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Deep 3D Surface Meshes

P. Fua
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Aerial Mapping
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Deforming 3D Surfaces
3

Ngo, PAMI’16
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3D Surface Representations

High	frequency	details?

Arbitrary	topology?
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Voxels Explicit	surface	mesh Point	sets

Regularity? ++ -

++
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Continuous	implicit	fields

++

There are many applications at which explicit representations excel: 
•  High-quality rendering in computer graphics. 
•  Precise modeling of biological structures from biomedical data. 
•  Computational fluid dynamics in computer assisted design. 
But: 
• Their topology is fixed. 
• They are not particularly deep learning friendly. 

—> Implicit Surface Representations
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Signed Distance Fields (SDF)

• Represent a 3D surface S by the zero crossings of a signed distance function 

 

• Such surfaces can easily change topology, which is harder to do with 
explicit surface representations.  

• SDFs  have long been appealing  in theory but hard to use in practice 
because it it was necessary to store the 3D values of f in a cube like 
structure until …. 

f: ℝ3 → ℝ
∀x ∈ ℝ3, f(x) is the signed distance to the surface. 
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Deep SDF

But one bottleneck remains: If an explicit surface representation is 
required, one has to run a marching-cube style algorithm, which is 
not differentiable and often slow. 

[Liao et al., CVPR’18] 

Coded Shape DeepSDF

s = fθ(x |C)

x

Cs = fθ(x)x = (x, y, z)

[Park et al., CVPR’19] 

Single Shape DeepSDF
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Deep SDF Pipeline

Forward pass: 𝒱, ℱ = mc(S), with fθ(vi |C) = 0, ∀vi ∈ 𝒮 .

∂L
∂C

= ∑
i

∂L
∂vi

∂vi

∂s
∂s
∂CBackward pass:

Loss function: L(𝒱, ℱ)

Vertices Facets

• A priori  cannot be computed because mc is not differentiable. 

• But,   approximates a signed distance function … 

•   , 

•   is s is not a signed distance function. 

∂vi

∂s
fθ

∂v
∂s

= − n(v) = − ∇s(v)
∂v
∂s

= −
∇s(v)

∥∇s(v)∥2
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End-to-End Differentiable Pipeline

1. Start with a Deep SDF code. 
2. Use marching cube to compute mesh and vertices. 
3. Use them for the forward pass and for backpropagation. 
4. Update the SDF code and iterate.   

Minimizing surface-to-surface distance

Minimizing image-to-image distance

—> We can turn a spherical mesh into a toroidal one by minimizing  a 
differentiable objection function. 

C0
CT

[Remelli et al., arXiv’20] 
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From Genus 0 to Genus 1

[Remelli et al., NeurIPS’20] 
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Application: Single View Reconstruction



ResNet50

C ∈ ℝ256I ∈ ℝ3×224×224
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Network Specification

x ∈ ℝ3

fθ(x |C)FCs

Number of encoder parameters: 24,032,576 
Number of decoder parameters: 1,843,195

Trained by minimizing 

    

with respect to .

∑
x

| f gt
I (x) − fθ(x |C(I)) |1 + λ |C(I) |2

θ
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From Discriminative to Generative

FCs

Refined by minimizing: 

 

with respect to C.

|SI − S(C) |1 + λ |C |2

3	x	224	x	224

I C

 Marching
cubes

Shape	
Derivative

𝑀𝑒𝑠h

Differentiable	
renderer

S(C)

fθ( ⋅ , C)
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From Silhouettes to 3D Shapes

3D Model from Image

Editable 3D Model from Sketch
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Application: Shape Optimization
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3D Shape Design

▸ Design a shape.  
▸ Simulate its performance.  
▸ Redesign.

It works but: 

 It takes hours or days to produce a  single simulation.  

 This constitutes a serious bottleneck in the exploration of 
the design space.  

 Designs are limited by humans’ cognitive biases.   
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CFD Simulator

…….

…….

Kriging
Potential optimum

The response surface is approximated 
by a GP, which only works well when 
the model has few parameters.

16

• Drag  
• Pressure Coefficients 
• Boundary Layer Velocities 
• …
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CFD Simulator

• Drag  
• Pressure Coefficients 
• Boundary Layer Velocities 
• …

…….

…….

Deep Surrogate Method
Potential optimum

17[Baque et al., ICML’18] 

The response surface can be 
approximated by a GCNN instead 
of a GP. 

—> The model can have any number of parameters. 
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GCNN

Operates directly on the mesh vertices. 
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Lift Prediction

Full Simulation (1 h) GCNN Prediction (30 ms)

Physics Type External Aerodynamics

Dataset size ~1000 shapes

R2-accuracy 95 %
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Drag Prediction

•The predicted results are very close to the simulated ones.  
•The aerodynamic drag  can be estimated from these predictions.  
•  is a differentiable function of the surface mesh vertices. 

𝒟
𝒟

Simulated pressure fields

Predicted pressure fields
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Minimizing Drag Under Constraints

Minimizing drag while enclosing a sphere.

Wind
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UAV Design

https://www.sensefly.com/
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From UAV To Lifting Body

Optimize the fuselage as well

Sensefly drone (L/D 11.9)

Optimize the wings (L/D 13.7)
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Bicycle Shell

World Human Powered Speed Challenge  
Battle Mountain Nevada, 2019

Altair 6, IUT Annecy, 2018 

 

https://www.facebook.com/team.velo.carene/

Women world record:        126,48 km/h 
Men student world record: 136.74 km/h
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Introducing PriorsC

Train an auto-decoder using ShapeNet cars. 

FCs

 Marching
cubes

Shape 
Derivative

fθ( ⋅ , C) S(C)

Chamfer loss

C
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Drag Minimization

FCs

 Marching
cubes

Shape	
Derivative

C

fθ( ⋅ , C) S(C)

𝒟(C)

Minimize  with respect to C under constraint. 𝒟(C)
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From Pickup-Truck to Sports Car
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Interactive Design
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Hybrid Shape Representation

Generic-SDF Primitive-SDF Primitive-assisted SDFDifferent types of primitives Optimization results

—> Individual parts adapt to each other. 

[Vasu et al., ArXiv’21] 
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From Latent Vector to Primitives

Part Decoder

Analytic SDF
Function

LVshared

Latent Decoder

LVassist

S,R,T

Generic Decoder SDFgeneric

SDF1assist

SDF2assist

SDF1simple

SDF2simple

SDFsimple

Part Decoder

Analytic SDF
Function

LVgeneric SDFgeneric

LVassist

S,R,T

SDF1assist

Generic Decoder

SDF2assist

SDF1simple

SDF2simple

We use SDFs to represent:  
• Simple geometric primitives, such as spheres and cylinders.  
• Primitives that bear a close resemblance to the simple ones but can deviate from them.  
• Free form primitives that have arbitrarily complex shapes.

Shared Latent Vector Disentangled Latent Vector

Generic-SDF Primitive-SDF Primitive-assisted SDF

aaa
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Car Wheels

DeepSDF

HybridSDF

The wheels are better separated from the car body. 
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Shape Manipulation

Changing the explicit parameters Changing the implicit parameters



33

Interactive Shape Manipulation

Changing the wheels

[Vasu et al., ArXiv’21] 
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Dynamic Soaring

•  We plan to design for ease of control. 
•  We will use dynamic soaring to prove the concept.  
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Conclusion

• Combining explicit and implicit representations early makes it 
possible to exploit the strength of both representations.  

• Deep Signed Distance Functions can be used to implement 
3D surface meshes that can change their topology while 
preserving end-to-end differentiability.  

—> This opens the door for new applications in fields as 
diverse as Computer Assisted Design and Medical Imaging. 
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