignalTap II Logic
Analyzer to Design Instance

Configure
SignalTap II Logic Analyzer

Program Target
Device or Devices

View, Analyze, and
Use Captured Data

Define Triggers

Compile Design

Run SignalTap II
Logic Analyzer

Adjust Options,
Triggers, or both

Continue Debugging

Recompilation
Necessary?

Yes

Add the SignalTap II Logic Analyzer to Your Design
Create an .stp or create a parameterized HDL instance representation of the logic analyzer using the IP
Catalog and parameter editor. If you want to monitor multiple clock domains simultaneously, add
additional instances of the logic analyzer to your design, limited only by the available resources in your
device.

Configure the SignalTap II Logic Analyzer
After you add the SignalTap II Logic Analyzer to your design, configure the logic analyzer to monitor the
signals you want. You can manually add signals or use a plug-in, such as the Nios II processor plug-in, to
quickly add entire sets of associated signals for a particular intellectual property (IP). You can also specify

QPS5V3
2015.11.02 SignalTap II Logic Analyzer Task Flow Overview 13-5

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

settings for the data capture buffer, such as its size, the method in which data is captured and stored, and
the device memory type to use for the buffer in devices that support memory type selection.

Related Information
Creating a Power-Up Trigger on page 13-42

Define Trigger Conditions
The SignalTap II Logic Analyzer captures data continuously while the logic analyzer is running. To
capture and store specific signal data, set up triggers that tell the logic analyzer under what conditions to
stop capturing data. The SignalTap II Logic Analyzer allows you to define trigger conditions that range
from very simple, such as the rising edge of a single signal, to very complex, involving groups of signals,
extra logic, and multiple conditions. Power-Up Triggers allow you to capture data from trigger events
occurring immediately after the device enters user-mode after configuration.

Compile the Design
With the .stp configured and trigger conditions defined, compile your project as usual to include the logic
analyzer in your design.

Note: Because you may need to change monitored signal nodes or adjust trigger settings frequently
during debugging, Altera recommends that you use the incremental compilation feature built into
the SignalTap II Logic Analyzer, along with Quartus Prime incremental compilation, to reduce
recompile times. You can also use Incremental Route with Rapid Recompile to reduce recompile
times.

Program the Target Device or Devices
When you debug a design with the SignalTap II Logic Analyzer, you can program a target device directly
from the .stp without using the Quartus Prime Programmer. You can also program multiple devices with
different designs and simultaneously debug them.

Note: The SignalTap II Logic Analyzer supports all current Altera FPGA device families.

Related Information
Managing Multiple SignalTap II Files and Configurations on page 13-21

Run the SignalTap II Logic Analyzer
In normal device operation, you control the logic analyzer through the JTAG connection, specifying when
to start looking for trigger conditions to begin capturing data. With Runtime or Power-Up Triggers, read
and transfer the captured data from the on-chip buffer to the .stp for analysis.

Related Information
Analyzing Data in the SignalTap II Logic Analyzer online help

View, Analyze, and Use Captured Data
After you have captured data and read it into the .stp, that data is available for analysis and debugging. Set
up mnemonic tables, either manually or with a plug-in, to simplify reading and interpreting the captured
signal data. To speed up debugging, use the Locate feature in the SignalTap II node list to find the
locations of problem nodes in other tools in the Quartus Prime software. Save the captured data for later
analysis, or convert the data to other formats for sharing and further study.

13-6 Define Trigger Conditions
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_pro_wform.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Embed Multiple Analyzers in One FPGA
The SignalTap II Logic Analyzer Editor includes support for adding multiple logic analyzers by creating
instances in the .stp. You can create a unique logic analyzer for each clock domain in the design.

Monitor FPGA Resources Used by the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer has a built-in resource estimator that calculates the logic resources and
amount of memory that each logic analyzer instance uses. Furthermore, because the most demanding on-
chip resource for the logic analyzer is memory usage, the resource estimator reports the ratio of total
RAM usage in your design to the total amount of RAM available, given the results of the last compilation.
The resource estimator provides a warning if a potential for a “no-fit” occurs.

You can see resource usage of each logic analyzer instance and total resources used in the columns of the
Instance Manager pane of the SignalTap II Logic Analyzer Editor. Use this feature when you know that
your design is running low on resources.

The logic element value reported in the resource usage estimator may vary by as much as 10% from the
actual resource usage.

Use the Parameter Editor to Create Your Logic Analyzer
You can create a SignalTap II Logic Analyzer instance by using the parameter editor. The parameter
editor generates an HDL file that you instantiate in your design.

Note: The state-based trigger flow, the state machine debugging feature, and the storage qualification
feature are not supported when using the parameter editor to create the logic analyzer.

Configuring the SignalTap II Logic Analyzer
There are several ways to configure instances of the SignalTap II Logic Analyzer. Some settings are similar
to those found on traditional external logic analyzers. Other settings are unique to the SignalTap II Logic
Analyzer because it is configurable.

Note: You can only adjust some settings when you are viewing run-time trigger conditions instead of
power-up trigger conditions.

Assigning an Acquisition Clock
Assign a clock signal to control how the SignalTap II Logic Analyzer acquires data. The logic analyzer
samples data on every positive (rising) edge of the acquisition clock. The logic analyzer does not support
sampling on the negative (falling) edge of the acquisition clock. You can use any signal in your design as
the acquisition clock. However, for best results, Altera recommends that you use a global, non-gated clock
synchronous to the signals under test for data acquisition. Using a gated clock as your acquisition clock
can result in unexpected data that does not accurately reflect the behavior of your design. The Quartus
Prime static timing analysis tools show the maximum acquisition clock frequency at which you can run
your design. Refer to the Timing Analysis section of the Compilation Report to find the maximum
frequency of the logic analyzer clock.

Note: Exercise caution when using a recovered clock from a transceiver as an acquisition clock for the
SignalTap II Logic Analyzer. A recovered clock can cause incorrect or unexpected behavior,
particularly when the transceiver recovered clock is the acquisition clock with the power-up trigger
feature.

QPS5V3
2015.11.02 Embed Multiple Analyzers in One FPGA 13-7

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you do not assign an acquisition clock in the SignalTap II Logic Analyzer Editor, the Quartus Prime
software automatically creates a clock pin called auto_stp_external_clk. You must make a pin
assignment to this pin and ensure that a clock signal in your design drives the acquisition clock.

Related Information
Managing Device I/O Pins documentation
Information about assigning signals to pins

Adding Signals to the SignalTap II File
Add signals to the .stp node list to select which signals in your design you want to monitor. You can also
select signals to define triggers. You can assign the following two signal types:

• Pre-synthesis—These signals exists after design elaboration, but before any synthesis optimizations
are done. This set of signals should reflect your Register Transfer Level (RTL) signals.

• Post-fitting—This signal exists after physical synthesis optimizations and place-and-route.

Note: If you are not using incremental compilation, add only pre-synthesis signals to the .stp. Using pre-
synthesis helps when you want to add a new node after you change a design. Source file changes
appear in the Node Finder after you perform an Analysis and Elaboration. On the Processing
Menu, point to Start and click Start Analysis & Elaboration.

The Quartus Prime software does not limit the number of signals available for monitoring in the
SignalTap II window waveform display. However, the number of channels available is directly
proportional to the number of logic elements (LEs) or adaptive logic modules (ALMs) in the device.
Therefore, there is a physical restriction on the number of channels that are available for monitoring.
Signals shown in blue text are post-fit node names. Signals shown in black text are pre-synthesis node
names.

After successful Analysis and Elaboration, invalid signals are displayed in red. Unless you are certain that
these signals are valid, remove them from the .stp for correct operation. The SignalTap II Status Indicator
also indicates if an invalid node name exists in the .stp.

You can tap signals if a routing resource (row or column interconnects) exists to route the connection to
the SignalTap II instance. For example, signals that exist in the I/O element (IOE) cannot be directly
tapped because there are no direct routing resources from the signal in an IOE to a core logic element. For
input pins, you can tap the signal that is driving a logic array block (LAB) from an IOE, or, for output
pins, you can tap the signal from the LAB that is driving an IOE.

When adding pre-synthesis signals, make all connections to the SignalTap II Logic Analyzer before
synthesis. Logic and routing resources are allocated during recompilation to make the connection as if a
change in your design files had been made. Pre-synthesis signal names for signals driving to and from
IOEs coincide with the signal names assigned to the pin.

In the case of post-fit signals, connections that you make to the SignalTap II Logic Analyzer are the signal
names from the actual atoms in your post-fit netlist. You can only make a connection if the signals are
part of the existing post-fit netlist and existing routing resources are available from the signal of interest to
the SignalTap II Logic Analyzer. In the case of post-fit output signals, tap the COMBOUT or REGOUT signal
that drives the IOE block. For post-fit input signals, signals driving into the core logic coincide with the
signal name assigned to the pin.

Note: Because NOT-gate push back applies to any register that you tap, the signal from the atom may be
inverted. You can check this by locating the signal in either the Resource Property Editor or the

13-8 Adding Signals to the SignalTap II File
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471036713/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Technology Map Viewer. The Technology Map viewer and the Resource Property Editor can also
be used to help you find post-fit node names.

Related Information

• Faster Compilations with Quartus Prime Incremental Compilation on page 13-45
• Analyzing Designs with Quartus Prime Netlist Viewers documentation

Information about cross-probing to source design files and other Quartus Prime windows

Preserving Signals
The Quartus Prime software optimizes the RTL signals during synthesis and place-and-route. RTL signal
names frequently may not appear in the post-fit netlist after optimizations.

For example, the compilation process can add tildes (~) to nets that fan-out from a node, making it
difficult to decipher which signal nets they actually represent. When the Quartus Prime software
encounters the following synthesis attributes, it does not perform any optimization on the specified
signals, allowing them to persist into the post-fit netlist.

• keep—Ensures that combinational signals are not removed
• preserve—Ensures that registers are not removed

Using these attributes can increase device resource utilization or decrease timing performance.

Note: These processing results can cause problems when you use the incremental compilation flow with
the SignalTap II Logic Analyzer. Because you can only add post-fitting signals to the SignalTap II
Logic Analyzer in partitions of type post-fit, RTL signals that you want to monitor may not be
available, preventing their use. To avoid this issue, use synthesis attributes to preserve signals
during synthesis and place-and-route.

If you are debugging an IP core, such as the Nios II CPU or other encrypted IP, you might need to
preserve nodes from the core to make them available for debugging with the SignalTap II Logic Analyzer.
Preserving nodes is often necessary when a plug-in is used to add a group of signals for a particular IP.

If you use incremental compilation flow with the SignalTap II Logic Analyzer, pre-synthesis nodes may
not be connected to the SignalTap II Logic Analyzer if the affected partition is of the post-fit type. A
critical warning is issued for all pre-synthesis node names that are not found in the post-fit netlist.

Related Information
Quartus Prime Integrated Synthesis documentation
Information about using signal preservation attributes

Assigning Data Signals Using the Technology Map Viewer
You can use the Technology map viewer to add post-fit signal names easily. To do so, launch the
Technology map viewer (post-fitting) after compiling your design. When you find the desired node, copy
the node to either the active .stp for your design or a new .stp.

Node List Signal Use Options
When you add a signal to the node list, you can select options that specify how the logic analyzer uses the
signal.

You can turn off the ability of a signal to trigger the analyzer by disabling the Trigger Enable option for
that signal in the node list in the .stp. This option is useful when you want to see only the captured data for
a signal and you are not using that signal as part of a trigger.

QPS5V3
2015.11.02 Preserving Signals 13-9

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409960088177/en-us
https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959843979/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can turn off the ability to view data for a signal by disabling the Data Enable column. This option is
useful when you want to trigger on a signal, but have no interest in viewing data for that signal.

Related Information
Define Triggers on page 13-22

Disabling and Enabling a SignalTap II Instance
Disable and enable SignalTap II instances in the Instance Manager pane. Physically adding or removing
instances requires recompilation after disabling and enabling a SignalTap II instance.

Untappable Signals
Not all of the post-fitting signals in your design are available in the SignalTap II : post-fitting filter in the
Node Finder dialog box. The following signal types cannot be tapped:

• Post-fit output pins—You cannot tap a post-fit output pin directly. To make an output signal visible,
tap the register or buffer that drives the output pin. This includes pins defined as bidirectional.

• Signals that are part of a carry chain—You cannot tap the carry out (cout0 or cout1) signal of a logic
element. Due to architectural restrictions, the carry out signal can only feed the carry in of another LE.

• JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS) signals.
• ALTGXB IP core—You cannot directly tap any ports of an ALTGXB instantiation.
• LVDS—You cannot tap the data output from a serializer/deserializer (SERDES) block.
• DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a DDR/DDRII design.

Adding Signals with a Plug-In
Instead of adding individual or grouped signals through the Node Finder, you can add groups of relevant
signals of a particular type of IP with a plug-in. The SignalTap II Logic Analyzer comes with one plug-in
already installed for the Nios II processor. Besides easy signal addition, plug-ins also provide features such
as pre-designed mnemonic tables, useful for trigger creation and data viewing, as well as the ability to
disassemble code in captured data.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and two tables in the Data
tab:

• Nios II Instruction (Setup tab)—Capture all the required signals for triggering on a selected instruc‐
tion address.

• Nios II Instance Address (Data tab)—Display address of executed instructions in hexadecimal format
or as a programming symbol name if defined in an optional Executable and Linking Format (.elf) file.

• Nios II Disassembly (Data tab)—Displays disassembled code from the corresponding address.

To add signals to the .stp using a plug-in, perform the following steps after running Analysis and Elabora‐
tion on your design:

1. Right-click in the node list. On the Add Nodes with Plug-In submenu, choose the plug-in you want to
use, such as the included plug-in named Nios II.

Note: If the IP for the selected plug-in does not exist in your design, a message informs you that you
cannot use the selected plug-in.

2. The Select Hierarchy Level dialog box appears showing the IP hierarchy of your design. Select the IP
that contains the signals you want to monitor with the plug-in and click OK.

3. If all the signals in the plug-in are available, a dialog box might appear, depending on the plug-in
selected, where you can specify options for the plug-in. With the Nios II plug-in, you can optionally

13-10 Disabling and Enabling a SignalTap II Instance
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

select an .elf containing program symbols from your Nios II Integrated Development Environment
(IDE) software design. Specify options for the selected plug-in as desired and click OK.

Note: To make sure all the required signals are available, in the Quartus Prime Analysis & Synthesis
settings, click click Assignments > Settings > Compiler Settings > Advanced Settings
(Synthesis). Turn on Create debugging nodes for IP cores.

All the signals included in the plug-in are added to the node list.

Related Information

• Define Triggers on page 13-22
• View, Analyze, and Use Captured Data on page 13-6

Adding Finite State Machine State Encoding Registers
Finding the signals to debug finite state machines (FSM) can be challenging. Finding nodes from the post-
fit netlist may be impossible, as FSM encoding signals may be changed or optimized away during
synthesis and place-and-route. If you can find all of the relevant nodes in the post-fit netlist or you used
the nodes from the pre-synthesis netlist, an additional step is required to find and map FSM signal values
to the state names that you specified in your HDL.

The SignalTap II Logic Analyzer can detect FSMs in your compiled design. The SignalTap II Logic
Analyzer configuration automatically tracks the FSM state signals as well as state encoding through the
compilation process. Shortcut menu commands allow you to add all of the FSM state signals to your logic
analyzer with a single command. For each FSM added to your SignalTap II configuration, the FSM
debugging feature adds a mnemonic table to map the signal values to the state enumeration that you
provided in your source code. The mnemonic tables enable you to visualize state machine transitions in
the waveform viewer. The FSM debugging feature supports adding FSM signals from both the pre-
synthesis and post-fit netlists.

Figure 13-4: Decoded FSM Mnemonics

The waveform viewer with decoded signal values from a state machine added with the FSM debugging
feature.

Related Information
Recommended HDL Coding Styles documentation
Coding guidelines for specifying FSM in Verilog HDL and VHDL

Modifying and Restoring Mnemonic Tables for State Machines
When you add FSM state signals via the FSM debugging feature, the SignalTap II Logic Analyzer GUI
creates a mnemonic table using the format <StateSignalName>_table, where StateSignalName is the
name of the state signals that you have declared in your RTL. You can edit any mnemonic table using the
Mnemonic Table Setup dialog box.

If you want to restore a mnemonic table that was modified, right-click anywhere in the node list window
and select Recreate State Machine Mnemonics. By default, restoring a mnemonic table overwrites the

QPS5V3
2015.11.02 Adding Finite State Machine State Encoding Registers 13-11

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409959570946/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

existing mnemonic table that you modified. To restore a FSM mnemonic table to a new record, turn off
Overwrite existing mnemonic table in the Recreate State Machine Mnemonics dialog box.

Note: If you have added or deleted a signal from the FSM state signal group from within the setup tab,
delete the modified register group and add the FSM signals back again.

Related Information
Creating Mnemonics for Bit Patterns on page 13-58

Additional Considerations
The SignalTap II configuration GUI recognizes state machines from your design only if you use Quartus
Prime Integrated Synthesis (QIS). The state machine debugging feature is not able to track the FSM
signals or state encoding if you use other EDA synthesis tools.

If you add post-fit FSM signals, the SignalTap II Logic Analyzer FSM debug feature may not track all
optimization changes that are a part of the compilation process. If the following two specific optimiza‐
tions are enabled, the SignalTap II FSM debug feature may not list mnemonic tables for state machines in
the design:

• If you have physical synthesis turned on, state registers may be resource balanced (register retiming) to
improve fMAX. The FSM debug feature does not list post-fit FSM state registers if register retiming
occurs.

• The FSM debugging feature does not list state signals that have been packed into RAM and DSP blocks
during QIS or Fitter optimizations.

You can still use the FSM debugging feature to add pre-synthesis state signals.

Specifying the Sample Depth
The sample depth specifies the number of samples that are captured and stored for each signal in the
captured data buffer. To specify the sample depth, select the desired number of samples to store in the
Sample Depth list. The sample depth ranges from 0 to 128K.

If device memory resources are limited, you may not be able to successfully compile your design with the
sample buffer size you have selected. Try reducing the sample depth to reduce resource usage.

Capturing Data to a Specific RAM Type
When you use the SignalTap II Logic Analyzer with some devices, you have the option to select the RAM
type where acquisition data is stored. Once SignalTap II Logic Analyzer is allocated to a particular RAM
block, the entire RAM block becomes a dedicated resource for the logic analyzer. RAM selection allows
you to preserve a specific memory block for your design and allocate another portion of memory for
SignalTap II Logic Analyzer data acquisition. For example, if your design has an application that requires
a large block of memory resources, such a large instruction or data cache, you would choose to use MLAB,
M512, or M4k blocks for data acquisition and leave the M9k blocks for the rest of your design.

To select the RAM type to use for the SignalTap II Logic Analyzer buffer, select it from the RAM type list.
Use this feature when the acquired data (as reported by the SignalTap II resource estimator) is not larger
than the available memory of the memory type that you have selected in the FPGA.

Choosing the Buffer Acquisition Mode
The Buffer Acquisition Type Selection feature in the SignalTap II Logic Analyzer lets you choose how the
captured data buffer is organized and can potentially reduce the amount of memory that is required for

13-12 Additional Considerations
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

SignalTap II data acquisition. There are two types of acquisition buffer within the SignalTap II Logic
Analyzer—a non-segmented (or circular) buffer and a segmented buffer. With a non-segmented buffer,
the SignalTap II Logic Analyzer treats entire memory space as a single FIFO, continuously filling the
buffer until the logic analyzer reaches a defined set of trigger conditions. With a segmented buffer, the
memory space is split into a number of separate buffers. Each buffer acts as a separate FIFO with its own
set of trigger conditions. Only a single buffer is active during an acquisition. The SignalTap II Logic
Analyzer advances to the next segment after the trigger condition or conditions for the active segment has
been reached.

When using a non-segmented buffer, you can use the storage qualification feature to determine which
samples are written into the acquisition buffer. Both the segmented buffers and the non-segmented buffer
with the storage qualification feature help you maximize the use of the available memory space. Figure
13-5 illustrates the differences between the two buffer types.

Figure 13-5: Buffer Type Comparison in the SignalTap II Logic Analyzer

Newly
Captured
Data

Oldest Data
 Removed

Post-Trigger Pre-Trigger Center Trigger

1 1

All
Trigger Level

Segment 1 Segment 2 Segment 3 Segment 4

Segment
Trigger Level

1 1 ... 0 1 1 0 ... 0 1 1 1 ... 0 1 1 0 ... 0 1

0 0 1 0 0 1 0 1

Segment
Trigger Level

Segment
Trigger Level

1 (a) Circular Buffer

(b) Segmented Buffer

Notes to figure :

1. Both non-segmented and segmented buffers can use a predefined trigger (Pre-Trigger, Center Trigger,
Post-Trigger) position or define a custom trigger position using the State-Based Triggering tab. Refer
to Specifying the Trigger Position for more details.

2. Each segment is treated like a FIFO, and behaves as the non-segmented buffer shown in (a).

Related Information
Using the Storage Qualifier Feature on page 13-14

Non-Segmented Buffer

The non-segmented buffer (also known as a circular buffer) shown in Figure 13-5 (a) is the default buffer
type used by the SignalTap II Logic Analyzer. While the logic analyzer is running, data is stored in the
buffer until it fills up, at which point new data replaces the oldest data. This continues until a specified
trigger event, consisting of a set of trigger conditions, occurs. When the trigger event happens, the logic
analyzer continues to capture data after the trigger event until the buffer is full, based on the trigger
position setting in the Signal Configuration pane or the .stp. To capture the majority of the data before
the trigger occurs, select Post trigger position from the list. To capture the majority of the data after the
trigger, select Pre-trigger position. To center the trigger position in the data, select Center trigger
position. Alternatively, use the custom State-based triggering flow to define a custom trigger position
within the capture buffer.

QPS5V3
2015.11.02 Non-Segmented Buffer 13-13

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Specifying the Trigger Position on page 13-41

Segmented Buffer
A segmented buffer allows you to debug systems that contain relatively infrequent recurring events. The
acquisition memory is split into evenly sized segments, with a set of trigger conditions defined for each
segment. Each segment acts as a non-segmented buffer. If you want to have separate trigger conditions for
each of the segmented buffers, you must use the state-based trigger flow. Figure 13-6 shows an example of
a segmented buffer system. If you want to have separate trigger conditions for each of the segmented
buffers, you must use the state-based trigger flow.

Figure 13-6: Example System that Generates Recurring Events

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]

WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers

(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals

The SignalTap II Logic Analyzer verifies the functionality of the design shown in Figure 13-6 to ensure
that the correct data is written to the SRAM controller. Buffer acquisition in the SignalTap II Logic
Analyzer allows you to monitor the RDATA port when H'0F0F0F0F is sent into the RADDR port. You can
monitor multiple read transactions from the SRAM device without running the SignalTap II Logic
Analyzer again. The buffer acquisition feature allows you to segment the memory so you can capture the
same event multiple times without wasting allocated memory. The number of cycles that are captured
depends on the number of segments specified under the Data settings.

To enable and configure buffer acquisition, select Segmented in the SignalTap II Logic Analyzer Editor
and select the number of segments to use. In the example in Figure 13-6, selecting sixty-four 64-sample
segments allows you to capture 64 read cycles when the RADDR signal is H'0F0F0F0F.

Using the Storage Qualifier Feature
Both non-segmented and segmented buffers described in the previous section offer a snapshot in time of
the data stream being analyzed. The default behavior for writing into acquisition memory with the
SignalTap II Logic Analyzer is to sample data on every clock cycle. With a non-segmented buffer, there is
one data window that represents a comprehensive snapshot of the datastream. Similarly, segmented
buffers use several smaller sampling windows spread out over more time, with each sampling window
representing a contiguous data set.

With carefully chosen trigger conditions and a generous sample depth for the acquisition buffer, analysis
using segmented and non-segmented buffers captures a majority of functional errors in a chosen signal
set. However, each data window can have a considerable amount of redundancy associated with it; for

13-14 Segmented Buffer
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

example, a capture of a data stream containing long periods of idle signals between data bursts. With
default behavior using the SignalTap II Logic Analyzer, you cannot discard the redundant sample bits.

The Storage Qualification feature allows you to filter out individual samples not relevant to debugging the
design. With this feature, a condition acts as a write enable to the buffer during each clock cycle of data
acquisition. Through fine tuning the data that is actually stored in acquisition memory, the Storage
Qualification feature allows for a more efficient use of acquisition memory in the specified number of
samples over a longer period of analysis.

Use of the Storage Qualification feature is similar to an acquisition using a segmented buffer, in that you
can create a discontinuity in the capture buffer. Because you can create a discontinuity between any two
samples in the buffer, the Storage Qualification feature is equivalent to being able to create a customized
segmented buffer in which the number and size of segment boundaries are adjustable.

Note: You can only use the Storage Qualification feature with a non-segmented buffer. The IP Catalog
flow only supports the Input Port mode for the Storage Qualification feature.

Figure 13-7: Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

QPS5V3
2015.11.02 Using the Storage Qualifier Feature 13-15

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Notes to figure :

1. Non-segmented Buffers capture a fixed sample window of contiguous data.
2. Segmented buffers divide the buffer into fixed sized segments, with each segment having an equal

sample depth.
3. Storage Qualification allows you to define a custom sampling window for each segment you create

with a qualifying condition. Storage qualification potentially allows for a larger time scale of coverage.

There are six storage qualifier types available under the Storage Qualification feature:

• Continuous
• Input port
• Transitional
• Conditional
• Start/Stop
• State-based

Continuous (the default mode selected) turns the Storage Qualification feature off.

Each selected storage qualifier type is active when an acquisition starts. Upon the start of an acquisition,
the SignalTap II Logic Analyzer examines each clock cycle and writes the data into the acquisition buffer
based upon storage qualifier type and condition. The acquisition stops when a defined set of trigger
conditions occur.

Note: Trigger conditions are evaluated independently of storage qualifier conditions. The SignalTap II
Logic Analyzer evaluates the data stream for trigger conditions on every clock cycle after the
acquisition begins.

The storage qualifier operates independently of the trigger conditions.

Related Information
Define Trigger Conditions on page 13-6

Input Port Mode
When using the Input port mode, the SignalTap II Logic Analyzer takes any signal from your design as an
input. When the design is running, if the signal is high on the clock edge, the SignalTap II Logic Analyzer
stores the data in the buffer. If the signal is low on the clock edge, the data sample is ignored. A pin is
created and connected to this input port by default if no internal node is specified.

If you are using an .stp to create a SignalTap II Logic Analyzer instance, specify the storage qualifier signal
using the input port field located on the Setup tab. You must specify this port for your project to compile.

If you use the parameter editor, the storage qualification input port, if specified, appears in the generated
instantiation template. You can then connect this port to a signal in your RTL.

Figure 13-8: Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (Segmented
Buffer)

13-16 Input Port Mode
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-9: Data Acquisition of a Recurring Data Pattern Using an Input Signal as a Storage Qualifier

Transitional Mode
In Transitional mode, you choose a set of signals for inspection using the node list check boxes in the
Storage Qualifier column. During acquisition, if any of the signals marked for inspection have changed
since the previous clock cycle, new data is written to the acquisition buffer. If none of the signals marked
have changed since the previous clock cycle, no data is stored.

Figure 13-10: Transitional Storage Qualifier Setup

Figure 13-11: Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (Transitional
Mode)

QPS5V3
2015.11.02 Transitional Mode 13-17

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-12: Data Acquisition of Recurring Data Pattern Using a Transitional Mode as a Storage
Qualifier

Conditional Mode
In Conditional mode, the SignalTap II Logic Analyzer evaluates a combinational function of storage
qualifier enabled signals within the node list to determine whether a sample is stored. The SignalTap II
Logic Analyzer writes into the buffer during the clock cycles in which the condition you specify evaluates
TRUE.

You can select either Basic AND, Basic OR, or Advanced storage qualifier conditions. A Basic AND or
Basic OR storage qualifier condition matches each signal to one of the following:

• Don’t Care
• Low
• High
• Falling Edge
• Rising Edge
• Either Edge

If you specify a Basic AND storage qualifier condition for more than one signal, the SignalTap II Logic
Analyzer evaluates the logical AND of the conditions.

Any other combinational or relational operators that you may want to specify with the enabled signal set
for storage qualification can be done with an advanced storage condition. Figure 13-13 details the
conditional storage qualifier setup in the .stp.

You can specify storage qualification conditions similar to the manner in which trigger conditions are
specified.

Figure 13-14 and Figure 13-15 show a data capture with continuous sampling, and the same data pattern
using the conditional mode for analysis, respectively.

13-18 Conditional Mode
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-13: Conditional Storage Qualifier Setup

Figure 13-14: Data Acquisition of a Recurring Data Pattern in Continuous Capture Mode (Conditional)

Figure 13-15: Data Acquisition of a Recurring Data Pattern in Conditional Capture Mode

Related Information

• Creating Basic Trigger Conditions on page 13-23
• Creating Advanced Trigger Conditions on page 13-25

Start/Stop Mode
The Start/Stop mode is similar to the Conditional mode for storage qualification. However, in this mode
there are two sets of conditions, one for start and one for stop. If the start condition evaluates to TRUE,
data is stored in the buffer every clock cycle until the stop condition evaluates to TRUE, which then pauses

QPS5V3
2015.11.02 Start/Stop Mode 13-19

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the data capture. Additional start signals received after the data capture has started are ignored. If both
start and stop evaluate to TRUE at the same time, a single cycle is captured.

Note: You can force a trigger by pressing the Stop button if the buffer fails to fill to completion due to a
stop condition.

Figure 13-16 shows the Start/Stop mode storage qualifier setup. Figure 13-17 and Figure 13-18 show a
data capture pattern in continuous capture mode and a data pattern in using the Start/Stop mode for
storage qualification.

Figure 13-16: Start/Stop Mode Storage Qualifier Setup

Figure 13-17: Data Acquisition of a Recurring Data Pattern in Continuous Mode (Start/Stop)

Figure 13-18: Data Acquisition of a Recurring Data Pattern with Start/Stop Storage Qualifier Enabled

State-Based
The State-based storage qualification mode is used with the State-based triggering flow. The state based
triggering flow evaluates an if-else based language to define how data is written into the buffer. With the
State-based trigger flow, you have command over boolean and relational operators to guide the execution

13-20 State-Based
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

flow for the target acquisition buffer. When the storage qualifier feature is enabled for the State-based
flow, two additional commands are available, the start_store and stop_store commands. These
commands operate similarly to the Start/Stop capture conditions described in the previous section. Upon
the start of acquisition, data is not written into the buffer until a start_store action is performed. The
stop_store command pauses the acquisition. If both start_store and stop_store actions are
performed within the same clock cycle, a single sample is stored into the acquisition buffer.

Related Information
State-Based Triggering on page 13-32

Showing Data Discontinuities
When you turn on Record data discontinuities, the SignalTap II Logic Analyzer marks the samples
during which the acquisition paused from a storage qualifier. This marker is displayed in the waveform
viewer after acquisition completes.

Disable Storage Qualifier
You can turn off the storage qualifier quickly with the Disable Storage Qualifier option, and perform a
continuous capture. This option is run-time reconfigurable; that is, the setting can be changed without
recompiling the project. Changing storage qualifier mode from the Type field requires a recompilation of
the project.

Related Information
Runtime Reconfigurable Options on page 13-52

Managing Multiple SignalTap II Files and Configurations
You can use more than one .stp in one design. Each file potentially has a different group of monitored
signals. These signal groups make it possible to debug different blocks in your design. In turn, each group
of signals can also be used to define different sets of trigger conditions. Along with each .stp, there is also
an associated programming file (SRAM Object File [.sof]). The settings in a selected SignalTap II file must
match the SignalTap II logic design in the associated .sof for the logic analyzer to run properly when the
device is programmed. Use the Data Log feature and the SOF Manager to manage all of the .stp files and
their associated settings and programming files.

The Data Log allows you to store multiple SignalTap II configurations within a single .stp. Figure 13-19
shows two signal set configurations with multiple trigger conditions in one .stp. To toggle between the
active configurations, double-click on an entry in the Data Log. As you toggle between the different
configurations, the signal list and trigger conditions change in the Setup tab of the .stp. The active
configuration displayed in the .stp is indicated by the blue square around the signal specified in the Data
Log. Enable the Data Log by clicking the check box next to Data Log. To store a configuration in the Data
Log, on the Edit menu, click Save to Data Log or click the Save to Data Log icon at the top of the Data
Log. The time stamping for the Data Log entries display the wall-clock time when SignalTap II triggered
and the elapsed time from when acquisition started to when the device triggered.

QPS5V3
2015.11.02 Showing Data Discontinuities 13-21

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-19: Data Log

The SOF Manager allows you to embed multiple SOFs into one .stp. Embedding an SOF in an .stp lets you
move the .stp to a different location, either on the same computer or across a network, without the need to
include the associated .sof separately. To embed a new SOF in the .stp, right-click in the SOF Manager,
and click Attach SOF File .

Figure 13-20: SOF Manager

As you switch between configurations in the Data Log, you can extract the SOF that is compatible with
that particular configuration. You can use the programmer in the SignalTap II Logic Analyzer to
download the new SOF to the FPGA, ensuring that the configuration of your .stp always matches the
design programmed into the target device.

Define Triggers
When you start the SignalTap II Logic Analyzer, it samples activity continuously from the monitored
signals. The SignalTap II Logic Analyzer “triggers”—that is, the logic analyzer stops and displays the data
—when a condition or set of conditions that you specified has been reached. This section describes the
various types of trigger conditions that you can specify using the SignalTap II Logic Analyzer on the
Signal Configuration pane.

13-22 Define Triggers
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating Basic Trigger Conditions
The simplest kind of trigger condition is a basic trigger. Select this from the list at the top of the Trigger
Conditions column in the node list in the SignalTap II Logic Analyzer Editor. If you select the Basic
AND or Basic OR trigger type, you must specify the trigger pattern for each signal you have added in
the .stp. To specify the trigger pattern, right-click in the Trigger Conditions column and click the desired
pattern. Set the trigger pattern to any of the following conditions:

• Don’t Care
• Low
• High
• Falling Edge
• Rising Edge
• Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the pattern in other
number formats. Note that you can enter X to specify a set of “don’t care” values in either your hexadec‐
imal or your binary string. For signals added to the .stp that have an associated mnemonic table, you can
right-click and select an entry from the table to specify pre-defined conditions for the trigger.

For more information about creating and using mnemonic tables, refer to View, Analyze, and Use
Captured Data, and to the Quartus Prime Help.

For signals added with certain plug-ins, you can create basic triggers easily using predefined mnemonic
table entries. For example, with the Nios II plug-in, if you have specified an .elf from your Nios II IDE
design, you can type the name of a function from your Nios II code. The logic analyzer triggers when the
Nios II instruction address matches the address of the specified code function name.

Data capture stops and the data is stored in the buffer when the logical AND of all the signals for a given
trigger condition evaluates to TRUE.

Using the Basic OR Triggering Condition with Nested Groups
When you specify a set of signals as a nested group (group of groups) with the Basic OR trigger type, an
advanced trigger condition is generated. This advanced trigger condition sorts signals within groups to
minimize the need to recompile your design. As long as the parent-child relationships of nodes are kept
constant, the generated advanced trigger condition does not change. You can modify the sibling
relationships of nodes and not need to recompile your design. The precedence of how this trigger
condition is evaluated starts at the bottom-level with the leaf-groups first, then their resulting logic 1 or
logic 0 value is used to compute the result of their parent group’s logic value. Specifying a value of TRUE
for a group sets that group’s logical result to logic 1 and effectively eliminates all members beneath it from
affecting the result of the group trigger. Specifying a value of FALSE for a group sets that group’s logical
result to logic-0 and effectively eliminates all members beneath it from affecting the result of the group
trigger.

1. Select Basic OR under Trigger Conditions.
2. In the Setup tab, select nodes including groups.
3. Right-click in the Setup tab and select Group.
4. Select your signal(s) and right-click to set a group trigger condition that applies the reduction AND,

OR, NAND, NOR, XOR, XNOR, or logical TRUE or FALSE.

Note: The OR and AND group trigger conditions are only selectable for groups with no groups as
children (bottom-level groups).

QPS5V3
2015.11.02 Creating Basic Trigger Conditions 13-23

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-21: Creating Nested Groups

13-24 Using the Basic OR Triggering Condition with Nested Groups
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-22: Applying Group Trigger Condition

Creating Advanced Trigger Conditions
With the basic triggering capabilities of the SignalTap II Logic Analyzer, you can build more complex
triggers with extra logic that enables you to capture data when a combination of conditions exist. If you
select the Advanced trigger type at the top of the Trigger Conditions column in the node list of the
SignalTap II Logic Analyzer Editor, a new tab named Advanced Trigger appears where you can build a
complex trigger expression using a simple GUI. Drag-and-drop operators into the Advanced Trigger
Configuration Editor window to build the complex trigger condition in an expression tree. To configure
the operators’ settings, double-click or right-click the operators that you have placed and select
Properties.

Table 13-2: Advanced Triggering Operators

Name of Operator Type

Less Than Comparison

Less Than or Equal To Comparison

Equality Comparison

Inequality Comparison

Greater Than Comparison

Greater Than or Equal To Comparison

Logical NOT Logical

Logical AND Logical

Logical OR Logical

QPS5V3
2015.11.02 Creating Advanced Trigger Conditions 13-25

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name of Operator Type

Logical XOR Logical

Reduction AND Reduction

Reduction OR Reduction

Reduction XOR Reduction

Left Shift Shift

Right Shift Shift

Bitwise Complement Bitwise

Bitwise AND Bitwise

Bitwise OR Bitwise

Bitwise XOR Bitwise

Edge and Level Detector Signal Detection

Note to table :

1. For more information about each of these
operators, refer to the Quartus Prime Help.

Adding many objects to the Advanced Trigger Condition Editor can make the work space cluttered and
difficult to read. To keep objects organized while you build your advanced trigger condition, use the
shortcut menu and select Arrange All Objects. You can also use the Zoom-Out command to fit more
objects into the Advanced Trigger Condition Editor window.

Examples of Advanced Triggering Expressions
The following examples show how to use Advanced Triggering:

Figure 13-23: Bus outa Is Greater Than or Equal to Bus outb

Trigger when bus outa is greater than or equal to outb.

13-26 Examples of Advanced Triggering Expressions
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-24: Enable Signal Has a Rising Edge

Trigger when bus outa is greater than or equal to bus outb, and when the enable signal has a rising edge.

Figure 13-25: Bitwise AND Operation

Trigger when bus outa is greater than or equal to bus outb, or when the enable signal has a rising edge.
Or, when a bitwise AND operation has been performed between bus outc and bus outd, and all bits of the
result of that operation are equal to 1.

Custom Trigger HDL Object
The Custom Trigger HDL object found in the Advanced Trigger editor allows you to create a customized
trigger condition with your own HDL module in either Verilog or VHDL. You can use this object to
simulate the behavior of your triggering logic to make sure that the logic itself is not faulty. You can tap
specific instances of modules located anywhere in the hierarchy of your design without having to
manually route all the necessary connections.

QPS5V3
2015.11.02 Custom Trigger HDL Object 13-27

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-26: Object Library

Custom Trigger Flow

1. Select Advanced for a given trigger-level to make the Advanced Trigger editor active.
2. Prepare your Custom Trigger HDL module. You can either add a new source file to Quartus Prime

that contains the trigger module or append the HDL for your trigger module to a source file already
included in Quartus Prime Files under the Project Navigator.

Figure 13-27: Project Navigator

3. Implement the required inputs and outputs for your Custom Trigger HDL module, see Table 13-3.
4. Drag in your Custom Trigger HDL object and connect the object’s data input bus and result output bit

to the final trigger result.
Figure 13-28: Custom Trigger HDL Object

13-28 Custom Trigger Flow
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Right-click your Custom Trigger HDL object and configure the object’s properties, see Table 13-4.
Figure 13-29: Configure Object Properties

6. Compile your design.
7. Acquire data with SignalTap II using your custom Trigger HDL object.

Table 13-3: Custom Trigger HDL Module Required Inputs and Outputs

Name Description Input/Output Required/
Optional

acq_clk Acquisition clock used by SignalTap II Input Required
reset Reset signal used by SignalTap II when restarting a capture. Input Required
data_in • Data input to be connected in the Advanced Trigger

editor.
• Data your module will use to trigger.

Input Required

pattern_in • Module’s input for the configuration bitstream property.
• Runtime configurable property that can be set from

SignalTap II GUI to change the behavior of your trigger
logic.

Input Optional

trigger_out Output signal of your module to be asserted when triggering
conditions have been met.

Output Required

Table 13-4: Custom Trigger HDL Module Properties

Property Description

Custom HDL
Module Name

Module name of your triggering logic

i.e. module trigger_foo (input x, y ...);

QPS5V3
2015.11.02 Custom Trigger Flow 13-29

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Property Description

Configuration
Bitstream

• Allows you to create runtime-configurable trigger logic which can change its
behavior based upon the value of the configuration bitstream.

• Configuration bitstream property is interpreted as binary and should only contain
the characters 1 and 0. The bit-width (number of 1s and 0s) should match the
pattern_in bit width in Table 13-3.

• A blank configuration bitstream implies that your module does not have a
pattern_in input.

Pipeline • Tells the advanced trigger editor how many stages of pipeline your triggering logic
has.

• If it takes three clock cycles after a triggering input is received for the trigger
output to be asserted, you can denote a pipeline value of three.

Figure 13-30: Example of Verilog Trigger Using Configuration Bitstream

Figure 13-31: Example of Verilog Trigger with No Configuration Bitstream

Trigger Condition Flow Control
The SignalTap II Logic Analyzer offers multiple triggering conditions to give you precise control of the
method in which data is captured into the acquisition buffers. Trigger Condition Flow allows you to
define the relationship between a set of triggering conditions. The SignalTap II Logic Analyzer Signal
Configuration pane offers two flow control mechanisms for organizing trigger conditions:

13-30 Trigger Condition Flow Control
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Sequential Triggering—The default triggering flow. Sequential triggering allows you to define up to
10 triggering levels that must be satisfied before the acquisition buffer finishes capturing.

• State-Based Triggering—Allows you the greatest control over your acquisition buffer. Custom-based
triggering allows you to organize trigger conditions into states based on a conditional flow that you
define.

You can use sequential or state based triggering with either a segmented or a non-segmented buffer.

Sequential Triggering
Sequential triggering flow allows you to cascade up to 10 levels of triggering conditions. The SignalTap II
Logic Analyzer sequentially evaluates each of the triggering conditions. When the last triggering condition
evaluates to TRUE, the SignalTap II Logic Analyzer triggers the acquisition buffer. For segmented buffers,
every acquisition segment after the first segment triggers on the last triggering condition that you have
specified. Use the Simple Sequential Triggering feature with basic triggers, advanced triggers, or a mix of
both. Figure 13-32 illustrates the simple sequential triggering flow for non-segmented and segmented
buffers.

Note: The external trigger is considered as trigger level 0. The external trigger must be evaluated before the
main trigger levels are evaluated.

Figure 13-32: Sequential Triggering Flow

Non-segmented Buffer Segmented Buffer

Acquisition Segment 1
trigger

Acquisition Segment 2
trigger

Acquisition Segment m
trigger

Acquisition Buffer
trigger

m - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

n - 2 transitions

n - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

Notes to figure:

1. The acquisition buffer stops capture when all n triggering levels are satisfied, where n<10.
2. An external trigger input, if defined, is evaluated before all other defined trigger conditions are

evaluated.

To configure the SignalTap II Logic Analyzer for Sequential triggering, in the SignalTap II editor on the
Trigger flow control list, select Sequential. Select the desired number of trigger conditions from the
Trigger Conditions list. After you select the desired number of trigger conditions, configure each trigger
condition in the node list. To disable any trigger condition, turn on the trigger condition at the top of the
column in the node list.

QPS5V3
2015.11.02 Sequential Triggering 13-31

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

State-Based Triggering
Custom State-based triggering provides the most control over triggering condition arrangement. The
State-Based Triggering flow allows you to describe the relationship between triggering conditions
precisely, using an intuitive GUI and the SignalTap II Trigger Flow Description Language, a simple
description language based upon conditional expressions. Tooltips within the custom triggering flow GUI
allow you to describe your desired flow quickly. The custom State-based triggering flow allows for more
efficient use of the space available in the acquisition buffer because only specific samples of interest are
captured.

Events that trigger the acquisition buffer are organized by a state diagram that you define. All actions
performed by the acquisition buffer are captured by the states and all transition conditions between the
states are defined by the conditional expressions that you specify within each state.

Figure 13-33: State-Based Triggering Flow

User-Defined Triggering Flow

Segmented Acquisition Buffer

Trigger Condition Set a

State 1:

Trigger Condition Set b

State 2:

Trigger Condition Set c

State 3:

Trigger Condition Set d

State n (last state):

First Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition Condition i

Transition Condition j

Transition Condition l

segment_triggersegment_trigger segment_trigger segment_trigger

Transition Condition k

Next Acquisition Segment

Notes to figure:

1. You are allowed up to 20 different states.
2. An external trigger input, if defined, is evaluated before any conditions in the custom State-based

triggering flow are evaluated.

Each state allows you to define a set of conditional expressions. Each conditional expression is a Boolean
expression dependent on a combination of triggering conditions (configured within the Setup tab),
counters, and status flags. Counters and status flags are resources provided by the SignalTap II Logic
Analyzer custom-based triggering flow.

Within each conditional expression you define a set of actions. Actions include triggering the acquisition
buffer to stop capture, a modification to either a counter or status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer or to the entire non-
segmented acquisition buffer. Each trigger action provides you with an optional count that specifies the
number of samples captured before stopping acquisition of the current segment. The count argument
allows you to control the amount of data captured precisely before and after triggering event.

Resource manipulation actions allow you to increment and decrement counters or set and clear status
flags. The counter and status flag resources are used as optional inputs in conditional expressions.

13-32 State-Based Triggering
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Counters and status flags are useful for counting the number of occurrences of particular events and for
aiding in triggering flow control.

This SignalTap II custom State-based triggering flow allows you to capture a sequence of events that may
not necessarily be contiguous in time; for example, capturing a communication transaction between two
devices that includes a handshaking protocol containing a sequence of acknowledgements.

The State-Based Trigger Flow tab is the control interface for the custom state-based triggering flow. To
enable this tab, select State-based on the Trigger Flow Control list. (Note that when Trigger Flow
Control is specified as Sequential, the State-Based Trigger Flow tab is hidden.)

The State-Based Trigger Flow tab is partitioned into the following three panes:

• State Diagram pane
• Resources pane
• State Machine pane

State Diagram Pane
The State Diagram pane provides a graphical overview of the triggering flow that you define. It shows the
number of states available and the state transitions between the states. You can adjust the number of
available states by using the menu above the graphical overview.

State Machine Pane
The State Machine pane contains the text entry boxes where you can define the triggering flow and
actions associated with each state. You can define the triggering flow using the SignalTap II Trigger Flow
Description Language, a simple language based on “if-else” conditional statements. Tooltips appear when
you move the mouse over the cursor, to guide command entry into the state boxes. The GUI provides a
syntax check on your flow description in real-time and highlights any errors in the text flow.

The State Machine description text boxes default to show one text box per state. You can also have the
entire flow description shown in a single text field. This option can be useful when copying and pasting a
flow description from a template or an external text editor. To toggle between one window per state, or all
states in one window, select the appropriate option under State Display mode.

Related Information
SignalTap II Trigger Flow Description Language on page 13-34

Resources Pane
The Resources pane allows you to declare Status Flags and Counters for use in the conditional
expressions in the Custom Triggering Flow. Actions to decrement and increment counters or to set and
clear status flags are performed within the triggering flow that you define.

You can specify up to 20 counters and 20 status flags. Counter and status flags values may be initialized by
right-clicking the status flag or counter name after selecting a number of them from the respective pull-
down list, and selecting Set Initial Value. To specify a counter width, right-click the counter name and
select Set Width. Counters and flag values are updated dynamically after acquisition has started to assist
in debugging your trigger flow specification.

The configurable at runtime options in the Resources pane allows you to configure the custom-flow
control options that can be changed at runtime without requiring a recompilation.

QPS5V3
2015.11.02 State Diagram Pane 13-33

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 13-5: Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In
addition, you can modify the segment_trigger and trigger action post-fill count
argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.

You can restrict changes to your SignalTap II configuration to include only the options that do not
require a recompilation. Trigger lock-mode allows you to make changes that can be immediately reflected
in the device.

1. On the Setup tab, select Allow trigger condition changes only.
2. Modify the Trigger Flow conditions in the Custom Trigger Flow tab.
3. Click the desired parameter in the text box and select a new parameter from the menu that appears.

Incremental Route lock-mode restricts the GUI to only allow changes that require an Incremental Route
compilation using Rapid Recompile. Use Rapid Recompile to perform incremental routing and gain a
2-4x speedup over the initial full compilation.

Note: Trigger lock mode restricts changes to the configuration settings that have configurable at
runtime specified. The runtime configurable settings for the Custom Trigger Flow tab are on by
default. You may get some performance advantages by disabling some of the runtime configurable
options.

Related Information

• Performance and Resource Considerations on page 13-49
• Runtime Reconfigurable Options on page 13-52

SignalTap II Trigger Flow Description Language
The Trigger Flow Description Language is based on a list of conditional expressions per state to define a
set of actions. Each line in the example shows a language format. Keywords are shown in bold. Non-
terminals are delimited by “<>” and are further explained in the following sections. Optional arguments
are delimited by “[]“.

state <State_label>:
<action_list>

if(<Boolean_expression>)
<action_list>
[else if (<boolean_expression>)
<action_list>]
[else
<action_list>]

Note: Multiple else if conditions are allowed.

The priority for evaluation of conditional statements is assigned from top to bottom. The
<boolean_expression> in an if statement can contain a single event, or it can contain multiple event

13-34 SignalTap II Trigger Flow Description Language
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

conditions. The action_list within an if or an else if clause must be delimited by the begin and end
tokens when the action list contains multiple statements. When the boolean expression is evaluated TRUE,
the logic analyzer analyzes all of the commands in the action list concurrently. The possible actions
include:

• Triggering the acquisition buffer
• Manipulating a counter or status flag resource
• Defining a state transition

Related Information
Custom Triggering Flow Application Examples on page 13-65

State Labels
State labels are identifiers that can be used in the action goto.

state <state_label>: begins the description of the actions evaluated when this state is reached.

The description of a state ends with the beginning of another state or the end of the whole trigger flow
description.

Boolean_expression
Boolean_expression is a collection of logical operators, relational operators, and their operands that
evaluate into a Boolean result. Depending on the operator, the operand can be a reference to a trigger
condition, a counter and a register, or a numeric value. Within an expression, parentheses can be used to
group a set of operands.

Logical operators accept any boolean expression as an operand.

Table 13-6: Logical Operators

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Relational operators are performed on counters or status flags. The comparison value, the right operator,
must be a numerical value.

Table 13-7: Relational Operators

Operator Description Syntax

> Greater than
<identifier> > <numerical_value>

>= Greater than or
Equal to <identifier> >= <numerical_value>

== Equals
<identifier> == <numerical_value>

QPS5V3
2015.11.02 State Labels 13-35

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Operator Description Syntax

!= Does not equal
<identifier> != <numerical_value>

<= Less than or equal
to <identifier> <= <numerical_value>

< Less than
<identifier> < <numerical_value>

Notes to table:

1. <identifier> indicates a counter or status flag.
2. <numerical_value> indicates an integer.

Action_list
Action_list is a list of actions that can be performed when a state is reached and a condition is also
satisfied. If more than one action is specified, they must be enclosed by begin and end. The actions can be
categorized as resource manipulation actions, buffer control actions, and state transition actions. Each
action is terminated by a semicolon (;).

Resource Manipulation Action

The resources used in the trigger flow description can be either counters or status flags.

Table 13-8: Resource Manipulation Action

Action Description Syntax

increment Increments a counter resource by 1
increment <counter_identifier>;

decrement Decrements a counter resource by 1
decrement <counter_identifier>;

reset Resets counter resource to initial value
reset <counter_identifier>;

set Sets a status Flag to 1
set <register_flag_identifier>;

clear Sets a status Flag to 0
clear <register_flag_identifier>;

Buffer Control Action

Buffer control actions specify an action to control the acquisition buffer.

13-36 Action_list
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 13-9: Buffer Control Action

Action Description Syntax

trigger Stops the acquisition for the current
buffer and ends analysis. This command
is required in every flow definition.

trigger <post-fill_count>;

segment_trigger Ends the acquisition of the current
segment. The SignalTap II Logic Analyzer
starts acquiring from the next segment on
evaluating this command. If all segments
are filled, the oldest segment is
overwritten with the latest sample. The
acquisition stops when a trigger action is
evaluated.

This action cannot be used in non-
segmented acquisition mode.

segment_trigger <post-fill_count>;

start_store Asserts the write_enable to the
SignalTap II acquisition buffer. This
command is active only when the State-
based storage qualifier mode is enabled.

start_store

stop_store De-asserts the write_enable signal to the
SignalTap II acquisition buffer. This
command is active only when the State-
based storage qualifier mode is enabled.

stop_store

Both trigger and segment_trigger actions accept an optional post-fill count argument. If provided, the
current acquisition acquires the number of samples provided by post-fill count and then stops acquisition.
If no post-count value is specified, the trigger position for the affected buffer defaults to the trigger
position specified in the Setup tab.

Note: In the case of segment_trigger, acquisition of the current buffer stops immediately if a
subsequent triggering action is issued in the next state, regardless of whether or not the post-fill
count has been satisfied for the current buffer. The remaining unfilled post-count acquisitions in
the current buffer are discarded and displayed as grayed-out samples in the data window.

State Transition Action
The State Transition action specifies the next state in the custom state control flow. It is specified by the
goto command. The syntax is as follows:

goto <state_label>;

Using the State-Based Storage Qualifier Feature
When you select State-based for the storage qualifier type, the start_store and stop_store actions are
enabled in the State-based trigger flow. These commands, when used in conjunction with the expressions
of the State-based trigger flow, give you maximum flexibility to control data written into the acquisition
buffer.

Note: The start_store and stop_store commands can only be applied to a non-segmented buffer.

The start_store and stop_store commands function similar to the start and stop conditions when
using the start/stop storage qualifier mode conditions. If storage qualification is enabled, the

QPS5V3
2015.11.02 State Transition Action 13-37

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

start_store command must be issued for SignalTap II to write data into the acquisition buffer. No data
is acquired until the start_store command is performed. Also, a trigger command must be included
as part of the trigger flow description. The trigger command is necessary to complete the acquisition
and display the results on the waveform display.

The following example illustrates the behavior of the State-based trigger flow with the storage qualifica‐
tion commands.

State 1: ST1:
if (condition1)
 start_store;
else if (condition2)
 trigger value;
else if (condition3)
 stop_store;

Figure 13-34 shows a hypothetical scenario with three trigger conditions that happen at different times
after you click Start Analysis. The trigger flow description in the example above , when applied to the
scenario shown in Figure 13-34, illustrates the functionality of the storage qualification feature for the
state-based trigger flow.

Figure 13-34: Capture Scenario for Storage Qualification with the State-Based Trigger Flow

In this example, the SignalTap II Logic Analyzer does not write into the acquisition buffer until sample a,
when Condition 1 occurs. Once sample b is reached, the trigger value command is evaluated. The logic
analyzer continues to write into the buffer to finish the acquisition. The trigger flow specifies a
stop_store command at sample c, m samples after the trigger point occurs.

The logic analyzer finishes the acquisition and displays the contents of the waveform if it can successfully
finish the post-fill acquisition samples before Condition 3 occurs. In this specific case, the capture ends if
the post-fill count value is less than m.

If the post-fill count value specified in Trigger Flow description 1 is greater than m samples, the buffer
pauses acquisition indefinitely, provided there is no recurrence of Condition 1 to trigger the logic analyzer
to start capturing data again. The SignalTap II Logic Analyzer continues to evaluate the stop_store and
start_store commands even after the trigger command is evaluated. If the acquisition has paused, you
can click Stop Analysis to manually stop and force the acquisition to trigger. You can use counter values,
flags, and the State diagram to help you perform the trigger flow. The counter values, flags, and the
current state are updated in real-time during a data acquisition.

Figure 13-35 and Figure 13-36 show a real data acquisition of the scenario. Figure 13-35 illustrates a
scenario where the data capture finishes successfully. It uses a buffer with a sample depth of 64, m = n =

13-38 Using the State-Based Storage Qualifier Feature
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

10, and the post-fill count value = 5. Figure 13-36 illustrates a scenario where the logic analyzer pauses
indefinitely even after a trigger condition occurs due to a stop_store condition. This scenario uses a
sample depth of 64, with m = n = 10 and post-fill count = 15.

Figure 13-35: Storage Qualification with Post-Fill Count Value Less than m (Acquisition Successfully
Completes)

QPS5V3
2015.11.02 Using the State-Based Storage Qualifier Feature 13-39

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-36: Storage Qualification with Post-Fill Count Value Greater than m (Acquisition Indefinitely
Paused)

Figure 13-37: Waveform After Forcing the Analysis to Stop

13-40 Using the State-Based Storage Qualifier Feature
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The combination of using counters, Boolean and relational operators in conjunction with the
start_store and stop_store commands can give a clock-cycle level of resolution to controlling the
samples that are written into the acquisition buffer. The code example below shows a trigger flow descrip‐
tion that skips three clock cycles of samples after hitting condition 1. Figure 13-38 shows the data transac‐
tion on a continuous capture and Figure 13-40 shows the data capture with the Trigger flow description
applied, in the example below.

State 1: ST1
start_store
if (condition1)
begin
 stop_store;
 goto ST2;
end

State 2: ST2
if (c1 < 3)
 increment c1; //skip three clock cycles; c1 initialized to 0
else if (c1 == 3)
begin
 start_store; //start_store necessary to enable writing to finish
 //acquisition
 trigger;
end

Figure 13-38: Continuous Capture of Data Transaction for Example 2

Figure 13-39: Capture of Data Transaction with Trigger Flow Description Applied

Specifying the Trigger Position
The SignalTap II Logic Analyzer allows you to specify the amount of data that is acquired before and after
a trigger event. You can specify the trigger position independently between a Runtime and Power-Up
Trigger. Select the desired ratio of pre-trigger data to post-trigger data by choosing one of the following
ratios:

• Pre—Saves signal activity that occurred after the trigger (12% pre-trigger, 88% post-trigger).
• Center—Saves 50% pre-trigger and 50% post-trigger data.
• Post—Saves signal activity that occurred before the trigger (88% pre-trigger, 12% post-trigger).

QPS5V3
2015.11.02 Specifying the Trigger Position 13-41

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

If you use the custom-state based triggering flow, you can specify a custom trigger position. The
segment_trigger and trigger actions accept a post-fill count argument. The post-fill count specifies the
number of samples to capture before stopping data acquisition for the non-segmented buffer or a data
segment when using the trigger and segment_trigger commands, respectively. When the captured
data is displayed in the SignalTap II data window, the trigger position appears as the number of post-
count samples from the end of the acquisition segment or buffer.

Sample Number of Trigger Position = (N – Post-Fill Count)

In this case, N is the sample depth of either the acquisition segment or non-segmented buffer.

For segmented buffers, the acquisition segments that have a post-count argument define use of the post-
count setting. Segments that do not have a post-count setting default to the trigger position ratios defined
in the Setup tab.

Related Information
State-Based Triggering on page 13-32

Creating a Power-Up Trigger
Typically, the SignalTap II Logic Analyzer is used to trigger on events that occur during normal device
operation. You start an analysis manually once the target device is fully powered on and the JTAG
connection for the device is available. However, there may be cases when you would like to capture trigger
events that occur during device initialization, immediately after the FPGA is powered on or reset. With
the SignalTap II Power-Up Trigger feature, you arm the SignalTap II Logic Analyzer and capture data
immediately after device programming.

Enabling a Power-Up Trigger

You can add a different Power-Up Trigger to each logic analyzer instance in the SignalTap II Instance
Manager pane. To enable the Power-Up Trigger for a logic analyzer instance, right-click the instance and
click Enable Power-Up Trigger, or select the instance, and on the Edit menu, click Enable Power-Up
Trigger. To disable a Power-Up Trigger, click Disable Power-Up Trigger in the same locations. Power-
Up Trigger is shown as a child instance below the name of the selected instance with the default trigger
conditions specified in the node list.

13-42 Creating a Power-Up Trigger
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-40: SignalTap II Logic Analyzer Editor with Power-Up Trigger Enabled

Managing and Configuring Power-Up and Runtime Trigger Conditions
When the Power-Up Trigger is enabled for a logic analyzer instance, you can create basic and advanced
trigger conditions for the trigger as you do with a Run-Time Trigger. Power-Up Trigger conditions that
you can adjust are color coded light blue, while Run-Time Trigger conditions you cannot adjust remain
white. Since each instance now has two sets of trigger conditions—the Power-Up Trigger and the Run-
Time Trigger—you can differentiate between the two with color coding. To switch between the trigger
conditions of the Power-Up Trigger and the Run-Time Trigger, double-click the instance name or the
Power-Up Trigger name in the Instance Manager.

You cannot make changes to Power-Up Trigger conditions that would normally require a full recompile
with Runtime Trigger conditions, such as adding signals, deleting signals, or changing between basic and
advanced triggers. To apply these changes to the Power-Up Trigger conditions, first make the changes
using the Runtime Trigger conditions.

Note: Any change made to the Power-Up Trigger conditions requires that you recompile the SignalTap II
Logic Analyzer instance, even if a similar change to the Runtime Trigger conditions does not
require a recompilation.

While creating or making changes to the trigger conditions for the Run-Time Trigger or the Power-Up
Trigger, you may want to copy these conditions to the other trigger. This enables you to look for the same
trigger during both power-up and runtime. To do this, right-click the instance name or the Power-Up
Trigger name in the Instance Manager and click Duplicate Trigger, or select the instance name or the
Power-Up Trigger name and on the Edit menu, click Duplicate Trigger.

You can also use In-System Sources and Probes in conjunction with the SignalTap II Logic Analyzer to
force trigger conditions. The In-System Sources and Probes feature allows you to drive and sample values
on to selected nets over the JTAG chain.

QPS5V3
2015.11.02 Managing and Configuring Power-Up and Runtime Trigger Conditions 13-43

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Design Debugging Using In-System Sources and Probes documentation on page 17-1

Using External Triggers
You can create a trigger input that allows you to trigger the SignalTap II Logic Analyzer from an external
source. The external trigger input behaves like trigger condition 1, is evaluated, and must be TRUE before
any other configured trigger conditions are evaluated. The logic analyzer supplies a signal to trigger
external devices or other SignalTap II Logic Analyzer instances. These features allow you to synchronize
external logic analysis equipment with the internal logic analyzer. Power-Up Triggers can use the external
triggers feature, but they must use the same source or target signal as their associated Run-Time Trigger.

You can use external triggers to perform cross-triggering on a hard processor system (HPS). Use your
processor debugger to configure the HPS to obey or disregard cross-trigger request from the FPGA, and
to issue or not issue cross-trigger requests to the FPGA. Use your processor debugger in combination with
the SignalTap II external trigger feature to develop a dynamic combination of cross-trigger behaviors. You
can use the cross-triggering feature with the ARM Development Studio 5 (DS-5) software to implement a
system-level debugging solution for your Altera SoC.

Related Information

• FPGA-Adaptive Software Debug and Performance Analysis white paper
Information about the ARM DS-5 debugging solution

• Signal Configuration Pane online help
Information about setting up external triggers

Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer
An advanced feature of the SignalTap II Logic Analyzer is the ability to use the Trigger out of one
analyzer as the Trigger in to another analyzer. This feature allows you to synchronize and debug events
that occur across multiple clock domains.

To perform this operation, first turn on Trigger out for the source logic analyzer instance. On the
Instance list of the Trigger out trigger, select the targeted logic analyzer instance. For example, if the
instance named auto_signaltap_0 should trigger auto_signaltap_1, select auto_signaltap_1|
trigger_in .

Turning on Trigger out automatically enables the Trigger in of the targeted logic analyzer instance and
fills in the Instance field of the Trigger in trigger with the Trigger out signal from the source logic
analyzer instance. In this example, auto_signaltap_0 is targeting auto_signaltap_1. The Trigger In
Instance field of auto_signaltap_1 is automatically filled in with auto_signaltap_0|trigger_out.

Compile the Design
When you add an .stp to your project, the SignalTap II Logic Analyzer becomes part of your design. You
must compile your project to incorporate the SignalTap II logic and enable the JTAG connection you use
to control the logic analyzer. When you are debugging with a traditional external logic analyzer, you must
often make changes to the signals monitored as well as the trigger conditions.

Note: Because these adjustments require that you recompile your design when using the SignalTap II
Logic Analyzer, use the SignalTap II Logic Analyzer feature along with incremental compilation in
the Quartus Prime software to reduce recompilation time.

13-44 Using External Triggers
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

http://www.altera.com/literature/wp/wp-01198-fpga-software-debug-soc.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Faster Compilations with Quartus Prime Incremental Compilation
When you compile your design with an .stp, the sld_signaltap and sld_hub entities are automatically
added to the compilation hierarchy. These two entities are the main components of the SignalTap II Logic
Analyzer, providing the trigger logic and JTAG interface required for operation.

Incremental compilation enables you to preserve the synthesis and fitting results of your original design
and add the SignalTap II Logic Analyzer to your design without recompiling your original source code.
Incremental compilation is also useful when you want to modify the configuration of the .stp. For
example, you can modify the buffer sample depth or memory type without performing a full compilation
after the change is made. Only the SignalTap II Logic Analyzer, configured as its own design partition,
must be recompiled to reflect the changes.

Enabling Incremental Compilation for Your Design
When enabled for your design, the SignalTap II Logic Analyzer is always a separate partition. After the
first compilation, you can use the SignalTap II Logic Analyzer to analyze signals from the post-fit netlist.
If your partitions are designed correctly, subsequent compilations due to SignalTap II Logic Analyzer
settings take less time.

The netlist type for the top-level partition defaults to source. To take advantage of incremental compila‐
tion, specify the Netlist types for the partitions you wish to tap as Post-fit.

Related Information
Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design documentation

Using Incremental Compilation with the SignalTap II Logic Analyzer
The SignalTap II Logic Analyzer is automatically configured to work with the incremental compilation
flow. For all signals that you want to connect to the SignalTap II Logic Analyzer from the post-fit netlist,
set the netlist type of the partition containing the desired signals to Post-Fit with a Fitter Preservation
Level of Placement and Routing using the Design Partitions window. Use the SignalTap II: post-fitting
filter in the Node Finder to add the signals of interest to your SignalTap II configuration file. If you want
to add signals from the pre-synthesis netlist, set the netlist type to Source File and use the SignalTap II:
pre-synthesis filter in the Node Finder. Do not use the netlist type Post-Synthesis with the SignalTap II
Logic Analyzer.

Caution: Be sure to conform to the following guidelines when using post-fit and pre-synthesis nodes:

• Read all incremental compilation guidelines to ensure the proper partitioning of a project.
• To speed up compile time, use only post-fit nodes for partitions specified as preservation-

level post-fit.
• Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap pre-synthesis

nodes for a particular partition, make all tapped nodes in that partition pre-synthesis nodes
and change the netlist type to source in the design partitions window.

Node names may be different between a pre-synthesis netlist and a post-fit netlist. In general, registers
and user input signals share common names between the two netlists. During compilation, certain
optimizations change the names of combinational signals in your RTL. If the type of node name chosen
does not match the netlist type, the compiler may not be able to find the signal to connect to your
SignalTap II Logic Analyzer instance for analysis. The compiler issues a critical warning to alert you of
this scenario. The signal that is not connected is tied to ground in the SignalTap II data tab.

QPS5V3
2015.11.02 Faster Compilations with Quartus Prime Incremental Compilation 13-45

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958382198/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you do use incremental compilation flow with the SignalTap II Logic Analyzer and source file changes
are necessary, be aware that you may have to remove compiler-generated post-fit net names. Source code
changes force the affected partition to go through resynthesis. During synthesis, the compiler cannot find
compiler-generated net names from a previous compilation.

Note: Altera recommends using only registered and user-input signals as debugging taps in your .stp
whenever possible.

Both registered and user-supplied input signals share common node names in the pre-synthesis and post-
fit netlist. As a result, using only registered and user-supplied input signals in your .stp limits the changes
you need to make to your SignalTap II Logic Analyzer configuration.

You can check the nodes that are connected to each SignalTap II instance using the In-System Debugging
compilation reports. These reports list each node name you selected to connect to a SignalTap II instance,
the netlist type used for the particular connection, and the actual node name used after compilation. If the
incremental compilation flow is not used, the In-System Debugging reports are located in the Analysis &
Synthesis folder. If the incremental compilation flow is used, this report is located in the Partition Merge
folder.

To verify that your original design was not modified, examine the messages in the Partition Merge
section of the Compilation Report.

Unless you make changes to your design partitions that require recompilation, only the SignalTap II
design partition is recompiled. If you make subsequent changes to only the .stp, only the SignalTap II
design partition must be recompiled, reducing your recompilation time.

Preventing Changes Requiring Recompilation
You can configure the .stp to prevent changes that normally require recompilation. To do this, select a
lock mode from above the node list in the Setup tab. To lock your configuration, choose to allow only
trigger condition changes.

Related Information
Setup Tab (SignalTap II Logic Analyzer) online help

Incremental Route with Rapid Recompile
You can use Incremental Route with Rapid Recompile to decrease compilation times. After performing a
full compilation on your design, you can use the Incremental Route flow to achieve a 2-4x speedup over a
flat compile. The Incremental Route flow is not compatible with Partial Reconfiguration.

The Quartus Prime software supports Incremental Route with Rapid Recompile for Arria 10 (Pro Edition
only), Arria V, Cyclone V, and Stratix V devices.

13-46 Preventing Changes Requiring Recompilation
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_setup.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Incremental Route Flow

Figure 13-41: Manually Allocate Nodes

1. Open your design, and run Analysis & Elaboration (or a full compilation) to give node visibility in
SignalTap II.

2. Add SignalTap II to your design and specify manual allocation for Trigger and Data (Storage Qualifier,
if used) nodes in the SignalTap II Signal Configuration pane.

Note: Selecting Manual allows you to control the number of nodes compiled into the design. This is
critical for the Incremental Route flow. If you select Auto, the number of nodes compiled into
the design will directly reflect the number of nodes (not including groups, which are not
signals) currently in the Setup tab. If you then add a node, the number of nodes required on the

QPS5V3
2015.11.02 Incremental Route Flow 13-47

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

device will not match what has already been compiled, and you will then need to perform a full
compilation.

3. Specify the number of nodes that you estimate will be needed for the debugging process. You can
increase the number of nodes later, but this will require more compilation time.

4. Connect nodes you are interested in tapping.
5. Run a full compilation, if you have not already done a full compile on your project. Otherwise, you can

start incremental compile using Rapid Recompile.
6. Debug and determine additional signals of interest.
7. (Optional) Turn on Allow incremental route changes only lock-mode.

Figure 13-42: Incremental Route Lock-Mode

8. Add additional nodes in the SignalTap II Setup tab without exceeding the number of manually
allocated nodes in step 2. Avoid making changes to non-runtime configurable settings.

9. Click the Rapid Recompile icon from the toolbar (or from the Processing menu, click Start Rapid
Recompile).

Note: The previous steps set up your design for Incremental Route, but the actual Incremental Route
process begins when you perform a Rapid Recompile.

Figure 13-43: Rapid Recompile Icon

Tips to Achieve Maximum Speedup

• Basic AND (which applies to Storage Qualifier as well as trigger input) is the fastest for the
Incremental Route flow.

• Basic OR is slower for the Incremental Route flow, but if you avoid changing the parent-child relation‐
ship of nodes within groups, you can minimize the impact on compile time. You can change the
sibling relationships of nodes.

• Basic OR and advanced triggers require re-synthesis when the number/names of tapped nodes are
changed.

• Use the Incremental Route lock-mode to avoid inadvertent changes requiring a full compilation.

Timing Preservation with the SignalTap II Logic Analyzer
In addition to verifying functionality, timing closure is one of the most crucial processes in successful
operation of your design.

13-48 Tips to Achieve Maximum Speedup
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: When you compile a project with a SignalTap II Logic Analyzer without the use of incremental
compilation, you must add IP to your existing design. This addition often impacts the existing
placement, routing, and timing of your design. To minimize the effect that the SignalTap II Logic
Analyzer has on your design, use incremental compilation for your project. Incremental compila‐
tion is the default setting in new designs. You can easily enable incremental compilation in existing
designs. When the SignalTap II Logic Analyzer is in a design partition, it has little to no affect on
your design.

For Arria 10 devices, the Quartus Prime Standard Edition software does not support timing preservation
for post-fit taps with Rapid Recompile.

Use the following techniques to help maintain timing:

• Avoid adding critical path signals to your .stp.
• Minimize the number of combinational signals you add to your .stp and add registers whenever

possible.
• Specify an fMAX constraint for each clock in your design.

Related Information
Timing Closure and Optimization documentation

Performance and Resource Considerations
There is a necessary trade-off between the runtime flexibility of the SignalTap II Logic Analyzer, the
timing performance of the SignalTap II Logic Analyzer, and resource usage. The SignalTap II Logic
Analyzer allows you to select the runtime configurable parameters to balance the need for runtime
flexibility, speed, and area. The default values have been chosen to provide maximum flexibility so you
can complete debugging as quickly as possible; however, you can adjust these settings to determine
whether there is a more optimal configuration for your design.

The following tips provide extra timing slack if you have determined that the SignalTap II logic is in your
critical path, or to alleviate the resource requirements that the SignalTap II Logic Analyzer consumes if
your design is resource-constrained.

If SignalTap II logic is part of your critical path, follow these tips to speed up the performance of the
SignalTap II Logic Analyzer:

• Disable runtime configurable options—Certain resources are allocated to accommodate for runtime
flexibility. If you use either advanced triggers or State-based triggering flow, disable runtime configu‐
rable parameters for a boost in fMAX of the SignalTap II logic. If you are using State-based triggering
flow, try disabling the Goto state destination option and performing a recompilation before disabling
the other runtime configurable options. The Goto state destination option has the greatest impact on
fMAX, as compared to the other runtime configurable options.

• Minimize the number of signals that have Trigger Enable selected—All signals that you add to
the .stp have Trigger Enable turned on. Turn off Trigger Enable for signals that you do not plan to
use as triggers.

• Turn on Physical Synthesis for register retiming—If you have a large number of triggering signals
enabled (greater than the number of inputs that would fit in a LAB) that fan-in logic to a gate-based
triggering condition, such as a basic trigger condition or a logical reduction operator in the advanced
trigger tab, turn on Perform register retiming. This can help balance combinational logic across
LABs.

QPS5V3
2015.11.02 Performance and Resource Considerations 13-49

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471203263/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If your design is resource constrained, follow these tips to reduce the amount of logic or memory used by
the SignalTap II Logic Analyzer:

• Disable runtime configurable options—Disabling runtime configurability for advanced trigger
conditions or runtime configurable options in the State-based triggering flow results in using fewer
LEs.

• Minimize the number of segments in the acquisition buffer—You can reduce the number of logic
resources used for the SignalTap II Logic Analyzer by limiting the number of segments in your
sampling buffer to only those required.

• Disable the Data Enable for signals that are used for triggering only—By default, both the data
enable and trigger enable options are selected for all signals. Turning off the data enable option for
signals used as trigger inputs only saves on memory resources used by the SignalTap II Logic Analyzer.

Because performance results are design-dependent, try these options in different combinations until you
achieve the desired balance between functionality, performance, and utilization.

Program the Target Device or Devices
After you compile your project, including the SignalTap II Logic Analyzer, configure the FPGA target
device. When you are using the SignalTap II Logic Analyzer for debugging, configure the device from
the .stp instead of the Quartus Prime Programmer. Because you configure from the .stp, you can open
more than one .stp and program multiple devices to debug multiple designs simultaneously.

The settings in an .stp must be compatible with the programming .sof used to program the device. An .stp
is considered compatible with an .sof when the settings for the logic analyzer, such as the size of the
capture buffer and the signals selected for monitoring or triggering, match the way the target device is
programmed. If the files are not compatible, you can still program the device, but you cannot run or
control the logic analyzer from the SignalTap II Logic Analyzer Editor.

Note: When the SignalTap II Logic Analyzer detects incompatibility after analysis is started, a system
error message is generated containing two CRC values, the expected value and the value retrieved
from the .stp instance on the device. The CRC values are calculated based on all SignalTap II
settings that affect the compilation.

To ensure programming compatibility, make sure to program your device with the latest .sof created from
the most recent compilation. Checking whether or not a particular .sof is compatible with the current
SignalTap II configuration is achieved quickly by attaching the .sof to the SOF manager.

Before starting a debugging session, do not make any changes to the .stp settings that would require
recompiling the project. You can check the SignalTap II status display at the top of the Instance Manager
pane to verify whether a change you made requires recompiling the project, producing a new .sof. This
feature gives you the opportunity to undo the change, so that you do not need to recompile your project.
To prevent these types of changes, select Allow trigger condition changes only to lock the .stp. The
Incremental Route lock mode, Allow incremental route changes only, limits changes that require an
incremental route using Rapid Recompile, and not a full compile.

Although having a Quartus Prime project is not required when using an .stp, it is recommended. The
project database contains information about the integrity of the current SignalTap II Logic Analyzer
session. Without the project database, there is no way to verify that the current .stp matches the .sof that is
downloaded to the device. If you have an .stp that does not match the .sof, incorrect data is captured in the
SignalTap II Logic Analyzer.

13-50 Program the Target Device or Devices
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Running the SignalTap II Logic Analyzer online help

Run the SignalTap II Logic Analyzer
After the device is configured with your design that includes the SignalTap II Logic Analyzer, perform
debugging operations in a manner similar to when you use an external logic analyzer. You initialize the
logic analyzer by starting an analysis. When your trigger event occurs, the captured data is stored in the
memory buffer on the device and then transferred to the .stp with the JTAG connection.

You can also perform the equivalent of a force trigger instruction that lets you view the captured data
currently in the buffer without a trigger event occurring. Figure 13-44 illustrates a flow that shows how
you operate the SignalTap II Logic Analyzer. The flowchart indicates where Power-Up and Runtime
Trigger events occur and when captured data from these events is available for analysis.

Figure 13-44: Power-Up and Runtime Trigger Events Flowchart

Compile Design

Start

End

Yes

NoTrigger
Occurred?

No

Yes

Yes

No
Changes
Require

Recompile?

Continue
Debugging?

Program Device

Manually Run
SignalTap II

Logic Analyzer

Analyze Data:
Power-Up or

Run-Time Trigger

No

Yes

Manually Read
Data from Device

Make Changes
to Setup

(If Needed)

Possible Missed
Trigger

(Unless Power-Up
Trigger Enabled)

Manually
Stop Analyzer

Data
Downloaded?

You can also use In-System Sources and Probes in conjunction with the SignalTap II Logic Analyzer to
force trigger conditions. The In-System Sources and Probes feature allows you to drive and sample values
on to selected signals over the JTAG chain.

QPS5V3
2015.11.02 Run the SignalTap II Logic Analyzer 13-51

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#program/ela/ela_pro_run.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Design Debugging Using In-System Sources and Probes documentation on page 17-1

Runtime Reconfigurable Options
Certain settings in the .stp are changeable without recompiling your design when you use Runtime
Trigger mode.

Table 13-10: Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions
and Basic Storage Qualifier
Conditions

All signals that have the Trigger condition turned on can be changed to any
basic trigger condition value without recompiling.

Advanced Trigger
Conditions and Advanced
Storage Qualifier Conditions

Many operators include runtime configurable settings. For example, all
comparison operators are runtime-configurable. Configurable settings are
shown with a white background in the block representation.This runtime
reconfigurable option is turned on in the Object Properties dialog box.

Switching between a storage-
qualified and a continuous
acquisition

Within any storage-qualified mode, you can switch to continuous capture
mode without recompiling the design. To enable this feature, turn on disable
storage qualifier.

State-based trigger flow
parameters

Table 13-5 lists Reconfigurable State-based trigger flow options.

Runtime Reconfigurable options can potentially save time during the debugging cycle by allowing you to
cover a wider possible scenario of events without the need to recompile the design. You may experience a
slight impact to the performance and logic utilization. You can turn off Runtime re-configurability for
Advanced Trigger Conditions and the State-based trigger flow parameters, boosting performance and
decreasing area utilization.

You can configure the .stp to prevent changes that normally require recompilation. To do this, in the
Setup tab, select Allow Trigger Condition changes only above the node list.

Incremental Route lock mode, Allow incremental route changes only, limits changes which will only
require an Incremental Route compilation, and not a full compile.

The example below illustrates a potential use case for Runtime Reconfigurable features. This example
provides a storage qualified enabled State-based trigger flow description and shows how you can modify
the size of a capture window at runtime without a recompile. This example gives you equivalent function‐
ality to a segmented buffer with a single trigger condition where the segment sizes are runtime reconfigur‐
able.

state ST1:
if (condition1 && (c1 <= m)) // each "segment" triggers on condition
 //1
begin // m = number of total "segments"
 start_store;
 increment c1;
 goto ST2:
End

else (c1 > m) //This else condition handles the last
 //segment.
begin
 start_store

13-52 Runtime Reconfigurable Options
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Trigger (n-1)
end

state ST2:
if (c2 >= n) //n = number of samples to capture in each
 //segment.
begin
 reset c2;
 stop_store;
 goto ST1;
end

else (c2 < n)
begin
 increment c2;
 goto ST2;
end

Note: m x n must equal the sample depth to efficiently use the space in the sample buffer.

Figure 13-45 shows a segmented buffer described by the trigger flow in example above.

During runtime, the values m and n are runtime reconfigurable. By changing the m and n values in the
preceding trigger flow description, you can dynamically adjust the segment boundaries without incurring
a recompile.

Figure 13-45: Segmented Buffer Created with Storage Qualifier and State-Based Trigger

Total sample depth is fixed, where m x n must equal sample depth.

You can add states into the trigger flow description and selectively mask out specific states and enable
other ones at runtime with status flags.

The example below shows a modified description of the example above with an additional state inserted.
You use this extra state to specify a different trigger condition that does not use the storage qualifier
feature. You insert status flags into the conditional statements to control the execution of the trigger flow.

state ST1 :
if (condition2 && f1) //additional state added for a non-
segmented
 //acquisition Set f1 to enable state
begin
 start_store;
 trigger
end
else if (! f1)
 goto ST2;
state ST2:
if ((condition1 && (c1 <= m) && f2) //f2 status flag used to mask state. Set
f2
 //to enable.
begin
 start_store;
 increment c1;
 goto ST3:
end
else (c1 > m)

QPS5V3
2015.11.02 Runtime Reconfigurable Options 13-53

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 start_store
 Trigger (n-1)
end
state ST3:
if (c2 >= n)
begin
 reset c2;
 stop_store;
 goto ST1;
end
else (c2 < n)
begin
 increment c2;
 goto ST2;
end

SignalTap II Status Messages
Table 13-11 describes the text messages that might appear in the SignalTap II Status Indicator in the
Instance Manager pane before, during, and after a data acquisition. Use these messages to monitor the
state of the logic analyzer or what operation it is performing.

Table 13-11: Text Messages in the SignalTap II Status Indicator

Message Message Description

Not running The SignalTap II Logic Analyzer is not running. There is no
connection to a device or the device is not configured.

(Power-Up Trigger) Waiting

for clock (1)
The SignalTap II Logic Analyzer is performing a Runtime or
Power-Up Trigger acquisition and is waiting for the clock signal
to transition.

Acquiring (Power-Up)

pre-trigger data (1)
The trigger condition has not been evaluated yet. A full buffer of
data is collected if using the non-segmented buffer acquisition
mode and storage qualifier type is continuous.

Trigger In conditions met Trigger In condition has occurred. The SignalTap II Logic
Analyzer is waiting for the condition of the first trigger
condition to occur. This can appear if Trigger In is specified.

Waiting for (Power-up)

trigger (1)
The SignalTap II Logic Analyzer is now waiting for the trigger
event to occur.

Trigger level <x> met The condition of trigger condition x has occurred. The
SignalTap II Logic Analyzer is waiting for the condition
specified in condition x + 1 to occur.

Acquiring (power-up) post-

trigger data (1)
The entire trigger event has occurred. The SignalTap II Logic
Analyzer is acquiring the post-trigger data. The amount of post-
trigger data collected is you define between 12%, 50%, and 88%
when the non-segmented buffer acquisition mode is selected.

Offload acquired (Power-

Up) data (1)
Data is being transmitted to the Quartus Prime software
through the JTAG chain.

Ready to acquire The SignalTap II Logic Analyzer is waiting for you to initialize
the analyzer.

13-54 SignalTap II Status Messages
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Message Message Description

Note to Table 13-11 :

1. This message can appear for both Runtime and Power-Up Trigger events. When referring to a
Power-Up Trigger, the text in parentheses is added.

Note: In segmented acquisition mode, pre-trigger and post-trigger do not apply.

View, Analyze, and Use Captured Data
Once a trigger event has occurred or you capture data manually, you can use the SignalTap II interface to
examine the data, and use your findings to help debug your design.

When in the Data view, you can use the drag-to-zoom feature by left-clicking to isolate the data of
interest.

Capturing Data Using Segmented Buffers
Segmented Acquisition buffers allow you to perform multiple captures with a separate trigger condition
for each acquisition segment. This feature allows you to capture a recurring event or sequence of events
that span over a long period time efficiently. Each acquisition segment acts as a non-segmented buffer,
continuously capturing data when it is activated. When you run an analysis with the segmented buffer
option enabled, the SignalTap II Logic Analyzer performs back-to-back data captures for each acquisition
segment within your data buffer. The trigger flow, or the type and order in which the trigger conditions
evaluate for each buffer, is defined by either the Sequential trigger flow control or the Custom State-based
trigger flow control. Figure 13-46 shows a segmented acquisition buffer with four segments represented
as four separate non-segmented buffers.

Figure 13-46: Segmented Acquisition Buffer

0

1

1

Segment 1 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 1
Post Pre

0

1

1

Segment 2 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 2
Post Pre

0

1

1

Segment 3 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 3
Post Pre

0

1

1

Segment 4 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 4
Post Pre

The SignalTap II Logic Analyzer finishes an acquisition with a segment, and advances to the next segment
to start a new acquisition. Depending on when a trigger condition occurs, it may affect the way the data
capture appears in the waveform viewer. Figure 13-46 illustrates the method in which data is captured.
The Trigger markers in Figure 13-46—Trigger 1, Trigger 2, Trigger 3 and Trigger 4—refer to the
evaluation of the segment_trigger and trigger commands in the Custom State-based trigger flow. If
you use a sequential flow, the Trigger markers refer to trigger conditions specified within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the SignalTap II Logic Analyzer starts
evaluating Trigger 2 immediately. Data Acquisition for Segment 2 buffer starts when either Segment
Buffer 1 finishes its post-fill count, or when Trigger 2 evaluates as TRUE, whichever condition occurs first.
Thus, trigger conditions associated with the next buffer in the data capture sequence can preempt the
post-fill count of the current active buffer. This allows the SignalTap II Logic Analyzer to accurately

QPS5V3
2015.11.02 View, Analyze, and Use Captured Data 13-55

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

capture all of the trigger conditions that have occurred. Samples that have not been used appear as a blank
space in the waveform viewer.

Figure 13-47 shows an example of a capture using sequential flow control with the trigger condition for
each segment specified as Don’t Care. Each segment before the last captures only one sample, because the
next trigger condition immediately preempts capture of the current buffer. The trigger position for all
segments is specified as pre-trigger (10% of the data is before the trigger condition and 90% of the data is
after the trigger position). Because the last segment starts immediately with the trigger condition, the
segment contains only post-trigger data. The three empty samples in the last segment are left over from
the pre-trigger samples that the SignalTap II Logic Analyzer allocated to the buffer.

Figure 13-47: Segmented Capture with Preemption of Acquisition Segments

A segmented acquisition buffer using the sequential trigger flow with a trigger condition specified as
Don’t Care. All segments, with the exception of the last segment, capture only one sample because the
next trigger condition preempts the current buffer from filling to completion.

For the sequential trigger flow, the Trigger Position option applies to every segment in the buffer. For
maximum flexibility on how the trigger position is defined, use the custom state-based trigger flow. By
adjusting the trigger position specific to your debugging requirements, you can help maximize the use of
the allocated buffer space.

Differences in Pre-fill Write Behavior Between Different Acquisition Modes
The SignalTap II Logic Analyzer uses one of the following three modes when writing into the acquisition
memory:

• Non-segmented buffer
• Non-segmented buffer with a storage qualifier
• Segmented buffer

There are subtle differences in the amount of data captured immediately after running the SignalTap II
Logic Analyzer and before any trigger conditions occur. A non-segmented buffer, running in continuous
mode, completely fills the buffer with sampled data before evaluating any trigger conditions. Thus, a non-
segmented capture without any storage qualification enabled always shows a waveform with a full buffer's
worth of data captured.

Filling the buffer provides you with as much data as possible within the capture window. The buffer gets
pre-filled with data samples prior to evaluating the trigger condition. As such, SignalTap requires that the
buffer be filled at least once before any data can be retrieved through the JTAG connection and prevents
the buffer from being dumped during the first acquisition prior to a trigger condition when you perform a
Stop Analysis.

For segmented buffers and non-segmented buffers using any storage qualification mode, the SignalTap II
Logic Analyzer immediately evaluates all trigger conditions while writing samples into the acquisition
memory. The logic analyzer evaluates each trigger condition before acquiring a full buffer's worth of
samples. This evaluation is especially important when using any storage qualification on the data set. The

13-56 Differences in Pre-fill Write Behavior Between Different Acquisition...
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

logic analyzer may miss a trigger condition if it waits until a full buffer's worth of data is captured before
evaluating any trigger conditions.

If the trigger event occurs on any data sample before the specified amount of pre-trigger data has
occurred, then the SignalTap II Logic Analyzer triggers and begins filling memory with post-trigger data,
regardless of the amount of pre-trigger data you specify. For example, if you set the trigger position to
50% and set the logic analyzer to trigger on a processor reset, start the logic analyzer, and then power on
your target system, the logic analyzer triggers. However, the logic analyzer memory is filled only with
post-trigger data, and not any pre-trigger data, because the trigger event, which has higher precedence
than the capture of pre-trigger data, occurred before the pre-trigger condition was satisfied.

Figure 13-48 and Figure 13-49 show the difference between a non-segmented buffer in continuous mode
and a non-segmented buffer using a storage qualifier. The logic analyzer for the waveforms below is
configured with a sample depth of 64 bits, with a trigger position specified as Post trigger position.

Figure 13-48: SignalTap II Logic Analyzer Continuous Data Capture

Note to Figure 13-48 :

1. Continuous capture mode with post-trigger position.
2. Capture of a recurring pattern using a non-segmented buffer in continuous mode. The SignalTap II

Logic Analyzer is configured with a basic trigger condition (shown in the figure as "Trig1") with a
sample depth of 64 bits.

Notice in Figure 13-48 that Trig1 occurs several times in the data buffer before the SignalTap II Logic
Analyzer actually triggers. A full buffer's worth of data is captured before the logic analyzer evaluates any
trigger conditions. After the trigger condition occurs, the logic analyzer continues acquisition until it
captures eight additional samples (12% of the buffer, as defined by the "post-trigger" position).

Figure 13-49: SignalTap II Logic Analyzer Conditional Data Capture

Note to Figure 13-49 :

1. Conditional capture, storage always enabled, post-fill count.
2. SignalTap II Logic Analyzer capture of a recurring pattern using a non-segmented buffer in

conditional mode. The logic analyzer is configured with a basic trigger condition (shown in the figure

QPS5V3
2015.11.02 Differences in Pre-fill Write Behavior Between Different Acquisition... 13-57

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

as "Trig1"), with a sample depth of 64 bits. The “Trigger in” condition is specified as "Don't care",
which means that every sample is captured.

Notice in Figure 13-49 that the logic analyzer triggers immediately. As in Figure 13-48, the logic analyzer
completes the acquisition with eight samples, or 12% of 64, the sample capacity of the acquisition buffer.

Creating Mnemonics for Bit Patterns
The mnemonic table feature allows you to assign a meaningful name to a set of bit patterns, such as a bus.
To create a mnemonic table, right-click in the Setup or Data tab of an .stp and click Mnemonic Table
Setup. You create a mnemonic table by entering sets of bit patterns and specifying a label to represent
each pattern. Once you have created a mnemonic table, assign the table to a group of signals. To assign a
mnemonic table, right-click on the group, click Bus Display Format and select the desired mnemonic
table.

You use the labels you create in a table in different ways on the Setup and Data tabs. On the Setup tab,
you can create basic triggers with meaningful names by right-clicking an entry in the Trigger Conditions
column and selecting a label from the table you assigned to the signal group. On the Data tab, if any
captured data matches a bit pattern contained in an assigned mnemonic table, the signal group data is
replaced with the appropriate label, making it easy to see when expected data patterns occur.

Automatic Mnemonics with a Plug-In
When you use a plug-in to add signals to an .stp, mnemonic tables for the added signals are automatically
created and assigned to the signals defined in the plug-in. To enable these mnemonic tables manually,
right-click on the name of the signal or signal group. On the Bus Display Format shortcut menu, then
click the name of the mnemonic table that matches the plug-in.

As an example, the Nios II plug-in helps you to monitor signal activity for your design as the code is
executed. If you set up the logic analyzer to trigger on a function name in your Nios II code based on data
from an .elf, you can see the function name in the Instance Address signal group at the trigger sample,
along with the corresponding disassembled code in the Disassembly signal group, as shown in Figure
13-50. Captured data samples around the trigger are referenced as offset addresses from the trigger
function name.

Figure 13-50: Data Tab when the Nios II Plug-In is Used

Locating a Node in the Design
When you find the source of an error in your design using the SignalTap II Logic Analyzer, you can use
the node locate feature to locate that signal in many of the tools found in the Quartus Prime software, as
well as in your design files. This lets you find the source of the problem quickly so you can modify your

13-58 Creating Mnemonics for Bit Patterns
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

design to correct the flaw. To locate a signal from the SignalTap II Logic Analyzer in one of the Quartus
Prime software tools or your design files, right-click on the signal in the .stp, and click Locate in
<tool name>.

You can locate a signal from the node list with the following tools:

• Assignment Editor
• Pin Planner
• Timing Closure Floorplan
• Chip Planner
• Resource Property Editor
• Technology Map Viewer
• RTL Viewer
• Design File

Saving Captured Data
The data log shows the history of captured data and the triggers used to capture the data. The SignalTap II
Logic Analyzer acquires data, stores it in a log, and displays it as waveforms. When the logic analyzer is in
auto-run mode and a trigger event occurs more than once, captured data for each time the trigger
occurred is stored as a separate entry in the data log. This allows you to review the captured data for each
trigger event. The default name for a log is based on the time when the data was acquired. Altera
recommends that you rename the data log with a more meaningful name.

The logs are organized in a hierarchical manner; similar logs of captured data are grouped together in
trigger sets. To open the Data Log pane, on the View menu, select Data Log. To turn on data logging,
turn on Enable data log in the Data Log (Figure 13-19). To recall and activate a data log for a given
trigger set, double-click the name of the data log in the list. The time stamping for the Data Log entries
display the wall-clock time when SignalTap II triggered and the elapsed time from when acquisition
started to when the device triggered.

Related Information
Managing Multiple SignalTap II Files and Configurations on page 13-21
You can use the Data Log feature for organizing different sets of trigger conditions and different sets of
signal configurations.

Exporting Captured Data to Other File Formats
You can export captured data to the following file formats, for use with other EDA simulation tools:

• Comma Separated Values File (.csv)
• Table File (.tbl)
• Value Change Dump File (.vcd)
• Vector Waveform File (.vwf)
• Graphics format files (.jpg, .bmp)

To export the captured data from SignalTap II Logic Analyzer, on the File menu, click Export and specify
the File Name, Export Format, and Clock Period.

QPS5V3
2015.11.02 Saving Captured Data 13-59

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating a SignalTap II List File
Captured data can also be viewed in an .stp list file. An .stp list file is a text file that lists all the data
captured by the logic analyzer for a trigger event. Each row of the list file corresponds to one captured
sample in the buffer. Columns correspond to the value of each of the captured signals or signal groups for
that sample. If a mnemonic table was created for the captured data, the numerical values in the list are
replaced with a matching entry from the table. This is especially useful with the use of a plug-in that
includes instruction code disassembly. You can immediately see the order in which the instruction code
was executed during the same time period of the trigger event. To create an .stp list file in the Quartus
Prime software, on the File menu, select Create/Update and click Create SignalTap II List File.

Other Features
The SignalTap II Logic Analyzer has other features that do not necessarily belong to a particular task in
the task flow.

Using the SignalTap II MATLAB MEX Function to Capture Data
If you use MATLAB for DSP design, you can call the MATLAB MEX function alt_signaltap_run, built
into the Quartus Prime software, to acquire data from the SignalTap II Logic Analyzer directly into a
matrix in the MATLAB environment. If you use the MATLAB MEX function in a loop, you can perform
as many acquisitions in the same amount of time as you can when using SignalTap II in the Quartus
Prime software environment.

Note: The SignalTap II MATLAB MEX function is available in the Windows version and Linux version
of the Quartus Prime software. It is compatible with MATLAB Release 14 Original Release Version
7 and later.

To set up the Quartus Prime software and the MATLAB environment to perform SignalTap II acquisi‐
tions, perform the following steps:

1. In the Quartus Prime software, create an .stp file.
2. In the node list in the Data tab of the SignalTap II Logic Analyzer Editor, organize the signals and

groups of signals into the order in which you want them to appear in the MATLAB matrix. Each
column of the imported matrix represents a single SignalTap II acquisition sample, while each row
represents a signal or group of signals in the order they are organized in the Data tab.

Note: Signal groups acquired from the SignalTap II Logic Analyzer and transferred into the MATLAB
MEX function are limited to a width of 32 signals. If you want to use the MATLAB MEX
function with a bus or signal group that contains more than 32 signals, split the group into
smaller groups that do not exceed the 32-signal limit.

3. Save the .stp and compile your design. Program your device and run the SignalTap II Logic Analyzer
to ensure your trigger conditions and signal acquisition work correctly.

4. In the MATLAB environment, add the Quartus Prime binary directory to your path with the following
command:

addpath <Quartus install directory>\win

You can view the help file for the MEX function by entering the following command in MATLAB
without any operators:

alt_signaltap_run

13-60 Creating a SignalTap II List File
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Use the MATLAB MEX function to open the JTAG connection to the device and run the SignalTap II
Logic Analyzer to acquire data. When you finish acquiring data, close the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a MATLAB matrix
called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]);

When capturing data you must assign a filename, for example, <stp filename> as a requirement of the
MATLAB MEX function. Other MATLAB MEX function options are described in Table 13-12.

Table 13-12: SignalTap II MATLAB MEX Function Options

Option Usage Description

signed

unsigned

'signed'

'unsigned'

The signed option turns signal group data into 32-bit
two’s-complement signed integers. The MSB of the group
as defined in the SignalTap II Data tab is the sign bit. The
unsigned option keeps the data as an unsigned integer. The
default is signed.

<instance name> 'auto_signaltap_0' Specify a SignalTap II instance if more than one instance is
defined. The default is the first instance in the .stp, auto_
signaltap_0.

<signal set name>

<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the SignalTap II data
log if multiple configurations are present in the .stp. The
default is the active signal set and trigger in the file.

You can enable or disable verbose mode to see the status of the logic analyzer while it is acquiring data.
To enable or disable verbose mode, use the following commands:

alt_signaltap_run('VERBOSE_ON');
alt_signaltap_run('VERBOSE_OFF');

When you finish acquiring data, close the JTAG connection with the following command:

alt_signaltap_run('END_CONNECTION');

For more information about the use of MATLAB MEX functions in MATLAB, refer to the MATLAB
Help.

Using SignalTap II in a Lab Environment
You can install a stand-alone version of the SignalTap II Logic Analyzer. This version is particularly useful
in a lab environment in which you do not have a workstation that meets the requirements for a complete
Quartus Prime installation, or if you do not have a license for a full installation of the Quartus Prime
software. The standalone version of the SignalTap II Logic Analyzer is included with and requires the
Quartus Prime stand-alone Programmer which is available from the Downloads page of the Altera
website.

QPS5V3
2015.11.02 Using SignalTap II in a Lab Environment 13-61

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

http://www.altera.com
http://www.altera.com
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Remote Debugging Using the SignalTap II Logic Analyzer

Debugging Using a Local PC and an Altera SoC
You can use the System Console with SignalTap II Logic Analyzer to remote debug your Altera SoC. This
method requires one local PC, an existing TCP/IP connection, a programming device at the remote
location, and an Altera SoC.

Related Information
Remote Hardware Debugging over TCP/IP for Altera SoC application note

Debugging Using a Local PC and a Remote PC
You can use the SignalTap II Logic Analyzer to debug a design that is running on a device attached to a
PC in a remote location.

To perform a remote debugging session, you must have the following setup:

• The Quartus Prime software installed on the local PC
• Stand-alone SignalTap II Logic Analyzer or the full version of the Quartus Prime software installed on

the remote PC
• Programming hardware connected to the device on the PCB at the remote location
• TCP/IP protocol connection

Equipment Setup
On the PC in the remote location, install the standalone version of the SignalTap II Logic Analyzer,
included in the Quartus Prime standalone Programmer, or the full version of the Quartus Prime software.
This remote computer must have Altera programming hardware connected, such as the EthernetBlaster
or USB-Blaster.

On the local PC, install the full version of the Quartus Prime software. This local PC must be connected to
the remote PC across a LAN with the TCP/IP protocol.

Using the SignalTap II Logic Analyzer in Devices with Configuration Bitstream
Security

Certain device families support bitstream decryption during configuration using an on-device AES
decryption engine. You can still use the SignalTap II Logic Analyzer to analyze functional data within the
FPGA. However, note that JTAG configuration is not possible after the security key has been
programmed into the device.

Altera recommends that you use an unencrypted bitstream during the prototype and debugging phases of
the design. Using an unencrypted bitstream allows you to generate new programming files and
reconfigure the device over the JTAG connection during the debugging cycle.

If you must use the SignalTap II Logic Analyzer with an encrypted bitstream, first configure the device
with an encrypted configuration file using Passive Serial (PS), Fast Passive Parallel (FPP), or Active Serial
(AS) configuration modes. The design must contain at least one instance of the SignalTap II Logic
Analyzer. After the FPGA is configured with a SignalTap II Logic Analyzer instance in the design, when
you open the SignalTap II Logic Analyzer in the Quartus Prime software, you then scan the chain and are
ready to acquire data with the JTAG connection.

13-62 Remote Debugging Using the SignalTap II Logic Analyzer
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

http://www.altera.com/literature/an/an_693.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Backward Compatibility with Previous Versions of Quartus Prime Software
You can open an .stp created in a previous version in a current version of the Quartus Prime software.
However, opening an .stp modifies it so that it cannot be opened in a previous version of the Quartus
Prime software.

If you have a Quartus Prime project file from a previous version of the software, you may have to update
the .stp configuration file to recompile the project. You can update the configuration file by opening the
SignalTap II Logic Analyzer. If you need to update your configuration, a prompt appears asking if you
would like to update the .stp to match the current version of the Quartus Prime software.

SignalTap II Command-Line Options
To compile your design with the SignalTap II Logic Analyzer using the command prompt, use the
quartus_stp command. Table 13-13 shows the options that help you use the quartus_stp executable.

Table 13-13: SignalTap II Command-Line Options

Option Usage Description

stp_file
quartus_stp --stp_file <stp_
filename>

Assigns the specified .stp to the USE_SIGNALTAP_
FILE in the .qsf.

enable
quartus_stp --enable

Creates assignments to the specified .stp in the .qsf
and changes ENABLE_SIGNALTAP to ON. The
SignalTap II Logic Analyzer is included in your
design the next time the project is compiled. If
no .stp is specified in the .qsf, the --stp_file
option must be used. If the --enable option is
omitted, the current value of ENABLE_SIGNALTAP in
the .qsf is used.

disable
quartus_stp --disable

Removes the .stp reference from the .qsf and
changes ENABLE_SIGNALTAP to OFF. The
SignalTap II Logic Analyzer is removed from the
design database the next time you compile your
design. If the --disable option is omitted, the
current value of ENABLE_SIGNALTAP in the .qsf is
used.

create_

signaltap

_hdl_file

quartus_stp --create_signaltap_hdl_
file

Creates an .stp representing the SignalTap II
instance. The file is based on the last compilation.
You must use the --stp_file option to create
an .stp properly. Analogous to the Create
SignalTap II File from Design Instance(s)
command in the Quartus Prime software.

The first example illustrates how to compile a design with the SignalTap II Logic Analyzer at the
command line.

quartus_stp filtref --stp_file stp1.stp --enable
quartus_map filtref --source=filtref.bdf --family=CYCLONE
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns
quartus_asm filtref

QPS5V3
2015.11.02 Backward Compatibility with Previous Versions of Quartus Prime Software 13-63

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The quartus_stp --stp_file stp1.stp --enable command creates the QSF variable and instructs the
Quartus Prime software to compile the stp1.stp file with your design. The --enable option must be
applied for the SignalTap II Logic Analyzer to compile properly into your design.

The example below shows how to create a new .stp after building the SignalTap II Logic Analyzer instance
with the IP Catalog.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp

Related Information
Command-Line Scripting documentation
Information about the other command line executables and options

SignalTap II Tcl Commands
The quartus_stp executable supports a Tcl interface that allows you to capture data without running the
Quartus Prime GUI. You cannot execute SignalTap II Tcl commands from within the Tcl console in the
Quartus Prime software. They must be executed from the command line with the quartus_stp executable.
To execute a Tcl file that has SignalTap II Logic Analyzer Tcl commands, use the following command:

quartus_stp -t <Tcl file>

The example is an excerpt from a script you can use to continuously capture data. Once the trigger
condition is met, the data is captured and stored in the data log.

#opens signaltap session
open_session -name stp1.stp
#start acquisition of instance auto_signaltap_0 and
#auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances
#run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5
run_multiple_end
#close signaltap session
close_session

When the script is completed, open the .stp that you used to capture data to examine the contents of the
Data Log.

Related Information
::quartus::stp online help
Information about Tcl commands that you can use with the SignalTap II Logic Analyzer Tcl package

Design Example: Using SignalTap II Logic Analyzers
The system in this example contains many components, including a Nios processor, a direct memory
access (DMA) controller, on-chip memory, and an interface to external SDRAM memory. In this
example, the Nios processor executes a simple C program from on-chip memory and waits for you to
press a button. After you press a button, the processor initiates a DMA transfer, which you analyze using
the SignalTap II Logic Analyzer.

13-64 SignalTap II Tcl Commands
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_stp_ver_1.0.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
AN 446: Debugging Nios II Systems with the SignalTap II Embedded Logic Analyzer application note

Custom Triggering Flow Application Examples
The custom triggering flow in the SignalTap II Logic Analyzer is most useful for organizing a number of
triggering conditions and for precise control over the acquisition buffer. This section provides two
application examples for defining a custom triggering flow within the SignalTap II Logic Analyzer. Both
examples can be easily copied and pasted directly into the state machine description box by using the state
display mode All states in one window.

Related Information
On-chip Debugging Design Examples website

Design Example 1: Specifying a Custom Trigger Position
Actions to the acquisition buffer can accept an optional post-count argument. This post-count argument
enables you to define a custom triggering position for each segment in the acquisition buffer. The example
shows how to apply a trigger position to all segments in the acquisition buffer. The example describes a
triggering flow for an acquisition buffer split into four segments. If each acquisition segment is 64 samples
in depth, the trigger position for each buffer will be at sample #34. The acquisition stops after all four
segments are filled once.

if (c1 == 3 && condition1)
 trigger 30;
else if (condition1)
begin
 segment_trigger 30;
 increment c1;
end

Each segment acts as a non-segmented buffer that continuously updates the memory contents with the
signal values. The last acquisition before stopping the buffer is displayed on the Data tab as the last sample
number in the affected segment. The trigger position in the affected segment is then defined by N – post
count fill, where N is the number of samples per segment. Figure 13-51 illustrates the triggering
position.

QPS5V3
2015.11.02 Custom Triggering Flow Application Examples 13-65

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13-51: Specifying a Custom Trigger Position

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample

Design Example 2: Trigger When triggercond1 Occurs Ten Times between
triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events before triggering the
acquisition buffer. The example shows such a sample flow. This example uses three basic triggering
conditions configured in the SignalTap II Setup tab.

This example triggers the acquisition buffer when condition1 occurs after condition3 and occurs ten
times prior to condition3. If condition3 occurs prior to ten repetitions of condition1, the state
machine transitions to a permanent wait state.

state ST1:
if (condition2)
begin
 reset c1;
 goto ST2;
end
State ST2 :
if (condition1)
 increment c1;
else if (condition3 && c1 < 10)
 goto ST3;
else if (condition3 && c1 >= 10)
 trigger;
ST3:
goto ST3;

SignalTap II Scripting Support
You can run procedures and make settings described in this chapter in a Tcl script. You can also run some
procedures at a command prompt. For detailed information about scripting command options, refer to

13-66 Design Example 2: Trigger When triggercond1 Occurs Ten Times between...
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

the Quartus Prime Command-Line and Tcl API Help browser. To run the Help browser, type the
following at the command prompt:

quartus_sh --qhelp

Related Information

• Tcl Scripting documentation
• Quartus Prime Tcl Scripting online help

Document Revision History

Table 13-14: Document Revision History

Date Version Changes Made

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Added content for Floating Point Display Format in table: SignalTap II
Logic Analyzer Features and Benefits.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings, and
Physical Synthesis Optimizations to Compiler Settings.

December 2014 14.1.0 • Added MAX 10 as supported device.

• Removed Full Incremental Compilation setting and Post-Fit (Strict)
netlist type setting information.

• Removed outdated GUI images from "Using Incremental Compilation
with the SignalTap II Logic Analyzer" section.

June 2014 14.0.0 • DITA conversion.
• Replaced MegaWizard Plug-In Manager and Megafunction content

with IP Catalog and parameter editor content.
• Added flows for custom trigger HDL object, Incremental Route with

Rapid Recompile, and nested groups with Basic OR.
• GUI changes: toolbar, drag to zoom, disable/enable instance, trigger log

time-stamping.

November 2013 13.1.0 Removed HardCopy material. Added section on using cross-triggering
with DS-5 tool and added link to white paper 01198. Added section on
remote debugging an Altera SoC and added link to application note 693.
Updated support for MEX function.

May 2013 13.0.0 • Added recommendation to use the state-based flow for segmented
buffers with separate trigger conditions, information about Basic OR
trigger condition, and hard processor system (HPS) external triggers.

• Updated “Segmented Buffer” on page 13-17, Conditional Mode on page
13-21, Creating Basic Trigger Conditions on page 13-16, and Using
External Triggers on page 13-48.

QPS5V3
2015.11.02 Document Revision History 13-67

Design Debugging Using the SignalTap II Logic Analyzer Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
http://quartushelp.altera.com/current/index.htm#reference/scripting/tcl_pro_command.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes Made

June 2012 12.0.0 Updated Figure 13–5 on page 13–16 and “Adding Signals to the
SignalTap II File” on page 13–10.

November 2011 11.0.1 Template update.

Minor editorial updates.

May 2011 11.0.0 Updated the requirement for the standalone SignalTap II software.

December 2010 10.0.1 Changed to new document template.

July 2010 10.0.0 • Add new acquisition buffer content to the “View, Analyze, and Use
Captured Data” section.

• Added script sample for generating hexadecimal CRC values in
programmed devices.

• Created cross references to Quartus Prime Help for duplicated
procedural content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Updated Table 13–1
• Updated “Using Incremental Compilation with the SignalTap II Logic

Analyzer” on page 13–45
• Added new Figure 13–33
• Made minor editorial updates

November 2008 8.1.0 Updated for the Quartus Prime software version 8.1 release:

• Added new section “Using the Storage Qualifier Feature” on page 14–
25

• Added description of start_store and stop_store commands in
section “Trigger Condition Flow Control” on page 14–36

• Added new section “Runtime Reconfigurable Options” on page 14–63

May 2008 8.0.0 Updated for the Quartus Prime software version 8.0:

• Added “Debugging Finite State machines” on page 14-24
• Documented various GUI usability enhancements, including improve‐

ments to the resource estimator, the bus find feature, and the dynamic
display updates to the counter and flag resources in the State-based
trigger flow control tab

• Added “Capturing Data Using Segmented Buffers” on page 14–16
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

13-68 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using the SignalTap II Logic Analyzer

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20the%20SignalTap%C2%A0II%20Logic%20Analyzer%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Debugging Single Event Upset Using the Fault
Injection Debugger 14

2015.11.02

QPS5V3 Subscribe Send Feedback

You can detect and debug single event upset (SEU) using the Fault Injection Debugger in the Quartus®

Prime software. Use the debugger with the Altera Fault Injection IP core to inject errors into the
configuration RAM (CRAM) of an FPGA device.

The injected error simulate the soft errors that can occur during normal operation due to (SEUs). Because
SEUs are rare events, and therefore difficult to test, you can use the Fault Injection Debugger to induce
intentional errors in the FPGA to test the system's response to these errors.

The Fault Injection Debugger is available for Stratix V family devices. For assistance with support for
Arria V or Cyclone V family devices, file a service request using mySupport.

The Fault Injection Debugger provides the following benefits:

• Allows you to evaluate system response for mitigating single event functional interrupts (SEFI).
• Allows you to perform SEFI characterization, eliminating the need for entire system beam testing.

Instead, you can limit the beam testing to failures in time (FIT)/Mb measurement at the device level.
• Scale FIT rates according to the SEFI characterization that is relevant to your design architecture. You

can randomly distribute fault injections throughout the entire device, or constrain them to specific
functional areas to speed up testing.

• Optimize your design to reduce SEU-caused disruption.

Related Information
Altera Website: Single Event Upsets

Single Event Upset Mitigation
Integrated circuits and programmable logic devices such as FPGAs are susceptible to SEUs. SEUs are
random, nondestructive events, caused by two major sources: alpha particles and neutrons from cosmic
rays. Radiation can cause either the logic register, embedded memory bit, or a configuration RAM
(CRAM) bit to flip its state, thus leading to unexpected device operation.

Arria V, Cyclone V, Stratix V and newer devices have the following CRAM capabilities:

• Error Detection Cyclical Redundance Checking (EDCRC)
• Automatic correction of an upset CRAM (scrubbing)
• Ability to create an upset CRAM condition (fault injection)

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/myaltera/mal-index.jsp
http://www.altera.com/support/reliability/seu/seu-index.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

For more information about SEU mitigation in Altera devices, refer to the SEU Mitigation chapter in the
respective device handbook.

Related Information
Altera Website: Single Event Upsets

Hardware and Software Requirements
The following hardware and software is required to use the Fault Injection Debugger:

• Quartus Prime software version 14.0 or later.
• FEATURE line in your Altera license that enables the Fault Injection IP core. For more information,

contact your local Altera sales representative.
• Download cable (USB-Blaster, USB-Blaster II, EthernetBlaster, or EthernetBlaster II cable).
• Altera development kit or user designed board with a JTAG connection to the device under test.
• (Optional) FEATURE line in your Altera license that enables the Advanced SEU Detection IP core.

Related Information
Altera Website: Contact Altera

Using the Fault Injection Debugger and Fault Injection IP Core
The Fault Injection Debugger works together with the Fault Injection IP core. First, you instantiate the IP
core in your design, compile, and download the resulting configuration file into your device. Then, you
run the Fault Injection Debugger from within the Quartus Prime software or from the command line to
simulate soft errors.

The Fault Injection Debugger communicates with the Fault Injection IP core via the JTAG interface. You
perform debugging using the Fault Injection Debugger in the Quartus Prime software or using the
command-line interface.

• The Fault Injection Debugger allows you to operate fault injection experiments interactively or by
batch commands, and allows you to specify the logical areas in your design for fault injections.

• The command-line interface is useful for running the debugger via a script.

The Fault Injection IP accepts commands from the JTAG interface and reports status back through the
JTAG interface.

Note: The Fault Injection IP core is implemented in soft logic in your device; therefore, you must account
for this logic usage in your design. One methodology is to characterize your design’s response to
SEU in the lab and then omit the IP core from your final deployed design.

You use the Fault Injection IP core with the following IP cores:

• The Error Message Register (EMR) Unloader IP core, which reads and stores data from the hardened
error detection circuitry in Altera devices.

• (Optional) The Advanced SEU Detection (ASD) IP core, which compares single-bit error locations to
a sensitivity map during device operation to determine whether a soft error affects it.

14-2 Hardware and Software Requirements
QPS5V3

2015.11.02

Altera Corporation Debugging Single Event Upset Using the Fault Injection Debugger

Send Feedback

http://www.altera.com/support/reliability/seu/seu-index.html
http://www.altera.com/corporate/contact/con-index.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14-1: Fault Injection Debugger Overview Block Diagram

Non-Critical
User Logic

Command-Line
Interface or

Fault Injection
Debugger User

Interface

Altera Device

Advanced SEU
Detection IP (3)

Fault Injection IP
(1)

Critical
User Logic

Sensitivity Map
Header File (.smh)

JTAG

Notes:
1. The fault Injection IP flips the bits of the targeted logic.
2. The Fault Injection Debugger and Advanced SEU Detection IP use the same
 EMR Unloader instance.
3. The Advanced SEU Detection IP core is optional.

Injected Error

Unused Logic

EMR Unloader IP
(2)

Related Information

• Download Center
• AN 539: Test Methodology or Error Detection and Recovery using CRC in Altera FPGA Devices
• Understanding Single Event Functional Interrupts in FPGA Designs White Paper
• Altera Fault Injection IP Core User Guide
• Altera Error Message Unloader IP Core User Guide
• Altera Advanced SEU Detection (ALTERA_ADV_SEU_DETECTION) IP Core User Guide

Instantiating the Fault Injection IP Core
The Fault Injection IP core does not require you to set any parameters. To use the IP core, create a new IP
instance, include it in your Qsys system, and connect the signals as appropriate.

Note: You must use the Fault Injection IP core with the Error Message Register (EMR) Unloader IP core.

The Fault Injection and the EMR Unloader IP cores are available in Qsys and the IP Catalog. Optionally,
you can instantiate them directly into your RTL design, using Verilog HDL, SystemVerilog, or VHDL.

Related Information

• Altera Fault Injection IP Core User Guide

Using the EMR Unloader IP Core
The EMR Unloader IP core provides an interface to the EMR, which is updated continuously by the
device’s EDCRC that checks the device's CRAM bits CRC for soft errors.

QPS5V3
2015.11.02 Instantiating the Fault Injection IP Core 14-3

Debugging Single Event Upset Using the Fault Injection Debugger Altera Corporation

Send Feedback

https://www.altera.com/download/sw/dnl-sw-index.jsp
http://www.altera.com/literature/an/an539.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01207-single-event-functional-interrupt.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_fault_injection.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_emr_unloader.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_altadvseu.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_fault_injection.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14-2: Example Qsys System Including the Fault Injection IP Core and EMR Unloader IP Core

Figure 14-3: Example Altera Fault Injection IP Core and EMR Unloader IP Core Block Diagram

Altera Error
Message Register
Unloader IP Core

Altera Fault
Injection IP Core

crcerror_pin

emr_data

emr_valid

67

error_injected

error_scrubbed

intosc

clk
reset

System Reset

Related Information

• Altera Error Message Unloader IP Core User Guide

Using the Advanced SEU Detection IP Core
Use the Advanced SEU Detection (ASD) IP core when SEU tolerance is a design concern.

14-4 Using the Advanced SEU Detection IP Core
QPS5V3

2015.11.02

Altera Corporation Debugging Single Event Upset Using the Fault Injection Debugger

Send Feedback

https://www.altera.com/en_US/pdfs/literature/ug/ug_emr_unloader.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You must use the EMR Unloader IP core with the ASD IP core. Therefore, if you use the ASD IP and the
Fault Injection IP in the same design, they must share the EMR Unloader output via an Avalon-ST splitter
component. The following figure shows a Qsys system in which an Avalon-ST splitter distributes the
EMR contents to the ASD and Fault Injection IP cores.

Figure 14-4: Using the ASD and Fault Injection IP in the Same Qsys System

Related Information

• Altera Advanced SEU Detection (ALTERA_ADV_SEU_DETECTION) IP Core User Guide

Defining Fault Injection Areas
You can define specific regions of the FPGA for fault injection using a Sensitivity Map Header (.smh) file.

The SMH file stores the coordinates of the device CRAM bits, their assigned region (ASD Region), and
criticality. During the design process you use hierarchy tagging to create the region. Then, during
compilation, the Quartus Prime Assembler generates the SMH file. The Fault Injection Debugger limits
error injections to specific device regions you define in the SMH file.

QPS5V3
2015.11.02 Defining Fault Injection Areas 14-5

Debugging Single Event Upset Using the Fault Injection Debugger Altera Corporation

Send Feedback

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_altadvseu.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Performing Hierarchy Tagging
You define the FPGA regions for testing by assigning an ASD Region to the location. You can specify an
ASD Region value for any portion of your design hierarchy using the Design Partitions Window.

1. Choose Assignments > Design Partitions Window.
2. Right-click anywhere in the header row and turn on ASD Region to display the ASD Region column

(if it is not already displayed).
3. Enter a value from 0 to 16 for any partition to assign it to a specific ASD Region.

• ASD region 0 is reserved to unused portions of the device. You can assign a partition to this region
to specify it as non-critical..

• ASD region 1 is the default region. All used portions of the device are assigned to this region unless
you explicitly change the ASD Region assignment.

About SMH Files

The SMH file contains the following information:

• If you are not using hierarchy tagging (i.e., the design has no explicit ASD Region assignments in the
design hierarchy), the SMH file lists every CRAM bit and indicates whether it is sensitive for the
design.

• If you have performed hierarchy tagging and changed default ASD Region assignments, the SMH file
lists every CRAM bit and it's assigned ASD region.

The Fault Injection Debugger can limit injections to one or more specified regions.

Note: To direct the Assembler to generate an SMH file:

• Choose Assignments > Device > Device and Pin Options > Error Detection CRC.
• Turn on the Generate SEU sensitivity map file (.smh) option.

Using the Fault Injection Debugger
To use the Fault Injection Debugger, you connect from the tool to the device via the JTAG interface.
Then, configure the device and perform fault injection.

To launch the Fault Injection Debugger, choose Tools > Fault Injection Debugger in the Quartus Prime
software.

Note: Configuring or programming the device is similar to the procedure used for the Programmer or
SignalTap II Logic Analyzer.

14-6 Performing Hierarchy Tagging
QPS5V3

2015.11.02

Altera Corporation Debugging Single Event Upset Using the Fault Injection Debugger

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14-5: Fault Injection Debugger

To configure your JTAG chain:

1. Click Hardware Setup. The tool displays the programming hardware connected to your computer.
2. Select the programming hardware you wish to use.
3. Click Close.
4. Click Auto Detect, which populates the device chain with the programmable devices found in the

JTAG chain.

Related Information
Targeted Fault Injection Feature on page 14-13

Configuring Your Device and the Fault Injection Debugger
The Fault Injection Debugger uses a .sof and (optionally) a Sensitivity Map Header (.smh) file.

The Software Object File (.sof) configures the FPGA. The .smh file defines the sensitivity of the CRAM
bits in the device. If you do not provide an .smh file, the Fault Injection Debugger injects faults randomly
throughout the CRAM bits.

QPS5V3
2015.11.02 Configuring Your Device and the Fault Injection Debugger 14-7

Debugging Single Event Upset Using the Fault Injection Debugger Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify a .sof:

1. Select the FPGA you wish to configure in the Device chain box.
2. Click Select File.
3. Navigate to the .sof and click OK. The Fault Injection Debugger reads the .sof.
4. (Optional) Select the SMH file.

If you do not specify an SMH file, the Fault Injection Debugger injects faults randomly across the
entire device. If you specify an SMH file, you can restrict injections to the used areas of your device.
a. Right-click the device in the Device chain box and then click Select SMH File.
b. Select your SMH file.
c. Click OK.

5. Turn on Program/Configure.
6. Click Start.

The Fault Injection Debugger configures the device using the .sof.
Figure 14-6: Context Menu for Selecting the SMH File

Constraining Regions for Fault Injection
After loading an SMH file, you can direct the Fault Injection Debugger to operate on only specific ASD
regions.

14-8 Constraining Regions for Fault Injection
QPS5V3

2015.11.02

Altera Corporation Debugging Single Event Upset Using the Fault Injection Debugger

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify the ASD region(s) in which to inject faults:

1. Right-click on the FPGA in the Device chain box and click Show Device Sensitivity Map.
2. Select the ASD region(s) for fault injection.

Figure 14-7: Sensitivity Map Viewer

Specifying Error Types
You can specify various types of errors for injection.

• Single errors (SE)
• Double-adjacent errors (DAE)
• Uncorrectable multi-bit errors (EMBE)

Altera devices can self-correct single and double-adjacent errors if the scrubbing feature is enabled. Altera
devices cannot correct multi-bit errors. Refer to the chapter on mitigating SEUs for more information
about debugging these errors.

You can specify the mixture of faults to inject and the injection time interval. To specify the injection time
interval:

QPS5V3
2015.11.02 Specifying Error Types 14-9

Debugging Single Event Upset Using the Fault Injection Debugger Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Fault Injection Debugger, choose Tools > Options.
2. Drag the red controller to the mix of errors. Alternatively, you can specify the mix numerically.
3. Specify the Injection interval time.
4. Click OK.

Figure 14-8: Specifying the Mixture of SEU Fault Types

Related Information
Mitigating Single Event Upsets

Injecting Errors
You can inject errors in several modes:

• Inject one error on command
• Inject multiple errors on command
• Inject errors until commanded to stop

To inject these faults:

1. Turn on the Inject Fault option.
2. Choose whether you want to run error injection for a number of iterations or until stopped:

• If you choose to run until stopped, the Fault Injection Debugger injects errors at the interval
specified in the Tools > Options dialog box.

• If you want to run error injection for a specific number of iterations, enter the number.
3. Click Start.

Note: The Fault Injection Debugger runs for the specified number of iterations or until stopped.

The Quartus Prime Messages window shows messages about the errors that are injected. For additional
information on the injected faults, click Read EMR. The Fault Injection Debugger reads the device's EMR
and displays the contents in the Messages window.

14-10 Injecting Errors
QPS5V3

2015.11.02

Altera Corporation Debugging Single Event Upset Using the Fault Injection Debugger

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14-9: Quartus Prime Error Injection and EMR Content Messages

Error Information Read
from the Device EMR

Error Injection Information

Recording Errors
You can record the location of any injected fault by noting the parameters reported in the Quartus Prime
Messages window.

If, for example, an injected fault results in behavior you would like to replay, you can target that location
for injection. You perform targeted injection using the Fault Injection Debugger command line interface.

Clearing Injected Errors
To restore the normal function of the FPGA, click Scrub. When you scrub an error, the device’s EDCRC
functions are used to correct the errors. The scrub mechanism is similar to that used during device
operation.

Command-Line Interface
You can run the Fault Injection Debugger at the command line with the quartus_fid executable, which is
useful if you want to perform fault injection from a script.

Table 14-1: Command line Arguments for Fault Injection

Short Argument Long Argument Description

c cable Specify programming hardware or cable.
(Required)

i index Specify the active device to inject fault. (Required)

n number Specify the number of errors to inject. The default
value is 1. (Optional)

t time Interval time between injections. (Optional)

Note: Use quartus_fid --help to view all available options.

The following code provides examples using the Fault Injection Debugger command-line interface.

##
#
Find out which USB cables are available for this instance

QPS5V3
2015.11.02 Recording Errors 14-11

Debugging Single Event Upset Using the Fault Injection Debugger Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The result shows that one cable is available, named "USB-Blaster"
#
$ quartus_fid --list
 . . .
 Info: Command: quartus_fid --list
 1) USB-Blaster on sj-sng-z4 [USB-0]
 Info: Quartus Prime 64-Bit Fault Injection Debugger was successful. 0 errors, 0 warning
##
#
Find which devices are available on USB-Blaster cable
The result shows two devices: a Stratix V A7, and a MAX V CPLD.
#
$ quartus_fid --cable USB-Blaster -a
 Info: Command: quartus_fid --cable=USB-Blaster -a
 Info (208809): Using programming cable "USB-Blaster on sj-sng-z4 [USB-0]"
 1) USB-Blaster on sj-sng-z4 [USB-0]
 029030DD 5SGXEA7H(1|2|3)/5SGXEA7K1/..
 020A40DD 5M2210Z/EPM2210
 Info: Quartus Prime 64-Bit Fault Injection Debugger was successful. 0 errors, 0 warnings

##
#
Program the Stratix V device
The --index option specifies operations performed on a connected device.
"=svgx.sof" associates a .sof file with the device
"#p" means program the device
#
$ quartus_fid --cable USB-Blaster --index "@1=svgx.sof#p"
 . . .
 Info (209016): Configuring device index 1
 Info (209017): Device 1 contains JTAG ID code 0x029030DD
 Info (209007): Configuration succeeded -- 1 device(s) configured
 Info (209011): Successfully performed operation(s)
 Info (208551): Program signature into device 1.
 Info: Quartus Prime 64-Bit Fault Injection Debugger was successful. 0 errors, 0
warnings

##
#
Inject a fault into the device.
The #i operator indicates to inject faults
-n 3 indicates to inject 3 faults
#
$ quartus_fid --cable USB-Blaster --index "@1=svgx.sof#i" -n 3
 Info: Command: quartus_fid --cable=USB-Blaster --index=@1=svgx.sof#i -n 3
 Info (208809): Using programming cable "USB-Blaster on sj-sng-z4 [USB-0]"
 Info (208521): Injects 3 error(s) into device(s)
 Info: Quartus Prime 64-Bit Fault Injection Debugger was successful. 0 errors, 0
warnings

##
#
Interactive Mode.
Using the #i operation with -n 0 puts the debugger into interactive mode.
Note that 3 faults were injected in the previous session;
"E" reads the faults currently in the EMR Unloader IP core.
#
$ quartus_fid --cable USB-Blaster --index "@1=svgx.sof#i" -n 0
 Info: Command: quartus_fid --cable=USB-Blaster --index=@1=svgx.sof#i -n 0
 Info (208809): Using programming cable "USB-Blaster on sj-sng-z4 [USB-0]"
 Enter :
 'F' to inject fault
 'E' to read EMR
 'S' to scrub error(s)
 'Q' to quit
 E

14-12 Command-Line Interface
QPS5V3

2015.11.02

Altera Corporation Debugging Single Event Upset Using the Fault Injection Debugger

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Info (208540): Reading EMR array
 Info (208544): 3 frame error(s) detected in device 1.
 Info (208545): Error #1 : Single error in frame 0x1028 at bit 0x21EA.
 Info (10914): Error #2 : Uncorrectable multi-bit error in frame 0x1116.
 Info (208545): Error #3 : Single error in frame 0x1848 at bit 0x128C.
 Enter :
 'F' to inject fault
 'E' to read EMR
 'S' to scrub error(s)
 'Q' to quit
 Q
 Info: Quartus Prime 64-Bit Fault Injection Debugger was successful. 0 errors, 0
warnings
 Info: Peak virtual memory: 1522 megabytes
 Info: Processing ended: Mon Nov 3 18:50:00 2014
 Info: Elapsed time: 00:00:29
 Info: Total CPU time (on all processors): 00:00:13

Targeted Fault Injection Feature

The Fault Injection Debugger injects faults into the FPGA randomly. However, the Targeted Fault
Injection feature allows you to inject faults into targeted locations in the CRAM. This operation may be
useful, for example, if you noted an SEU event and want to test the FPGA or system response to the same
event after modifying a recovery strategy.

Note: The Targeted Fault Injection feature is available only from the command line interface.

You can specify that errors are injected from the command line or in prompt mode.

Related Information
AN 539: Test Methodology or Error Detection and Recovery using CRC in Altera FPGA Devices

Specifying an Error List From the Command Line
The Targeted Fault Injection feature allows you to specify an error list from the command line, as shown
in the following example:

c:\Users\sng> quartus_fid -c 1 - i "@1= svgx.sof#i " -n 2 -user="@1= 0x2274 0x05EF 0x2264
0x0500"

Where:

c 1 indicates that the fpga is controlled by the first cable on your computer.

i "@1= svgx.sof#i " indicates that the first device in the chain is loaded with the object file svgx.sof and
will be injected with faults.

n 2 indicates that two faults will be injected.

user=”@1= 0x2274 0x05EF 0x2264 0x0500” is a user-specified list of faults to be injected. In this
example, device 1 has two faults: at frame 0x2274, bit 0x05EF and at frame 0x2264, bit 0x0500.

QPS5V3
2015.11.02 Targeted Fault Injection Feature 14-13

Debugging Single Event Upset Using the Fault Injection Debugger Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an539.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying an Error List From Prompt Mode
You can operate the Targeted Fault Injection feature interactively by specifying the number of faults to be
0 (-n 0). The Fault Injection Debugger presents prompt mode commands and their descriptions.

Prompt Mode Command Description

F Inject a fault

E Read the EMR

S Scrub errors

Q Quit

In prompt mode, you can issue the F command alone to inject a single fault in a random location in the
device. In the following examples using the F command in prompt mode, three errors are injected.

F #3 0x12 0x34 0x56 0x78 * 0x9A 0xBC +

• Error 1 – Single bit error at frame 0x12, bit 0x34
• Error 2 – Uncorrectable error at frame 0x56, bit 0x78 (an * indicates a multi-bit error)
• Error 3 – Double-adjacent error at frame 0x9A, bit 0xBC (a + indicates a double bit error)

F 0x12 0x34 0x56 0x78 *

One (default) error is injected:

Error 1 – Single bit error at frame 0x12, bit 0x34. Locations after the first frame/bit location are ignored.

F #3 0x12 0x34 0x56 0x78 * 0x9A 0xBC + 0xDE 0x00

Three errors are injected:

• Error 1 – Single bit error at frame 0x12, bit 0x34
• Error 2 – Uncorrectable error at frame 0x56, bit 0x78
• Error 3 – Double-adjacent error at frame 0x9A, bit 0xBC
• Locations after the first 3 frame/bit pairs are ignored

Determining CRAM Bit Locations
When the Fault Injection Debugger detects a CRAM EDCRC error, the Error Message Register (EMR)
contains the syndrome, frame number, bit location, and error type (single, double, or multi-bit) of the
detected CRAM error.

During system testing, save the EMR contents reported by the Fault Injection Debugger when you detect
an EDCRC fault.

Note: With the recorded EMR contents, you can supply the frame and bit numbers to the Fault Injection
Debugger to replay the errors noted during system testing, to further design, and characterize a
system recovery response to that error.

Related Information
AN 539: Test Methodology or Error Detection and Recovery using CRC in Altera FPGA Devices

Advanced Command-Line Options: ASD Regions and Error Type Weighting
You can use the Fault Injection Debugger command-line interface to inject errors into ASD regions and
weight the error types.

14-14 Specifying an Error List From Prompt Mode
QPS5V3

2015.11.02

Altera Corporation Debugging Single Event Upset Using the Fault Injection Debugger

Send Feedback

http://www.altera.com/literature/an/an539.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

First, you specify the mix of error types (single bit, double adjacent, and multi-bit uncorrectable) using the
--weight <single errors>.<double adjacent errors>.<multi-bit errors> option. For example,
for a mix of 50% single errors, 30% double adjacent errors, and 20% multi-bit uncorrectable errors, use
the option --weight=50.30.20. Then, to target an ASD region, use the -smh option to include the SMH
file and indicate the ASD region to target. For example:

$ quartus_fid --cable=USB-BlasterII --index "@1=svgx.sof#pi" --weight=100.0.0 --

smh="@1=svgx.smh#2" --number=30

This example command:

• Programs the device and injects faults (pi string)
• Injects 100% single-bit faults (100.0.0)
• Injects only into ASD_REGION 2 (indicated by the #2)
• Injects 30 faults

Document Revision History
Table 14-2: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.
2015.05.04 15.0.0 • Provided more detail on how to use the Fault

Injection Debugger throughout the document.
• Added more command-line examples.

2014.06.30 14.0.0 • Removed “Modifying the Quartus INI File”
section.

• Added “Targeted Fault Injection Feature”
section.

• Updated “Hardware and Software Require‐
ments” section.

December 2012 2012.12.01 Preliminary release.

QPS5V3
2015.11.02 Document Revision History 14-15

Debugging Single Event Upset Using the Fault Injection Debugger Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Debugging%20Single%20Event%20Upset%20Using%20the%20Fault%20Injection%20Debugger%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In-System Debugging Using External Logic
Analyzers 15

2015.11.02

QPS5V3 Subscribe Send Feedback

About the Quartus Prime Logic Analyzer Interface
The Quartus Prime Logic Analyzer Interface (LAI) allows you to use an external logic analyzer and a
minimal number of Altera-supported device I/O pins to examine the behavior of internal signals while
your design is running at full speed on your Altera®- supported device.

The LAI connects a large set of internal device signals to a small number of output pins. You can connect
these output pins to an external logic analyzer for debugging purposes. In the Quartus Prime LAI, the
internal signals are grouped together, distributed to a user-configurable multiplexer, and then output to
available I/O pins on your Altera-supported device. Instead of having a one-to-one relationship between
internal signals and output pins, the Quartus Prime LAI enables you to map many internal signals to a
smaller number of output pins. The exact number of internal signals that you can map to an output pin
varies based on the multiplexer settings in the Quartus Prime LAI.

Note: The term “logic analyzer” when used in this document includes both logic analyzers and oscillo‐
scopes equipped with digital channels, commonly referred to as mixed signal analyzers or MSOs.

The LAI does not support Hard Processor System (HPS) I/Os.

Related Information
Device Support website

Choosing a Logic Analyzer
The Quartus Prime software offers the following two general purpose on-chip debugging tools for
debugging a large set of RTL signals from your design:

• The SignalTap® II Logic Analyzer
• An external logic analyzer, which connects to internal signals in your Altera-supported device by using

the Quartus Prime LAI

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20In-System%20Debugging%20Using%20External%20Logic%20Analyzers&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/dvs-index.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Table 15-1: Comparing the SignalTap II Logic Analyzer with the Logic Analyzer Interface

Feature Description Recommended Logic
Analyzer

Sample Depth You have access to a wider sample depth with an external logic analyzer.
In the SignalTap II Logic Analyzer, the maximum sample depth is set to
128 Kb, which is a device constraint. However, with an external logic
analyzer, there are no device constraints, providing you a wider sample
depth.

LAI

Debugging
Timing Issues

Using an external logic analyzer provides you with access to a “timing”
mode, which enables you to debug combined streams of data.

LAI

Performance You frequently have limited routing resources available to place and
route when you use the SignalTap II Logic Analyzer with your design.
An external logic analyzer adds minimal logic, which removes resource
limits on place-and-route.

LAI

Triggering
Capability

The SignalTap II Logic Analyzer offers triggering capabilities that are
comparable to external logic analyzers.

LAI or SignalTap II

Use of Output
Pins

Using the SignalTap II Logic Analyzer, no additional output pins are
required. Using an external logic analyzer requires the use of additional
output pins.

SignalTap II

Acquisition Speed With the SignalTap II Logic Analyzer, you can acquire data at speeds of
over 200 MHz. You can achieve the same acquisition speeds with an
external logic analyzer; however, you must consider signal integrity
issues.

SignalTap II

Related Information

• System Debugging Tools Overview on page 9-1
Overview and comparison of all tools available in the Quartus Prime software on-chip debugging tool
suite

Required Components
You must have the following components to perform analysis using the LAI:

15-2 Required Components
QPS5V3

2015.11.02

Altera Corporation In-System Debugging Using External Logic Analyzers

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Debugging%20Using%20External%20Logic%20Analyzers%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The Quartus Prime software starting with version 5.1 and later
• The device under test
• An external logic analyzer
• An Altera communications cable
• A cable to connect the Altera-supported device to the external logic analyzer

Figure 15-1: LAI and Hardware Setup

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

Altera Programming
Hardware Quartus Prime Software

External Logic Analyzer
Board

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Quartus Prime software via
the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port.
Support varies by vendor.

QPS5V3
2015.11.02 Required Components 15-3

In-System Debugging Using External Logic Analyzers Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Debugging%20Using%20External%20Logic%20Analyzers%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Flow for Using the LAI
Figure 15-2: LAI Workflow

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus Prime Software

Notes to figure:

1. Configuration and control of the LAI using a computer loaded with the Quartus Prime software via
the JTAG port.

2. Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port.
Support varies by vendor.

Working with LAI Files
The .lai file stores the configuration of an LAI instance. The .lai file opens in the LAI editor. The editor
allows you to group multiple internal signals to a set of external pins.

Configuring the File Core Parameters
After you create the .lai file, you must configure the .lai file core parameters by clicking on the Setup View
list, and then selecting Core Parameters. The table below lists the .lai file core parameters.

Table 15-2: LAI File Core Parameters

Parameter Description

Pin Count The Pin Count parameter signifies the number of pins you want dedicated to
your LAI. The pins must be connected to a debug header on your board. Within
the Altera-supported device, each pin is mapped to a user-configurable number
of internal signals.

The Pin Count parameter can range from 1 to 255 pins.

15-4 Flow for Using the LAI
QPS5V3

2015.11.02

Altera Corporation In-System Debugging Using External Logic Analyzers

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Debugging%20Using%20External%20Logic%20Analyzers%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Bank Count The Bank Count parameter signifies the number of internal signals that you
want to map to each pin. For example, a Bank Count of 8 implies that you will
connect eight internal signals to each pin.

The Bank Count parameter can range from 1 to 255 banks.

Output/
Capture Mode

The Output/Capture Mode parameter signifies the type of acquisition you
perform. There are two options that you can select:

Combinational/Timing—This acquisition uses your external logic analyzer’s
internal clock to determine when to sample data. Because Combinational/
Timing acquisition samples data asynchronously to your Altera-supported
device, you must determine the sample frequency you should use to debug and
verify your system. This mode is effective if you want to measure timing
information, such as channel-to-channel skew. For more information about the
sampling frequency and the speeds at which it can run, refer to the data sheet for
your external logic analyzer.

Registered/State—This acquisition uses a signal from your system under test to
determine when to sample. Because Registered/State acquisition samples data
synchronously with your Altera-supported device, it provides you with a
functional view of your Altera-supported device while it is running. This mode
is effective when you verify the functionality of your design.

Clock The Clock parameter is available only when Output/Capture Mode is set to
Registered State. You must specify the sample clock in the Core Parameters
view. The sample clock can be any signal in your design. However, for best
results, Altera recommends that you use a clock with an operating frequency fast
enough to sample the data you would like to acquire.

Power-Up
State

The Power-Up State parameter specifies the power-up state of the pins you have
designated for use with the LAI. You have the option of selecting tri-stated for
all pins, or selecting a particular bank that you have enabled.

Mapping the LAI File Pins to Available I/O Pins
To configure the .lai file I/O pin parameters, select Pins in the Setup View list. To assign pin locations for
the LAI, double-click the Location column next to the reserved pins in the Name column, and the Pin
Planner opens.

Related Information
Managing Device I/O Pins documentation
Information about how to use the Pin Planner

Mapping Internal Signals to the LAI Banks
After you have specified the number of banks to use in the Core Parameters settings page, you must
assign internal signals for each bank in the LAI. Click the Setup View arrow and select Bank n or All
Banks.

To view all of your bank connections, click Setup View and select All Banks.

QPS5V3
2015.11.02 Mapping the LAI File Pins to Available I/O Pins 15-5

In-System Debugging Using External Logic Analyzers Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471036713/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Debugging%20Using%20External%20Logic%20Analyzers%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Using the Node Finder
Before making bank assignments, on the View menu, point to Utility Windows and click Node Finder.
Find the signals that you want to acquire, then drag and drop the signals from the Node Finder dialog box
into the bank Setup View. When adding signals, use SignalTap II: pre-synthesis for non-incrementally
routed instances and SignalTap II: post-fitting for incrementally routed instances.

As you continue to make assignments in the bank Setup View, the schematic of your LAI in the Logical
View of your .lai file begins to reflect your assignments. Continue making assignments for each bank in
the Setup View until you have added all of the internal signals for which you wish to acquire data.

Compiling Your Quartus Prime Project
When you save your .lai file, a dialog box prompts you to enable the LAI instance for the active project.
Alternatively, you can specify the .lai file your project uses in the Global Project Settings dialog box.

After you specify the name of your .lai file, you must compile your project. To compile your project, on
the Processing menu, click Start Compilation.

To ensure that the LAI is properly compiled with your project, expand the entity hierarchy in the Project
Navigator. (To display the Project Navigator, on the View menu, point to Utility Windows and click
Project Navigator.) If the LAI is compiled with your design, the sld_hub and sld_multitap entities are
shown in the Project Navigator.

Figure 15-3: Project Navigator

Programming Your Altera-Supported Device Using the LAI
After compilation completes, you must configure your Altera-supported device before using the LAI.

You can use the LAI with multiple devices in your JTAG chain. Your JTAG chain can also consist of
devices that do not support the LAI or non-Altera, JTAG-compliant devices. To use the LAI in more than
one Altera-supported device, create an .lai file and configure an .lai file for each Altera-supported device
that you want to analyze.

Controlling the Active Bank During Runtime
When you have programmed your Altera-supported device, you can control which bank you map to the
reserved .lai file output pins. To control which bank you map, in the schematic in the Logical View, right-
click the bank and click Connect Bank.

15-6 Using the Node Finder
QPS5V3

2015.11.02

Altera Corporation In-System Debugging Using External Logic Analyzers

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Debugging%20Using%20External%20Logic%20Analyzers%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15-4: Configuring Banks

Acquiring Data on Your Logic Analyzer
To acquire data on your logic analyzer, you must establish a connection between your device and the
external logic analyzer. For more information about this process and for guidelines about how to establish
connections between debugging headers and logic analyzers, refer to the documentation for your logic
analyzer.

Using the LAI with Incremental Compilation
The Incremental Compilation feature in the Quartus Prime software allows you to preserve the synthesis
and fitting results of your design. This is an effective feature for reducing compilation times if you only
modify a portion of a design or you wish to preserve the optimization results from a previous compilation.

The Incremental Compilation feature is well suited for use with LAI since LAI comprises a small portion
of most designs. Because LAI consists of only a small portion of your design, incremental compilation
helps to minimize your compilation time. Incremental compilation works best when you are only
changing a small portion of your design. Incremental compilation yields an accurate representation of
your design behavior when changing the .lai file through multiple compilations.

Document Revision History

Table 15-3: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 • Dita conversion
• Added limitation about HPS I/O support

June 2012 12.0.0 Removed survey link

November 2011 10.1.1 Changed to new document template

QPS5V3
2015.11.02 Acquiring Data on Your Logic Analyzer 15-7

In-System Debugging Using External Logic Analyzers Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Debugging%20Using%20External%20Logic%20Analyzers%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

December 2010 10.1.0 • Minor editorial updates
• Changed to new document template

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Created links to the Quartus Prime Help
• Editorial updates
• Removed Referenced Documents section

November 2009 9.1.0 • Removed references to APEX devices
• Editorial updates

March 2009 9.0.0 • Minor editorial updates
• Removed Figures 15–4, 15–5, and 15–11 from

8.1 version

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to
content

May 2008 8.0.0 • Updated device support list on page 15–3
• Added links to referenced documents

throughout the chapter
• Added “Referenced Documents”
• Added reference to Section V. In-System

Debugging
• Minor editorial updates

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

15-8 Document Revision History
QPS5V3

2015.11.02

Altera Corporation In-System Debugging Using External Logic Analyzers

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Debugging%20Using%20External%20Logic%20Analyzers%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In-System Modification of Memory and
Constants 16

2015.11.02

QPS5V3 Subscribe Send Feedback

About the In-System Memory Content Editor
The Quartus Prime In-System Memory Content Editor allows you to view and update memories and
constants with the JTAG port connection.

The In-System Memory Content Editor allows access to dense and complex FPGA designs. When you
program devices, you have read and write access to the memories and constants through the JTAG
interface. You can then identify, test, and resolve issues with your design by testing changes to memory
contents in the FPGA while your design is running.

When you use the In-System Memory Content Editor in conjunction with the SignalTap II Logic
Analyzer, you can more easily view and debug your design in the hardware lab.

The ability to read data from memories and constants allows you to quickly identify the source of
problems. The write capability allows you to bypass functional issues by writing expected data. For
example, if a parity bit in your memory is incorrect, you can use the In-System Memory Content Editor to
write the correct parity bit values into your RAM, allowing your system to continue functioning. You can
also intentionally write incorrect parity bit values into your RAM to check the error handling function‐
ality of your design.

Related Information
System Debugging Tools Overview on page 9-1
Overview and comparison of all tools available in the Quartus Prime software on-chip debugging tool
suite

Design Debugging Using the SignalTap II Logic Analyzer documentation on page 13-1

Library of Parameterized Modules online help
List of the types of memories and constants currently supported by the Quartus Prime software

Design Flow Using the In-System Memory Content Editor
To use the In-System Memory Content Editor, perform the following steps:

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20In-System%20Modification%20of%20Memory%20and%20Constants&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://quartushelp.altera.com/current/index.htm#hdl/mega/mega_list_mega_lpm.htm
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

1. Identify the memories and constants that you want to access.
2. Edit the memories and constants to be run-time modifiable.
3. Perform a full compilation.
4. Program your device.
5. Launch the In-System Memory Content Editor.

Creating In-System Modifiable Memories and Constants
When you specify that a memory or constant is run-time modifiable, the Quartus Prime software changes
the default implementation. A single-port RAM is converted to a dual-port RAM, and a constant is
implemented in registers instead of look-up tables (LUTs). These changes enable run-time modification
without changing the functionality of your design.

If you instantiate a memory or constant IP core directly with ports and parameters in VHDL or Verilog
HDL, add or modify the lpm_hint parameter as follows:

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES,
 INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
 "ENABLE_RUNTIME_MOD = YES,
 INSTANCE_NAME = <instantiation name>";

Running the In-System Memory Content Editor
The In-System Memory Content Editor has three separate panes: the Instance Manager, the JTAG Chain
Configuration, and the Hex Editor.

The Instance Manager pane displays all available run-time modifiable memories and constants in your
FPGA device. The JTAG Chain Configuration pane allows you to program your FPGA and select the
Altera® device in the chain to update.

Using the In-System Memory Content Editor does not require that you open a project. The In-System
Memory Content Editor retrieves all instances of run-time configurable memories and constants by
scanning the JTAG chain and sending a query to the specific device selected in the JTAG Chain Configu‐
ration pane.

If you have more than one device with in-system configurable memories or constants in a JTAG chain,
you can launch multiple In-System Memory Content Editors within the Quartus Prime software to access
the memories and constants in each of the devices. Each In-System Memory Content Editor can access
the in-system memories and constants in a single device.

Instance Manager
When you scan the JTAG chain to update the Instance Manager pane, you can view a list of all run-time
modifiable memories and constants in the design. The Instance Manager pane displays the Index,
Instance, Status, Width, Depth, Type, and Mode of each element in the list.

16-2 Creating In-System Modifiable Memories and Constants
QPS5V3

2015.11.02

Altera Corporation In-System Modification of Memory and Constants

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Modification%20of%20Memory%20and%20Constants%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can read and write to in-system memory with the Instance Manager pane.

Note: In addition to the buttons available in the Instance Manager pane, you can read and write data by
selecting commands from the Processing menu, or the right-click menu in the Instance Manager
pane or Hex Editor pane.

The status of each instance is also displayed beside each entry in the Instance Manager pane. The status
indicates if the instance is Not running, Offloading data, or Updating data. The health monitor provides
information about the status of the editor.

The Quartus Prime software assigns a different index number to each in-system memory and constant to
distinguish between multiple instances of the same memory or constant function. View the In-System
Memory Content Editor Settings section of the Compilation Report to match an index number with the
corresponding instance ID.

Related Information
Instance Manager Pane online help

Editing Data Displayed in the Hex Editor Pane
You can edit data read from your in-system memories and constants displayed in the Hex Editor pane by
typing values directly into the editor or by importing memory files.

Importing and Exporting Memory Files
The In-System Memory Content Editor allows you to import and export data values for memories that
have the In-System Updating feature enabled. Importing from a data file enables you to quickly load an
entire memory image. Exporting to a data file enables you to save the contents of the memory for future
use.

Scripting Support
The In-System Memory Content Editor supports reading and writing of memory contents via a Tcl script
or Tcl commands entered at a command prompt. For detailed information about scripting command
options, refer to the Quartus Prime command-line and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp

QPS5V3
2015.11.02 Editing Data Displayed in the Hex Editor Pane 16-3

In-System Modification of Memory and Constants Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#program/red/red_com_instance_manager.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Modification%20of%20Memory%20and%20Constants%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The commonly used commands for the In-System Memory Content Editor are as follows:

• Reading from memory:

read_content_from_memory
[-content_in_hex]
-instance_index <instance index>
-start_address <starting address>
-word_count <word count>

• Writing to memory:

write_content_to_memory

• Saving memory contents to a file:

save_content_from_memory_to_file

• Updating memory contents from a file:

update_content_to_memory_from_file

Related Information

• Tcl Scripting documentation
• Command-Line Scripting documentation
• API Functions for Tcl online help

Descriptions of the command options and scripting examples

Programming the Device with the In-System Memory Content Editor
If you make changes to your design, you can program the device from within the In-System Memory
Content Editor.

Example: Using the In-System Memory Content Editor with the SignalTap II Logic
Analyzer

The following scenario describes how you can use the In-System Updating of Memory and Constants
feature with the SignalTap II Logic Analyzer to efficiently debug your design. You can use the In-System
Memory Content Editor and the SignalTap II Logic Analyzer simultaneously with the JTAG interface.

Scenario: After completing your FPGA design, you find that the characteristics of your FIR filter design
are not as expected.

1. To locate the source of the problem, change all your FIR filter coefficients to be in-system modifiable
and instantiate the SignalTap II Logic Analyzer.

2. Using the SignalTap II Logic Analyzer to tap and trigger on internal design nodes, you find the FIR
filter to be functioning outside of the expected cutoff frequency.

3. Using the In-System Memory Content Editor, you check the correctness of the FIR filter coefficients.
Upon reading each coefficient, you discover that one of the coefficients is incorrect.

4. Because your coefficients are in-system modifiable, you update the coefficients with the correct data
with the In-System Memory Content Editor.

In this scenario, you can quickly locate the source of the problem using both the In-System Memory
Content Editor and the SignalTap II Logic Analyzer. You can also verify the functionality of your
device by changing the coefficient values before modifying the design source files.

16-4 Programming the Device with the In-System Memory Content Editor
QPS5V3

2015.11.02

Altera Corporation In-System Modification of Memory and Constants

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_list_of_packages.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Modification%20of%20Memory%20and%20Constants%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can also modify the coefficients with the In-System Memory Content Editor to vary the character‐
istics of the FIR filter, for example, filter attenuation, transition bandwidth, cut-off frequency, and
windowing function.

Document Revision History

Table 16-1: Document Revision History

Date Version Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 • Dita conversion.
• Removed references to megafunction and replaced with IP

core.

June 2012 12.0.0 Removed survey link.

November 2011 10.0.3 Template update.

December 2010 10.0.2 Changed to new document template. No change to content.

August 2010 10.0.1 Corrected links

July 2010 10.0.0 • Inserted links to Quartus Prime Help
• Removed Reference Documents section

November 2009 9.1.0 • Delete references to APEX devices
• Style changes

March 2009 9.0.0 No change to content

November 2008 8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Added reference to Section V. In-System Debugging in
volume 3 of the Quartus Prime Handbook on page 16-1

• Removed references to the Mercury device, as it is now
considered to be a “Mature” device

• Added links to referenced documents throughout
document

• Minor editorial updates

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

QPS5V3
2015.11.02 Document Revision History 16-5

In-System Modification of Memory and Constants Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20In-System%20Modification%20of%20Memory%20and%20Constants%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Debugging Using In-System Sources
and Probes 17

2015.11.02

QPS5V3 Subscribe Send Feedback

Traditional debugging techniques often involve using an external pattern generator to exercise the logic
and a logic analyzer to study the output waveforms during run time. The SignalTap® II Logic Analyzer
and SignalProbe allow you to read or “tap” internal logic signals during run time as a way to debug your
logic design.

You can make the debugging cycle more efficient when you can drive any internal signal manually within
your design, which allows you to perform the following actions:

• Force the occurrence of trigger conditions set up in the SignalTap II Logic Analyzer
• Create simple test vectors to exercise your design without using external test equipment
• Dynamically control run time control signals with the JTAG chain

The In-System Sources and Probes Editor in the Quartus Prime software extends the portfolio of verifica‐
tion tools, and allows you to easily control any internal signal and provides you with a completely
dynamic debugging environment. Coupled with either the SignalTap II Logic Analyzer or SignalProbe,
the In-System Sources and Probes Editor gives you a powerful debugging environment in which to
generate stimuli and solicit responses from your logic design.

The Virtual JTAG IP core and the In-System Memory Content Editor also give you the capability to drive
virtual inputs into your design. The Quartus Prime software offers a variety of on-chip debugging tools.

The In-System Sources and Probes Editor consists of the ALTSOURCE_PROBE IP core and an interface
to control the ALTSOURCE_PROBE IP core instances during run time. Each ALTSOURCE_PROBE IP
core instance provides you with source output ports and probe input ports, where source ports drive
selected signals and probe ports sample selected signals. When you compile your design, the
ALTSOURCE_PROBE IP core sets up a register chain to either drive or sample the selected nodes in your
logic design. During run time, the In-System Sources and Probes Editor uses a JTAG connection to shift
data to and from the ALTSOURCE_PROBE IP core instances. The figure shows a block diagram of the
components that make up the In-System Sources and Probes Editor.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 17-1: In-System Sources and Probes Editor Block Diagram

Design Logic

altsource_probe
Megafunction

Probes Sources

JTAG
Controller

Altera
Programming

Hardware

Quartus Prime
Software

FPGA

D Q

D Q

The ALTSOURCE_PROBE IP core hides the detailed transactions between the JTAG controller and the
registers instrumented in your design to give you a basic building block for stimulating and probing your
design. Additionally, the In-System Sources and Probes Editor provides single-cycle samples and single-
cycle writes to selected logic nodes. You can use this feature to input simple virtual stimuli and to capture
the current value on instrumented nodes. Because the In-System Sources and Probes Editor gives you
access to logic nodes in your design, you can toggle the inputs of low-level components during the
debugging process. If used in conjunction with the SignalTap II Logic Analyzer, you can force trigger
conditions to help isolate your problem and shorten your debugging process.

The In-System Sources and Probes Editor allows you to easily implement control signals in your design as
virtual stimuli. This feature can be especially helpful for prototyping your design, such as in the following
operations:

• Creating virtual push buttons
• Creating a virtual front panel to interface with your design
• Emulating external sensor data
• Monitoring and changing run time constants on the fly

The In-System Sources and Probes Editor supports Tcl commands that interface with all your
ALTSOURCE_PROBE IP core instances to increase the level of automation.

17-2 Design Debugging Using In-System Sources and Probes
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using In-System Sources and Probes

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
System Debugging Tools
For an overview and comparison of all the tools available in the Quartus Prime software on-chip
debugging tool suite

Hardware and Software Requirements
The following components are required to use the In-System Sources and Probes Editor:

• Quartus Prime software

or

• Quartus Prime Lite Edition (with the TalkBack feature turned on)
• Download Cable (USB-BlasterTM download cable or ByteBlasterTM cable)
• Altera® development kit or user design board with a JTAG connection to device under test

The In-System Sources and Probes Editor supports the following device families:

• Arria® series
• Stratix® series
• Cyclone® series
• MAX® series

Design Flow Using the In-System Sources and Probes Editor
The In-System Sources and Probes Editor supports an RTL flow. Signals that you want to view in the In-
System Sources and Probes editor are connected to an instance of the In-System Sources and Probes IP
core.

After you compile the design, you can control each instance via the In-System Sources and Probes
Editor pane or via a Tcl interface.

QPS5V3
2015.11.02 Hardware and Software Requirements 17-3

Design Debugging Using In-System Sources and Probes Altera Corporation

Send Feedback

http://www.altera.com/literature/lit-qts.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-2: FPGA Design Flow Using the In-System Sources and Probes Editor

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project or Open an
Existing Project

Configure altsource_probe
Megafunction

Instrument selected logic nodes
by Instantiating the

altsource_probe Megafunction
variation file into the HDL

Design

Compile the design

Program Target Device(s)

Control Source and Probe
Instance(s)

Debug/Modify HDL

Instantiating the In-System Sources and Probes IP Core
You must instantiate the In-System Sources and Probes IP core before you can use the In-System Sources
and Probes editor. Use the IP Catalog and parameter editor to instantiate a custom variation of the In-
System Sources and Probes IP core.

17-4 Instantiating the In-System Sources and Probes IP Core
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using In-System Sources and Probes

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To configure the In-System Sources and Probes IP core, perform the following steps::

1. On the Tools menu, click Tools > IP Catalog.
2. Locate and double-click the In-System Sources and Probes IP core. The parameter editor appears.
3. Specify a name for your custom IP variation.
4. Specify the desired parameters for your custom IP variation. You can specify up to up to 512 bits for

each source. Your design may include up to 128 instances of this IP core.
5. Click Generate or Finish to generate IP core synthesis and simulation files matching your specifica‐

tions. The parameter editor generates the necessary variation files and the instantiation template based
on your specification. Use the generated template to instantiate the In-System Sources and Probes IP
core in your design.

Note: The In-System Sources and Probes Editor does not support simulation. You must remove the
In-System Sources and Probes IP core before you create a simulation netlist.

In-System Sources and Probes IP Core Parameters
Use the template to instantiate the variation file in your design.

Table 17-1: In-System Sources and Probes IP Port Information

Port Name Required? Direction Comments

probe[] No Input The outputs from your design.
source_clk No Input Source Data is written synchronously to this clock. This

input is required if you turn on Source Clock in the
Advanced Options box in the parameter editor.

source_ena No Input Clock enable signal for source_clk. This input is
required if specified in the Advanced Options box in
the parameter editor.

source[] No Output Used to drive inputs to user design.

You can include up to 128 instances of the in-system sources and probes IP core in your design, if your
device has available resources. Each instance of the IP core uses a pair of registers per signal for the width
of the widest port in the IP core. Additionally, there is some fixed overhead logic to accommodate
communication between the IP core instances and the JTAG controller. You can also specify an additional
pair of registers per source port for synchronization.

When you compile your design that includes the In-System Sources and Probes IP core, the In-System
Sources and Probes and SLD Hub Controller IP core are added to your compilation hierarchy automati‐
cally. These IP cores provide communication between the JTAG controller and your instrumented logic.

You can modify the number of connections to your design by editing the In-System Sources and Probes
IP core. To open the design instance you want to modify in the parameter editor, double-click the
instance in the Project Navigator. You can then modify the connections in the HDL source file. You must
recompile your design after you make changes.

You can use the Quartus Prime incremental compilation feature to reduce compilation time. Incremental
compilation allows you to organize your design into logical partitions. During recompilation of a design,
incremental compilation preserves the compilation results and performance of unchanged partitions and
reduces design iteration time by compiling only modified design partitions.

QPS5V3
2015.11.02 In-System Sources and Probes IP Core Parameters 17-5

Design Debugging Using In-System Sources and Probes Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compiling the Design
When you compile your design that includes the In-System Sources and ProbesIP core, the In-System
Sources and Probes and SLD Hub Controller IP core are added to your compilation hierarchy
automatically. These IP cores provide communication between the JTAG controller and your
instrumented logic.

You can modify the number of connections to your design by editing the In-System Sources and Probes
IP core. To open the design instance you want to modify in the parameter editor, double-click the
instance in the Project Navigator. You can then modify the connections in the HDL source file. You must
recompile your design after you make changes.

You can use the Quartus Prime incremental compilation feature to reduce compilation design into logical
partitions. During recompilation of a design, incremental compilation preserves the compilation results
and performance of unchanged partitions and reduces design iteration time by compiling only modified
design partitions.

Running the In-System Sources and Probes Editor
The In-System Sources and Probes Editor gives you control over all ALTSOURCE_PROBE IP core
instances within your design. The editor allows you to view all available run time controllable instances of
the ALTSOURCE_PROBE IP core in your design, provides a push-button interface to drive all your
source nodes, and provides a logging feature to store your probe and source data.

To run the In-System Sources and Probes Editor:

• On the Tools menu, click In-System Sources and Probes Editor.

In-System Sources and Probes Editor GUI
The In-System Sources and Probes Editor contains three panes:

• JTAG Chain Configuration—Allows you to specify programming hardware, device, and file settings
that the In-System Sources and Probes Editor uses to program and acquire data from a device.

• Instance Manager—Displays information about the instances generated when you compile a design,
and allows you to control data that the In-System Sources and Probes Editor acquires.

• In-System Sources and Probes Editor—Logs all data read from the selected instance and allows you
to modify source data that is written to your device.

When you use the In-System Sources and Probes Editor, you do not need to open a Quartus Prime
software project. The In-System Sources and Probes Editor retrieves all instances of the
ALTSOURCE_PROBE IP core by scanning the JTAG chain and sending a query to the device selected in
the JTAG Chain Configuration pane. You can also use a previously saved configuration to run the In-
System Sources and Probes Editor.

Each In-System Sources and Probes Editor pane can access the ALTSOURCE_PROBE IP core instances
in a single device. If you have more than one device containing IP core instances in a JTAG chain, you can
launch multiple In-System Sources and Probes Editor panes to access the IP core instances in each
device.

17-6 Compiling the Design
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using In-System Sources and Probes

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Programming Your Device With JTAG Chain Configuration
After you compile your project, you must configure your FPGA before you use the In-System Sources and
Probes Editor.

To configure a device to use with the In-System Sources and Probes Editor, perform the following steps:

1. Open the In-System Sources and Probes Editor.
2. In the JTAG Chain Configuration pane, point to Hardware, and then select the hardware communi‐

cations device. You may be prompted to configure your hardware; in this case, click Setup.
3. From the Device list, select the FPGA device to which you want to download the design (the device

may be automatically detected). You may need to click Scan Chain to detect your target device.
4. In the JTAG Chain Configuration pane, click to browse for the SRAM Object File (.sof) that includes

the In-System Sources and Probes instance or instances. (The .sof may be automatically detected).
5. Click Program Device to program the target device.

Instance Manager
The Instance Manager pane provides a list of all ALTSOURCE_PROBE instances in the design and
allows you to configure how data is acquired from or written to those instances.

The following buttons and sub-panes are provided in the Instance Manager pane:

• Read Probe Data—Samples the probe data in the selected instance and displays the probe data in the
In-System Sources and Probes Editor pane.

• Continuously Read Probe Data—Continuously samples the probe data of the selected instance and
displays the probe data in the In-System Sources and Probes Editor pane; you can modify the sample
rate via the Probe read interval setting.

• Stop Continuously Reading Probe Data—Cancels continuous sampling of the probe of the selected
instance.

• Write Source Data—Writes data to all source nodes of the selected instance.
• Probe Read Interval—Displays the sample interval of all the In-System Sources and Probe instances in

your design; you can modify the sample interval by clicking Manual.
• Event Log—Controls the event log in the In-System Sources and Probes Editor pane.
• Write Source Data—Allows you to manually or continuously write data to the system.

The status of each instance is also displayed beside each entry in the Instance Manager pane. The status
indicates if the instance is Not running Offloading data, Updating data, or if an Unexpected JTAG
communication error occurs. This status indicator provides information about the sources and probes
instances in your design.

In-System Sources and Probes Editor Pane
The In-System Sources and Probes Editor pane allows you to view data from all sources and probes in
your design.

The data is organized according to the index number of the instance. The editor provides an easy way to
manage your signals, and allows you to rename signals or group them into buses. All data collected from
in-system source and probe nodes is recorded in the event log and you can view the data as a timing
diagram.

QPS5V3
2015.11.02 Programming Your Device With JTAG Chain Configuration 17-7

Design Debugging Using In-System Sources and Probes Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reading Probe Data
You can read data by selecting the ALTSOURCE_PROBE instance in the Instance Manager pane and
clicking Read Probe Data.

This action produces a single sample of the probe data and updates the data column of the selected index
in the In-System Sources and Probes Editor pane. You can save the data to an event log by turning on
the Save data to event log option in the Instance Manager pane.

If you want to sample data from your probe instance continuously, in the Instance Manager pane, click
the instance you want to read, and then click Continuously read probe data. While reading, the status of
the active instance shows Unloading. You can read continuously from multiple instances.

You can access read data with the shortcut menus in the Instance Manager pane.

To adjust the probe read interval, in the Instance Manager pane, turn on the Manual option in the Probe
read interval sub-pane, and specify the sample rate in the text field next to the Manual option. The
maximum sample rate depends on your computer setup. The actual sample rate is shown in the Current
interval box. You can adjust the event log window buffer size in the Maximum Size box.

Writing Data
To modify the source data you want to write into the ALTSOURCE_PROBE instance, click the name field
of the signal you want to change. For buses of signals, you can double-click the data field and type the
value you want to drive out to the ALTSOURCE_PROBE instance. The In-System Sources and Probes
Editor stores the modified source data values in a temporary buffer.

Modified values that are not written out to the ALTSOURCE_PROBE instances appear in red. To update
the ALTSOURCE_PROBE instance, highlight the instance in the Instance Manager pane and click Write
source data. The Write source data function is also available via the shortcut menus in the Instance
Manager pane.

The In-System Sources and Probes Editor provides the option to continuously update each
ALTSOURCE_PROBE instance. Continuous updating allows any modifications you make to the source
data buffer to also write immediately to the ALTSOURCE_PROBE instances. To continuously update the
ALTSOURCE_PROBE instances, change the Write source data field from Manually to Continuously.

Organizing Data
The In-System Sources and Probes Editor pane allows you to group signals into buses, and also allows
you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group, right-click and select Group. You
can modify the display format in the Bus Display Format and the Bus Bit order shortcut menus.

The In-System Sources and Probes Editor pane allows you to rename any signal. To rename a signal,
double-click the name of the signal and type the new name.

The event log contains a record of the most recent samples. The buffer size is adjustable up to 128k
samples. The time stamp for each sample is logged and is displayed above the event log of the active
instance as you move your pointer over the data samples.

You can save the changes that you make and the recorded data to a Sources and Probes File (.spf). To save
changes, on the File menu, click Save. The file contains all the modifications you made to the signal
groups, as well as the current data event log.

17-8 Reading Probe Data
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using In-System Sources and Probes

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Tcl interface for the In-System Sources and Probes Editor
To support automation, the In-System Sources and Probes Editor supports the procedures described in
this chapter in the form of Tcl commands. The Tcl package for the In-System Sources and Probes Editor
is included by default when you run quartus_stp.

The Tcl interface for the In-System Sources and Probes Editor provides a powerful platform to help you
debug your design. The Tcl interface is especially helpful for debugging designs that require toggling
multiple sets of control inputs. You can combine multiple commands with a Tcl script to define a custom
command set.

Table 17-2: In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_

source_probe

-device_name <device name>
-hardware_name <hardware
name>

Opens a handle to a device with
the specified hardware.

Call this command before
starting any transactions.

get_insystem_source_

probe_instance_info

-device_name <device name>
-hardware_name <hardware
name>

Returns a list of all ALTSOURCE_
PROBE instances in your design.
Each record returned is in the
following format:

{<instance Index>, <source
width>, <probe width>, <instance
name>}

read_probe_data -instance_index <instance_
index>
-value_in_hex (optional)

Retrieves the current value of the
probe.

A string is returned that specifies
the status of each probe, with the
MSB as the left-most bit.

read_source_data -instance_index <instance_
index>
-value_in_hex (optional)

Retrieves the current value of the
sources.

A string is returned that specifies
the status of each source, with the
MSB as the left-most bit.

write_source_data -instance_index <instance_
index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.

A binary string is sent to the
source ports, with the MSB as the
left-most bit.

end_interactive_

probe

None Releases the JTAG chain.

Issue this command when all
transactions are finished.

QPS5V3
2015.11.02 Tcl interface for the In-System Sources and Probes Editor 17-9

Design Debugging Using In-System Sources and Probes Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The example shows an excerpt from a Tcl script with procedures that control the ALTSOURCE_PROBE
instances of the design as shown in the figure below. The example design contains a DCFIFO with
ALTSOURCE_PROBE instances to read from and write to the DCFIFO. A set of control muxes are added
to the design to control the flow of data to the DCFIFO between the input pins and the
ALTSOURCE_PROBE instances. A pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The ALTSOURCE_PROBE instances, when used with the
script in the example below, provide visibility into the contents of the FIFO by performing single sample
write and read operations and reporting the state of the full and empty status flags.

Use the Tcl script in debugging situations to either empty or preload the FIFO in your design. For
example, you can use this feature to preload the FIFO to match a trigger condition you have set up within
the SignalTap II Logic Analyzer.

Figure 17-3: DCFIFO Example Design Controlled by Tcl Script

Write_clock

write_req
data[7..0]

write_clock

read_req

read_clock

wr_full

Q[7..0]

rd_empty

data_out

read_clock
source_read_sel

s_read_req

s_write_req

rd_req_in

wr_req_in

data_in[7..0]

altsource_probe
(Instance 1)

altsource_probe
(Instance 0)

source_write_sel

s_data[7..0]
D Q

D Q

Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain
set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer
proc write {value} {
global device_name usb
variable full
start_insystem_source_probe -device_name $device_name -hardware_name $usb
#read full flag

17-10 Tcl interface for the In-System Sources and Probes Editor
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using In-System Sources and Probes

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

set full [read_probe_data -instance_index 0]
if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}
##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel
##int2bits is custom procedure that returns a bitstring from an integer
 ## argument
write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | $value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | $value]]
##clear transaction
write_source_data -instance_index 0 -value 0
end_insystem_source_probe
}
proc read {} {
global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name $usb
##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads empty_flag
set empty [read_probe_data -instance_index 1]
if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }
toggle select line for read transaction
Source_read_sel = bit 0; s_read_reg = bit 1
pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex
set x [read_probe_data -instance_index 1]
end_insystem_source_probe
return $x
}

Related Information

• Tcl Scripting
• Quartus Prime Settings File Manual
• Command Line Scripting

Design Example: Dynamic PLL Reconfiguration
The In-System Sources and Probes Editor can help you create a virtual front panel during the prototyping
phase of your design. You can create relatively simple, high functioning designs of in a short amount of
time. The following PLL reconfiguration example demonstrates how to use the In-System Sources and
Probes Editor to provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allow you to dynamically update PLL coefficients during run time. Each enhanced PLL
within the Stratix device contains a register chain that allows you to modify the pre-scale counters (m and
n values), output divide counters, and delay counters. In addition, the ALTPLL_RECONFIG IP core
provides an easy interface to access the register chain counters. The ALTPLL_RECONFIG IP core
provides a cache that contains all modifiable PLL parameters. After you update all the PLL parameters in
the cache, the ALTPLL_RECONFIG IP core drives the PLL register chain to update the PLL with the
updated parameters. The figure shows a Stratix-enhanced PLL with reconfigurable coefficients.

QPS5V3
2015.11.02 Design Example: Dynamic PLL Reconfiguration 17-11

Design Debugging Using In-System Sources and Probes Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1410471376527/mwh1410471013439/en-us
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-4: Stratix-Enhanced PLL with Reconfigurable Coefficients

÷n Δtn

Δt
m

÷m

÷g0 Δt
g0

÷e3 Δt
e3

÷g3 Δt
g3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)

The following design example uses an ALTSOURCE_PROBE instance to update the PLL parameters in
the ALTPLL_RECONFIG IP core cache. The ALTPLL_RECONFIG IP core connects to an enhanced PLL
in a Stratix FPGA to drive the register chain containing the PLL reconfigurable coefficients. This design
example uses a Tcl/Tk script to generate a GUI where you can enter in new m and n values for the
enhanced PLL. The Tcl script extracts the m and n values from the GUI, shifts the values out to the
ALTSOURCE_PROBE instances to update the values in the ALTPLL_RECONFIG IP core cache, and
asserts the reconfiguration signal on the ALTPLL_RECONFIG IP core. The reconfiguration signal on the
ALTPLL_RECONFIG IP core starts the register chain transaction to update all PLL reconfigurable
coefficients.

17-12 Design Example: Dynamic PLL Reconfiguration
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using In-System Sources and Probes

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17-5: Block Diagram of Dynamic PLL Reconfiguration Design Example

In-System Sources
and Probes
Tcl Interface

JTAG
Interface

Counter
Parameters

Stratix FPGA50 MHz

PLL_scandata
PLL_scandlk
PLL_scanaclr

E0

C0

C1

fref

Stratix-Enhanced
PLLalt_pll_reconfig

Megafunction

In-System
Sources and

Probes

This design example was created using a Nios® II Development Kit, Stratix Edition. The file sourceprobe_
DE_dynamic_pll.zip contains all the necessary files for running this design example, including the following:

• Readme.txt—A text file that describes the files contained in the design example and provides instruc‐
tions about running the Tk GUI shown in the figure below.

• Interactive_Reconfig.qar—The archived Quartus Prime project for this design example.

Figure 17-6: Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources and Probes
Tcl Package

Related Information
On-chip Debugging Design Examples
to download the In-System Sources and Probes Example

Document Revision History

Table 17-3: Document Revision History

Date Versio
n

Changes

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

June 2014 14.0.0 Updated formatting.

June 2012 12.0.0 Removed survey link.

QPS5V3
2015.11.02 Document Revision History 17-13

Design Debugging Using In-System Sources and Probes Altera Corporation

Send Feedback

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Versio
n

Changes

November
2011

10.1.1 Template update.

December
2010

10.1.0 Minor corrections. Changed to new document template.

July 2010 10.0.0 Minor corrections.

November
2009

9.1.0 • Removed references to obsolete devices.
• Style changes.

March 2009 9.0.0 No change to content.

November
2008

8.1.0 Changed to 8-1/2 x 11 page size. No change to content.

May 2008 8.0.0 • Documented that this feature does not support simulation on page 17–
5

• Updated Figure 17–8 for Interactive PLL reconfiguration manager
• Added hyperlinks to referenced documents throughout the chapter
• Minor editorial updates

Related Information
Quartus Prime Handbook Archive
For previous versions of the Quartus Prime Handbook

17-14 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Design Debugging Using In-System Sources and Probes

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Design%20Debugging%20Using%20In-System%20Sources%20and%20Probes%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Programming Altera Devices 18
2015.11.02

QPS5V3 Subscribe Send Feedback

The Quartus Prime Programmer allows you to program and configure Altera® CPLD, FPGA, and
configuration devices. After compiling your design, use the Quartus Prime Programmer to program or
configure your device, to test the functionality of the design on a circuit board.

Related Information

• Programming Devices

Programming Flow
Figure 18-1: Programming Flow

Open Quartus Prime Software
Programmer

Hardware setup

Specify programming/
configuration file

Add device to Quartus Prime
Programmer

Start operation

Select programming/
configuration mode

Select programming/
configuration options

Finish

Yes

No

Need to bypass
another device

in the chain?

Start

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=QPS5V3
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(QPS5V3%202015.11.02)%20Programming%20Altera%20Devices&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://quartushelp.altera.com/current/program/pgm/pgm_pro_prog_single_as_device.htm
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

The following steps describe the programming flow:

1. Compile your design, such that the Quartus Prime Assembler generates the programming or configu‐
ration file.

2. Convert the programming or configuration file to target your configuration device and, optionally,
create secondary programming files.

Table 18-1: Programming and Configuration File Format

File Format FPGA CPLD Configuration
Device

Serial Configuration
Device

SRAM Object File (.sof) Yes — — —

Programmer Object File (.pof) — Yes Yes Yes

JEDEC JESD71 STAPL Format
File (.jam)

Yes Yes Yes —

Jam Byte Code File (.jbc) Yes Yes Yes —

3. Program and configure the FPGA, CPLD, or configuration device using the programming or configu‐
ration file with the Quartus Prime Programmer.

Figure 18-2: Programming File Generation Flow

Quartus Prime Assembler

FPGA
.sof

CPLD
.pof

Create Optional
Programming Files

Convert
Programming Files

EPC or
EPCS
.pof

.jam
.jbc

Quartus Prime Programmer
.cdf

Stand-Alone Quartus Prime Programmer
Altera offers the free stand-alone Programmer, which has the same full functionality as the Quartus Prime
Programmer in the Quartus Prime software. The stand-alone Programmer is useful when programming
your devices with another workstation, so you do not need two full licenses. You can download the stand-
alone Programmer from the Download Center on the Altera website.

18-2 Stand-Alone Quartus Prime Programmer
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Stand-Alone Programmer Memory Limitations

The stand-alone Programmer may use significant memory during the following operations:

• During auto-detect operations
• When the programming file is added to the flash
• During manual attachment of the flash into the Programmer window

The 32-bit stand-alone Programmer can only use a limited amount of memory when launched in 32-bit
Windows. Note the following specific limitations of 32-bit stand-alone Programmer:

Table 18-2: Stand-Alone Programmer Memory Limitations

Application Maximum Flash Device Size Flash Device Operation Using PFL

32-bit Stand-Alone Programmer Up to 512 Mb Single Flash Device
64-bit Stand-Alone Programmer Up to 2 Gb Multiple Flash Device

The stand-alone Programmer supports combination and/or conversion of Quartus Prime programming
files using the Convert Programming Files dialog box. You can convert programming files, such as Mask
Settings File (.msf), Partial-Mask SRAM Object File (.pmsf), SRAM Object Files (.sof), or Programmer
Object Files (.pof) into other file formats that support device configuration schemes for Altera devices.

Note the following device-specific file conversion limitations with use of the 32-bit stand-alone
Programmer:

Table 18-3: Stand-Alone Programmer File Conversion Limitations

Programming File Conversion Device Support

32-bit Programming File Conversion All Supported Altera Devices Except Arria 10
64-bit Programming File Conversion All Supported Altera Devices

Related Information

• Download Center
You can download the stand-alone Quartus Prime Programmer from this page.

Optional Programming or Configuration Files
The Quartus Prime software can generate optional programming or configuration files in various formats
that you can use with programming tools other than the Quartus Prime Programmer. When you compile
a design in the Quartus Prime software, the Assembler automatically generates either a .sof or .pof. The
Assembler also allows you to convert FPGA configuration files to programming files for configuration
devices.

Related Information

• AN 425: Using Command-Line Jam STAPL Solution for Device Programming

Describes how to use the .jam and .jbc programming files with the Jam STAPL Player, Jam STAPL
Byte-Code Player, and the quartus_jli command-line executable.

QPS5V3
2015.11.02 Optional Programming or Configuration Files 18-3

Programming Altera Devices Altera Corporation

Send Feedback

https://www.altera.com/download/sw/dnl-sw-index.jsp
http://www.altera.com/literature/an/AN425.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Secondary Programming Files
The Quartus Prime software generates programming files in various formats for use with different
programming tools.

Table 18-4: File Types Generated by the Quartus Prime Software and Supported by the Quartus Prime
Programmer

File Type Generated by the Quartus
Prime Software

Supported by the Quartus Prime
Programmer

.sof Yes Yes

.pof Yes Yes

.jam Yes Yes

.jbc Yes Yes

JTAG Indirect Configuration File
(.jic)

Yes Yes

Serial Vector Format File (.svf) Yes —

Hexadecimal (Intel-Format) Output
File (.hexout)

Yes —

Raw Binary File (.rbf) Yes Yes (11)

Raw Binary File for Partial Reconfi‐
guration (.rbf)

Yes Yes (12)

Tabular Text File (.ttf) Yes —

Raw Programming Data File (.rpd) Yes —

Quartus Prime Programmer GUI
The Quartus Prime Programmer GUI is a window that allows you to perform the following tasks:

• Adding your programming and configuration files.
• Specifying programming options and hardware.
• Starting the programming or configuration of the device.

To open the Programmer window, on the Tools menu, click Programmer. As you proceed through the
programming flow, the Quartus Prime Message window reports the status of each operation.

(11) Raw Binary File (.rbf) is supported by the Quartus Prime Programmer in Passive Serial (PS) configuration
mode.

(12) Raw Binary File for Partial Reconfiguration (.rbf) is supported by the Quartus Prime Programmer in JTAG
debug mode.

18-4 Secondary Programming Files
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Programmer Page (Options Dialog Box)
Describes the options in the Tools menu.

Editing the Device Details of an Unknown Device
If the Quartus Prime Programmer automatically detects devices with shared JTAG IDs, the Programmer
prompts you to specify the correct device in the JTAG chain.

If the Programmer does not prompt you to specify the correct device in the JTAG chain, then you must
add a user defined device in the Quartus Prime software for each unknown device in the JTAG chain and
specify the instruction register length for each device.

To edit the device details of an unknown device, follow these steps:

1. Double-click on the unknown device listed under the device column.
2. Click Edit.
3. Change the device Name.
4. Enter the Instruction register Length.
5. Click OK.
6. Save the .cdf.

Setting Up Your Hardware
The Quartus Prime Programmer provides the flexibility to choose a download cable or programming
hardware. Before you can program or configure your device, you must have the correct hardware setup.

Related Information

• Setting up Programming Hardware in Quartus Prime Software
Describes the programming hardware driver installation.

Setting the JTAG Hardware
The JTAG server allows the Quartus Prime Programmer to access the JTAG hardware. You can also
access the JTAG download cable or programming hardware connected to a remote computer through the
JTAG server of that computer. With the JTAG server, you can control the programming or configuration
of devices from a single computer through other computers at remote locations. The JTAG server uses the
TCP/IP communications protocol.

Running JTAG Daemon with Linux

The JTAGD daemon is the Linux version of a JTAG server. The JTAGD daemon allows a board which is
connected to a Linux host to be programmed or debugged over the network from a remote machine. The
JTAGD daemon also allows multiple programs to use JTAG resources at the same time.

Run the JTAGD daemon to avoid:

• the JTAGD server from exiting after two minutes of idleness.
• the JTAGD server from not accepting connections from remote machines, which might lead to an

intermittent failure.

QPS5V3
2015.11.02 Editing the Device Details of an Unknown Device 18-5

Programming Altera Devices Altera Corporation

Send Feedback

http://quartushelp.altera.com/current/index.htm#program/pgm/pgm_com_options_tab.htm
http://www.altera.com/download/drivers/dri-quartus.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To run JTAGD as a daemon, follow these steps:

1. Create an /etc/jtagd directory.
2. Set the permissions of this directory and the files in the directory to allow you to have the read/write

access.
3. Run jtagd (with no arguments) from your quartus/bin directory.

The JTAGD daemon is now running and does not terminate when you log off.

Using the JTAG Chain Debugger Tool
The JTAG Chain Debugger tool allows you to test the JTAG chain integrity and detect intermittent
failures of the JTAG chain. In addition, the tool allows you to shift in JTAG instructions and data through
the JTAG interface and step through the test access port (TAP) controller state machine for debugging
purposes. You access the tool from the Tools menu on the main menu of the Quartus Prime software.

Programming and Configuration Modes
The following table lists the programming and configuration modes supported by Altera devices.

Table 18-5: Programming and Configuration Modes

Configuration Mode Supported by the
Quartus Prime Programmer

FPGA CPLD Configuration
Device

Serial Configuration
Device

JTAG Yes Yes Yes —

Passive Serial (PS) Yes — — —

Active Serial (AS) Programming — — — Yes

Configuration via Protocol (CvP) Yes — — —

In-Socket Programming — Yes (except
for MAX II

CPLDs)

Yes Yes

Related Information

• Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide
Describes the CvP configuration mode.

• Programming Adapters
Contains a list of programming adapters available for Altera devices.

Design Security Keys
The Quartus Prime Programmer supports the generation of encryption key programming files and
encrypted configuration files for Altera FPGAs that support the design security feature. You can also use
the Quartus Prime Programmer to program the encryption key into the FPGA.

18-6 Using the JTAG Chain Debugger Tool
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

http://www.altera.com/literature/ug/ug_cvp.pdf
http://www.altera.com/products/devkits/kit-adapters.html
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• AN 556: Using the Design Security Features in Altera FPGAs

Convert Programming Files Dialog Box
The Convert Programming Files dialog box in the Programmer allows you to convert programming files
from one file format to another. For example, to store the FPGA data in configuration devices, you can
convert the .sof data to another format, such as .pof, .hexout, .rbf, .rpd, or .jic, and then program the
configuration device.

You can also configure multiple devices with an external host, such as a microprocessor or CPLD. For
example, you can combine multiple .sof files into one .pof. To save time in subsequent conversions, you
can click Save Conversion Setup to save your conversion specifications in a Conversion Setup File (.cof).
Click Open Conversion Setup Data to load your .cof setup in the Convert Programming Files dialog
box.

To access the Convert Programming Files dialog box, on the main menu of the Quartus Prime software,
click File > Convert Programming Files.

Example 18-1: Conversion Setup File Contents

<?xml version="1.0" encoding="US-ASCII" standalone="yes"?>
<cof>
 <output_filename>output_file.pof</output_filename>
 <n_pages>1</n_pages>
 <width>1</width>
 <mode>14</mode>
 <sof_data>
 <user_name>Page_0</user_name>
 <page_flags>1</page_flags>
 <bit0>
 <sof_filename>/users/jbrossar/template/output_files/
template_test.sof</sof_filename>
 </bit0>
 </sof_data>
 <version>7</version>
 <create_cvp_file>0</create_cvp_file>
 <create_hps_iocsr>0</create_hps_iocsr>
 <auto_create_rpd>0</auto_create_rpd>
 <options>
 <map_file>1</map_file>
 </options>
 <MAX10_device_options>
 <por>0</por>
 <io_pullup>1</io_pullup>
 <auto_reconfigure>1</auto_reconfigure>
 <isp_source>0</isp_source>
 <verify_protect>0</verify_protect>
 <epof>0</epof>
 <ufm_source>0</ufm_source>
 </MAX10_device_options>
 <advanced_options>
 <ignore_epcs_id_check>0</ignore_epcs_id_check>
 <ignore_condone_check>2</ignore_condone_check>
 <plc_adjustment>0</plc_adjustment>
 <post_chain_bitstream_pad_bytes>-1</post_chain_bitstream_pad_bytes>
 <post_device_bitstream_pad_bytes>-1</post_device_bitstream_pad_bytes>
 <bitslice_pre_padding>1</bitslice_pre_padding>

QPS5V3
2015.11.02 Convert Programming Files Dialog Box 18-7

Programming Altera Devices Altera Corporation

Send Feedback

http://www.altera.com/literature/an/an556.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 </advanced_options>
</cof>

Related Information

• Convert Programming Files Dialog Box

Debugging Your Configuration
Use the Advanced option in the Convert Programming Files dialog box to debug your configuration.
You must choose the advanced settings that apply to your Altera device. You can direct the Quartus
Prime software to enable or disable an advanced option by turning the option on or off in the Advanced
Options dialog box.

When you change settings in the Advanced Options dialog box, the change affects .pof, .jic, .rpd,
and .rbf files.

The following table lists the Advanced Options settings in more detail.

Table 18-6: Advanced Options Settings

Option Setting Description

Disable EPCS ID check FPGA skips the EPCS silicon ID verification.

Default setting is unavailable (EPCS ID check is
enabled).

Applies to the single- and multi-device AS configu‐
ration modes on all FPGA devices.

Disable AS mode CONF_DONE error check FPGA skips the CONF_DONE error check.

Default setting is unavailable (AS mode CONF_DONE
error check is enabled).

Applies to single- and multi-device (AS) configura‐
tion modes on all FPGA devices.

The CONF_DONE error check is disabled by default
for Stratix V, Arria V, and Cyclone V devices for
AS-PS multi device configuration mode.

Program Length Count adjustment Specifies the offset you can apply to the computed
PLC of the entire bitstream.

Default setting is 0. The value must be an integer.

Applies to single- and multi-device (AS) configura‐
tion modes on all FPGA devices.

18-8 Debugging Your Configuration
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

http://quartushelp.altera.com/current/program/pgm/pgm_com_convert.htm
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Setting Description

Post-chain bitstream pad bytes Specifies the number of pad bytes appended to the
end of an entire bitstream.

Default value is set to 0 if the bitstream of the last
device is uncompressed. Set to 2 if the bitstream of
the last device is compressed.

Post-device bitstream pad bytes Specifies the number of pad bytes appended to the
end of the bitstream of a device.

Default value is 0. No negative integer.

Applies to all single-device configuration modes on
all FPGA devices.

Bitslice padding value Specifies the padding value used to prepare bitslice
configuration bitstreams, such that all bitslice
configuration chains simultaneously receive their
final configuration data bit.

Default value is 1. Valid setting is 0 or 1.

Use only in 2, 4, and 8-bit PS configuration mode,
when you use an EPC device with the decompres‐
sion feature enabled.

Applies to all FPGA devices that support enhanced
configuration devices.

The following table lists the symptoms you may encounter if a configuration fails, and describes the
advanced options you must use to debug your configuration.

Failure
Symptoms

Disable EPCS
ID Check

Disable AS
Mode CONF_
DONE Error

Check

PLC Settings Post-Chain
Bitstream
Pad Bytes

Post-Device
Bitstream
Pad Bytes

Bitslice Padding
Value

Configura‐
tion failure
occurs after a
configuration
cycle.

— Yes Yes
Yes
(13)

Yes (14) —

Decompres‐
sion feature is
enabled.

— Yes Yes Yes (13) Yes (14) —

(13) Use only for multi-device chain
(14) Use only for single-device chain

QPS5V3
2015.11.02 Debugging Your Configuration 18-9

Programming Altera Devices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Failure
Symptoms

Disable EPCS
ID Check

Disable AS
Mode CONF_
DONE Error

Check

PLC Settings Post-Chain
Bitstream
Pad Bytes

Post-Device
Bitstream
Pad Bytes

Bitslice Padding
Value

Encryption
feature is
enabled.

— Yes Yes Yes (13) Yes (14) —

CONF_DONE

stays low
after a
configuration
cycle.

— Yes Yes (15) Yes (13) Yes (14) —

CONF_DONE

goes high
momentarily
after a
configuration
cycle.

— Yes Yes (16) — — —

FPGA does
not enter user
mode even
though CONF_
DONE goes
high.

— — — Yes (13) Yes (14) —

Configura‐
tion failure
occurs at the
beginning of
a configura‐
tion cycle.

Yes — — — — —

Newly
introduced
EPCS, such
as EPCS128.

Yes — — — — —

(15) Start with positive offset to the PLC settings
(16) Start with negative offset to the PLC settings

18-10 Debugging Your Configuration
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Failure
Symptoms

Disable EPCS
ID Check

Disable AS
Mode CONF_
DONE Error

Check

PLC Settings Post-Chain
Bitstream
Pad Bytes

Post-Device
Bitstream
Pad Bytes

Bitslice Padding
Value

Failure
in .pof
generation
for EPC
device using
Quartus
Prime
Convert
Program‐
ming File
Utility when
the
decompres‐
sion feature is
enabled.

— — — — — Yes

Converting Programming Files for Partial Reconfiguration
The Convert Programming File dialog box supports the following programming file generation and
option for Partial Reconfiguration:

• Partial-Masked SRAM Object File (.pmsf) output file generation, with .msf and .sof as input files.
• .rbf for Partial Reconfiguration output file generation, with a .pmsf as the input file.

Note: The .rbf for Partial Reconfiguration file is only for Partial Reconfiguration.
• Providing the Enable decompression during Partial Reconfiguration option to enable the option bit

for bitstream decompression during Partial Reconfiguration, when converting a full design .sof to any
supported file type.

Related Information
Design Planning for Partial Reconfiguration

Generating .pmsf using a .msf and a .sof

To generate the .pmsf in the Convert Programming Files dialog box, follow these steps:

1. In the Convert Programming Files dialog box, under the Programming file type field, select Partial-
Masked SRAM Object File (.pmsf).

2. In the File name field, specify the necessary output file name.
3. In the Input files to convert field, add necessary input files to convert. You can add only a .msf

and .sof.
4. Click Generate.

QPS5V3
2015.11.02 Converting Programming Files for Partial Reconfiguration 18-11

Programming Altera Devices Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958516629/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating .rbf for Partial Reconfiguration Using a .pmsf

After generating the .pmsf, convert the .pmsf to a .rbf for Partial Reconfiguration in the Convert
Programming Files dialog box.

To generate the .rbf for Partial Reconfiguration, follow these steps:

1. In the Convert Programming Files dialog box, in the Programming file type field, select Raw Binary
File for Partial Reconfiguration (.rbf).

2. In the File name field, specify the output file name.
3. In the Input files to convert field, add input files to convert. You can add only a .pmsf.
4. After adding the .pmsf, select the .pmsf and click Properties. The PMSF File Properties dialog box

appears.
5. Make your selection either by turning on or turning off the following options:

• Compression option—This option enables compression on Partial Reconfiguration bitstream. If
you turn on this option, then you must turn on the Enable decompression during Partial Reconfi‐
guration option.

• Enable SCRUB mode option—The default of this option is based on AND/OR mode. This option
is valid only when Partial Reconfiguration masks in your design are not overlapped vertically.
Otherwise, you cannot generate the .rbf for Partial Reconfiguration.

• Write memory contents option—This option is a workaround for initialized RAM/ROM in a
Partial Reconfiguration region.

For more information about these option, refer to the Design Planning for Partial Reconfiguration.
6. Click OK.
7. Click Generate.

Enable Decompression during Partial Reconfiguration Option

You can turn on the Enable decompression during Partial Reconfiguration option in the SOF File
Properties: Bitstream Encryption dialog box, which can be accessed from the Convert Programming
File dialog box. This option is available when converting a .sof to any supported programming file types
listed in Table 18-4.

This option is hidden for other targeted devices that do not support Partial Reconfiguration. To view this
option in the SOF File Properties: Bitstream Encryption dialog box, the .sof must be targeted on an
Altera device that supports Partial Reconfiguration.

If you turn on the Compression option when generating the .rbf for Partial Reconfiguration, then you
must turn on the Enable decompression during Partial Reconfiguration option.

Flash Loaders
Parallel and serial configuration devices do not support the JTAG interface. However, you can use a flash
loader to program configuration devices in-system via the JTAG interface. You can use an FPGA as a
bridge between the JTAG interface and the configuration device. The Quartus Prime software supports
parallel and serial flash loaders.

18-12 Generating .rbf for Partial Reconfiguration Using a .pmsf
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

https://documentation.altera.com/#/link/mwh1409960181641/mwh1409958516629/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

JTAG Debug Mode for Partial Reconfiguration
The JTAG debug mode allows you to configure partial reconfiguration bitstream through the JTAG
interface. Use this feature to debug PR bitstream and eventually helping you in your PR design
prototyping. This feature is available for internal and external host.

During JTAG debug operation, the JTAG command sent from the Quartus Prime Programmer ignores
and overrides most of the Partial Reconfiguration IP core interface signals (clk, pr_start, double_pr,
data[], data_valid, and data_read).

Note: The TCK is the main clock source for PR IP core during this operation.

You can view the status of Partial Reconfiguration operation in the messages box and the Progress bar in
the Quartus Prime Programmer. The PR_DONE, PR_ERROR, and CRC_ERROR signals will be monitored
during PR operation and reported in the Messages box at the end of the operation.

The Quartus Prime Programmer can detect the number of PR_DONE instruction(s) in plain or compressed
PR bitstream and, therefore, can handle single or double PR cycle accordingly. However, only single PR
cycle is supported for encrypted Partial Reconfiguration bitstream in JTAG debug mode (provided that
the specified device is configured with the encrypted base bitstream which contains the PR IP core in the
design).

Note: Configuring an incompatible PR bitstream to the specified device may corrupt your design,
including the routing path and the PR IP core placed in the static region. When this issue occurs,
the PR IP core stays in an undefined state, and the Quartus Prime Programmer is unable to reset
the IP core. As a result, the Quartus Prime Programmer generates the following error when you
try to configure a new PR bitstream:

Error (12897): Partial Reconfiguration status: Can't reset the PR megafunction.
This issue occurred because the design was corrupted by an incompatible PR
bitstream in the previous PR operation. You must reconfigure the device with a good
design.

Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode
To configure the Partial Reconfiguration bitstream in JTAG debug mode, follow these steps:

1. In the Quartus Prime Programmer GUI, right click on a highlighted base bitstream (in .sof) and then
click Add PR Programming File to add the PR bitstream (.rbf).

QPS5V3
2015.11.02 JTAG Debug Mode for Partial Reconfiguration 18-13

Programming Altera Devices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-3: Adding PR Programming File

2. After adding thePR bitstream, you can change or delete the Partial Reconfiguration programming file
by clicking Change PR Programming File or Delete PR Programming File.

18-14 Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-4: Change PR Programming File or Delete PR Programming File

3. Click Start to configure the PR bitstream. The Quartus Prime Programmer generates an error message
if the specified device does not contain the PR IP core in the design (you must instantiate the Partial
Reconfiguration IP core in your design to use the JTAG debug mode).

QPS5V3
2015.11.02 Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode 18-15

Programming Altera Devices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-5: Starting PR Bitstream Configuration

4. Configure the valid .rbf in JTAG debug mode with the Quartus Prime Programmer.

18-16 Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-6: Configuring Valid .rbf

5. The JTAG debug mode is also supported if the PR IP core is pre-programmed on the specified device.

QPS5V3
2015.11.02 Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode 18-17

Programming Altera Devices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-7: Partial Reconfiguration IP Core Successfully Pre-programmed

6. The Quartus Prime Programmer reports error when you try to configure the corrupted .rbf in JTAG
debug mode.

18-18 Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18-8: Configuring Corrupted .rbf

Scripting Support
In addition to the Quartus Prime Programmer GUI, you can use the Quartus Prime command-line
executable quartus_pgm.exe to access programmer functionality from the command line and from
scripts. The programmer accepts .pof, .sof, and .jic programming or configuration files and .cdf.

The following example shows a command that programs a device:

quartus_pgm –c byteblasterII –m jtag –o bpv;design.pof ←

Where:

• -c byteblasterII specifies the ByteBlaster II download cable
• -m jtag specifies the JTAG programming mode
• -o bpv represents the blank-check, program, and verify operations
• design.pof represents the .pof used for the programming

The Programmer automatically executes the erase operation before programming the device.

QPS5V3
2015.11.02 Scripting Support 18-19

Programming Altera Devices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: For linux terminal, use the following command:

quartus_pgm –c byteblasterII –m jtag –o bpv\;design.pof ←

Related Information

• About Quartus Prime Scripting

The jtagconfig Debugging Tool
You can use the jtagconfig command-line utility (which is similar to the auto detect operation in the
Quartus Prime Programmer) to check the devices in a JTAG chain and the user-defined devices.

For more information about the jtagconfig utility, type one of the following commands at the command
prompt:

jtagconfig –h ←

jtagconfig –-help ←

Note: The help switch does not reference the -n switch. The jtagconfig -n command shows each node
for each JTAG device.

Related Information
Command-Line Scripting

Generating .pmsf using a .msf and a .sof
You can generate a .pmsf with the quartus_cpf command by typing the following command:

quartus_cpf -p <pr_revision.msf> <pr_revision.sof> <new_filename.pmsf>

Generating .rbf for Partial Reconfiguration using a .pmsf
You can generate a .rbf for Partial Reconfiguration with the quartus_cpf command by typing the
following command:

quartus_cpf –o foo.txt –c <pr_revision.pmsf> <pr_revision.rbf>

Note: You must run this command in the same directory where the files are located.

Document Revision History

Table 18-7: Document Revision History

Date Version Chages

2015.11.02 15.1.0 Changed instances of Quartus II to Quartus Prime.

2015.05.04 15.0.0 Added Conversion Setup File (.cof) description and example.

18-20 The jtagconfig Debugging Tool
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

http://quartushelp.altera.com/current/reference/scripting/tcl_view_using_tcl_scripts.htm
https://documentation.altera.com/#/link/mwh1410471376527/mwh1410470998554/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Chages

December 2014 14.1.0 Updated the Scripting Support section to include a Linux command
to program a device.

June 2014 14.0.0 • Added Running JTAG Daemon.
• Removed Cyclone III and Stratix III devices references.
• Removed MegaWizard Plug-In Manager references.
• Updated Secondary Programming Files section to add notes about

the Quartus Prime Programmer support for .rbf files.

November 2013 13.1.0 • Converted to DITA format.
• Added JTAG Debug Mode for Partial Reconfiguration and

Configuring Partial Reconfiguration Bitstream in JTAG Debug
Mode sections.

November 2012 12.1.0 • Updated Table 18–3 on page 18–6, and Table 18–4 on page 18–8.
• Added “Converting Programming Files for Partial Reconfigura‐

tion” on page 18–10, “Generating .pmsf using a .msf and a .sof” on
page 18–10, “Generating .rbf for Partial Reconfiguration Using
a .pmsf” on page 18–12, “Enable Decompression during Partial
Reconfiguration Option” on page 18–14

• Updated “Scripting Support” on page 18–15.

June 2012 12.0.0 • Updated Table 18–5 on page 18–8.
• Updated “Quartus Prime Programmer GUI” on page 18–3.

November 2011 11.1.0 • Updated “Configuration Modes” on page 18–5.
• Added “Optional Programming or Configuration Files” on page

18–6.
• Updated Table 18–2 on page 18–5.

May 2011 11.0.0 • Added links to Quartus Prime Help.
• Updated “Hardware Setup” on page 21–4 and “JTAG Chain

Debugger Tool” on page 21–4.

December 2010 10.1.0 • Changed to new document template.
• Updated “JTAG Chain Debugger Example” on page 20–4.
• Added links to Quartus Prime Help.
• Reorganized chapter.

July 2010 10.0.0 • Added links to Quartus Prime Help.
• Deleted screen shots.

November 2009 9.1.0 No change to content.

QPS5V3
2015.11.02 Document Revision History 18-21

Programming Altera Devices Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Chages

March 2009 9.0.0 • Added a row to Table 21–4.
• Changed references from “JTAG Chain Debug” to “JTAG Chain

Debugger”.
• Updated figures.

Related Information
Quartus Handbook Archive
For previous versions of the Quartus Prime Handbook, refer to the Quartus Handbook Archive.

18-22 Document Revision History
QPS5V3

2015.11.02

Altera Corporation Programming Altera Devices

Send Feedback

http://www.altera.com/literature/lit-qts_archive.jsp
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Programming%20Altera%20Devices%20(QPS5V3%202015.11.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Quartus Prime Standard Edition Handbook Volume 1: Design and Synthesis
	1. Managing Quartus Prime Projects
	Quick Start
	Understanding Quartus Prime Projects
	Project Management Best Practices
	Viewing Basic Project Information
	Viewing Project Reports
	Viewing Project Messages
	Suppressing Messages
	Message Suppression Guidelines

	Managing Project Settings
	Optimizing Project Settings
	Optimizing with Design Space Explorer II
	Optimizing with Project Revisions
	Copying Your Project

	Managing Logic Design Files
	Including Design Libraries
	Specifying Design Libraries

	Managing Timing Constraints
	Introduction to Altera IP Cores
	IP Catalog and Parameter Editor
	Using the Parameter Editor
	Adding IP Cores to IP Catalog
	General Settings for IP
	Licensing IP Cores
	OpenCore Plus IP Evaluation

	Generating IP Cores
	Files Generated for Altera IP Cores and Qsys Systems

	Generating IP Cores (Legacy Editors)
	Files Generated for Altera IP Cores (Legacy Parameter Editors)

	Scripting IP Core Generation
	Modifying an IP Variation
	Upgrading IP Cores
	Upgrading IP at Command-Line
	Migrating IP Cores to a Different Device
	Troubleshooting IP or Qsys System Upgrade

	Simulating Altera IP Cores
	Generating IP Simulation Files
	Scripting IP Simulation
	Generating a Combined Simulator Setup Script
	Sourcing Aldec Simulator Setup Scripts
	Sourcing Cadence Simulator Setup Scripts
	Sourcing ModelSim Simulator Setup Scripts
	Sourcing VCS Simulator Setup Scripts
	Sourcing VCS MX Simulator Setup Scripts

	Using NativeLink Simulation
	Setting Up NativeLink Simulation

	Generating IP Functional Simulation Models for 40nm Devices

	Synthesizing Altera IP Cores in Other EDA Tools
	Instantiating IP Cores in HDL
	Example Top-Level Verilog HDL Module
	Example Top-Level VHDL Module

	Integrating Other EDA Tools
	Managing Team-based Projects
	Preserving Compilation Results
	Factors Affecting Compilation Results
	Migrating Results Across Quartus Prime Software Versions
	Exporting and Importing the Results Database
	Cleaning the Project Database

	Archiving Projects
	Manually Adding Files To Archives
	Archiving Compilation Results
	Archiving Projects for Altera Service Requests

	Using External Revision Control
	Files to Include In External Revision Control

	Migrating Projects Across Operating Systems
	Migrating Design Files and Libraries
	Use Relative Paths

	Design Library Migration Guidelines

	Scripting API
	Scripting Project Settings
	Project Revision Commands
	Create Revision Command
	Set Current Revision Command
	Get Project Revisions Command
	Delete Revision Command

	Project Archive Commands
	Creating a Project Archive
	Restoring an Archived Project

	Project Database Commands
	Import and Export Version‑Compatible Databases
	Import and Export Version-Compatible Databases from a Flow Package
	Generate Version-Compatible Database After Compilation
	quartus_cdb and quartus_sh Executables to Manage Version-Compatible Databases

	Project Library Commands
	Specify Project Libraries With SEARCH_PATH Assignment
	Report Specified Project Libraries Commands

	Document Revision History

	2. Design Planning with the Quartus Prime Software
	Design Planning with the Quartus Prime Software
	Creating Design Specifications
	Selecting Intellectual Property
	Using Qsys and Standard Interfaces in System Design
	Device Selection
	Device Migration Planning

	Planning for Device Programming or Configuration
	Estimating Power
	Early Pin Planning and I/O Analysis
	Simultaneous Switching Noise Analysis

	Selecting Third-Party EDA Tools
	Synthesis Tool
	Simulation Tool
	Formal Verification Tools

	Planning for On-Chip Debugging Tools
	Design Practices and HDL Coding Styles
	Design Recommendations
	Recommended HDL Coding Styles
	Managing Metastability

	Planning for Hierarchical and Team-Based Design
	Flat Compilation Flow with No Design Partitions
	Incremental Compilation with Design Partitions
	Planning Design Partitions and Floorplan Location Assignments

	Running Fast Synthesis
	Document Revision History

	3. Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
	About Quartus Prime Incremental Compilation
	Deciding Whether to Use an Incremental Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Capabilities Available When A Design Has No Partitions
	With Smart Compilation
	With Rapid Recompile
	With SignalTap II Logic Analyzer

	Incremental Compilation Flow With Design Partitions
	Impact of Using Incremental Compilation with Design Partitions
	Quartus Prime Design Stages for Incremental Compilation
	Analysis and Synthesis Stage
	Partition Merge Stage
	Fitter Stage
	How to Compare Incremental Compilation Results with Flat Design Results

	Team-Based Design Flows and IP Delivery
	With a Single Quartus Prime Project
	With Multiple Quartus Prime Projects
	Additional Planning Needed

	Collaboration on a Team-Based Design

	Incremental Compilation Summary
	Incremental Compilation Single Quartus Prime Project Flow
	Steps for Incremental Compilation
	Preparing a Design for Incremental Compilation
	Compiling a Design Using Incremental Compilation

	Creating Design Partitions
	Creating Design Partitions in the Project Navigator
	Creating Design Partitions in the Design Partitions Window
	Creating Design Partitions With the Design Partition Planner
	Creating Design Partitions With Tcl Scripting
	Automatically-Generated Partitions

	Common Design Scenarios Using Incremental Compilation
	Reducing Compilation Time When Changing Source Files for One Partition
	Optimizing a Timing-Critical Partition
	Adding Design Logic Incrementally or Working With an Incomplete Design
	Debugging Incrementally With the SignalTap II Logic Analyzer
	Functional Safety IP Implementation
	Software Tool Impact on Safety
	Functional Safety Separation Flow
	Design Creation Flow
	Design Modification Flow

	How to Turn On the Functional Safety Separation Flow
	Preservation of Device Resources
	Preservation of Placement in the Device with LogicLock
	Assigning I/O Pins
	General Guidelines for Implementation
	Reports for Safety IP
	Fitter Report

	SIP Partial Bitstream Generation
	Exporting and Importing Your Safety IP
	POF Comparison Tool for Verification

	Deciding Which Design Blocks Should Be Design Partitions
	Impact of Design Partitions on Design Optimization
	Turning On Supported Cross-boundary Optimizations

	Design Partition Assignments Compared to Physical Placement Assignments
	Using Partitions With Third-Party Synthesis Tools
	Synopsys Synplify Pro/Premier and Mentor Graphics Precision RTL Plus
	Other Synthesis Tools

	Assessing Partition Quality
	Partition Statistics Reports
	Partition Timing Reports
	Incremental Compilation Advisor

	Specifying the Level of Results Preservation for Subsequent Compilations
	Netlist Type for Design Partitions
	Fitter Preservation Level for Design Partitions
	Where Are the Netlist Databases Saved?
	Deleting Netlists
	What Changes Initiate the Automatic Resynthesis of a Partition?
	Resynthesis Due to Source Code Changes
	Forcing Use of the Compilation Netlist When a Partition has Changed

	Exporting Design Partitions from Separate Quartus Prime Projects
	Preparing the Top-Level Design
	Empty Partitions

	Project Management— Making the Top-Level Design Available to Other Designers
	Distributing the Top-Level Quartus Prime Project
	Generating Design Partition Scripts

	Exporting Partitions
	Viewing the Contents of a Quartus Prime Exported Partition File (.qxp)
	Integrating Partitions into the Top-Level Design
	Integrating Assignments from the .qxp
	Design Partition Assignments Within the Exported Partition
	Synopsys Design Constraint Files for the Quartus Prime TimeQuest Timing Analyzer
	Global Assignments
	LogicLock Region Assignments

	Integrating Encrypted IP Cores from .qxp Files
	Advanced Importing Options
	Importing LogicLock Assignments
	Advanced Import Settings

	Team-Based Design Optimization and Third-Party IP Delivery Scenarios
	Using an Exported Partition to Send to a Design Without Including Source Files
	Creating Precompiled Design Blocks (or Hard-Wired Macros) for Reuse
	Incorporate IP Core

	Designing in a Team-Based Environment
	Exporting Your Partition
	Integrating Your Partitions

	Enabling Designers on a Team to Optimize Independently
	Preparing Your Top-level Design
	Exporting Your Design
	Exporting Without Makefiles

	Importing Your Design
	Importing Without Makefiles

	Resolving Assignment Conflicts During Integration
	Importing a Partition to be Instantiated Multiple Times

	Performing Design Iterations With Lower-Level Partitions
	Providing the Complete Top-Level Project Framework
	Providing Information About the Top-Level Framework

	Creating a Design Floorplan With LogicLock Regions
	Creating and Manipulating LogicLock Regions
	Changing Partition Placement with LogicLock Changes

	Incremental Compilation Restrictions
	When Timing Performance May Not Be Preserved Exactly
	When Placement and Routing May Not Be Preserved Exactly
	Using Incremental Compilation With Quartus Prime Archive Files
	Formal Verification Support
	SignalProbe Pins and Engineering Change Orders
	SignalTap II Logic Analyzer in Exported Partitions
	External Logic Analyzer Interface in Exported Partitions
	Assignments Made in HDL Source Code in Exported Partitions
	Design Partition Script Limitations
	Warnings About Extra Clocks Due to Design Partition Scripts
	Synopsys Design Constraint Files for the TimeQuest Timing Analyzer in Design Partition Scripts
	Wildcard Support in Design Partition Scripts
	Derived Clocks and PLLs in Design Partition Scripts
	Pin Assignments for GXB and LVDS Blocks in Design Partition Scripts
	Virtual Pin Timing Assignments in Design Partition Scripts
	Top-Level Ports that Feed Multiple Lower-Level Pins in Design Partition Scripts

	Restrictions on IP Core Partitions
	Register Packing and Partition Boundaries
	I/O Register Packing

	Scripting Support
	Tcl Scripting and Command-Line Examples
	Creating Design Partitions
	Enabling or Disabling Design Partition Assignments During Compilation
	Setting the Netlist Type
	Setting the Fitter Preservation Level for a Post-fit or Imported Netlist
	Preserving High-Speed Optimization
	Specifying the Software Should Use the Specified Netlist and Ignore Source File Changes
	Reducing Opening a Project, Creating Design Partitions, andPerforming an Initial Compilation
	Optimizing the Placement for a Timing-Critical Partition
	Generating Design Partition Scripts
	Exporting a Partition
	Importing a Partition into the Top-Level Design
	Makefiles

	Document Revision History

	4. Design Planning for Partial Reconfiguration
	Terminology
	Determining Resources for Partial Reconfiguration

	An Example of a Partial Reconfiguration Design
	Partial Reconfiguration Modes
	SCRUB Mode
	AND/OR Mode
	Programming File Sizes for a Partial Reconfiguration Project

	Partial Reconfiguration Design Flow
	Design Partitions for Partial Reconfiguration
	Incremental Compilation Partitions for Partial Reconfiguration
	Partial Reconfiguration Controller Instantiation in the Design
	Component Declaration of the PR Control Block and CRC Block in VHDL
	Instantiating the PR Control Block and CRC Block in VHDL
	Instantiating the PR Control Block and CRC Block in Verilog HDL

	Wrapper Logic for PR Regions

	Freeze Logic for PR Regions
	Clocks and Other Global Signals for a PR Design
	Floorplan Assignments for PR Designs

	Implementation Details for Partial Reconfiguration
	Interface with the PR Control Block through a PR Host
	Partial Reconfiguration Pins
	PR Control Signals Interface
	Reconfiguring a PR Region
	Partial Reconfiguration Cycle Waveform

	Example of a Partial Reconfiguration Design with an External Host
	Example of Using an External Host with Multiple Devices

	Example Partial Reconfiguration with an Internal Host
	Partial Reconfiguration Project Management
	Create Reconfigurable Revisions
	Compiling Reconfigurable Revisions
	Timing Closure for a Partial Reconfiguration Project
	Bitstream Compression and Encryption for PR Designs

	Programming Files for a Partial Reconfiguration Project
	Generating Required Programming Files
	Generate PR Programming Files with the Convert Programming Files Dialog Box
	Generating a .pmsf File from a .msf and .sof Input File
	Generating a .rbf File from a .pmsf Input File
	Create a Merged .msf File from Multiple .msf Files
	Generating a Merged .pmsf File from Multiple .pmsf Files
	Enable Partial Reconfiguration Bitstream Decompression when Configuring Base Design SOF file in JTAG mode
	Enable Bitstream Decryption Option

	On-Chip Debug for PR Designs
	Partial Reconfiguration Known Limitations
	Memory Blocks Initialization Requirement for PR Designs
	M20K RAM Blocks in PR Designs
	Limitations When Using Stratix V Production Devices

	MLAB Blocks in PR designs
	Implementing Memories with Initialized Content
	Initializing M20K Blocks with a Double PR Cycle

	Document Revision History

	5. Creating a System With Qsys
	Interface Support in Qsys
	Introduction to the Qsys IP Catalog
	Installing and Licensing IP Cores
	Adding IP Cores to IP Catalog
	General Settings for IP
	Set up the IP Index File (.ipx) to Search for IP Components
	Integrate Third-Party IP Components into the Qsys IP Catalog

	Create a Qsys System
	Start a New Project or Open a Recent Project in Qsys
	Specify the Target Device
	Add IP Components (IP Cores) to a Qsys System
	Connect IP Components in Your Qsys System
	Create Connections Between Masters and Slaves

	View Your Qsys System
	Manage Qsys Window Views with Layouts
	Filter the Display of the System Contents Tab
	Display Details About a Component or Parameter
	Display a Graphical Representation of a Component
	View a Schematic of Your Qsys System
	View Assignments and Connections in Your Qsys System

	Navigate Your Qsys System
	Specify IP Component Parameters
	Configure Your IP Component with a Pre-Defined Set of Parameters

	Define Qsys Instance Parameters
	Create an Instance Parameter Script in Qsys
	Supported Tcl Commands for Qsys Instance Parameter Scripts
	get_instance_parameter_value
	get_instance_parameters
	get_parameter_value
	get_parameters
	send_message
	set_instance_parameter_value
	set_module_property

	Create a Custom IP Component (_hw.tcl)

	Upgrade Outdated IP Components in Qsys
	Troubleshooting IP or Qsys System Upgrade

	Create and Manage Hierarchical Qsys Systems
	Add a Subsystem to Your Qsys Design
	Drill into a Qsys Subsystem to Explore its Contents
	Edit a Qsys Subsystem
	Change the Hierarchy Level of a Qsys Component
	Save New Qsys Subsystem
	Create an IP Component Based on a Qsys System
	Hierarchical System Using Instance Parameters Example
	Create the Memory System
	Add Qsys Instance Parameters
	Create a Qsys Instantiating Memory System
	Apply Instance Parameters at a Higher-Level Qsys System and Pass the Parameters to the Instantiated Lower-Level System

	View and Filter Clock and Reset Domains in Your Qsys System
	View Clock Domains in Your Qsys System
	View Reset Domains in Your Qsys System
	Filter Qsys Clock and Reset Domains in the System Contents Tab

	Specify Qsys Interconnect Requirements
	Manage Qsys System Security
	Configure Qsys Security Settings Between Interfaces
	Specify a Default Slave in a Qsys System
	Access Undefined Memory Regions

	Integrate a Qsys System with the Quartus Prime Software
	Integrate a Qsys System and the Quartus Prime Software With the .qsys File
	Integrate a Qsys System and the Quartus Prime Software With the .qip File
	Manage IP Settings in the Quartus Prime Software
	Opening Qsys with Additional Memory

	Set Qsys Clock Constraints

	Generate a Qsys System
	Set the Generation ID
	Generate Files for Synthesis and Simulation
	Files Generated for Altera IP Cores and Qsys Systems

	Generate Files for a Testbench Qsys System
	Files Generated for Qsys Testbench
	Qsys Testbench Simulation Standard and Legacy Device Output Directories
	Generate and Modify a Qsys Testbench System

	Qsys Simulation Scripts
	Generating a Combined Simulator Setup Script

	Simulating Software Running on a Nios II Processor
	Add Assertion Monitors for Simulation
	CMSIS Support for the HPS IP Component

	Explore and Manage Qsys Interconnect
	Manually Controlling Pipelining in the Qsys Interconnect

	Implement Performance Monitoring
	Qsys 64-Bit Addressing Support
	Support for Avalon-MM Non-Power of Two Data Widths

	View the Qsys HDL Example
	Qsys System Example Designs
	Qsys Command-Line Utilities
	Run the Qsys Editor with qsys-edit
	Scripting IP Core Generation
	Display Available IP Components with ip-catalog
	Create an .ipx File with ip-make-ipx
	Generate a Qsys System with qsys-script
	Qsys Scripting Command Reference
	add_connection
	add_instance
	add_interface
	apply_preset
	auto_assign_base_addresses
	auto_assign_system_base_addresses
	auto_assign_irqs
	auto_connect
	create_system
	export_hw_tcl
	get_composed_connection_parameter_value
	get_composed_connection_parameters
	get_composed_connections
	get_composed_instance_assignment
	get_composed_instance_assignments
	get_composed_instance_parameter_value
	get_composed_instance_parameters
	get_composed_instances
	get_connection_parameter_property
	get_connection_parameter_value
	get_connection_parameters
	get_connection_properties
	get_connection_property
	get_connections
	get_instance_assignment
	get_instance_assignments
	get_instance_documentation_links
	get_instance_interface_assignment
	get_instance_interface_assignments
	get_instance_interface_parameter_property
	get_instance_interface_parameter_value
	get_instance_interface_parameters
	get_instance_interface_port_property
	get_instance_interface_ports
	get_instance_interface_properties
	get_instance_interface_property
	get_instance_interfaces
	get_instance_parameter_property
	get_instance_parameter_value
	get_instance_parameters
	get_instance_port_property
	get_instance_properties
	get_instance_property
	get_instances
	get_interconnect_requirement
	get_interconnect_requirements
	get_interface_port_property
	get_interface_ports
	get_interface_properties
	get_interface_property
	get_interfaces
	get_module_properties
	get_module_property
	get_parameter_properties
	get_port_properties
	get_project_properties
	get_project_property
	load_system
	lock_avalon_base_address
	remove_connection
	remove_dangling_connections
	remove_instance
	remove_interface
	save_system
	send_message
	set_connection_parameter_value
	set_instance_parameter_value
	set_instance_property
	set_interconnect_requirement
	set_interface_property
	set_module_property
	set_project_property
	set_use_testbench_naming_pattern
	set_validation_property
	unlock_avalon_base_address
	validate_connection
	validate_instance
	validate_instance_interface
	validate_system

	Qsys Scripting Property Reference
	Connection Properties
	Design Environment Type Properties
	Direction Properties
	Element Properties
	Instance Properties
	Interface Properties
	Message Levels Properties
	Module Properties
	Parameter Properties
	Parameter Status Properties
	Parameter Type Properties
	Port Properties
	Project Properties
	System Info Type Properties
	Units Properties
	Validation Properties

	Document Revision History

	6. Creating Qsys Components
	Qsys Components
	Interface Support in Qsys
	Component Structure
	Component File Organization
	Component Versions
	Upgrade IP Components to the Latest Version

	Design Phases of an IP Component
	Create IP Components in the Qsys Component Editor
	Save an IP Component and Create the _hw.tcl File
	Edit an IP Component with the Qsys Component Editor

	Specify IP Component Type Information
	Create an HDL File in the Qsys Component Editor
	Create an HDL File Using a Template in the Qsys Component Editor
	Specify Synthesis and Simulation Files in the Qsys Component Editor
	Specify HDL Files for Synthesis in the Qsys Component Editor
	Analyze Synthesis Files in the Qsys Component Editor
	Name HDL Signals for Automatic Interface and Type Recognition in the Qsys Component Editor
	Specify Files for Simulation in the Component Editor
	Include an Internal Register Map Description in the .svd for Slave Interfaces Connected to an HPS Component

	Add Signals and Interfaces in the Qsys Component Editor
	Specify Parameters in the Qsys Component Editor
	Valid Ranges for Parameters in the _hw.tcl File
	Types of Qsys Parameters
	Qsys User Parameters
	Qsys System Information Parameters
	Qsys Derived Parameters
	Parameterized Parameter Widths

	Declare Parameters with Custom _hw.tcl Commands
	Validate Parameter Values with a Validation Callback

	Control Interfaces Dynamically with an Elaboration Callback
	Control File Generation Dynamically with Parameters and a Fileset Callback
	Create a Composed Component or Subsystem
	Create an IP Component with Qsys a System View Different from the Generated Synthesis Output Files
	Add Component Instances to a Static or Generated Component
	Static Components
	Generated Components
	Design Guidelines for Adding Component Instances

	Document Revision History

	7. Qsys Interconnect
	Memory-Mapped Interfaces
	Qsys Packet Format
	Qsys Packet Format
	Transaction Types for Memory-Mapped Interfaces
	Qsys Transformations

	Interconnect Domains
	Using One Domain with Width Adaptation
	Using Two Separate Domains

	Master Network Interfaces
	Avalon-MM Master Agent
	Avalon-MM Master Translator
	AXI Master Agent
	AXI Translator
	APB Master Agent
	APB Slave Agent
	APB Translator
	AHB Slave Agent
	Memory-Mapped Router
	Memory-Mapped Traffic Limiter

	Slave Network Interfaces
	Avalon-MM Slave Translator
	AXI Translator
	Wait State Insertion
	Avalon-MM Slave Agent
	AXI Slave Agent

	Arbitration
	Round-Robin Arbitration
	Fairness-Based Shares
	Round-Robin Scheduling

	Fixed Priority Arbitration
	Designate a Qsys Slave to Use Fixed Priority Arbitration
	Fixed Priority Arbitration with AXI Masters and Avalon-MM Slaves

	Memory-Mapped Arbiter
	Datapath Multiplexing Logic
	Width Adaptation
	Memory-Mapped Width Adapter
	AXI Wide-to-Narrow Adaptation
	AXI Narrow-to-Wide Adaptation

	Burst Adapter
	Burst Adapter Implementation Options
	Burst Adaptation: AXI to Avalon
	Burst Adaptation: Avalon to AXI

	Read and Write Responses
	Qsys Address Decoding

	Avalon Streaming Interfaces
	Avalon-ST Adapters
	Avalon-ST Adapter
	Avalon-ST Adapter Parameters Common to Source and Sink Interfaces
	Avalon-ST Adapter Upstream Source Interface Parameters
	Avalon-ST Adapter Downstream Sink Interface Parameters

	Channel Adapter
	Avalon-ST Channel Adapter Input Interface Parameters
	Avalon-ST Channel Adapter Output Interface Parameters
	Avalon-ST Channel Adapter Common to Input and Output Interface Parameters

	Data Format Adapter
	Avalon-ST Data Format Adapter Input Interface Parameters
	Avalon-ST Data Format Adapter Output Interface Parameters
	Avalon-ST Data Format Adapter Common to Input and Output Interface Parameters

	Error Adapter
	Avalon-ST Error Adapter Input Interface Parameters
	Avalon-ST Error Adapter Output Interface Parameters
	Avalon-ST Error Adapter Common to Input and Output Interface Parameters

	Timing Adapter
	Avalon-ST Timing Adapter Input Interface Parameters
	Avalon-ST Timing Adapter Output Interface Parameters
	Avalon-ST Timing Adapter Common to Input and Output Interface Parameters

	Interrupt Interfaces
	Individual Requests IRQ Scheme
	Assigning IRQs in Qsys
	IRQ Bridge
	IRQ Mapper
	IRQ Clock Crosser

	Clock Interfaces
	(High Speed Serial Interface) HSSI Clock Interfaces
	HSSI Serial Clock Interface
	HSSI Serial Clock Source
	HSSI Serial Clock Sink
	HSSI Serial Clock Connection
	HSSI Serial Clock Example

	HSSI Bonded Clock Interface
	HSSI Bonded Clock Source
	HSSI Bonded Clock Sink
	HSSI Bonded Clock Connection
	HSSI Bonded Clock Example

	Reset Interfaces
	Single Global Reset Signal Implemented by Qsys
	Reset Controller
	Reset Bridge
	Reset Sequencer
	Reset Sequencer Parameters
	Reset Sequencer Timing Diagrams
	Reset Sequencer CSR Registers
	Reset Sequencer Status Register Offset 0x00
	Reset Sequencer Interrupt Enable Register Offset 0x04
	Reset Sequencer Control Register Offset 0x08
	Reset Sequencer Software Sequenced Reset Entry Control Register Offset 0x0C
	Reset Sequencer Software Sequenced Reset Bring Up Control Register Offset 0x10
	Reset Sequencer Software Direct Controlled Resets Offset 0x14
	Reset Sequencer Software Reset Masking Offset 0x18

	Reset Sequencer Software Flows
	Reset Sequencer (Software-Triggered) Flow
	Reset Entry Flow
	Reset Bring-Up Flow
	Reset Entry (Software-Sequenced) Flow
	Reset Bring-Up (Software-Sequenced) Flow

	Conduits
	Interconnect Pipelining
	Manually Controlling Pipelining in the Qsys Interconnect

	Error Correction Coding (ECC) in Qsys Interconnect
	AMBA 3 AXI Protocol Specification Support (version 1.0)
	Channels
	Read and Write Address Channels
	Write Data, Write Response, and Read Data Channels
	Low Power Channel

	Cache Support
	Bufferable
	Cacheable (Modifiable)

	Security Support
	Atomic Accesses
	Response Signaling
	Ordering Model
	AXI and Avalon Ordering

	Data Buses
	Unaligned Address Commands
	Avalon and AXI Transaction Support
	Transaction Cannot Cross 4KB Boundaries
	Handling Read Side Effects

	AMBA 3 APB Protocol Specification Support (version 1.0)
	Bridges
	Burst Adaptation
	Width Adaptation
	Error Response

	AMBA AXI4 Memory-Mapped Interface Support (version 2.0)
	Burst Support
	QoS
	Regions
	Write Response Dependency
	AWCACHE and ARCACHE
	Width Adaptation and Data Packing in Qsys
	Ordering Model
	Read and Write Allocate
	Locked Transactions
	Memory Types
	Mismatched Attributes
	Signals

	AMBA AXI4 Streaming Interface Support (version 1.0)
	Connection Points
	AXI4 Streaming Connection Point Parameters
	AXI4 Streaming Connection Point Signals

	Adaptation

	AMBA AXI4-Lite Protocol Specification Support (version 2.0)
	AXI4-Lite Signals
	AXI4-Lite Bus Width
	AXI4-Lite Outstanding Transactions
	AXI4-Lite IDs
	Connections Between AXI3/4 and AXI4-Lite
	AXI4-Lite Slave Requirements
	AXI4-Lite Data Packing

	AXI4-Lite Response Merging

	Port Roles (Interface Signal Types)
	AXI Master Interface Signal Types
	AXI Slave Interface Signal Types
	AXI4 Master Interface Signal Types
	AXI4 Slave Interface Signal Types
	AXI4 Stream Master and Slave Interface Signal Types
	APB Interface Signal Types
	Avalon Memory-Mapped Interface Signal Roles
	Avalon Streaming Interface Signal Roles
	Avalon Clock Source Signal Roles
	Avalon Clock Sink Signal Roles
	Avalon Conduit Signal Roles
	Avalon Tristate Conduit Signal Roles
	Avalon Tri-State Slave Interface Signal Types
	Avalon Interrupt Sender Signal Roles
	Avalon Interrupt Receiver Signal Roles

	Document Revision History

	8. Optimizing Qsys System Performance
	Designing with Avalon and AXI Interfaces
	Designing Streaming Components
	Designing Memory-Mapped Components

	Using Hierarchy in Systems
	Using Concurrency in Memory-Mapped Systems
	Implementing Concurrency With Multiple Masters
	Implementing Concurrency With Multiple Slaves
	Implementing Concurrency with DMA Engines

	Inserting Pipeline Stages to Increase System Frequency
	Using Bridges
	Using Bridges to Increase System Frequency
	Inserting Pipeline Bridges
	Implementing Command Pipelining (Master-to-Slave)
	Implementing Response Pipelining (Slave-to-Master)

	Using Clock Crossing Bridges

	Using Bridges to Minimize Design Logic
	Avoiding Speed Optimizations That Increase Logic
	Limiting Concurrency

	Using Bridges to Minimize Adapter Logic
	Determining Effective Placement of Bridges
	Changing the Response Buffer Depth

	Considering the Effects of Using Bridges
	Increased Latency
	Acceptable Latency Increase
	Unacceptable Latency Increase

	Limited Concurrency
	Address Space Translation
	Address Coherency

	Increasing Transfer Throughput
	Using Pipelined Transfers
	Using the Maximum Pending Reads Parameter

	Arbitration Shares and Bursts
	Differences Between Arbitration Shares and Bursts
	Choosing Avalon-MM Interface Types
	Simple Avalon-MM Interfaces
	Pipelined Avalon-MM Interfaces
	Burst Avalon-MM Interfaces

	Avalon-MM Burst Master Example

	Reducing Logic Utilization
	Minimizing Interconnect Logic to Reduce Logic Unitization
	Creating Dedicated Master and Slave Connections to Minimize Interconnect Logic
	Removing Unnecessary Connections to Minimize Interconnect Logic
	Simplifying Address Decode Logic

	Minimizing Arbitration Logic by Consolidating Multiple Interfaces
	Logic Consolidation Trade-Offs
	Consolidating Interfaces

	Reducing Logic Utilization With Multiple Clock Domains
	Duration of Transfers Crossing Clock Domains

	Reducing Power Consumption
	Reducing Power Consumption With Multiple Clock Domains
	Reducing Power Consumption by Minimizing Toggle Rates
	Reducing Power Consumption by Disabling Logic

	Reset Polarity and Synchronization in Qsys
	Optimizing Qsys System Performance Design Examples
	Avalon Pipelined Read Master Example
	Avalon Pipelined Read Master Example Design Requirements
	Expected Throughput Improvement

	Multiplexer Examples

	Document Revision History

	9. Component Interface Tcl Reference
	Qsys _hw.tcl Command Reference
	Interfaces and Ports
	add_interface
	add_interface_port
	get_interfaces
	get_interface_assignment
	get_interface_assignments
	get_interface_ports
	get_interface_properties
	get_interface_property
	get_port_properties
	get_port_property
	set_interface_assignment
	set_interface_property
	set_port_property
	set_interface_upgrade_map

	Parameters
	add_parameter
	get_parameters
	get_parameter_properties
	get_parameter_property
	get_parameter_value
	get_string
	load_strings
	set_parameter_property
	set_parameter_value
	decode_address_map

	Display Items
	add_display_item
	get_display_items
	get_display_item_properties
	get_display_item_property
	set_display_item_property

	Module Definition
	add_documentation_link
	get_module_assignment
	get_module_assignments
	get_module_ports
	get_module_properties
	get_module_property
	send_message
	set_module_assignment
	set_module_property
	add_hdl_instance
	package

	Composition
	add_instance
	add_connection
	get_connections
	get_connection_parameters
	get_connection_parameter_value
	get_instances
	get_instance_interfaces
	get_instance_interface_ports
	get_instance_interface_properties
	get_instance_property
	set_instance_property
	get_instance_properties
	get_instance_interface_property
	get_instance_parameters
	get_instance_parameter_property
	get_instance_parameter_value
	get_instance_port_property
	set_connection_parameter_value
	set_instance_parameter_value

	Fileset Generation
	add_fileset
	add_fileset_file
	set_fileset_property
	get_fileset_file_attribute
	set_fileset_file_attribute
	get_fileset_properties
	get_fileset_property
	get_fileset_sim_properties
	set_fileset_sim_properties
	create_temp_file

	Miscellaneous
	check_device_family_equivalence
	get_device_family_displayname
	get_qip_strings
	set_qip_strings
	set_interconnect_requirement

	Qsys _hw.tcl Property Reference
	Script Language Properties
	Interface Properties
	Instance Properties
	Parameter Properties
	Parameter Type Properties
	Parameter Status Properties
	Port Properties
	Direction Properties
	Display Item Properties
	Display Item Kind Properties
	Display Hint Properties
	Module Properties
	Fileset Properties
	Fileset Kind Properties
	Callback Properties
	File Attribute Properties
	File Kind Properties
	File Source Properties
	Simulator Properties
	Port VHDL Type Properties
	System Info Type Properties
	Design Environment Type Properties
	Units Properties
	Operating System Properties
	Quartus.ini Type Properties

	Document Revision History

	10. Qsys System Design Components
	Bridges
	Clock Bridge
	Avalon-MM Clock Crossing Bridge
	Avalon-MM Clock Crossing Bridge Example
	Avalon-MM Clock Crossing Bridge Parameters

	Avalon-MM Pipeline Bridge
	Avalon-MM Unaligned Burst Expansion Bridge
	Using the Avalon-MM Unaligned Burst Expansion Bridge
	Avalon-MM Unaligned Burst Expansion Bridge Parameters
	Avalon-MM Unaligned Burst Expansion Bridge Example

	Bridges Between Avalon and AXI Interfaces
	AXI Bridge
	AXI Bridge Signal Types
	AXI Bridge Parameters
	AXI Bridge Slave and Master Interface Parameters

	AXI Timeout Bridge
	AXI Timeout Bridge Stages
	AXI Timeout Bridge Parameters

	Address Span Extender
	CTRL Register Layout
	Calculating the Address Span Extender Slave Address
	Using the Address Span Extender
	Alternate Options for the Address Span Extender
	NIOS II Support

	AXI Default Slave
	AXI Default Slave Parameters
	CSR Registers
	CSR Interrupt Status Registers
	CSR Read Access Violation Log
	CSR Write Access Violation Log

	Designating a Default Slave in the System Contents Tab

	Tri-State Components
	Generic Tri-State Controller
	Tri‑State Conduit Pin Sharer
	Tri‑State Conduit Bridge

	Test Pattern Generator and Checker Cores
	Test Pattern Generator
	Test Pattern Generator Command Interface
	Test Pattern Generator Control and Status Interface
	Test Pattern Generator Output Interface
	Test Pattern Generator Functional Parameter

	Test Pattern Checker
	Test Pattern Checker Input Interface
	Test Pattern Checker Control and Status Interface
	Test Pattern Checker Functional Parameter
	Test Pattern Checker Input Parameters

	Software Programming Model for the Test Pattern Generator and Checker Cores
	HAL System Library Support
	Test Pattern Generator and Test Pattern Checker Core Files
	Register Maps for the Test Pattern Generator and Test Pattern Checker Cores
	Test Pattern Generator Control and Status Registers
	Test Pattern Generator Command Registers
	Test Pattern Checker Control and Status Registers

	Test Pattern Generator API
	data_source_reset()
	data_source_init()
	data_source_get_id()
	data_source_get_supports_packets()
	data_source_get_num_channels()
	data_source_get_symbols_per_cycle()
	data_source_get_enable()
	data_source_set_enable()
	data_source_get_throttle()
	data_source_set_throttle()
	data_source_is_busy()
	data_source_fill_level()
	data_source_send_data()

	Test Pattern Checker API
	data_sink_reset()
	data_sink_init()
	data_sink_get_id()
	data_sink_get_supports_packets()
	data_sink_get_num_channels()
	data_sink_get_symbols_per_cycle()
	data_sink_get_enable()
	data_sink_set enable()
	data_sink_get_throttle()
	data_sink_set_throttle()
	data_sink_get_packet_count()
	data_sink_get_error_count()
	data_sink_get_symbol_count()
	data_sink_get_exception()
	data_sink_exception_is_exception()
	data_sink_exception_has_data_error()
	data_sink_exception_has_missing_sop()
	data_sink_exception_has_missing_eop()
	data_sink_exception_signalled_error()
	data_sink_exception_channel()

	Avalon-ST Splitter Core
	Splitter Core Backpressure
	Splitter Core Interfaces
	Splitter Core Parameters

	Avalon-ST Delay Core
	Delay Core Reset Signal
	Delay Core Interfaces
	Delay Core Parameters

	Avalon-ST Round Robin Scheduler
	Almost-Full Status Interface (Round Robin Scheduler)
	Request Interface (Round Robin Scheduler)
	Round Robin Scheduler Operation
	Round Robin Scheduler Parameters

	Avalon Packets to Transactions Converter
	Packets to Transactions Converter Interfaces
	Packets to Transactions Converter Operation
	Packets to Transactions Converter Data Packet Formats
	Packets to Transactions Converter Supported Transactions
	Packets to Transactions Converter Malformed Packets

	Avalon-ST Streaming Pipeline Stage
	Streaming Channel Multiplexer and Demultiplexer Cores
	Software Programming Model For the Multiplexer and Demultiplexer Components
	Avalon-ST Multiplexer
	Multiplexer Input Interfaces
	Multiplexer Output Interface
	Multiplexer Parameters

	Avalon-ST Demultiplexer
	Demultiplexer Input Interface
	Demultiplexer Output Interface
	Demultiplexer Parameters

	Single-Clock and Dual-Clock FIFO Cores
	Interfaces Implemented in FIFO Cores
	Avalon-ST Data Interface
	Avalon-MM Control and Status Register Interface
	Avalon-ST Status Interface

	FIFO Operating Modes
	Fill Level of the FIFO Buffer
	Almost-Full and Almost-Empty Thresholds to Prevent Overflow and Underflow
	Single-Clock and Dual-Clock FIFO Core Parameters
	Avalon-ST Single-Clock FIFO Registers

	Document Revision History

	11. Recommended Design Practices
	Following Synchronous FPGA Design Practices
	Implementing Synchronous Designs
	Asynchronous Design Hazards

	HDL Design Guidelines
	Optimizing Combinational Logic
	Avoid Combinational Loops
	Avoid Unintended Latch Inference
	Avoid Delay Chains in Clock Paths
	Use Synchronous Pulse Generators

	Optimizing Clocking Schemes
	Register Combinational Logic Outputs
	Avoid Asyncrhonous Clock Division
	Avoid Ripple Counters
	Use Multiplexed Clocks
	Use Gated Clocks
	Use Synchronous Clock Enables
	Recommended Clock-Gating Methods

	Optimizing Physical Implementation and Timing Closure
	Planning Physical Implementation
	Planning FPGA Resources
	Optimizing Timing Closure
	Optimizing Critical Timing Paths

	Optimizing Power Consumption
	Managing Design Metastability

	Checking Design Violations
	Validating Against Design Rules
	Creating Custom Design Rules
	Custom Design Rule Examples

	Use Clock and Register-Control Architectural Features
	Use Global Clock Network Resources
	Use Global Reset Resources
	Use Synchronous Resets
	Using Asynchronous Resets
	Use Synchronized Asynchronous Reset

	Avoid Asynchronous Register Control Signals

	Implementing Embedded RAM
	Document Revision History

	12. Recommended HDL Coding Styles
	Using Provided HDL Templates
	Inserting a HDL Code from the Template

	Instantiating IP Cores in HDL
	Inferring Multipliers and DSP Functions
	Inferring Multipliers
	Inferring Multiply‑Accumulator and Multiply-Adder

	Inferring Memory Functions from HDL Code
	Inferring RAM functions from HDL Code
	Use Synchronous Memory Blocks
	Avoid Unsupported Reset and Control Conditions
	Check Read‑During‑Write Behavior
	Controlling RAM Inference and Implementation
	Single-Clock Synchronous RAM with Old Data Read‑During‑Write Behavior
	Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	Simple Dual-Port, Dual-Clock Synchronous RAM
	True Dual-Port Synchronous RAM
	Mixed-Width Dual-Port RAM
	RAM with Byte-Enable Signals
	Specifying Initial Memory Contents at Power‑Up

	Inferring ROM Functions from HDL Code
	Inferring Shift Registers in HDL Code
	Simple Shift Register
	Shift Register with Evenly Spaced Taps

	Register and Latch Coding Guidelines
	Register Power-Up Values in Altera Devices
	Specifying a Power-Up Value

	Secondary Register Control Signals Such as Clear and Clock Enable
	Latches
	Avoid Unintentional Latch Generation
	Inferring Latches Correctly

	General Coding Guidelines
	Tri-State Signals
	Clock Multiplexing
	Adder Trees
	Architectures with 4-Input LUTs in Logic Elements
	Architectures with 6-Input LUTs in Adaptive Logic Modules

	State Machine HDL Guidelines
	Verilog HDL State Machines
	Verilog-2001 State Machine Coding Example
	SystemVerilog State Machine Coding Example

	VHDL State Machines
	VHDL State Machine Coding Example

	Multiplexer HDL Guidelines
	Quartus Prime Software Option for Multiplexer Restructuring
	Multiplexer Types
	Binary Multiplexers
	Selector Multiplexers
	Priority Multiplexers

	Implicit Defaults in If Statements
	Default or Others Case Assignment

	Cyclic Redundancy Check Functions
	If Performance is Important, Optimize for Speed
	Use Separate CRC Blocks Instead of Cascaded Stages
	Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	Take Advantage of Latency if Available
	Save Power by Disabling CRC Blocks When Not in Use
	Use the Device Synchronous Load (sload) Signal to Initialize

	Comparator HDL Guidelines
	Counter HDL Guidelines

	Designing with Low-Level Primitives
	Document Revision History

	13. Managing Metastability with the Quartus Prime Software
	Metastability Analysis in the Quartus Prime Software
	Synchronization Register Chains
	Identifying Synchronizers for Metastability Analysis
	How Timing Constraints Affect Synchronizer Identification and Metastability Analysis

	Metastability and MTBF Reporting
	Metastability Reports
	MTBF Summary Report
	Typical and Worst-Case MTBF of Design
	Synchronizer Chains
	Increasing Available Settling Time

	Synchronizer Summary Report
	Synchronizer Chain Statistics Report in the Timing Analyzer

	Synchronizer Data Toggle Rate in MTBF Calculation

	MTBF Optimization
	Synchronization Register Chain Length

	Reducing Metastability Effects
	Apply Complete System-Centric Timing Constraints for the Timing Analyzer
	Force the Identification of Synchronization Registers
	Set the Synchronizer Data Toggle Rate
	Optimize Metastability During Fitting
	Increase the Length of Synchronizers to Protect and Optimize
	Set Fitter Effort to Standard Fit instead of Auto Fit
	Increase the Number of Stages Used in Synchronizers
	Select a Faster Speed Grade Device

	Scripting Support
	Identifying Synchronizers for Metastability Analysis
	Synchronizer Data Toggle Rate in MTBF Calculation
	report_metastability and Tcl Command
	MTBF Optimization
	Synchronization Register Chain Length

	Managing Metastability
	Document Revision History

	14. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
	About Incremental Compilation and Floorplan Assignments
	Incremental Compilation Overview
	Recommendations for the Netlist Type

	Design Flows Using Incremental Compilation
	Using Standard Flow
	Using Team-Based Flow
	Using Third-Party IP Delivery Flow

	Combining Design Flows
	Project Management in Team-Based Design Flows
	Using a Source Control System
	Using a Copy of the Top-Level Project
	Using a Separate Project
	Using Scripts
	Using Constraints

	Why Plan Partitions and Floorplan Assignments?
	Partition Boundaries and Optimization
	Merging Partitions
	Resource Utilization
	Turning On Supported Cross-Boundary Optimizations

	Guidelines for Incremental Compilation
	General Partitioning Guidelines
	Plan Design Hierarchy and Design Files
	Using Partitions with Third-Party Synthesis Tools
	Partition Design by Functionality and Block Size
	Partition Design by Clock Domain and Timing Criticality
	Consider What Is Changing

	Design Partition Guidelines
	Register Partition Inputs and Outputs
	Minimize Cross-Partition-Boundary I/O
	Examine the Need for Logic Optimization Across Partitions
	Keep Logic in the Same Partition for Optimization and Merging
	Example—Combinational Logic Path
	Example—Fitter Merging

	Merging PLLs and Transceivers (GXB)

	Keep Constants in the Same Partition as Logic
	Example—Constants in Merged Partitions

	Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
	Example—Single Signal Driving More Than One Port

	Invert Clocks in Destination Partitions
	Example—Clock Signal Inversion

	Connect I/O Pin Directly to I/O Register for Packing Across Partition Boundaries
	Example 1—Output Register in Partition Feeding Multiple Output Pins
	Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output Register in Partition Feeding an Inverted Output Pin

	Do Not Use Internal Tri-States
	Include All Tri-State and Enable Logic in the Same Partition
	Summary of Guidelines Related to Logic Optimization Across Partitions

	Consider a Cascaded Reset Structure
	Design Partition Guidelines for Third-Party IP Delivery
	Allocate Logic Resources
	Allocate Global Routing Signals and Clock Networks if Required
	Assign Virtual Pins
	Perform Timing Budgeting if Required
	Drive Clocks Directly
	Recreate PLLs for Lower-Level Partitions if Required

	Checking Partition Quality
	Incremental Compilation Advisor
	Design Partition Planner
	Viewing Design Partition Planner and Floorplan Side-by-Side
	Partition Statistics Report
	Report Partition Timing in the TimeQuest Timing Analyzer
	Check if Partition Assignments Impact the Quality of Results

	Including SDC Constraints from Lower-Level Partitions for Third-Party IP Delivery
	Creating an .sdc File with Project-Wide Constraints
	Example Step 1—Project Lead Produces .sdc with Project-Wide Constraints for Lower-Level Partitions

	Creating an .sdc with Partition-Specific Constraints
	Example Step 2—Partition Designer Creates .sdc with Partition-Specific Constraints

	Consolidating the .sdc in the Top-Level Design
	Example Step 3—Project Lead Performs Final Timing Analysis and Sign-off

	Introduction to Design Floorplans
	The Difference between Logical Partitions and Physical Regions
	Why Create a Floorplan?
	When to Create a Floorplan
	Early Floorplan
	Late Floorplan

	Design Floorplan Placement Guidelines
	Flow for Creating a Floorplan
	Assigning Partitions to LogicLock Regions
	How to Size and Place Regions
	Modifying Region Size and Origin
	I/O Connections
	LogicLock Resource Exclusions
	Creating Floorplan Location Assignments With Tcl Commands—Excluding or Filtering Certain Device Elements (Such as RAM or DSP Blocks)

	Creating Non-Rectangular Regions

	Checking Floorplan Quality
	Incremental Compilation Advisor
	LogicLock Region Resource Estimates
	LogicLock Region Properties Statistics Report
	Locate the Quartus Prime TimeQuest Timing Analyzer Path in the Chip Planner
	Inter-Region Connection Bundles
	Routing Utilization
	Ensure Floorplan Assignments Do Not Significantly Impact Quality of Results

	Recommended Design Flows and Application Examples
	Create a Floorplan for Major Design Blocks
	Create a Floorplan Assignment for One Design Block with Difficult Timing
	Create a Floorplan as the Project Lead in a Team-Based Flow

	Document Revision History

	15. Mitigating Single Event Upsets
	Understanding SEU
	Mitigating SEU Effects in Embedded User RAM
	Configuring the ECCRAM

	Mitigating SEU Effects in Configuration RAM
	Scanning CRAM Frames

	Internal Scrubbing
	Understanding SEU Sensitivity
	Designating the Sensitivity of your Design Hierarchy
	Hierarchy Tagging

	Altera Advanced SEU Detection IP Core
	On-Chip Sensitivity Processor
	External Sensitivity Processor

	Triple-Module Redundancy
	Recovering from a Single-Event Upset
	Evaluating Your System's Response to Functional Upsets
	Document Revision History

	16. Quartus Prime Integrated Synthesis
	Design Flow
	Quartus Prime Integrated Synthesis Design and Compilation Flow

	Language Support
	Verilog and SystemVerilog Synthesis Support
	Verilog HDL Configuration
	Configuration Syntax
	Hierarchical Configurations
	Suffix :config

	SystemVerilog Support
	Initial Constructs and Memory System Tasks
	Verilog HDL Macros
	Setting a Verilog HDL Macro Default Value in the Quartus Prime Software
	Setting a Verilog HDL Macro Default Value on the Command Line

	VHDL Synthesis Support
	VHDL-2008 Support
	VHDL Standard Libraries and Packages
	VHDL wait Constructs

	AHDL Support
	Schematic Design Entry Support
	State Machine Editor
	Design Libraries
	Specifying a Destination Library Name in the Settings Dialog Box
	Specifying a Destination Library Name in the Quartus Prime Settings File or with Tcl
	Specifying a Destination Library Name in a VHDL File
	Mapping a VHDL Instance to an Entity in a Specific Library
	Direct Entity Instantiation
	Component Instantiation—Explicit Binding Instantiation
	Component Instantiation—Default Binding

	Using Parameters/Generics
	Setting Default Parameter Values and BDF Instance Parameter Values
	Passing Parameters Between Two Design Languages

	Incremental Compilation
	Partitions for Preserving Hierarchical Boundaries
	Parallel Synthesis
	Quartus Prime Exported Partition File as Source

	Quartus Prime Synthesis Options
	Setting Synthesis Options
	Quartus Prime Logic Options
	Synthesis Attributes
	Synthesis Attributes in Verilog-1995
	Synthesis Attributes in Verilog-2001
	Synthesis Attributes in VHDL

	Synthesis Directives

	Optimization Technique
	Auto Gated Clock Conversion
	Timing-Driven Synthesis
	SDC Constraint Protection
	PowerPlay Power Optimization
	Limiting Resource Usage in Partitions
	Creating LogicLock Regions
	Using Assignments to Limit the Number of RAM and DSP Blocks

	Restructure Multiplexers
	Synthesis Effort
	Fitter Intial Placement Seed
	State Machine Processing
	Manually Specifying State Assignments Using the syn_encoding Attribute
	Manually Specifying Enumerated Types Using the enum_encoding Attribute

	Safe State Machine
	Power-Up Level
	Inferred Power-Up Levels

	Power-Up Don’t Care
	Remove Duplicate Registers
	Preserve Registers
	Disable Register Merging/Don’t Merge Register
	Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	Keep Combinational Node/Implement as Output of Logic Cell
	Disabling Synthesis Netlist Optimizations with dont_retime Attribute
	Disabling Synthesis Netlist Optimizations with dont_replicate Attribute
	Maximum Fan-Out
	Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable

	Inferring Multiplier, DSP, and Memory Functions from HDL Code
	Multiply-Accumulators and Multiply-Adders
	Shift Registers
	RAM and ROM
	Resource Aware RAM, ROM, and Shift-Register Inference
	Auto RAM to Logic Cell Conversion
	RAM Style and ROM Style—for Inferred Memory
	RAM Style Attribute—For Shift Registers Inference
	Disabling Add Pass-Through Logic to Inferred RAMs no_rw_check Attribute
	RAM Initialization File—for Inferred Memory
	Multiplier Style—for Inferred Multipliers
	Full Case Attribute
	Parallel Case
	Translate Off and On / Synthesis Off and On
	Ignore translate_off and synthesis_off Directives
	Read Comments as HDL
	Use I/O Flipflops
	Specifying Pin Locations with chip_pin
	Using altera_attribute to Set Quartus Prime Logic Options

	Analyzing Synthesis Results
	Analysis & Synthesis Section of the Compilation Report
	Project Navigator
	Upgrade IP Components Dialog Box

	Analyzing and Controlling Synthesis Messages
	Quartus Prime Messages
	VHDL and Verilog HDL Messages
	Setting the HDL Message Level
	Enabling or Disabling Specific HDL Messages by Module/Entity

	Node-Naming Conventions in Quartus Prime Integrated Synthesis
	Hierarchical Node-Naming Conventions
	Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	Register Changes During Synthesis
	Synthesis and Fitting Optimizations
	State Machines
	Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	Packed Input and Output Registers of RAM and DSP Blocks

	Preserving Register Names
	Node-Naming Conventions for Combinational Logic Cells
	Preserving Combinational Logic Names

	Scripting Support
	Adding an HDL File to a Project and Setting the HDL Version
	Assigning a Pin
	Creating Design Partitions for Incremental Compilation
	Quartus Prime Synthesis Options

	Document Revision History

	17. Optimizing the Design Netlist
	When to Use the Netlist Viewers: Analyzing Design Problems
	Quartus Prime Design Flow with the Netlist Viewers
	RTL Viewer Overview
	State Machine Viewer Overview
	Technology Map Viewer Overview
	Schematic Viewer
	Introduction to the User Interface
	Netlist Navigator Pane
	Properties Pane
	Netlist Viewers Find Pane

	Schematic View
	Display Schematics in Multiple Tabbed View
	Schematic Symbols
	Select Items in the Schematic View
	Shortcut Menu Commands in the Schematic View
	Filtering in the Schematic View
	View Contents of Nodes in the Schematic View
	Moving Nodes in the Schematic View
	View LUT Representations in the Technology Map Viewer
	Zoom Controls
	Navigating with the Bird's Eye View
	Partition the Schematic into Pages
	Follow Nets Across Schematic Pages

	State Machine Viewer
	State Diagram View
	State Transition Table
	State Encoding Table
	Select Items in the State Machine Viewer

	Switch Between State Machines

	Cross-Probing to a Source Design File and Other Quartus Prime Windows
	Cross-Probing to the Netlist Viewers from Other Quartus Prime Windows
	Viewing a Timing Path
	Document Revision History

	18. Synopsys Synplify Support
	About Synplify Support
	Design Flow
	Hardware Description Language Support
	Altera Device Family Support
	Tool Setup
	Specifying the Quartus Prime Software Version
	Exporting Designs to the Quartus Prime Software Using NativeLink Integration
	Running the Quartus Prime Software from within the Synplify Software
	Using the Quartus Prime Software to Run the Synplify Software

	Synplify Software Generated Files
	Design Constraints Support
	Running the Quartus Prime Software Manually With the Synplify‑Generated Tcl Script
	Passing TimeQuest SDC Timing Constraints to the Quartus Prime Software
	Individual Clocks and Frequencies
	Input and Output Delay
	Multicycle Path
	False Path

	Simulation and Formal Verification
	Synplify Optimization Strategies
	Using Synplify Premier to Optimize Your Design
	Using Implementations in Synplify Pro or Premier
	Timing-Driven Synthesis Settings
	Clock Frequencies
	Multiple Clock Domains
	Input and Output Delays
	Multicycle Paths
	False Paths

	FSM Compiler
	FSM Explorer in Synplify Pro and Premier

	Optimization Attributes and Options
	Retiming in Synplify Pro and Premier
	Maximum Fan-Out
	Preserving Nets
	Register Packing
	Resource Sharing
	Preserving Hierarchy
	Register Input and Output Delays
	syn_direct_enable
	I/O Standard

	Altera-Specific Attributes
	altera_chip_pin_lc
	altera_io_powerup
	altera_io_opendrain

	Guidelines for Altera IP Cores and Architecture-Specific Features
	Instantiating Altera IP Cores with the IP Catalog
	Instantiating Altera IP Cores with IP Catalog Generated Verilog HDL Files
	Instantiating Altera IP Cores with IP Catalog Generated VHDL Files
	Changing Synplify’s Default Behavior for Instantiated Altera IP Cores
	Instantiating Intellectual Property with the IP Catalog and Parameter Editor
	Instantiating Black Box IP Cores with Generated Verilog HDL Files
	Instantiating Black Box IP Cores with Generated VHDL Files
	Other Synplify Software Attributes for Creating Black Boxes

	Including Files for Quartus Prime Placement and Routing Only
	Inferring Altera IP Cores from HDL Code
	Inferring Multipliers
	Resource Balancing
	Controlling the DSP Block Inference
	Signal Level Attribute

	Inferring RAM
	RAM Initialization
	Inferring ROM
	Inferring Shift Registers

	Incremental Compilation and Block-Based Design
	Design Flow for Incremental Compilation
	Creating a Design with Separate Netlist Files for Incremental Compilation
	Using MultiPoint Synthesis with Incremental Compilation
	Set Compile Points and Create Constraint Files
	Defining Compile Points With .tcl or .sdc Files

	Additional Considerations for Compile Points
	Creating a Quartus Prime Project for Compile Points and Multiple .vqm Files
	Creating a Single Quartus Prime Project for a Standard Incremental Compilation Flow
	Creating Multiple Quartus Prime Projects for a Bottom-Up Incremental Compilation Flow

	Creating Multiple .vqm Files for a Incremental Compilation Flow With Separate Synplify Projects
	Manually Creating Multiple .vqm Files With Black Boxes
	Creating Multiple .vqm Files for this Design
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating a Quartus Prime Project for Multiple .vqm Files
	Creating a Single Quartus Prime Project for a Standard Incremental Compilation Flow
	Creating Multiple Quartus Prime Projects for a Bottom-Up Incremental Compilation Flow

	Performing Incremental Compilation in the Quartus Prime Software

	Document Revision History

	19. Mentor Graphics Precision Synthesis Support
	About Precision RTL Synthesis Support
	Design Flow
	Timing Optimization

	Altera Device Family Support
	Precision Synthesis Generated Files
	Creating and Compiling a Project in the Precision Synthesis Software
	Mapping the Precision Synthesis Design
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers and I/O Settings
	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision Synthesis Software from Adding I/O Pads
	Preventing the Precision Synthesis Software from Adding an I/O Pad on an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design and Evaluating the Results
	Obtaining Accurate Logic Utilization and Timing Analysis Reports

	Exporting Designs to the Quartus Prime Software Using NativeLink Integration
	Running the Quartus Prime Software from within the Precision Synthesis Software
	Running the Quartus Prime Software Manually Using the Precision Synthesis‑Generated Tcl Script
	Using the Quartus Prime Software to Run the Precision Synthesis Software
	Passing Constraints to the Quartus Prime Software
	create_clock
	set_input_delay
	set_output_delay
	set_max_delay and set_min_delay
	set_false_path
	set_multicycle_path

	Guidelines for Altera IP Cores and Architecture-Specific Features
	Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files
	Instantiating IP Cores With IP Catalog-Generated VHDL Files
	Instantiating Intellectual Property With the IP Catalog and Parameter Editor
	Instantiating Black Box IP Functions With Generated Verilog HDL Files
	Instantiating Black Box IP Functions With Generated VHDL Files
	Inferring Altera IP Cores from HDL Code
	Multipliers
	Controlling DSP Block Inference for Multipliers

	Setting the Use Dedicated Multiplier Option
	Setting the dedicated_mult Attribute
	Multiplier-Accumulators and Multiplier-Adders
	Controlling DSP Block Inference
	RAM and ROM

	Incremental Compilation and Block-Based Design
	Creating a Design with Precision RTL Plus Incremental Synthesis
	Creating Partitions with the incr_partition Attribute

	Creating Multiple Mapped Netlist Files With Separate Precision Projects or Implementations
	Creating Black Boxes to Create Netlists
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating Quartus Prime Projects for Multiple Netlist Files
	Creating a Single Quartus Prime Project for a Standard Incremental Compilation Flow
	Creating Multiple Quartus Prime Projects for a Bottom-Up Flow

	Hierarchy and Design Considerations

	Document Revision History

	Quartus Prime Standard Edition Handbook Volume 2: Design Implementation and Optimization
	1. Constraining Designs
	Constraining Designs with the GUI
	Global Constraints
	Common Types of Global Constraints
	Settings That Direct Compilation and Analysis Flows
	Global Constraints and Software Settings

	Node, Entity, and Instance-Level Constraints
	Constraining Designs with the Pin Planner
	Constraining Designs with the Chip Planner

	Probing Between Components of the Quartus Prime GUI
	SDC and the TimeQuest Timing Analyzer

	Constraining Designs with Tcl
	Quartus Prime Settings Files and Tcl
	Timing Analysis with Synopsys Design Constraints and Tcl

	A Fully Iterative Scripted Flow
	Document Revision History

	2. Managing Device I/O Pins
	I/O Planning Overview
	Basic I/O Planning Flow
	Integrating PCB Design Tools
	Altera Device Terms

	Assigning I/O Pins
	Assigning to Exclusive Pin Groups
	Assigning Slew Rate and Drive Strength
	Assigning Differential Pins
	Overriding I/O Placement Rules on Differential Pins

	Entering Pin Assignments with Tcl Commands
	Entering Pin Assignments in HDL Code
	Using Synthesis Attributes
	Using Low‑Level I/O Primitives

	Importing and Exporting I/O Pin Assignments
	Importing and Exporting for PCB Tools
	Migrating Assignments to Another Target Device

	Validating Pin Assignments
	I/O Assignment Validation Rules
	Checking I/O Pin Assignments In Real-Time
	Running I/O Assignment Analysis
	Running Early I/O Assignment Analysis (without Design Files)
	Running I/O Assignment Analysis (with Design Files)
	Overriding Default I/O Pin Analysis

	Understanding I/O Analysis Reports

	Verifying I/O Timing
	Running Advanced I/O Timing
	Understanding the Board Trace Models
	Defining the Board Trace Model
	Modifying the Board Trace Model
	Specifying Near End vs Far End I/O Timing Analysis
	Understanding Advanced I/O Timing Analysis Reports

	Adjusting I/O Timing and Power with Capacitive Loading

	Viewing Routing and Timing Delays
	Analyzing Simultaneous Switching Noise
	Scripting API
	Generate Mapped Netlist
	Reserve Pins
	Set Location
	Exclusive I/O Group
	Slew Rate and Current Strength

	Document Revision History

	3. Simultaneous Switching Noise (SSN) Analysis and Optimizations
	Simultaneous Switching Noise (SSN) Analysis and Optimizations
	Definitions
	Understanding SSN
	SSN Estimation Tools
	SSN Analysis Overview
	Performing Early Pin-Out SSN Analysis
	Performing Early Pin-Out SSN Analysis with the SSN Analyzer

	Performing Final Pin-Out SSN Analysis

	Design Factors Affecting SSN Results
	Optimizing Your Design for SSN Analysis
	Optimizing Pin Placements for Signal Integrity
	Specifying Board Trace Model Settings
	Defining PCB Layers and PCB Layer Thickness
	Specifying Signal Breakout Layers
	Creating I/O Assignments
	Decreasing Pessimism in SSN Analysis
	Excluding Pins as Aggressor Signals

	Performing SSN Analysis and Viewing Results
	Understanding the SSN Reports
	Viewing SSN Analysis Results in the Pin Planner

	Decreasing Processing Time for SSN Analysis
	Scripting Support
	Optimizing Pin Placements for Signal Integrity
	Defining PCB Layers and PCB Layer Thickness
	Specifying Signal Breakout Layers
	Decreasing Pessimism in SSN Analysis
	Performing SSN Analysis

	Document Revision History

	4. Command Line Scripting
	Benefits of Command-Line Executables
	Introductory Example
	Command-Line Scripting Help

	Project Settings with Command-Line Options
	Option Precedence

	Compilation with quartus_sh --flow
	Text-Based Report Files
	Using Command-Line Executables In Scripts
	Common Scripting Examples
	Create a Project and Apply Constraints
	Check Design File Syntax
	Create a Project and Synthesize a Netlist Using Netlist Optimizations
	Archive and Restore Projects
	Perform I/O Assignment Analysis
	Update Memory Contents Without Recompiling
	Create a Compressed Configuration File
	Fit a Design as Quickly as Possible
	Fit a Design Using Multiple Seeds
	The QFlow Script

	Document Revision History

	5. Tcl Scripting
	Tcl Scripting
	Tool Command Language
	Quartus Prime Tcl Packages
	Loading Packages

	Quartus Prime Tcl API Help
	Command-Line Options: -t, -s, and --tcl_eval
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl

	The Quartus Prime Tcl Console Window

	End-to-End Design Flows
	Creating Projects and Making Assignments
	Compiling Designs
	The flow Package
	Compile All Revisions

	Reporting
	Viewing Report Data in Excel

	Timing Analysis
	Automating Script Execution
	Execution Example
	Controlling Processing
	Displaying Messages

	Other Scripting Features
	Natural Bus Naming
	Short Option Names
	Collection Commands
	The foreach_in_collection Command
	The get_collection_size Command

	The post_message Command
	Accessing Command-Line Arguments
	The cmdline Package

	The quartus() Array

	The Quartus Prime Tcl Shell in Interactive Mode
	The tclsh Shell
	Tcl Scripting Basics
	Hello World Example
	Variables
	Substitutions
	Variable Value Substitution
	Nested Command Substitution
	Backslash Substitution

	Arithmetic
	Lists
	Arrays
	Control Structures
	Procedures
	File I/O
	Syntax and Comments
	External References

	Document Revision History

	6. Signal Integrity Analysis with Third-Party Tools
	Signal Integrity Analysis with Third-Party Tools
	Signal Integrity Simulations with HSPICE and IBIS Models

	I/O Model Selection: IBIS or HSPICE
	FPGA to Board Signal Integrity Analysis Flow
	Create I/O and Board Trace Model Assignments
	Output File Generation
	Customize the Output Files
	Set Up and Run Simulations in Third-Party Tools
	Interpret Simulation Results

	Simulation with IBIS Models
	Elements of an IBIS Model
	Creating Accurate IBIS Models
	Download IBIS Models
	Generate Custom IBIS Models with the IBIS Writer

	Design Simulation Using the Mentor Graphics HyperLynx® Software
	Configuring LineSim to Use Altera IBIS Models
	Integrating Altera IBIS Models into LineSim Simulations
	Running and Interpreting LineSim Simulations

	Simulation with HSPICE Models
	Supported Devices and Signaling
	Accessing HSPICE Simulation Kits
	The Double Counting Problem in HSPICE Simulations
	Defining the Double Counting Problem
	The Solution to Double Counting

	HSPICE Writer Tool Flow
	Applying I/O Assignments
	Enabling HSPICE Writer
	Enabling HSPICE Writer Using Assignments
	Naming Conventions for HSPICE Files
	Invoking HSPICE Writer
	Invoking HSPICE Writer from the Command Line
	Customizing Automatically Generated HSPICE Decks

	Running an HSPICE Simulation
	Interpreting the Results of an Output Simulation
	Interpreting the Results of an Input Simulation
	Viewing and Interpreting Tabular Simulation Results
	Viewing Graphical Simulation Results
	Making Design Adjustments Based on HSPICE Simulations
	Sample Input for I/O HSPICE Simulation Deck
	Header Comment
	Simulation Conditions
	Simulation Options
	Constant Definition
	Buffer Netlist
	Drive Strength
	I/O Buffer Instantiation
	Board Trace and Termination
	Stimulus Model
	Simulation Analysis

	Sample Output for I/O HSPICE Simulation Deck
	Header Comment
	Simulation Conditions
	Simulation Options
	Constant Definition
	I/O Buffer Netlist
	Drive Strength
	Slew Rate and Delay Chain
	I/O Buffer Instantiation
	Board and Trace Termination
	Double-Counting Compensation Circuitry
	Simulation Analysis

	Advanced Topics
	PVT Simulations
	Hold Time Analysis
	I/O Voltage Variations
	Correlation Report

	Document Revision History

	7. Mentor Graphics PCB Design Tools Support
	FPGA-to-PCB Design Flow
	Integrating with I/O Designer
	Generating Pin Assignment Files
	I/O Designer Settings
	Transferring I/O Assignments
	Updating I/O Designer with Quartus Prime Pin Assignments
	Updating Quartus Prime with I/O Designer Pin Assignments
	Generating Schematic Symbols in I/O Designer
	Generating Schematic Symbols

	Exporting Schematic Symbols to DxDesigner

	Integrating with DxDesigner
	DxDesigner Project Settings
	Creating Schematic Symbols in DxDesigner

	Analyzing FPGA Simultaneous Switching Noise (SSN)
	Scripting API
	Document Revision History

	8. Cadence PCB Design Tools Support
	Cadence PCB Design Tools Support
	Product Comparison
	FPGA-to-PCB Design Flow
	Integrating Altera FPGA Design
	Performing Simultaneous Switching Noise (SSN) Analysis of Your FPGA

	Setting Up the Quartus Prime Software
	Generating a .pin File

	FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
	Creating Symbols
	Cadence Allegro PCB Librarian Part Developer Tool
	Cadence Allegro PCB Librarian Part Developer Tool in the Design Flow
	Import and Export Wizard
	Editing and Fracturing Symbol
	Updating FPGA Symbols

	Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software

	FPGA-to-Board Integration with Cadence Allegro Design Entry CIS Software
	Creating a Cadence Allegro Design Entry CIS Project
	Generating a Part
	Generating Schematic Symbol
	Splitting a Part
	Instantiating a Symbol in a Design Entry CIS Schematic
	Altera Libraries for the Cadence Allegro Design Entry CIS Software
	Using the Altera-provided Libraries with your Cadence Allegro Design Entry CIS Project

	Document Revision History

	9. Reviewing Printed Circuit Board Schematics with the Quartus Prime Software
	Reviewing Quartus Prime Software Settings
	Device and Pins Options Dialog Box Settings
	Configuration Settings
	Unused Pin Settings
	Dual-Purpose Pins Settings
	Voltage Settings
	Error Detection CRC Settings

	Voltage Settings

	Reviewing Device Pin-Out Information in the Fitter Report
	Reviewing Compilation Error and Warning Messages
	Using Additional Quartus Prime Software Features
	Using Additional Quartus Prime Software Tools
	Pin Planner
	SSN Analyzer

	Document Revision History

	10. Design Optimization Overview
	Design Optimization Overview
	Initial Compilation: Required Settings
	Device Settings
	Device Migration Settings
	I/O Assignments
	Timing Requirement Settings
	Partitions and Floorplan Assignments for Incremental Compilation

	Physical Implementation
	Trade-Offs and Limitations
	Preserving Results and Enabling Teamwork
	Reducing Area
	Reducing Critical Path Delay
	Reducing Power Consumption
	Reducing Runtime

	Using Quartus Prime Tools
	Design Analysis
	Advisors
	Design Space Explorer II

	Document Revision History

	11. Reducing Compilation Time
	Reducing Compilation Time
	Compilation Time Advisor
	Strategies to Reduce the Overall Compilation Time
	Using Rapid Recompile
	Using Parallel Compilation with Multiple Processors
	Using Incremental Compilation

	Reducing Synthesis Time and Synthesis Netlist Optimization Time
	Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
	Use Appropriate Coding Style to Reduce Synthesis Time

	Reducing Placement Time
	Fitter Effort Setting
	Placement Effort Multiplier Settings
	Physical Synthesis Effort Settings
	Preserving Placement with Incremental Compilation

	Reducing Routing Time
	Identifying Routing Congestion in the Chip Planner

	Reducing Static Timing Analysis Time
	Setting Process Priority

	Document Revision History

	12. Timing Closure and Optimization
	About Timing Closure and Optimization
	Initial Compilation: Optional Fitter Settings
	Optimize Hold Timing
	Optimize Multi-Corner Timing
	Fitter Aggressive Routability Optimization

	Design Analysis
	Ignored Timing Constraints
	I/O Timing (Including tPD)
	Register-to-Register Timing
	Timing Analysis with the TimeQuest Timing Analyzer
	Tips for Analyzing Failing Paths
	Tips for Analyzing Failing Clock Paths that Cross Clock Domains
	Tips for Analyzing Paths from/to the Source and Destination of Critical Path
	Tips for Locating Multiple Paths to the Chip Planner
	Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
	Global Routing Resources

	Optimizing Timing (LUT-Based Devices)
	Debugging Timing Failures in the TimeQuest Analyzer
	Timing Optimization Advisor
	I/O Timing Optimization
	Improving Setup and Clock-to-Output Times Summary
	Timing-Driven Compilation
	Fast Input, Output, and Output Enable Registers
	Programmable Delays
	Use PLLs to Shift Clock Edges
	Use Fast Regional Clock Networks and Regional Clocks Networks
	Spine Clock Limitations
	Change How Hold Times are Optimized for MAX II Devices

	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
	Optimize Source Code
	Improving Register-to-Register Timing Summary
	Physical Synthesis Optimizations
	Turn Off Extra-Effort Power Optimization Settings
	Optimize Synthesis for Speed, Not Area
	Flatten the Hierarchy During Synthesis
	Set the Synthesis Effort to High
	Change State Machine Encoding
	Duplicate Logic for Fan-Out Control
	Prevent Shift Register Inference
	Use Other Synthesis Options Available in Your Synthesis Tool
	Fitter Seed
	Set Maximum Router Timing Optimization Level

	LogicLock Assignments
	Hierarchy Assignments

	Location Assignments
	Metastability Analysis and Optimization Techniques

	Periphery to Core Register Placement and Routing Optimization
	Setting Periphery to Core Optimizations in the Advanced Fitter Setting Dialog Box
	Setting Periphery to Core Optimizations in the Assignment Editor
	Viewing Periphery to Core Optimizations in the Fitter Report

	Design Evaluation for Timing Closure
	Review Compilation Results
	Review Messages
	Evaluate Physical Synthesis Results
	Evaluate Fitter Netlist Optimizations
	Evaluate Optimization Results
	Evaluate Resource Usage
	Global and Non-global Usage
	Routing Usage
	Wires Added for Hold

	Evaluate Other Reports and Adjust Settings Accordingly
	Difficulty Packing Design
	Review Ignored Assignments
	Review Non-Default Settings
	Review Floorplan
	Evaluate Placement and Routing
	Adjust Placement Effort
	Adjust Fitter Effort
	Review Timing Constraints

	Review Details of Timing Paths
	Show Timing Path Routing
	Global Network Buffers
	Source Location
	Insertion Delay
	Fan-Out
	Global Networks

	Resets and Global Networks
	Suspicious Setup
	Logic Depth
	Auto Shift Register Replacement
	Clocking Architecture
	Timing Closure Recommendations

	Making Adjustments and Recompiling

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	I/O Timing Optimization Techniques (LUT-Based Devices)
	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)

	Document Revision History

	13. Power Optimization
	Power Optimization
	Power Dissipation
	Design Space Explorer II
	Power-Driven Compilation
	Power-Driven Synthesis
	Power-Driven Fitter
	Area-Driven Synthesis
	Gate-Level Register Retiming

	Design Guidelines
	Clock Power Management
	LAB-Wide Clock Enable Example
	Reducing Memory Power Consumption
	Memory Power Reduction Example

	Pipelining and Retiming
	Architectural Optimization
	I/O Power Guidelines
	Dynamically Controlled On-Chip Terminations
	Power Optimization Advisor
	Power Optimization Advisor Example

	Document Revision History

	14. Area Optimization
	Resource Utilization
	Optimizing Resource Utilization (LUT-Based Devices)
	Using the Resource Optimization Advisor
	Resolving Resource Utilization Issues Summary
	I/O Pin Utilization or Placement
	Guideline: Use I/O Assignment Analysis
	Guideline: Modify Pin Assignments or Choose a Larger Package

	Logic Utilization or Placement
	Guideline: Optimize Source Code
	Guideline: Optimize Synthesis for Area, Not Speed
	Guideline: Restructure Multiplexers
	Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
	Guideline: Use Register Packing
	Guideline: Remove Fitter Constraints
	Guideline: Flatten the Hierarchy During Synthesis
	Guideline: Retarget Memory Blocks
	Guideline: Use Physical Synthesis Options to Reduce Area
	Guideline: Retarget or Balance DSP Blocks
	Guideline: Use a Larger Device

	Routing
	Guideline: Set Auto Packed Registers to Sparse or Sparse Auto
	Guideline: Set Fitter Aggressive Routability Optimizations to Always
	Guideline: Increase Router Effort Multiplier
	Guideline: Remove Fitter Constraints
	Guideline: Optimize Synthesis for Area, Not Speed
	Guideline: Optimize Source Code
	Guideline: Use a Larger Device

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)

	Document Revision History

	15. Analyzing and Optimizing the Design Floorplan with the Chip Planner
	Analyzing and Optimizing the Design Floorplan with the Chip Planner
	Migrating Assignments between Quartus Prime Standard Edition and Quartus Prime Pro Edition
	Chip Planner Overview
	Starting the Chip Planner
	Chip Planner Toolbar
	Chip Planner Presets, Layers, and Editing Modes
	Locate History Window

	LogicLock Regions
	Creating LogicLock Regions
	Creating Non-Rectangular LogicLock Regions
	Hierarchical (Parent and Child) LogicLock Regions
	Placing LogicLock Regions
	Placing Device Resources into LogicLock Regions
	LogicLock Regions Window
	Reserved LogicLock Region
	Excluded Resources

	Additional Quartus Prime LogicLock Design Features
	Analysis and Synthesis Resource Utilization by Entity
	Quartus Prime Revisions Feature
	LogicLock Assignment Precedence
	Virtual Pins

	Using LogicLock Regions in the Chip Planner
	Viewing Connections Between LogicLock Regions in the Chip Planner
	Using LogicLock Regions with the Design Partition Planner

	Design Floorplan Analysis in the Chip Planner
	Chip Planner Floorplan Views
	Viewing Architecture-Specific Design Information
	Viewing Available Clock Networks in the Device
	Viewing Critical Paths
	Viewing Routing Congestion
	Viewing I/O Banks
	Viewing High-Speed Serial Interfaces (HSSI)
	Generating Fan-In and Fan-Out Connections
	Generating Immediate Fan-In and Fan-Out Connections
	Highlight Routing
	Show Delays
	Exploring Paths in the Chip Planner
	Locate Path from the Timing Analysis Report to the Chip Planner
	Analyzing Connections for a Path

	Viewing Assignments in the Chip Planner
	Viewing High-Speed and Low-Power Tiles in the Chip Planner

	Scripting Support
	Initializing and Uninitializing a LogicLock Region
	Creating or Modifying LogicLock Regions
	Obtaining LogicLock Region Properties
	Assigning LogicLock Region Content
	Save a Node-Level Netlist for the Entire Design into a Persistent Source File
	Setting LogicLock Assignment Priority
	Assigning Virtual Pins

	Document Revision History

	16. Netlist Optimizations and Physical Synthesis
	Netlist Optimizations and Physical Synthesis
	WYSIWYG Primitive Resynthesis
	Perform WYSIWYG Primitive Resynthesis

	Performing Physical Synthesis Optimizations
	Spectra-Q Physical Synthesis Optimization
	Setting Physical Synthesis Options
	Physical Synthesis Options

	Physical Synthesis Effort Level
	Perform Physical Synthesis for Combinational Logic Fitting
	Perform Register Retiming for Performance
	Perform Asynchronous Signal Pipelining
	Perform Register Duplication for Performance

	Node Preservation for Older Device Families
	Preventing Register Movement During Retiming
	Applying Netlist Optimization Options
	Viewing Synthesis and Netlist Optimization Reports
	Scripting Support
	Synthesis Netlist Optimizations
	Physical Synthesis Optimizations
	Back-Annotating Assignments

	Document Revision History

	17. Engineering Change Orders with the Chip Planner
	Engineering Change Orders
	Performance Preservation
	Compilation Time
	Verification
	Change Modification Record

	ECO Design Flow
	The Chip Planner Overview
	Opening the Chip Planner
	The Chip Planner Tasks and Layers

	Performing ECOs with the Chip Planner (Floorplan View)
	Creating, Deleting, and Moving Atoms
	Check and Save Netlist Changes

	Performing ECOs in the Resource Property Editor
	Logic Elements
	Logic Element Properties
	Modes of Operation
	Sum and Carry Equations
	sload and sclr Signals
	Register Cascade Mode
	Cell Delay Table
	Logic Element Connections
	Deleting a Logic Element

	Adaptive Logic Modules
	Adaptive Logic Module Schematic
	Adaptive Logic Module Properties
	Adaptive Logic Module Connections

	FPGA I/O Elements
	Stratix V I/O Elements
	Stratix IV I/O Elements
	Arria V I/O Elements
	Cyclone V I/O Elements
	MAX V I/O Elements

	FPGA RAM Blocks
	FPGA DSP Blocks

	Change Manager
	Complex Changes in the Change Manager
	Managing SignalProbe Signals
	Exporting Changes

	Scripting Support
	Common ECO Applications
	Adjust the Drive Strength of an I/O with the Chip Planner
	Modify the PLL Properties With the Chip Planner
	PLL Properties
	Adjusting the Duty Cycle
	Adjusting the Phase Shift
	Adjusting the Output Clock Frequency
	Adjusting the Spread Spectrum

	Modify the Connectivity between Resource Atoms

	Post ECO Steps
	Document Revision History

	Quartus Prime Standard Edition Handbook Volume 3: Verification
	1. Simulating Altera Designs
	Simulator Support
	Simulation Levels
	HDL Support
	Simulation Flows
	Preparing for Simulation
	Generating Simulation Scripts
	Generating Version-Independent IP and Qsys Simulation Scripts
	Incorporating IP Simulation Scripts in Top-Level Scripts
	Incorporating Aldec IP Simulation Scripts
	Incorporating Cadence IP Simulation Scripts
	Incorporating ModelSim IP Simulation Scripts
	Incorporating VCS IP Simulation Scripts
	Incorporating VCS MX IP Simulation Scripts

	Compiling Simulation Models
	Generating IP Simulation Files for RTL Simulation
	Generating IP Functional Simulation Models for RTL Simulation

	Running a Simulation (NativeLink Flow)
	Setting Up Simulation (NativeLink Flow)
	Running RTL Simulation (NativeLink Flow)
	Running Gate-Level Simulation (NativeLink Flow)

	Running a Simulation (Custom Flow)
	Document Revision History

	2. Mentor Graphics ModelSim and QuestaSim Support
	Quick Start Example (ModelSim with Verilog)
	ModelSim, ModelSim-Altera, and QuestaSim Guidelines
	Using ModelSim-Altera Precompiled Libraries
	Disabling Timing Violation on Registers
	Passing Parameter Information from Verilog HDL to VHDL
	Increasing Simulation Speed
	Simulating Transport Delays
	Viewing Error Messages
	Generating Power Analysis Files
	Viewing Simulation Waveforms
	Simulating with ModelSim-Altera Waveform Editor

	ModelSim Simulation Setup Script Example
	Unsupported Features
	Document Revision History

	3. Synopsys VCS and VCS MX Support
	Quick Start Example (VCS with Verilog)
	VCS and QuestaSim Guidelines
	Simulating Transport Delays
	Disabling Timing Violation on Registers
	Generating Power Analysis Files

	VCS Simulation Setup Script Example
	Document Revision History

	4. Cadence Incisive Enterprise (IES) Support
	Quick Start Example (NC-Verilog)
	Cadence Incisive Enterprise (IES) Guidelines
	Using GUI or Command-Line Interfaces
	Elaborating Your Design
	Back-Annotating Simulation Timing Data (VHDL Only)
	Disabling Timing Violation on Registers
	Simulating Pulse Reject Delays
	Viewing Simulation Waveforms

	IES Simulation Setup Script Example
	Document Revision History

	5. Aldec Active-HDL and Riviera-PRO Support
	Quick Start Example (Active-HDL VHDL)
	Aldec Active-HDL and Riviera-PRO Guidelines
	Compiling SystemVerilog Files
	Simulating Transport Delays
	Disabling Timing Violation on Registers

	Using Simulation Setup Scripts
	Document Revision History

	6. Timing Analysis Overview
	Timing Analysis Overview
	TimeQuest Terminology and Concepts
	Timing Netlists and Timing Paths
	The Timing Netlist
	Timing Paths
	Data and Clock Arrival Times
	Launch and Latch Edges

	Clock Setup Check
	Clock Hold Check
	Recovery and Removal Time
	Multicycle Paths
	Metastability
	Common Clock Path Pessimism Removal
	Clock-As-Data Analysis
	Multicycle Clock Setup Check and Hold Check Analysis
	Multicycle Clock Setup
	Multicycle Clock Hold

	Multicorner Analysis

	Document Revision History

	7. The Quartus Prime TimeQuest Timing Analyzer
	Enhanced Timing Analysis for Arria 10
	Recommended Flow for First Time Users
	Creating and Setting Up your Design
	Specifying Timing Requirements
	Performing an Initial Analysis and Synthesis
	Creating a Constraint File from Quartus Prime Templates with the Quartus Prime Text Editor

	Performing a Full Compilation
	Verifying Timing
	Analyzing Timing in Designs Compiled in Previous Versions

	Timing Constraints
	Recommended Starting SDC Constraints
	create_clock
	derive_pll_clocks
	derive_clock_uncertainty
	SDC Constraint Creation Summary
	set_clock_groups
	Tips for Writing a set_clock_groups Constraint

	Creating Clocks and Clock Constraints
	Creating Base Clocks
	Automatically Detecting Clocks and Creating Default Clock Constraints

	Creating Virtual Clocks
	Example of Specifying an I/O Interface Clock
	I/O Interface Uncertainty

	Creating Generated Clocks
	Clock Divider Example
	Clock Multiplexor Example

	Deriving PLL Clocks
	Creating Clock Groups
	Exclusive Clock Groups
	Asynchronous Clock Groups

	Accounting for Clock Effect Characteristics
	Clock Latency
	Clock Uncertainty

	Creating I/O Requirements
	Input Constraints
	Output Constraints

	Creating Delay and Skew Constraints
	Advanced I/O Timing and Board Trace Model Delay
	Maximum Skew
	Net Delay
	Using create_timing_netlist

	Creating Timing Exceptions
	Precedence
	False Paths
	Minimum and Maximum Delays
	Delay Annotation
	Multicycle Paths
	Common Multicycle Variations
	Relaxing Setup with set_multicyle_path
	Accounting for a Phase Shift

	Examples of Basic Multicycle Exceptions
	Default Settings
	End Multicycle Setup = 2 and End Multicycle Hold = 0
	End Multicycle Setup = 2 and End Multicycle Hold = 1

	Application of Multicycle Exceptions
	Same Frequency Clocks with Destination Clock Offset
	Destination Clock Frequency is a Multiple of the Source Clock Frequency
	Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
	Source Clock Frequency is a Multiple of the Destination Clock Frequency
	Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset

	A Sample Design with SDC File

	Running the TimeQuest Analyzer
	Quartus Prime Settings
	SDC File Precedence

	Understanding Results
	Iterative Constraint Modification
	Set Operating Conditions Dialog Box
	Report Timing (Dialog Box)
	Analyzing Results with Report Timing
	Correlating Constraints to the Timing Report

	Constraining and Analyzing with Tcl Commands
	Collection Commands
	Wildcard Characters
	Adding and Removing Collection Items
	Getting Other Information about Collections
	Using the get_pins Command

	Identifying the Quartus Prime Software Executable from the SDC File
	Locating Timing Paths in Other Tools

	Generating Timing Reports
	Document Revision History

	8. PowerPlay Power Analysis
	Types of Power Analyses
	Differences between the PowerPlay EPE and the Quartus Prime PowerPlay Power Analyzer

	Factors Affecting Power Consumption
	Device Selection
	Environmental Conditions
	Device Resource Usage
	Signal Activities

	PowerPlay Power Analyzer Flow
	Operating Settings and Conditions
	Signal Activities Data Sources
	Simulation Results

	Using Simulation Files in Modular Design Flows
	Complete Design Simulation
	Modular Design Simulation
	Multiple Simulations on the Same Entity
	Overlapping Simulations
	Partial Simulations
	Specifying Start and End Time when Performing Signal-Activity Calculations using the Limit VCD Period Option

	Node Name Matching Considerations
	Glitch Filtering
	Enabling First Level of Glitch Filtering
	Enabling Second Level of Glitch Filtering

	Node and Entity Assignments
	Timing Assignments to Clock Nodes

	Default Toggle Rate Assignment
	Vectorless Estimation

	Using the PowerPlay Power Analyzer
	Common Analysis Flows
	Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	RTL Simulation Limitation

	Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
	Signal Activities from User Defaults Only

	Importance of .vcd
	Generating a .vcd
	Generating a .vcd from ModelSim Software
	Generating a .vcd from Full Post-Fit Netlist (Zero Delay) Simulation

	PowerPlay Power Analyzer Compilation Report
	Scripting Support
	Running the PowerPlay Power Analyzer from the Command–Line

	Document Revision History

	9. System Debugging Tools Overview
	About Altera System Debugging Tools
	System Debugging Tools Portfolio
	System Debugging Tools Comparison
	Altera JTAG Interface (AJI)
	Required Arbitration Logic
	Debugging Ecosystem
	About Analysis Tools for RTL Nodes
	Resource Usage
	Overhead Logic
	For SignalProbe
	For Logic Analyzer Interface
	For SignalTap II

	Resource Estimation

	Pin Usage
	For SignalProbe
	For Logic Analyzer Interface
	For SignalTap II

	Usability Enhancements
	Incremental Compilation
	Incremental Routing
	Automation Via Scripting
	Remote Debugging

	Suggested On-Chip Debugging Tools for Common Debugging Features
	About Stimulus‑Capable Tools
	In-System Sources and Probes
	Push Button Functionality

	In-System Memory Content Editor
	Generate Test Vectors

	Virtual JTAG Interface Megafunction
	System Console
	Test Signal Integrity
	Board Bring-Up and Verification
	Test Link Signal Integrity with Transceiver Toolkit

	Document Revision History

	10. Analyzing and Debugging Designs with System Console
	Introduction to System Console
	Hardware Requirements for System Console
	IP Cores that Interact with System Console
	System Console Flow
	Starting System Console
	Customizing Startup
	Starting System Console from Nios II Command Shell
	Starting System Console Stand-Alone
	Starting System Console from Qsys
	Starting System Console from

	System Console GUI
	System Explorer Pane

	System Console Commands
	Running System Console in Command-Line Mode
	Locating, Opening, and Closing System Console Services
	Locating Available Services
	Opening and Closing Services

	System Console Services
	SLD Service
	SLD Commands

	In-System Sources and Probes Service
	In-System Sources and Probes Commands

	Monitor Service
	Monitor Commands

	Device Service
	Device Commands

	Design Service
	Design Service Commands

	Bytestream Service
	Bytestream Commands

	JTAG Debug Service
	JTAG Debug Commands

	Working with Toolkits
	Registering a Toolkit
	Opening a Toolkit
	Creating a Toolkit Description File
	Matching Toolkits with IP Cores

	Toolkit API
	Customizing Toolkit API Widgets
	Toolkit API Script Examples
	Toolkit API GUI Example
	Toolkit API GUI Example .toolkit File
	Toolkit API GUI Example .tcl File

	Toolkit API Commands
	toolkit_register
	toolkit_open
	get_quartus_ini
	toolkit_get_context
	toolkit_get_types
	toolkit_get_properties
	toolkit_add
	toolkit_get_property
	toolkit_set_property
	toolkit_remove
	toolkit_get_widget_dimensions

	Toolkit API Properties
	Widget Types and Properties
	barChart Properties
	button Properties
	checkBox Properties
	comboBox Properties
	dial Properties
	fileChooserButton Properties
	group Properties
	label Properties
	led Properties
	lineChart Properties
	list Properties
	pieChart Properties
	tableProperties
	text Properties
	textField Properties
	timeChart Properties
	xyChart Properties

	ADC Toolkit
	ADC Toolkit Terms
	Setting the Frequency of the Reference Signal
	Tuning the Signal Generator
	Running a Signal Quality Test
	Running a Linearity Test
	ADC Toolkit Data Views

	System Console Examples and Tutorials
	Board Bring-Up with System Console Tutorial
	Setting Up the Board Bring-Up Design Example
	Verifying Clock and Reset Signals
	Verifying Memory and Other Peripheral Interfaces
	Locating and Opening the Master Service
	Avalon-MM Slaves
	Avalon-MM Commands

	Testing the PIO component
	Testing On-chip Memory
	Testing the Checksum Accelerator

	Qsys Modules for Board Bring-up Example
	Checksum Accelerator Functionality

	Nios II Processor Example
	Processor Commands

	On-Board USB Blaster II Support
	About Using MATLAB and Simulink in a System Verification Flow
	Deprecated Commands
	Document Revision History

	11. Debugging Transceiver Links
	Transceiver Debugging Flow
	Configuring Systems for Transceiver Debug
	Configuring an Altera Design Example
	Modifying Stratix V Design Examples
	Generating reconfig_clk from an Internal PLL

	Configuring Your Own Debugging System
	Arria 10 Debug System Configuration
	Enabling Altera Master Debug Endpoint (Arria 10)
	Link Testing Configuration (Arria 10)
	Custom Traffic Signal Eye Test Configuration (Arria 10)
	PMA Analog Setting Control Configuration (Arria 10)

	Stratix V Debug System Configuration
	Bit Error Rate Test Configuration (Stratix V)
	PRBS Signal Eye Test Configuration (Stratix V)
	Enabling Serial Bit Comparator Mode (Stratix V)

	Custom Traffic Signal Eye Test Configuration (Stratix V)
	Link Optimization Test Configuration (Stratix V)
	PMA Analog Setting Control Configuration (Stratix V)

	Managing Transceiver Channels
	Channel Display Modes
	Creating Links
	Controlling Transceiver Channels

	Debugging Transceiver Links
	Step 1: Load Your Design
	Step 2: Link Hardware Resources
	Linking One Design to One Device
	Linking Two Designs to Two Devices
	Linking Designs and Devices on Separate Boards
	Linking One Design on Two Devices

	Step 3: Verify Hardware Connections
	Step 4: Identify Transceiver Channels
	Step 5: Run Link Tests
	Running BER Tests
	Signal Eye Margin Testing
	Running PRBS Signal Eye Tests

	Running Custom Traffic Tests
	Auto Sweep Testing
	Running Link Optimization Tests

	Controlling PMA Analog Settings

	Troubleshooting Common Errors
	User Interface Settings Reference
	Scripting API Reference
	Transceiver Toolkit Commands
	Data Pattern Generator Commands
	Data Pattern Checker Commands

	Document Revision History

	12. Quick Design Debugging Using SignalProbe
	Quick Design Debugging Using SignalProbe
	Design Flow Using SignalProbe
	Perform a Full Compilation
	Reserve SignalProbe Pins
	Assign SignalProbe Sources
	Add Registers Between Pipeline Paths and SignalProbe Pins
	Perform a SignalProbe Compilation
	Analyze the Results of a SignalProbe Compilation
	What a SignalProbe Compilation Does
	Understanding the Results of a SignalProbe Compilation
	Analyzing SignalProbe Routing Failures

	Scripting Support
	Making a SignalProbe Pin
	Deleting a SignalProbe Pin
	Enabling a SignalProbe Pin
	Disabling a SignalProbe Pin
	Performing a SignalProbe Compilation
	Script Example

	Reserving SignalProbe Pins
	Common Problems When Reserving a SignalProbe Pin

	Adding SignalProbe Sources
	Assigning I/O Standards
	Adding Registers for Pipelining
	Running SignalProbe Immediately After a Full Compilation
	Running SignalProbe Manually
	Enabling or Disabling All SignalProbe Routing
	Allowing SignalProbe to Modify Fitting Results

	Document Revision History

	13. Design Debugging Using the SignalTap II Logic Analyzer
	About the SignalTap II Logic Analyzer
	Hardware and Software Requirements

	Design Flow Using the SignalTap II Logic Analyzer
	SignalTap II Logic Analyzer Task Flow Overview
	Add the SignalTap II Logic Analyzer to Your Design
	Configure the SignalTap II Logic Analyzer
	Define Trigger Conditions
	Compile the Design
	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	View, Analyze, and Use Captured Data
	Embed Multiple Analyzers in One FPGA
	Monitor FPGA Resources Used by the SignalTap II Logic Analyzer
	Use the Parameter Editor to Create Your Logic Analyzer

	Configuring the SignalTap II Logic Analyzer
	Assigning an Acquisition Clock
	Adding Signals to the SignalTap II File
	Preserving Signals
	Assigning Data Signals Using the Technology Map Viewer
	Node List Signal Use Options
	Disabling and Enabling a SignalTap II Instance

	Untappable Signals

	Adding Signals with a Plug-In
	Adding Finite State Machine State Encoding Registers
	Modifying and Restoring Mnemonic Tables for State Machines
	Additional Considerations

	Specifying the Sample Depth
	Capturing Data to a Specific RAM Type
	Choosing the Buffer Acquisition Mode
	Non-Segmented Buffer
	Segmented Buffer

	Using the Storage Qualifier Feature
	Input Port Mode
	Transitional Mode
	Conditional Mode
	Start/Stop Mode
	State-Based
	Showing Data Discontinuities
	Disable Storage Qualifier

	Managing Multiple SignalTap II Files and Configurations

	Define Triggers
	Creating Basic Trigger Conditions
	Using the Basic OR Triggering Condition with Nested Groups

	Creating Advanced Trigger Conditions
	Examples of Advanced Triggering Expressions

	Custom Trigger HDL Object
	Custom Trigger Flow

	Trigger Condition Flow Control
	Sequential Triggering
	State-Based Triggering
	State Diagram Pane
	State Machine Pane
	Resources Pane

	SignalTap II Trigger Flow Description Language
	State Labels
	Boolean_expression
	Action_list
	Resource Manipulation Action
	Buffer Control Action
	State Transition Action
	Using the State-Based Storage Qualifier Feature

	Specifying the Trigger Position
	Creating a Power-Up Trigger
	Enabling a Power-Up Trigger
	Managing and Configuring Power-Up and Runtime Trigger Conditions

	Using External Triggers
	Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	Compile the Design
	Faster Compilations with Quartus Prime Incremental Compilation
	Enabling Incremental Compilation for Your Design
	Using Incremental Compilation with the SignalTap II Logic Analyzer

	Preventing Changes Requiring Recompilation
	Incremental Route with Rapid Recompile
	Incremental Route Flow
	Tips to Achieve Maximum Speedup

	Timing Preservation with the SignalTap II Logic Analyzer
	Performance and Resource Considerations

	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	Runtime Reconfigurable Options
	SignalTap II Status Messages

	View, Analyze, and Use Captured Data
	Capturing Data Using Segmented Buffers
	Differences in Pre-fill Write Behavior Between Different Acquisition Modes
	Creating Mnemonics for Bit Patterns
	Automatic Mnemonics with a Plug-In
	Locating a Node in the Design
	Saving Captured Data
	Exporting Captured Data to Other File Formats
	Creating a SignalTap II List File

	Other Features
	Using the SignalTap II MATLAB MEX Function to Capture Data
	Using SignalTap II in a Lab Environment
	Remote Debugging Using the SignalTap II Logic Analyzer
	Debugging Using a Local PC and an Altera SoC
	Debugging Using a Local PC and a Remote PC
	Equipment Setup

	Using the SignalTap II Logic Analyzer in Devices with Configuration Bitstream Security
	Backward Compatibility with Previous Versions of Quartus Prime Software
	SignalTap II Command-Line Options
	SignalTap II Tcl Commands

	Design Example: Using SignalTap II Logic Analyzers
	Custom Triggering Flow Application Examples
	Design Example 1: Specifying a Custom Trigger Position
	Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	SignalTap II Scripting Support
	Document Revision History

	14. Debugging Single Event Upset Using the Fault Injection Debugger
	Single Event Upset Mitigation
	Hardware and Software Requirements
	Using the Fault Injection Debugger and Fault Injection IP Core
	Instantiating the Fault Injection IP Core
	Using the EMR Unloader IP Core
	Using the Advanced SEU Detection IP Core

	Defining Fault Injection Areas
	Performing Hierarchy Tagging
	About SMH Files

	Using the Fault Injection Debugger
	Configuring Your Device and the Fault Injection Debugger
	Constraining Regions for Fault Injection
	Specifying Error Types
	Injecting Errors
	Recording Errors
	Clearing Injected Errors

	Command-Line Interface
	Targeted Fault Injection Feature
	Specifying an Error List From the Command Line
	Specifying an Error List From Prompt Mode
	Determining CRAM Bit Locations

	Advanced Command-Line Options: ASD Regions and Error Type Weighting

	Document Revision History

	15. In-System Debugging Using External Logic Analyzers
	About the Quartus Prime Logic Analyzer Interface
	Choosing a Logic Analyzer
	Required Components

	Flow for Using the LAI
	Working with LAI Files
	Configuring the File Core Parameters
	Mapping the LAI File Pins to Available I/O Pins
	Mapping Internal Signals to the LAI Banks
	Using the Node Finder
	Compiling Your Quartus Prime Project
	Programming Your Altera-Supported Device Using the LAI

	Controlling the Active Bank During Runtime
	Acquiring Data on Your Logic Analyzer

	Using the LAI with Incremental Compilation
	Document Revision History

	16. In-System Modification of Memory and Constants
	About the In-System Memory Content Editor
	Design Flow Using the In-System Memory Content Editor
	Creating In-System Modifiable Memories and Constants
	Running the In-System Memory Content Editor
	Instance Manager
	Editing Data Displayed in the Hex Editor Pane
	Importing and Exporting Memory Files
	Scripting Support
	Programming the Device with the In-System Memory Content Editor
	Example: Using the In-System Memory Content Editor with the SignalTap II Logic Analyzer

	Document Revision History

	17. Design Debugging Using In-System Sources and Probes
	Hardware and Software Requirements
	Design Flow Using the In-System Sources and Probes Editor
	Instantiating the In-System Sources and Probes IP Core
	In-System Sources and Probes IP Core Parameters

	Compiling the Design
	Running the In-System Sources and Probes Editor
	In-System Sources and Probes Editor GUI
	Programming Your Device With JTAG Chain Configuration
	Instance Manager
	In-System Sources and Probes Editor Pane
	Reading Probe Data
	Writing Data
	Organizing Data

	Tcl interface for the In-System Sources and Probes Editor
	Design Example: Dynamic PLL Reconfiguration
	Document Revision History

	18. Programming Altera Devices
	Programming Flow
	Stand-Alone Quartus Prime Programmer
	Optional Programming or Configuration Files
	Secondary Programming Files

	Quartus Prime Programmer GUI
	Editing the Device Details of an Unknown Device
	Setting Up Your Hardware
	Setting the JTAG Hardware
	Running JTAG Daemon with Linux

	Using the JTAG Chain Debugger Tool

	Programming and Configuration Modes
	Design Security Keys
	Convert Programming Files Dialog Box
	Debugging Your Configuration
	Converting Programming Files for Partial Reconfiguration
	Generating .pmsf using a .msf and a .sof
	Generating .rbf for Partial Reconfiguration Using a .pmsf
	Enable Decompression during Partial Reconfiguration Option

	Flash Loaders
	JTAG Debug Mode for Partial Reconfiguration
	Configuring Partial Reconfiguration Bitstream in JTAG Debug Mode

	Scripting Support
	The jtagconfig Debugging Tool
	Generating .pmsf using a .msf and a .sof
	Generating .rbf for Partial Reconfiguration using a .pmsf

	Document Revision History

