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Shape from X

e One image:
e Shading
e Texture

e Two images or more:
o Stereo
e Contours
e Motion
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Shape From

e One image:
e Shading
e Texture

e Two images or more:
e Stereo
e Contours
e Motion
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Recover surface orientation or surface shape from
Image texture:

o Assume texture ‘looks the same’ at different points
on the surface.

e This means that the deformation of the texture is
due to the surface curvature. !
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Structural Shape Recovery
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Reminder: Perspective Projection

Y+ ¥
Center of /
Projection Image
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Perspective Distortion

Center of Frontal

Projection | -0g Plane
Scaling £J Plane
of the /
Frontal Piane
in the Image I

Foreshortening
of the )
Longitudinal Plane
in the Image \

The perspective projection distortion of the texture
e depends on both depth and surface orientation,
e |s anisotropic.

PFL A

Longitudinal Ptane
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Foreshortening

Depth vs Orientation:
o Infinitesimal vector [AX,Ay,Az] at location [x,y,z]!-.-l
image of this vector is

LA XAz Ay -2 Az

Z Z Z
e Two special cases:
*Az=0 : The object is scaled
* AX=Ay=0 : The object is foreshortened
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Reminder: Orthographic Projection

Y &
/ / Object
Scating . . E . E U =-Sx
B O S L B
Center of A‘ge Ahographic

RRRE Projection
Projection

Special case of perspective projection:

e large f

e Objects close to the optical axis
—>Parallel lines mapped into parallel lines.
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Orthographic Projection
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Tilt And Slant

image
Plane

Frojeciion
Direction

~ Normai

Surface




Orthographic Projection
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e Tilt: Derived from the
image direction in which
the surface element
undergoes maximum
compression.

e Slant: Derived from the
extent of this compression.
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Cheet
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A .M. Low, Phd Thesis, 2006
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Perpendicular Lines

P =N
P SR

Orthographic projections of squares that
are rotated with respect to each other in a
plane inclined at w=60° to the image plane.

[0, /4) % (0, /1) cos(w)
Ip, /1| +|lp, /| 1+ cos*(w)
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Parapespective Projection

/ Object
! e ﬁirallel
X LT Bealing Projection

o E -

gl it g z
\\ |
Center of A‘ .

Projection

Generalization of the orthographic projection:

e Object dimensions small wrt distance to the
center of projection.

- Parallel projection followed by scaling
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Parapespective Projection

(Xo+ AXpa Yot AY¥s, Zo+AZ)

Parallel Projection in
—[X, ¥« Zo) Direction »(

Scaling e \(/

¥n

® FOI’ planar tGXG'S: Unknown surface normal.

f 2 / / True Area.

Projected Area. —»A'= ——311 ® [-XOy()ZO]A
<0
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Parapespective Projection
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7% iiiiii%% e Image regions being brighter or
s ::3iiii 0 darker than their surroundings.
: ;3,".'-_';': % e Assumed to have the same area
*2.+%%+ inspace.

. > Given enough texels, it

'
G
' 4y
' '
' "

;.‘\" £ i ] .
o becomes possible to estimate

the normal.

m
1
"N
r



Texture Gradient




Statistical Shape Recovery

Mesure texture density as opposed to
" texel area, that is, the number of textural
pr|m|t|ves per unit surface.

‘/, >\
F 0 0

Unknown surface normal. ) N
b= [bi,....b,

] Image coordinates.

?pn Function of density.

m
v
"N
r



Machine Learning
| G

—pr=|_Train a regressor to predict depth —> Noisy predictions A



Markov Random Field (MRF)

Graph with vertices and edges

Assign values to the nodes to minimize
E(Y)= 2000+ X0 (%)

(1))

unary pairwise

cpr| —> Enforces consistency
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Deep Learning with MRF

Supperpixel

Input image x

Shared network

o —————————————————————

Predicted depth map y

image patch parameters § (unary) |
- - ~ Zp i
o > Sconv +4fc =t . i
|
. |
L X x !
‘ 30S 224x224 L ! 5conv +4 fc 1x1 I
> J ‘\_“T—?lp :
aogt - '
BEENE :
> Sconv +4fc ! i
! |
. I l
- l i
T . ! !
T X \ I 1 !
%f_ ! _m I e e et e e e
y* = argmax Pr(y|x)
y
Neighbouring superpixel p ——n R y ¥ |V
pairwise similarities: [Sps .- - Spq | Kx1 p 1 4pg ' o
1 f >l Negative log-likelihood:
1
= > 1fc il »| — log Pr(y|x) = —log Z(x) exp{—E(y,x)},
Kxl J1x 1x1 _| where E(y,x) Z Ulyp,x Z (Yp: Ygr X
g e = peEN P,q)ES
E 5 = Z(I/p = ~]; Z qu I/p 1/11)
| pEN (p,q) EQ:
Shared network
parameters 3 (pairwise) CREF loss layer

Liu et al., PAMI 2016




Deep Learning without MRF

Output: Surface Normals

Fusion

e The network can be designed to enforce normal consistency.
e But only for the class of scenes it has been trained for.

=PFL Wang et al., CVPR 2015 A



Normals from a Single Image

Wang et al., CVPR 2015 A



Enforcing Task Consistency
Depth

""""

Forcing the deep net to be consistent Normals
across tasks increases robustness.

=PFL Zamir et al., CVPR 20 A



A Very Diverse Training Database Helps




.. and so does a Transformer Architecture

Originalimages  Selected input patches

=Pr-L
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Transformer
encoder
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Masked targets
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Ranftl et al, ICCV’21 A



Optional: lllusory Shape Distorsion
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People seem to be sensitive to orientation fields
in the cases of both texture and shading.

Flemming et al. PNAS’10 A
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Optional: Shape from Smear

Hypothesis: If orientation and scale fields are the key
source of information for 3D shape perception, it should be
possible to induce a vivid sense of 3D shape by creating 2D
patterns with appropriate scale and orientation fields.

Test: Use a technique known as Line Integral Convolution to
smear the texture along specific orientations and scale
appropriately.

Flemming et al. PNAS’10 A



Optional: Scaling and Smearing

Scaling:

Smearing:
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Optional: Inconsistent Stimulus

The orientation field cannot be integrated
> No depth perception.

> Do we integrate in our heads?

> [s this what the deep nets learn to do?
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Strengths and Limitations

Strengths:
Emulates an important human ability.

Limitations:
Requires regular texture.
Involves very strong assumptions.
Deep learning can be used to weaken them.
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