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RF MOS Transistor Structure and Layout
 RF MOS Transistors are usually large devices

 Implemented as multi-finger devices due to the “narrow-line effect” limiting the 
transistor width

© C. Enz | 2022 Low-power radio design for the IoT Slide 2
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 Transistor characteristics such as gain and transconductance start to degrade due 
to intrinsic frequency limitations and extrinsic parasitics

 Frequency limit of intrinsic part set by frequency 𝜔 delimiting quasi-static
(QS) and non-quasi-static (NQS) operation

 In saturation (𝑞 ≫ 𝑞 )

 To avoid any degradation due to NQS, 𝜔 7𝑥 𝑡𝑜 10𝑥 operating frequency

 Achieved by sufficiently large bias and/or reduced length
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 C. C. Enz and E. A. Vittoz, Charge-Based MOS Transistor Modeling - The EKV Model for Low-Power and RF IC Design, John Wiley, 2006.
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What Changes at RF?
 Limitations due to extrinsic parasitics are strongly dependent on the layout

 Usually frequency limitations are due to extrinsic capacitances and particularly 
the capacitance at the drain (𝐶 and 𝐶 )

 Some limitations are characterized by several figures-of-merit (FoM) such as:
 Transit frequency 𝐹
 Maximum frequency of oscillation 𝐹
 Minimum noise figure 𝑁𝐹
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Transit Frequency – Definition

 The small-signal current gain ℎ is defined as

ℎ ≜
𝐼
𝐼

𝑌
𝑌

𝐺 𝑗𝜔 𝐶 𝐶
𝑗𝜔𝐶 ≅

𝐺
𝑗𝜔𝐶

𝜔
𝑗𝜔

 The transit frequency is then defined as the frequency for which the current gain 
magnitude becomes unity

𝐹
1

2𝜋 ⋅
𝐺
𝐶

 where 𝐶 𝐶 𝐶 is the total gate capacitance made of an intrinsic part
𝐶 and extrinsic part 𝐶

 The intrinsic gate capacitance is proportional to 𝑊 · 𝐿 · 𝐶 and bias dependent
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Transit Frequency and Extrinsic Gate Capacitance

 The extrinsic gate capacitance 𝐶 is made of the overlap capacitance 𝐶
and the fringing capacitance 𝐶

𝐶 𝐶 𝐶 𝑊 ⋅ 𝐶 𝐶 𝑊 ⋅ 𝐶

 where 𝐶 is the total extrinsic capacitance per unit width

 Note that 𝐶 and 𝐶 scale with 𝑊 but not with 𝐿
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 21t spoth   

Measured Current and Unilateral Power Gains
 𝐹 and 𝐹 are obtained from measurements for one operating point by simple 

extrapolation (32nm bulk CMOS process in the example below)
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Where 𝜔 is a sufficiently 
small frequency (typically 1GHz) 
at which the current gain shows a 
−20dB/dec slope

 P. VanDerVoorn, et al., Symposium on VLSI Technology, 2010

Ft = 420 GHz

Fmax = 260 GHz
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Transit Frequency of a 45 nm SOI CMOS Process
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Transit Frequency of a 28nm Bulk CMOS Process
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 Scaling of 𝜔 is affected by short-channel effects such as velocity saturation
𝐺 ≅ 𝑊 ⋅ 𝐶 ⋅ 𝑣
𝐶 ≅ 𝑊 ⋅ 𝐿 ⋅ 𝐶 ⟹ 𝜔 ≜

𝐺
𝐶 ≅

𝑣
𝐿

 Scales only as 1 𝐿⁄ when velocity saturation is present instead of 1 𝐿⁄

Transit Frequency Scaling

© C. Enz | 2022 Low-power radio design for the IoT Slide 12

Lf

f t-
pe

ak
[G

H
z]

VD = 1.5 V
Gm = Gm-max
Nf = 40
Wf = 5 µm
W = 200 µm

 H. S. Momose et al., IEDM 1996.
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MOSFET Model Valid for RF from Weak to Strong Inversion
 To take advantage of the highest transit frequency reached at minimum length 

MOSFET operating at RF have usually a minimum length

 The high transit frequency achieved with advanced CMOS technologies can be 
traded-off with power consumption by shifting the operating point from strong 
inversion to moderate or eventually even weak inversion

 It is therefore crucial to have a MOSFET model that accounts for velocity 
saturation and is valid from weak to strong inversion
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Inversion Coefficient Definition
 Overdrive voltage 𝑉 𝑉 or 𝑉 𝑉 not convenient for weak inversion

 Replaced by the inversion coefficient 𝑰𝑪 characterizing the global level of 
inversion of the transistor in saturation

𝐼𝐶 ≜
𝐼 |

𝐼

 Where the specific current 𝐼 is defined as

𝐼 ≜ 𝐼 □ · with 𝐼 □ ≜ 2𝑛𝜇𝐶 𝑈 and 𝑈 ≜

 The different regions of operation in saturation can then be defined as
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1

10 1000.10.010.001
IC

Moderate inversionWeak inversion Strong inversion

Subthreshold

(WI) (MI) (SI)

Typical values of 𝐼 □ for 28-nm:
750 nA for NMOS
200 nA for PMOS

 C. C. Enz, F. Krummenacher, and E. A. Vittoz (EKV), Analog Integrated Circuits and Signal Processing Journal, vol. 8, pp. 83-114, July 1995.
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Simplified EKV Charge-based Model (in saturation)
 The normalized drain current in saturation or inversion coefficient is given by

𝐼𝐶
𝐼 |saturation

𝐼
4 𝑞 𝑞

2 𝜆 𝜆 2𝑞 1 4 1 𝜆

 𝑞 ≜ 𝑄 𝑥 0 𝑄⁄ is the normalized inversion charge at the source 
where 𝑄 2𝑛𝐶 𝑈

 𝜆 is the velocity saturation (VS) parameter corresponding to the fraction of the 
channel under full VS

𝜆 with 𝐿

 𝑞 is related to the gate and source voltage according to

𝑣 𝑣 ln 𝑞 2𝑞 with 𝑣 𝑣 𝑈

 Only requires the following 4 parameters: 𝑛, 𝐼 □, 𝑉 , 𝐿
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Effect of VS on the Drain Current in SI
 In SI and saturation, the model reduces to

𝑖
2𝑞

1 1 𝜆 𝑞

 𝐿 represents the portion of the channel that is under full VS
 For very short channel and/or high overdrive voltage

𝜆 𝑞
𝜇
𝑣 ·

𝑉 𝑉
𝐿 ≫ 1 ⟹ 𝑖 ≅

2𝑞
𝜆

 Remembering that in SI 𝑞 ≅ 𝑉 𝑉 2𝑈⁄ leads to the denormalized drain 
current given by

𝐼 ≅ 𝑊𝑛𝐶 𝑣 𝑉 𝑉 𝑊𝐶 𝑣 𝑉 𝑉 𝑛𝑉

 The current becomes a linear function of the charge and therefore of the 
overdrive voltage and also independent of the length
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Effect of VS on the Drain Current (40nm Process)

 Velocity saturation has a strong impact on the drain current in strong inversion

 The current becomes proportional to 𝑉 𝑉

 Hence the gate and source transconductances become independent of the 
current (and independent of the length)

© C. Enz | 2022 Low-power radio design for the IoT Slide 17

10-5
10-4
10-3
10-2
10-1
100
101
102
103

IC
 =

 I D
 / 

I sp
ec

 [-
]

0.80.60.40.20.0-0.2-0.4

VG  VT0 [V]

14

12

10

8

6

4

2

0

IC

n-channel
W = 40 m
L = 2 m
VD = 1.1 V

10-5

10-4

10-3

10-2

10-1

100

101

102

IC
 =

 I D
 / 

I sp
ec

 [-
]

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

VG  VT0 [V]

50

40

30

20

10

0

IC

n-channel
W = 120 m
L = 40 nm
VD = 1.1 V

Long-channel

𝐼 ≅
𝛽

2𝑛 𝑉 𝑉

velocity
saturation

Short-channel

𝐼 ≅ 𝑊𝐶 𝑣 𝑉 𝑉



Transistor Figures of Merit

ICLAB

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

IC
 (l

og
)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

VG-VT0 [V]

22
20
18
16
14
12
10
8
6
4
2
0

IC
28-nm and 40-nm Bulk CMOS Processes

W=108µm, L=30nm
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Symbols: Measurements
Lines: Theory

VS=0 V, VD=1 V
VS=0 V, VD=1.1 V
VS=0 V, VD=1.1 V

Drain Current for 28 and 40-nm Bulk CMOS Processes

 Simple model validated on 28-nm and 40-nm bulk CMOS processes over more 
than 6 decades of current despite only requiring few parameters, namely:

𝑛, 𝐼 □, 𝑉 , 𝐿
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Effect of VS on the Transconductance in SI
 The effect of VS on the source transconductance in SI is given by

𝑔 ≜
𝐺
𝐺

𝑞
1 𝜆 𝑞

 where 𝐺 𝑛 ⋅ 𝐺 is the source transconductance and 𝐺 ≜ 𝐼 𝑈⁄
2𝑛𝛽𝑈

 For 𝜆 · 𝑞 ≫ 1, 𝑔 saturates to 1 𝜆⁄

𝑔 ≅ in SI and saturation

 or in denormalized form

𝐺 ≅
𝐺
𝜆 𝑛𝑊𝐶 𝑣

 𝐺 becomes independent of the length and of the current

 It only depends on 𝑣 and increases with 𝑊
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𝒎 vs. for 28 and 40-nm Bulk CMOS Process

 Simple model of transconductance validated on 28-nm and 40-nm bulk CMOS 
processes over more 5 decades of current despite only requiring few parameters, 
namely:

𝑛, 𝐼 □, 𝑉 , 𝐿
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Effect of VS on the Drain Current in WI
 Velocity saturation also affects the current in weak inversion (in saturation)

𝑖
𝑞

1 𝜆
2

 The source transconductance is then given by
𝑔

𝑞

1 𝜆
2

𝑖

 The source (gate) transconductances remain proportional to the current

 The 𝐺 𝐼⁄ ratio remains equal to unity as for the long channel case
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The Current Efficiency 𝒎 𝑫 FoM
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𝒎 𝑫 vs. for 28 and 40-nm Bulk CMOS
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𝒎 𝑫 vs. for 40nm Bulk CMOS Process
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𝒎 𝑫 vs. for 28nm Bulk CMOS Process
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𝒎 𝑫 vs. for 28nm FDSOI CMOS Process
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Transit Frequency versus Inversion Coefficient
 The transit frequency can be written in terms of the inversion coefficient as

 where the normalized source transconductance is given by

 And the normalized capacitances are given by
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Transit Frequency versus Inversion Coefficient
 Replacing 𝐺 results in

 For short channel devices, 𝑐 is usually dominated by the extrinsic part (and 
hence independent of 𝐼𝐶)

 Resulting in

 which only scales as 1 𝐿⁄ compared to 𝜔 which scales as 1 𝐿⁄
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Specific Transit Frequency 𝒕𝒔𝒑𝒆𝒄

 𝜔 is the transit frequency obtained for 𝐼𝐶 1 assuming WI (obtained from 
the WI asymptote)
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Maximum (or Peak) Transit Frequency
 For short-channel devices 𝐶 ≪ 𝐶

 Hence, the specific transit frequency 𝜔 roughly scales as 1 𝐿⁄

𝜔 ≅
𝐼 ◻

𝑛𝑈 ⋅ 𝐶 ⋅ 𝐿

 The transit frequency saturates in SI due to velocity saturation to

𝜔
𝜔
𝜆 ≅ 𝑣 ⋅

𝐶
𝐶

 Since 𝐶 does not scale with 𝐿, 𝜔 does not scale with 𝑳 either

 𝜔 can therefore only take advantage of scaling through the increase of 𝐶
mitigated by the possible increase of 𝐶
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𝒕 vs. for 40nm Bulk CMOS Process
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 A. Mangla, M. A. Chalkiadaki, F. Fadhuile, T. Taris, Y. Deval, and C. C. Enz, Microelectronics Journal, vol. 44, pp. 570-575, July 2013.
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𝒕 vs. for 28nm Bulk CMOS Process

© C. Enz | 2022 Low-power radio design for the IoT Slide 34

0.001

0.01

0.1

1

10
F t

 / 
F t

sp
ec

0.001 0.01 0.1 1 10 100

Inversion Coefficient IC

W=108m
L=31nm
n=1.46
Ispecsq=870nA
Ispec=3.9mA
Lsat=20.2nm
c=0.6516
1/c=1.53
1/c

2=2.36
CGeW=670pF/m

ftsat=1/c=1.5

Ftspec=226.6 GHz

 measurements
 theory

 C. Enz and M. Chalkiadaki, APMC 2015

Ftpeak=340 GHz

𝑓 ≜
𝐹

𝐹 𝑔
𝜆 𝐼𝐶 1 4𝐼𝐶 1
𝜆 𝜆 𝐼𝐶 1 2

𝐼𝐶 WI and sat.
1
𝜆 SI and sat.



Transistor Figures of Merit

ICLAB

 The voltage gain and noise factor of common-source stage loaded by similar stage 
(i.e. having a fan-out 𝐹𝑂 equal to 1 and hence 𝐶 𝐶 ) are given by

𝐴 ≜ ∆
∆

≅ 𝑗 with 𝜔 ≅ 𝜔

𝐹 1
⋅

(assuming thermal noise from M1 and resistance RS only)

 A FoM can be defined in order to maximize the gain-bandwidth product and 
minimize the noise factor at a given current

𝐹𝑜𝑀 ≜
𝜔

𝐹 1 ⋅ 𝐼 ≅
𝑅
𝛾 ⋅

𝐺 ⋅ 𝜔
𝐼

 This FoM is proportional to the 𝐺 𝐼⁄ · 𝜔 ratio, which is an important FoM for low-
power RF IC design

Figure-of-Merit for Low Power RF
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The 𝒎 𝑫 𝒕 FoM is Maximum in Moderate Inversion
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𝒎 𝑫 𝒕 vs. for 40nm Bulk CMOS Process
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𝒎 𝑫 𝒕 vs. for 28nm Bulk CMOS Process
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Combined FoMs vs. for 40nm and 28nm Bulk CMOS
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 𝐹 is only a narrow way to characterize the ability of a device to operate at RF

 Another figure of merit that also accounts for the 𝑅 and 𝐶 can be defined from 
the unilateral power gain 𝑈 which corresponds to the maximum available gain 
(corresponding to the transducer gain with matched source and load impedance 
𝑌 𝑌∗ and 𝑌 𝑌∗ ) with its feedback transadmittance neutralized (𝑌 0)

 From simple QS model one obtains

 The smaller the 𝑅 · 𝐶 product the higher the 𝐹 (it is therefore also used as 
another figure of merit)

 
1 1

max 2 22
m m t

G G GD G GDG G ds G m GD

G G
R C C R CR C G C G C


   



Maximum Frequency of Oscillation
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Minimum Noise Figure
 Having high 𝐹 and 𝐹 is not sufficient, low noise is also required

 This feature is measured by the noise factor 𝐹 or the noise figure 𝑁𝐹
𝑁𝐹 ≜ 10 ⋅ log𝐹

 The noise factor 𝐹 is defined as the ratio of the total noise power measured at 
some point along the amplification chain (usually at the output) to the noise due to 
the generator only measured at that same point 

 The noise factor depends thus on the generator admittance and becomes 
minimum for a particular value of this generator admittance

 The minimum value of the noise factor 𝐹 (or noise figure 𝑁𝐹 ) 
represents what a device can ultimately achieve in terms of minimum thermal 
noise contribution and is therefore used as a figure-of-merit

 For a MOST biased in strong inversion it is approximated by 𝐹 ≅ 1

 The higher the 𝐹 the smaller 𝐹 for a given operating frequency
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FoM of a 45 nm Bulk CMOS Process

© C. Enz | 2022 Low-power radio design for the IoT Slide 42

 Hongmei Li, et al., VLSI Symposium 2007

2528.633.34050
Lpoly [nm]



Transistor Figures of Merit

ICLAB

Minimum Noise Figure
 Advanced processes can achieve a 𝑁𝐹 smaller 0.5 dB below 7 GHz as shown 

below for a 32nm bulk CMOS process
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 P. VanDerVoorn, et al., Symposium on VLSI Technology, 2010
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FoM of a 32nm Bulk CMOS Process
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Minimum Noise Figure for a 28nm Bulk CMOS Process
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Noise Factor
 The noise factor of a single transistor is given by
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Short-channel Effects on 𝒏𝑫 (in saturation)

 The noise excess factor 𝛾 can be modelled versus 𝐼𝐶 as
𝛾 ≅ 𝛾 𝛼 · 𝐼𝐶

 Where 𝛾 and 𝛼 are empirical factors
 𝛼 scales approximatively as 𝛼 ≅ 2.85/𝐿 where 𝐿 is in nm
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 A. Antonopoulos et al., “CMOS Small-Signal and Thermal Noise Modeling at High Frequencies,” TED, vol. 60, No. 11, Nov. 2013.
 M. Chalkiadaki, PhD Thesis 2016.
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𝒎𝒊𝒏 and 𝒏 versus for 40nm Bulk CMOS Process
 The minimum noise figure 𝑁𝐹 and input-referred noise resistance 𝑅 show a 

minimum in MI due to the sharp increase of 𝛾 at high 𝐼𝐶
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Actual Noise Figure
 The actual noise figure also shows a minimum in MI
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Intrinsic Quasi-Static Small-signal Model
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Source and Drain Resistances Scaling

 𝑅 and 𝑅 dominated by contact and source/drain extensions (SDE) resistances

© C. Enz | 2022 Low-power radio design for the IoT Slide 53

Ldif

Lsal

Rcon
Rsal

Rvia

via

salicide

source
drain

extension

Rsde

LsalHdif

Rcon
W

Rcon-min
W



Equivalent Circuit at RF

ICLAB

con
Gcon

f f f
R

N W L



 

via
Gvia

via

RR
N



ext
Gext Gsq

f f

WR R
N L

 


1
3

f
Gtop Gsq

f f

W
R R

N L
  



G Gtop Gext Gvia GconR R R R R   

Gate Resistance

© C. Enz | 2022 Low-power radio design for the IoT Slide 54

G
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Lf

Salicide resistance:

Via resistance:

Where 𝑅 is the gate salicide resistance per squares (typically 3 /sq) 𝜌 is the silicide 
to poly contact resistance per area (typically 20 /µm2)

Silicide to poly contact resistance:
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4 2 2
Gtop Gext Gvia

G Gcon
R R RR R   

Gate Resistance

 Connecting the gate at both ends and assuming the metal has negligible 
resistance
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Capacitances Scaling

 The different RC time constants due to 𝑅 and 𝑅 do not depend on 𝑊 but only 
on the gate length 𝐿 and overlap length 𝐿

 For a minimum length device, the poles due to 𝑅 and 𝑅 are at a much higher 
frequency than the transit frequency 𝐹 and can therefore be neglected when 
calculating the Y-parameters

 Neglecting the substrate network for the moment leads to the following small-
signal schematic which will be used for deriving the Y-parameters
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 Neglecting 𝑅 and 𝑅 and the substrate network
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Approximate Y-parameters
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 Assuming 𝜔𝑅 𝐶 ≪ 1

 Can be used for direct extraction of components from measured data
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Direct Extraction of Small-Signal Circuit Components
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Measured versus Analytical Y-parameters
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Intra-device Substrate Coupling

 Saves one component and one node, but makes the circuit asymmetric
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Substrate Resistive Network – Even Number of Fingers
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Substrate Resistive Network – Odd Number of Fingers
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Simplified Substrate Networks
 Since 𝑅 is inversely proportional to 𝑁 , for RF MOS transistors with many 

fingers (𝑁 4) 𝑅 ≪ 𝑅 , 𝑅 ≪ 𝑅 hence 𝑅 can be neglected

 𝑅 and 𝑅 are then connected in parallel and result in a single substrate 
resistance 𝑅 which is often enough for capturing first-order intra-device substrate 
coupling effects and additional substrate thermal noise
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Epitaxial process [Tiemeijer, ESSDERC 98][Liu, IEDM 97]
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Substrate Resistance Extraction
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 J. Han, M. Je, and H. Shin, EDL, July 2002.



Equivalent Circuit at RF

ICLAB

Extraction of π-Type Substrate Resistance
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 I. M. Kang, J. D. Lee.and H. Shin, EDL, May 2007.



Equivalent Circuit at RF

ICLAB

Complete Equivalent Small-signal Circuit (Saturation)
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Measured versus Simulation for 0.35μm CMOS Process
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Y-parameters versus Bias
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Simplified Equivalent Small-signal Circuit
 Neglecting again the poles due to 𝑅 and 𝑅 assuming that they are at a much 

higher frequency than the transit frequency 𝐹

 For large number of fingers (𝑁 4), the substrate can be replaced by a single 
substrate resistance 𝑅 , leading to the following small-signal common-source 
schematic in saturation which will be used for deriving the Y-parameters
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Approximate Y-parameters
 Assuming that
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 which can be valid for operating frequencies up to the low THz range

 Neglecting: (i) all the higher than second order terms and (ii) the least dominant 
terms, the simplified expressions for the Y-parameters in saturation can be derived as

 M. Chalkiadaki and C. Enz, TMTT, 2015.

 Where 𝐺 is the effective gate transconductance accounting for the 
degradation due to the source resistance
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N-channel, M=10, Nf = 10, Wf = 2 m, Lf = 40 nm, VS = 0 V, VD = 1.1 V

 M. Chalkiadaki, PhD Thesis 2016 
 M. Chalkiadaki and C. Enz, TMTT, July 2015.
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Current Gain vs Frequency for 40nm CMOS Process
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Transit Frequency vs for 40nm CMOS Process
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Outline
 Introduction

 Transistor Figures-of-Merit (FoM)

 Equivalent Circuit at RF

 Large-signal Model at RF
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Large-signal Model at RF

ICLAB

Large-signal Model at RF
 Dominated by static (DC) I-V nonlinearity (i.e. nonlinearities coming from the 

capacitors seem not to play a significant role)
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Drain Current Linearity
 While noise defines the minimum signal level, linearity is the main specification 

setting the largest signal that can be handled for a certain linearity requirement

 To evaluate the linearity of a MOS transistor, the normalized drain current in 
saturation can be approximated by the following Taylor series
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 F. Chicco, A. Pezzotta and C. Enz, “Charge-Based Distortion Analysis of Nanoscale MOSFETs,” TCAS1, Vol. 66 , No. 2, pp. 453-462, Feb. 2019.



Large-signal Model at RF

ICLAB

Evaluation of the Transconductances
 The derivatives 𝜕 𝑖 𝜕𝑞⁄ are calculated from the normalized drain current 

expression in saturation
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 F. Chicco, A. Pezzotta and C. Enz, “Charge-Based Distortion Analysis of Nanoscale MOSFETs,” TCAS1, Vol. 66 , No. 2, pp. 453-462, Feb. 2019.
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Normalized Transconductances
 The normalized transconductances 𝑔 and coefficients 𝑎, 𝑏, 𝑐 and 𝑑 are given 

by
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 As shown in the next slide, because of velocity saturation, 𝑔 0 for an 
inversion coefficient 𝐼𝐶 that for short-channel devices lies in the middle of the 
moderate inversion

 Linearity is thus improved within a “sweet spot” around 𝐼𝐶 𝐼𝐶

 F. Chicco, A. Pezzotta and C. Enz, “Charge-Based Distortion Analysis of Nanoscale MOSFETs,” TCAS1, Vol. 66 , No. 2, pp. 453-462, Feb. 2019.
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Single-tone Analysis
 In single-tone analysis, the gate voltage variation is a sinewave ∆𝑉 𝐴 ·
𝑐𝑜𝑠 𝜔𝑡 and the output current is given by
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 Note that 𝐻𝐷 0 for 𝐼𝐶 𝐼𝐶 due to 𝐺 0 as shown in the previous 
slides

 F. Chicco, A. Pezzotta and C. Enz, “Charge-Based Distortion Analysis of Nanoscale MOSFETs,” TCAS1, Vol. 66 , No. 2, pp. 453-462, Feb. 2019.
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Single-tone Harmonics Model versus Measurements
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Large-signal Model at RF
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Two-tone Model
 In two-tone analysis, the gate voltage variation is made of two sinewaves ∆𝑉
𝐴 · 𝑐𝑜𝑠 𝜔 𝑡 𝐴 · 𝑐𝑜𝑠 𝜔 𝑡 the harmonics and intermodulation products 
are then given by
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Term Frequency Harmonics or IM Amplitude

DC 𝜔 0 𝐼 𝐼
𝐺

4 · 𝐴 𝐴

1st-harmonic

𝜔 𝜔 𝐼 , 𝐺 · 𝐴
𝐺

4 · 𝐴 𝐴
𝐴
2

𝜔 𝜔 𝐼 , 𝐺 · 𝐴
𝐺

4 · 𝐴 𝐴
𝐴
2

2nd-harmonic
𝜔 2𝜔 𝐼 ,

𝐺 · 𝐴
4
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4

3rd-harmonic
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24
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24
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Large-signal Model at RF

ICLAB

IP2 and IP3

 The 2nd and 3rd-order input-referred intercept points are given by
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 Again 𝐴 becomes infinite in the “sweet spot” around 𝐼𝐶 𝐼𝐶 which lies in 
the middle of the moderate inversion (𝐼𝐶 1 in the particular case shown here)
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