Deep 3D Surface Meshes

P. Fua EPFL Computer Vision Lab Lausanne Switzerland

Aerial Mapping

Deforming 3D Surfaces

3D Surface Representations

There are many applications at which explicit representations excel:

- High-quality rendering in computer graphics.
- Precise modeling of biological structures from biomedical data.
- Computational fluid dynamics in computer assisted design.

But:

- Their topology is fixed.
- They are not particularly deep learning friendly.
 - --> Implicit Surface Representations

Signed Distance Fields (SDF)

- Represent a 3D surface S by the zero crossings of a signed distance function
 f: ℝ³ → ℝ
 ∀x ∈ ℝ³, f(x) is the signed distance to the surface.
- Such surfaces can easily change topology, which is harder to do with explicit surface representations.
- SDFs have long been appealing in theory but hard to use in practice because it it was necessary to store the 3D values of f in a cube like structure until


```
[Park et al., CVPR'19]
```


But one bottleneck remains: If an explicit surface representation is required, one has to run a marching-cube style algorithm, which is **not differentiable** and often **slow**.

EPFL

Lab

Deep SDF Pipeline

Loss function:

Forward pass:

$$\mathcal{V}, \mathcal{F} = mc(S), \text{ with } f_{\theta}(\mathbf{v}_i | C) = 0, \forall \mathbf{v}_i \in S$$
$$\frac{\partial L}{\partial C} = \sum_{\mathbf{i}} \frac{\partial L}{\partial \mathbf{v}_i} \frac{\partial \mathbf{v}_i}{\partial s} \frac{\partial s}{\partial C}$$

Backward pass:

• A priori $\frac{\partial \mathbf{v}_i}{\partial s}$ cannot be computed because mc is not differentiable.

• But, f_{θ} approximates a signed distance function ...

•
$$\frac{\partial \mathbf{v}}{\partial s} = -\mathbf{n}(\mathbf{v}) = -\nabla s(\mathbf{v})$$
,
• $\frac{\partial \mathbf{v}}{\partial s} = -\frac{\nabla s(\mathbf{v})}{\|\nabla s(\mathbf{v})\|^2}$ is s is not a signed distance function

End-to-End Differentiable Pipeline

- 1. Start with a Deep SDF code.
- 2. Use marching cube to compute mesh and vertices.
- 3. Use them for the forward pass and for backpropagation.
- 4. Update the SDF code and iterate.

—> We can turn a spherical mesh into a toroidal one by minimizing a differentiable objection function.

EPFL

From Genus 0 to Genus 1

[Remelli et al., NeurIPS'20]

Application: Single View Reconstruction

Network Specification

Number of encoder parameters: 24,032,576 Number of decoder parameters: 1,843,195

Trained by minimizing

 $\sum_{\mathbf{x}} |f_I^{gt}(\mathbf{x}) - f_{\theta}(\mathbf{x} | C(I))|_1 + \lambda |C(I)|_2$ with respect to θ .

EPFL

CLab

From Discriminative to Generative

Refined by minimizing:

 $\left|S_{I} - S(C)\right|_{1} + \lambda \left|C\right|_{2}$

with respect to C.

From Silhouettes to 3D Shapes

3D Model from Image

Editable 3D Model from Sketch

Application: Shape Optimization

3D Shape Design

- Design a shape.
- Simulate its performance.
- Redesign.

It works but:

It takes hours or days to produce a single simulation.

This constitutes a serious bottleneck in the exploration of the design space.

Designs are limited by humans' cognitive biases.

Kriging

• Drag

. . .

- Pressure Coefficients
- Boundary Layer Velocities

The response surface is approximated by a GP, which only works well when the model **has few parameters.**

Deep Surrogate Method

—> The model can have any number of parameters.

(Lab

GCNN

Operates directly on the mesh vertices.

Lift Prediction

Full Simulation (1 h)

GCNN Prediction (30 ms)

Physics Type	External Aerodynamics
Dataset size	~1000 shapes
R2-accuracy	95 %

EPFL

Drag Prediction

- The predicted results are very close to the simulated ones.
- \bullet The aerodynamic drag ${\mathscr D}$ can be estimated from these predictions.
- $\bullet\, {\mathscr D}$ is a differentiable function of the surface mesh vertices.

EPFL

Minimizing Drag Under Constraints

Drag 51.66 N

Minimizing drag while enclosing a sphere.

UAV Design

From UAV To Lifting Body

Sensefly drone (L/D 11.9)

Optimize the wings (L/D 13.7)

Optimize the fuselage as well

(Lab

Bicycle Shell

Altair 6, IUT Annecy, 2018

World Human Powered Speed Challenge Battle Mountain Nevada, 2019

Women world record: 126,48 km/h Men student world record: 136.74 km/h

EPFL

Introducing Priors

Train an auto-decoder using ShapeNet cars.

EPFL

Drag Minimization

Minimize $\mathcal{D}(C)$ with respect to C under constraint.

From Pickup-Truck to Sports Car

Interactive Design

Hybrid Shape Representation

Different types of primitives

Optimization results

—> Individual parts adapt to each other.

From Latent Vector to Primitives

We use SDFs to represent:

EPFL

- Simple geometric primitives, such as spheres and cylinders.
- Primitives that bear a close resemblance to the simple ones but can deviate from them.

(Lab

• Free form primitives that have arbitrarily complex shapes.

Shared Latent Vector

Disentangled Latent Vector

Car Wheels

The wheels are better separated from the car body.

(JrLab

Shape Manipulation

Changing the explicit parameters

Changing the implicit parameters

Interactive Shape N

Dynamic Soaring

- We plan to design for ease of control.
- We will use dynamic soaring to prove the concept.

Conclusion

- Combining explicit and implicit representations early makes it possible to exploit the strength of both representations.
- Deep Signed Distance Functions can be used to implement 3D surface meshes that can change their topology while preserving end-to-end differentiability.

—> This opens the door for new applications in fields as diverse as Computer Assisted Design and Medical Imaging.

Many Thanks To

- Timur Bagautdinov
- Pierre Baque
- Benoît Guillard
- Graham Knott
- Artem Lukoianov
- Edoardo Remelli
- Stephan Richter
- Udaranga Wickramasinghe
- Pierre Yvernay

EPFL

(NeuralConcept)
(NeuralConcept)
(EPFL)
(EPFL)
(NeuralConcept)
(EPFL)
(Intel)
(EPFL)
(EPFL)