Wulfram Gerstner
. =PrL
Artificial Neural Networks EPFL. Lausanne. Switzerland

Deen Nets 3: Loss landscape and optimization methods

Part 1: Questions and Aims of this Lecture

Objectives for today:

- Error function landscape: minima and saddle points
- Momentum

- ADAM

- No Free Lunch Theorem

- Shallow versus Deep Networks



Reading for this lecture:

Goodfellow et al.,2016 Deep Learning (MIT Press)
- Ch. 8.2, Ch. 8.5
- Ch. 4.3

- Ch.5.11,6.4,Ch. 154, 155

Further Reading for this Lecture:

Johanni Brea et al. (2019), Weight space symmetry In
deep networks gives rise fo ...

arXiv https://arxiv.org/pdf/1907.02911.pdf

Berfin Simsek et al., Geometry of the loss landscape In overparameterized
neural networks ...

ICML 2021, PMLR 139:9722-9732, 2021.



ce= = CP=L Wulfram Gerstner
Artificial Neural Networks e o Lausane. Swisriand

week of April 12 (next week):

Inverse classroom setting:
- Watch videos at home:

https://Icnwww.epfl.ch/gerstner/VideoLecturesANN-Gerstner.html

Deep Learning Lecture 4. Statistical Classification by Neural Networks (90
min) Part 1 - The statistical view: generative models (6 min)

Part 2 - The likelihood of data under a model (12 min)

Part 3A - Statistical interpretation of artificial neural networks: the cross-
entropy loss function (19 min)

Part 3B - Statistical interpretation of artificial neural networks: can we interpret
the output as a probability? (18 min)

Part 4 - Sigmoidal units as natural output functions (9 min)

Part 5 - Multi-class problems (19 min)

Part 6 - Statistical approach: Summary and Quiz (7 min)

Come to class at 14h15:

- Introduction to, and hand-out of, miniprojects

- Q&A session

- EXercise session (week 8/statistical classification)



https://tube.switch.ch/videos/475ed9f5
https://tube.switch.ch/videos/9cd5bd9f
https://tube.switch.ch/videos/a4a97cb2
https://tube.switch.ch/videos/c89a6921
https://tube.switch.ch/videos/914fd21d
https://tube.switch.ch/videos/0d7989aa
https://tube.switch.ch/videos/9f1cb168

Previous slide.

A multilayer perceptron for classification



o T




Previous slide.

A multilayer perceptron for classification



Review: Deep Neural Networks for classification
car

output - . . I . -

Aim of learning:
Adjust connection weights
such that output Is correct.

Total number of parameters: N



Previous slide.

... will iImplement a separating surface ...
... by stacking neurons over several layers. Each neuron implements a hyperplane in
the space of activites one layer below.



/ hidden neurons implement

D «%4 hyperplanes

'y A
@ 5‘»‘% 'Q N

‘@\\ ;(

<y
A ‘ \g\

A\t o

j
OO O

X

4%

— |




Previous slide.

... by stacking neurons over several layers. Each neuron implements a hyperplane in
the space of activites one layer below. Hyperplanes are defined by weight vectors.



Review: gradient descent Batch rule:

error function (loss function) one update after all patterns
(normal gradient descent)
E(w) Online rule:
. one update after one pattern
gradient descent (stochastic gradient descent)




Previous slide.

And the weight vector Is updated by gradient descent, using either a batch rule or an
online rule.

We discuss



Three Big questions for today

- How does the error landscape (as a function of the weights)
look like? In high dimension?
- Count the minima and saddles (lower bound)

- How can we quickly find a (good) minimum?

- Momentum term E
- ADAM optimizer

- Why do deep networks work well?

- No Free Lunch Theorem
- Deep Networks versus Shallow Networks




Previous slide.
We address three important questions today.

1. What Is the shape of the error function, as a function of the weights?
- Count the minima and saddles (lower bound)

2. How can we quickly find a good minimum?
- Momentum Term, ADAM optimizer
3. Why do deep networks work so well in practice?

-> No free lunch theorem; and shallow versus deep networks



Wulfram Gerstner
. =PrL
n""lﬂlal Nﬂ“ral NﬂtWﬂrks EPFL, Lausanne, Switzerland

Part 2: Error function: minima and saddle points

1. Questions and Aims of this Lecture
2. Error function: minima and saddle points




Previous slide.

We start with the first question and focus on the error function.



E

Image: Goodfellow et al., Deep Learning, 2016

E(w, )=0
. (Wg )

Ideally, we would like

E(w,

This local minimum
performs nearly as well as
the global one,

so 1t 1s an acceptable
halting point.

to arrive at the global

minimum, but this

might not be possible.

This local minimum performs
poorly and should be avoided.

Wa



Previous slide.

Often we see hand-drawn sketches of one-dimensional plots like the one here, with
several local minima.



How many minima are there in a deep network? | gw, EWa ) =0
Minimum Maximum
d? d? d?
dWC%E(Wa)>O dWC%E(Wa)<O dWC%E(Wa):O

Image: Goodfellow et al., Deep Learning, 2016



Previous slide.

Both minima and maxima are characterized by a zero derivate:

E(w, )= 0
. (Wq )

In one dimension, minima can be distinguished from maxima by their second derivative

(curvature).
For minima the curvature is positive (left):

d2

dWC%E(Wa ) >0

Transient plateaus where both first and second derivative are zero are the exception
(right)



minimum

Image: Goodfellow et al., Deep Learning, 2016 é.g

2 minima, separated by

1 saddle point /_* § R

Wa



Previous slide.

In two and more dimensions it Is possible that in the curvature Is positive in one
direction, yet negative in the other direction.
This Is called a saddle point.

Lower right: contour lines connect points of the same error (niveau lines). The red
arrows indicate a path toward a minimum. The two minima are separated by a saddle.



Quiz: Strengthen your intuitions in high dimensions

1. A deep neural network with 9 layers of 10 neurons each
| | has typically between 1 and 1000 minima (global or local)
| | has typically more than 1000 minima (global or local)

2. A deep neural network with 9 layers of 10 neurons each
| | has many minima and Iin addition a few saddle points

| | has many minima and about as many saddle points

| | has many minima and even many more saddle points



Your notes.



")

N

How many minima are there?

XS /

@ (. “ (L Answer:
(2 7 1.5¢ . .
" f(l In a network with m hidden layers

<"’( and n neurons per hidden layer,

W/
N
OO O

X




Previous slide.
Because of the permutation symmetry, there are many equivalent minima.

(See Exercises)



trror function and weight space symmetry

many assignments
q / of hyperplanes to neurons
3 T
C/

\1}‘
\¥
X

2

4
MO 3
O O

4 hyperplanes for
4 neurons

A 4




Previous slide.

For example, with 4 neurons Iin a given layer, we have 4! different ways to implement
the same 4 hyperplanes.

In total, in a network of m hidden layers with n neurons each there are

n!™

equivalent solutions. Therefore there are many permutation symmetries in the weights
space.



trror function and weight space symmetry

many assignments
of hyperplanes to neurons

X X x
X

even more
permutations

X

6 hyperplanes for
6 hidden neurons



Previous slide.
Suppose all the positive examples lie inside a the blue box.

We need 6 neurons in the first layer to define this box. Each neuron implements one
hyperplane. Therefore there are 6! = 240 different, but completely equivalent solutions.

Note that the result does not depend on the input dimensionality. It is three in the graph,
but 1t could be 2 or 7.



Teacher-Student setup: Global minima guaranteed

teacher network: 4 neurons student network:

generates labels 4 hyperplanes learns outputs
(0)
X2




Previous slide.

So far we focused on the ‘best’ minima: in a teacher-student situation where the student
network has exactly the same architecture as the teacher, the best minima are those
where the student has the same weight vectors (apart from permutations).



Arbitrary data: Many near-equivaient good solutions

X X
X
x %X XX
Xy X w
X /‘\
X A g

2 near-equivalent good solutions with 4 neurons.

If you have 8 neurons many more possibilities to split the task
- many near-equivalent good solutions



Previous slide.

However, real data is not generated from a teacher network of known architecture.
Therefore all solutions are approximate solutions and finding zero-loss solutions Is the
exception.

Then you will typically find many near-equivalent reasonably good solutions.

For an example, suppose that the data (positive examples) lie in the shaded area.
There are several near-equivalent solutions of modeling the boundaries of this shaded
area with 4 hyperplanes.

If you Increase to 8 hyperplanes even more near-equivalent solutions appear.



Summary Quiz: Number of minima in deep networks

A deep neural network with many neurons
| | has always many equivalent ‘optimal’ solutions (global
minima)

| | has typically many near-optimal solutions, not related by
permutation symmetry



Previous slide.



Wulfram Gerstner
. =PrL
n""lﬂlal Nﬂ“ral NﬂtWﬂrks EPFL, Lausanne, Switzerland

Part 3: Why are there so many saddle points?

1. Questions and Aims of this Lecture
2. Error function: minima and saddle points
3. Why are there so many saddle points?




Previous slide.

We now look at saddles



L0SS function: why are saddie points relevant?

minimum

-/
Image: Goodfellow et al. 2016 é;

Gradient descent Is slow
close to saddle / €§ \



Your notes.
We are interested Iin saddles because these are critical points where gradient descent
IS slow.



Claim:
There are many more saddle points than minima

Two arguments

(1) Statistical argument
- Hessian Matrix

(1) Geometric argument
- Permutations



Previous slide.
The claim Is that there are many more saddle points than minima.

There are two different arguments. We start with the first one.



Minima and saddie points
There are many more saddle points than minima

(1) Statistical argument on second derivative
(Hesslan matrix) at gradient zero

() o
Ewg ) minimum maximum




Previous slide.

The first argument focuses on the Hessian matrix of second derivatives evaluated at
the location where the first derivative vanishes.



Minima and saddie points
In 1dim: at a point with vanishing gradient

d? ..
y ~E(wg ) >0 -2 Minimum
Wa

Minimum In N dim: study Hessian

. d d E( )
= Wq , W
dw, dw, “P

Diagonalize: minimum If all eigenvalues positive.
But for N dimensions, this is a strong condition!



Previous slide.
Since the Hesslan matrix iIs symmetric, it Is diagonalizable and has real Eigenvalues.

A point Is stable only of ALL eigenvalues are positive.



IN N dim: Hesslan

H=""_FE(w,,w,)

dWa de

Diagonalize:

\\// In N-1 dimensions
! surface goes up,

In 1 dimension It goes
>0 down

A >0
o <0



Previous slide.

If N-1 Eigenvalues are positive, but one Is negative, we have a first-order saddle.



IN N dim: Hessian \\// In N-2 dimensions
o ! surface goes up,
H = s E(Wg ,wp ) In 2 dimension It goes
| | W >0 down
Diagonalize:
7&1 0 7\»N—2>O
H = : : }bN—l <O
0 }\‘N }LN <O
In N-2 dimensions
surface goes up, Humans visualize

In 2 dimension It goes down In three dimensions



Previous slide.

If N-2 Eigenvalues are positive, but two are negative, we have a second-order saddle.

Kant: humans necessarily think in 3 dimensions.

Therefore it Is hard to imagine that | have 2 dimensions Iin which the error goes down
and N-2 orthogonal directions in which the error goes up. The drawing Is very
schematic.



IN N dim: Hessian \\// In N-k dimensions

o ! surface goes up,

= s 2w, EWa Wp ) In k dimension it goes

. . W >0 down

Diagonalize:

(7»1 0 ) A >0

H = : : }bN—k+1<O

0 - Ay A <0

General saddle:
In N-k dimensions surface goes up,
In kK dimension It goes down




Previous slide.

Analogously, we define a general saddle.



Suppose you create eigenvalues randomly with mean zero.

It IS (statistically) rare that all eigenvalues of the Hesslan
have same sign

It IS fairly rare that only one eigenvalue has a different sign
than the others

-> Most saddle points have multiple dimensions with surface
up and multiple ones with surface going down



Previous slide.

The core of the argument is a statistical one. If you were to create Eigenvalues
randomly with zero mean, then it would be very rare that all eigenvalues are positive.

Most likely I1s a mix of positive and negative Eigenvalues. Therefore we expect to find
more saddles than maxima or minima.



General saddle points: In N-k dimensions surface goes up,
IN kK dimension it goes down

1st-order saddle points: In N-1 dimensions surface goes up,
IN 1 dimension It goes down

ARERA

even more
many 15t order{ \\/

e IV AVERVEVERVAY
several {

good minima

high-order {
saddles

WeigHts



Previous slide.

Specific mathematical and physical models, linked to random matrix theory, Gaussian
processes, and spin glasses, lead to a statistical picture where a few minima are at the

lowest energies,
But most points with vanishing gradient are saddles of various order.

It IS, however, not clear whether these models can be linked to deep neural networks
because the specific weight space symmetries of deep network (e.g., permutation of
neurons) are neglected.



Minima and sad[“e nnints Review: Goodfellow et al., Deep Learning, 2016

(1) Statistical argument (Random Matrix Theory/Spin Glass)

For balanced random systems, eigenvalues will be randomly

distributed with zero mean:

draw N random numbers (for N eigenvalues)

-> rare to have all positive or all negative

- Rare to have maxima or minima

- Most points of vanishing gradient are saddle points

- Most high-error saddle points have multiple
dimensions of escape

But what Is the random system here?
The data is 'random’ with respect to the design of the system!



Previous slide.

For these random matrix or spin glass arguments, and similarly Gaussian process
models, the question arises where the randomness stems from. The answer Is that,
when we design the neural network, we did not yet look at the data. Therefore, the data
points can be considered as random constraints on the possible configuration of
weights. This notion can be formalized but this is not the topic here. See Goodfellow et
al. (2016) for references.



Claim:
There are many more saddle points than minima

Two arguments

(1) Statistical argument
- Elgenvalues of Hessian Matrix

(1) Geometric argument
- Permutations (between global minima)



Previous slide.

Remember that there are two different arguments.
So far we discussed the statistical argument. Let us now look at the second one.



There are many more saddle points than minima
Second argument

(1) Geometric counting argument
using weight space symmetry
- number of saddle points increases
rapidly with number of parameters
(even more rapidly than the number of equivalent
global minima that arise from permutations)



Previous.

We focus on global minima to keep the argument simple. Permutation minima are

connected with each other by saddles. We claim that there are many more saddles
than global minima.

To connect the global minima with each other we imagine that we decrease the
distance between two weight vector positions. Once the distance between two weight
vectors Is zero, | can remove one of them and shift its output weight to his partner. | can
then turn it and make It identical to any other weight vector in the same layer, and
exchange with that one, at no extra cost!

Thus the barrier of the saddle point between permutation minima is the lowest one of all
possible pairs.



minimum

-/
Image: Goodfellow et al. 2016 é;

2 minima, separated by

1 saddle point /_* § R

Wa



Your notes.

Just a reminder how a saddle separating two minima looks in two dimensions.
We now imagine that the two minima are global minima that represent different
permutations of the hidden neurons.



L0SS function and welght space symmetry

Solutions In weight space
}\1) /
/




XD / :

oD ISR
S

iy ‘: \‘
A

X 0 X4

4 hyperplanes
nput space’

1
Wi1) ng)




4 hyperplanes
RO -

(2) o o
w 2

C

1j 4

, 0 :
. 3(1)\\% wep WD wy"

X 0 X4

nput space’




Previous three slides:

We have seen previously that if we found one global minimum there is a huge number
of equivalent minima arising from permutations.

Concretely, In this example
permutations of neurons 3 and 4 Iin the first layer give exactly the same solution.

3 slides:

1. Brown neuron (i=4) and blue neuron (i=3

2. Hyperplanes of both

3. Now we want to exchange these neurons
After Permutation



Minima and saddie points: Example
4 hyperplanes

Teacher Network: Student Network: Input space
COm mlttee maCh | ne xj() configuration in the input space

I
1,5 f

/
/
1.0
R .

-1.0 %
—-2.0

2.0 =15 =10 =0, 0.5 1.0 1.0 2.0

X1



Previous slide.

Data Is generated from a teacher network (left).
Neurons in the first hidden layer implement hyperplanes (e.g., blue neuron).

The green neuron In the second layer sums up all contributions with equal weight. Such
a configuration is called a committee machine (‘all votes count equally’).

The hyperplanes in input space are shown as blue lines on the right-hand side. They
are characterized by their weight vectors (black). The end point of the weight vector
iIndicates the location of the hyperplane.

The student network has the same architecture, but freely adaptable weights in both
layers.



Permutation Minima are connected hy Saddie Points
4 hyperplanes

Teacher Student ) |
Network: Network: Input space
Blue Red *2

Approach

- Student starts aligned with teacher

- Slowly decrease distance between
two weight vectors

- Let other welight vectors equilibrate
to (nearby) minimum-loss
configuration




Permutation Minima are connected hy Saddie Points

Teacher
Network:
Blue

Student
Network:

Red

k =0, gamma = 0.000

moving along the path

-----------
—————————

‘blue=teacher’




Teacher Student e
Teacher: Student

Data generated with —> zero loss possible for student with
n hidden neurons n hidden neuron (same configuration)

- Nonzero loss for student with

n-1 hidden neurons.
- Minima of student with n-1 hidden
neurons = critical point (saddle) of
student with n hidden neuron



Previous slide.

We want to explore the saddle between two equivalent permutation minima.

To do so, we Initialize the student with weights perfectly aligned with those of the
teacher. Then we force the student to have two weight vectors approach each other. All
other weights remain free and are minimized (under the constraint that the two chosen
welight vectors have a certain distance (dist, horizontal axis; loss, vertical axis).

As the distance Is reduced from the Initial configuration, the loss increases. When the
distance Is zero, the two weight vectors are identical (and implement the same
hyperplane). At this moment, the configuration of the network Is identical to a network
with (n-1) instead of n hidden neurons. Note that the labels of the two vectors can be
exchanged at this point for free — thereafter one could move back to the original
configuration but with permuted weight vectors. minimum

The point at dist=0 Is a critical point because all other
weights have been minimized. Moreover, it can be a saddle "\ (¥ |
because when going from n-1 to n hidden neurons, we have \" distance

constraint

More parameters and can go down further.



Permutation Minima are connected hy Saddie Points

- Slowly decrease distance between two weight vectors

- Let other weight vectors equilibrate to (nearby) minimum-loss
configuration.

- Resulting point Is a minimum of a smaller network with n-1 neurons
- Every minimum of a network with n-1 neurons Is a critical point of the

network with n neurons. |
Simsek et al.,

configuration in the input space moving along the path Geometry Of the IOSS Iandscape
== | ICML 2021
| PMLR 139:9722-9/7/32, 2021.

0.0 ] . e i
-.--'
..-'




Previous slide.

Two ways of thinking:

(1) We start at the minimum of a smaller network with n-1 neurons. We add one extra
neuron and search for the new minimum of the network with n neurons. This
minimum will be lower. The initial point (minimum of network with n-1 neurons) Is a
critical point (gradient-zero point) of the larger network.

(1) We start from the global minimum of a network with n neurons. We slowly squeeze
two weight vectors together and let the other equilibrate. This Is a minimum of the
smaller network with n-1 neurons. At this point we can exchange the two indices of the
two neurons and go back the same way, but with permuted indices. Obviously, either
the point of collapse of the two weight vector is a saddle point or we must pass through
another saddle point on the way to and back. We go back on the same path, but after

the change of the indices.



Minima and saddie points: Geometric argument
There are many more saddle points than global minima

Geometric argument exploiting the  w,;’ =?

welght space symmetry e

—> count number of J ‘\\

symmetry-induced saddle points ‘ “ .
-> lower bound: permutation points \.‘«(
\ ¢ 4
N IRV
For n=4: map 4 vectors onto 3 positions HO O

(each position taken at least once,

exactly one twice)




Your notes.

Now we start with the counting argument. 4 hidden neurons (student with n neurons)
give 4 weight indices, that we have to place on three vector positions (the minimum of
the student with n-1 neurons).



Exercise: Weight space symmetries Next Lecture

at 12h15

Suppose you have found a minimum for some set of weights that ahieves zero loss in a network with
m hidden layers of n neurons each.

a. Show that there are always at least (n!)™ equivalent solutions.

b. Assume that a network with one hidden layer of n neurons and 1 output neuron finds a solution.
Assume that the minimum loss attained by the network with one hidden neuron less is bigger

than zero. In other words, no network with n — 1 hidden neurons can fiind a solution.

Now imagine the original network with n neurons, constructed from n — 1 hidden neurons as
follows: the input vector of the new neuron copies one of the n — 1 other input vectors, and its
output weight is zero. Note that this neuron addition does not change the predictions of the
n — 1 network on any of the data points.

Counting all possible permutations, calculate the number of equivalent weight configurations
corresponding to the network of n — 1 neurons by duplicating one of the input vectors.

c. Show that all such configurations of the network with n hidden neurons that correspond to the

minimum of an n — 1 network are critical points (if the gradient descent reaches this point, it
does not move further). These critical points are called symmetry-induced saddles.




Your notes.

bl) Suppose you have zero loss for a network with n hidden neurons, but nonzero loss for a network with n-1 hidden
neurons. How many permutations are there to assign indices of n neurons to the n-1 INPUT weight vectors of the

smaller network?

b2) What can we say about the output weights? So far it one of the weights of the duplicate neuron was zero, and the
other had a value of w*, so a tuple (0,w*). Convince yourself that any combination (a,w*-a) would give exactly the
same output. Hence, we should not talk about separate critical POINTS but about a LINE OF CRITICAL points, i.e., a

1-dimensional manifold.

c) Show that each configuration with (0,w*) corresponds to a critical point of the network with n neurons (assume that
the output weight of one of the duplicated neurons vanishes at the initial condition)



Minima and saddie points: weight space symmetry/geometry
Assumption: Data explained by a network with n hidden

neurons, but a network with n-1 neurons has higher loss.
Claim: The loss landscape of network with n hidden neurons
has more first-order critical ‘points’ than global minima

-> count permutation points/global minima of smaller network

Layer with n hidden neurons:
-> n vector indices for (n-1) positions

-> lower bound for first-order saddles
- Important we count LINES (1-d manifolds), and not points



Previous slide.

For first-order symmetry-induced critical points (‘permutation points’), we have to place n vector
iIndices on the n-1 locations that define the configuration with (n-1) neurons in the hidden layer
at one of the minima of the smaller network.

We do this placement in the following sequence: :
() We have 1 special position with 2 weight vectors and n-2 with one weight vector each. To
select the special position that has double weights, we have n-1 possibilities.

(1) Once we have chosen our special location, we have n!/2! possiblilities to distribute the weight
Indices. The factor 2! arises because it does not matter in which order the two indices are
assigned Into the special position. The order of the indices In the duplicate weight vector does not
matter because we count the number of LINES with output weights (a,w*-a). There are 2 points
(0,w*) and (w*,0) but they are connected by 1 line — and hence only counted once.

Note that there might be even MORE first-order symmetry-induced critical points, because
depending on which weight vectors we merge, different configurations (=positions of n-1 weight
vectors) arise. These configuations will in general not all have the same loss. Some are global,
others are local minima of the smaller networks



Saddie points: Geometric argument and welght space symmetry
There are many more saddle points than minima

Lower bound for first-order saddles
—> count permutation points In layer with n hidden neurons

—> n vectors for (n-1) specific positions
- Z—:(n — 1) lines (1d-manifolds) of first-order critical points

Lower bound for second-order saddles
-> n vectors for (n-2) specific positions

S ;‘—:(”IZ) + 2% (";2) 2d-manifolds of second-order critical points



Previous slide.

For second-order symmetry-induced critical points, we have to place n vector indices on n-2

positions.

Suppose n=4. We have two overall possibllities:

() We have 1 special position with 3 weight vectors and n-3 with one weight vector each. To
select the special position that has triple weights, we have n-2 possibilities. Once we have
chosen our special location, we have n!/3! possibilities to distribute the weight indices

(1) We have 2 special positions with 2 weight vectors each and n-4 with one weight
vector each. To select the special positions with double weights, we
have n(n-1)/2 possibilities. Once we have chosen our special locations
we have n!/4 possibilities to distribute the weight indices.

Note that the term In paragraph (i) dominates largely for large n. We use this observation for an
overall lower bound on the next slide.

First-order symmetry induced critical points lie on a 1-dim manifold, whereas second-order
symmetry induced critical points lie on a 2-dim manifold (e.g., for a triplet, the output weight
condition Is that (a,b,w*-a-b) which has two free variables).

Hence, the Hessian of first-order symmetry induced critical points has one zero Eigenvalue and
the Hessian of second-order symmetry induced critical points has two zero Eigenvalues!



saddie points: Geometric argument and weight space symmetry

There are many more saddle points than minima

- number of saddle point increases rapidly with
number n of neurons In hidden layer
(much more rapidly than the number of minima)

Theorem: a layer with n neurons generates
at least a factor of

1 (n—K)
2K \ K

more K- order saddles (xK<n/2)
than global permutation minima.




Your notes.

Here comes a more precise formulation of the theorem.

The assumption Is as before: :

Data can be explained by a network with n hidden neurons, but a network with n-1
neurons has higher loss.

Then .
Theorem: a layer with n neurons generates

at least a factor of

1 rn-K

Z_K( K )
more K- order saddles (x<n/2)
than global permutation minima.

The assumption is clearly satisfied if the data Iis generated from a teacher network
which does not contain any redundant neuron. But this Is not the only possible case.

Note that the count does not concern the number of points but the number of manifolds!



summary: loss landscape in a deep neural network

In a network with m hidden layers and
i / n neurons per hidden layer.

}\"\" We have found one global minimum.
! s pen

(2) .
W, ‘,';‘ Then there are at least

“”\\( o m minima with the same loss
" d at |
“ ( and at least

x].(l 7
<\\' m (n=Ky_m
’,{"«\ 2K ( K ) -

W Kth-order saddle point manifolds

OO O (K<n/2) of dimension K.

x € RNt1 J. Brea et al. (2019), Weight space symmetry ...
https://arxiv.org/pdf/1907.02911.pdf



Neural network with m hidden layers and n neurons per hidden layer.
Input dimension also n. Output dimension (.
Then dimensionality of weight space: N =m-n? +n-q

E,

even more
high-order
saddles

g

more 1St order
saddle {

> n!™ MANY {
good minima

YAV, v v \/ v

weights




A deep neural network with many neurons

| | has a huge number of equivalent minima and
even many more saddle points

| ] gradient descent Is slow close to a saddle point

| | close to a saddle point there is only one dimension
to go down



Previous slide.



Teacher ~atin: _#saddle points order k
Network: n ~ #global minima for n=30
Teacher. . saddles | B
Data generated with dominate |1\ — k=3
n hidden neurons ominate o s a5
Student
Network: o

1076 -

1o Erﬂ 3r5 4rﬂ 4I5 5I[] 5I5 ﬁlﬂ E‘-IS ?ID

I )

Student has m=n+k neurons Simsek et al. 2021 global minima

(overparameterized) dominate




Previous slide.



Wulfram Gerstner
. =PrL
n"““:lal Nﬂ“ral NetWﬂ"(s EPFL, Lausanne, Switzerland

L0SS Iandscane and optimization methods for deep learning

Part 4: Gradient Descent with Momentum

Questions and Aims of this Lecture
Error function: minima and saddle points
Why are there so many saddle points?
Momentum

> Wk



Previous slide.
The next question Is: how do we find the minima?



dE(w(1))

(n)
dwl., ;

E(w)
w(l)

(1) = —y
Awl-’ ;




Previous slide.

The contour lines (niveau lines) of the error function E(w) are shown as a function of
two arbitrarily chosen weights. Gradient descent corresponds (with standard Euclidian
metrics) to a movement downward perpendicular to the niveau lines, starting from the
weight vector w(1) at time t=1

If the step size (learning rate y) Is too large, the movement shows oscillations.



In first time step: m=1
dE(w(1))

(n)
dw W,

Aw (1) = —y

In later time step: m

dE (w(m))

(n)
aw L,]

Aw(n) (m) = + Aw(n) (m—1)



Previous slide.

A momentum term

keeps information about the previous direction.

It suppresses therefore these oscillations while giving rise to a ‘speed-up’ in the
directions where the gradient does not change



Awi(’?)(l) - dE(w(1))

Awi(’?) (m) =—y

d W(”)
L,J

Vb E(w)




dE (w(m))
Aw.™ (m) = —y
—

(n)
dwl., ;
\

2
Blackboard

() (m—1)
Awi, j
F




gradient descent with momentum (steep valiey]

N

See exercise 2.

| (M) (1, _
i o Fa Aw;;7(m —1)



Your notes. (Calculation of the speed increase and speed decrease, Exercise 2)



dE (w(2))
dw (n)

w(l) E(w)

<K’ L

Aw(n)(Z) = + Aw(n)(l)

good values for a: 0.9 or 0.95 or 0.99 combined with small y




Previous slide.
Graphical illustration of how the momentum term suppresses oscillations.

The direction of changes of the weight vector in time step t=2 adds to the local gradient
(perpendicular to the contour lines)

aAw(1)

In the direction of the update In time step t=1.

The factor a of the momentum term can be close to 1.



dE(W(Z) + CZAW (1))
dw (n)
w(l) i E(w)

Aw(n)(Z) = — + AW( )(1)

good values for a: 0.9 or 0.95 or 0.99 combined with small y




Previous slide.
The Nesterov momentum evaluates the gradient at time step t=n+1, not directly at the
momentary location w(n + 1), but at a hypothetical location

wn+1) + aAwl.(j) (n)

that would be reached by using the momentum term from time step n.

It then combines the local gradient at this hypothetical location with the momentum
term, starting (just as in the simple momentum scheme) from the actual location
wn+1).



Momentum
[ ] momentum speeds up gradient descent in ‘boring’ directions

| | momentum suppresses oscillations

| | with a momentum parameter a=0.9 the maximal speed-up
Is a factor 1.9

| | with a momentum parameter a=0.9 the maximal speed-up
IS a factor 10

| | Nesterov momentum needs twice as many gradient
evaluations as standard momentum



Your notes.



Exercise: Momentum and Unitwise learning rates  Next Lecture

Consider minimizing the narrow valley function E(wi,ws) = |wi| + 75|ws| by gradient descent. at 14h 15

a. Sketch the equipotential lines of F, i.e. the points in the w; — wy-plane, where E(wy,w2) = ¢
for different values of c.

b. Start at the point w0 = (10, 10) and make a gradient descent step, i.e.
w) = w® —y(0E /0w, 0FE /Ows) with n = 0.1.
Hint: Use the numeric definition of 0|xz|/0x = sgn(x) if x # 0 and 0 otherwise.
c. Continue gradient descent, i.e .compute w@};w(:ﬂ and w® and draw the points w(mj .. :,w“]'

in your sketch with the equipotential lines. What do you observe? Can you choose a better
value for 1 such that gradient descent converges faster?

d. Repeat now the gradient descent procedure with different learning rates for the different di-
mensions, i.e. w!) = w0 — (moE /0wy, n0F /0ws) with 11 = 1 and 1y = 1/75. What do you
observe? Can you choose better values for n; and 7y such that gradient descent converges faster?

e. An alternative to individual learning rates is to use momentum, i.e.
AwY) = —n(0FE /0wy, 0E | 0ws) + aAw™® with o € [0,1) and w1 = w®) 4 Aw{t+D).

Repeat the gradient descent procedure for 3 steps with n = 0.2 and a = 0.5. What do you

observe?
f. Assume OFE /Ow; = 1 in all time steps while 0F /Ows = £75 switches the sign in every time step.
) » 13 L) qa - 3 . S 4 s _ l1—attl
Compute lim;_,oo Aw® as a function of n and . Hint: > e = H—

g. What do you conclude from this exercise in view of training neural networks by gradient descent
with or without momentum?



Your notes.



Wulfram Gerstner
. =PrL
n"“lclal Nﬂ“ral NetWﬂ"(s EPFL, Lausanne, Switzerland

L0SS Iandscane and optimization methods for deep learning

Part 5: RMSprop and ADAM

1. Questions and Aims of this Lecture

2. Error function: minima and saddle points
3. Why are there so many saddle points?
4. Momentum

5. RMSprop and ADAM



Previous slide.
RMSprop and ADAM are two widely used methods for minibatch updates that combine
momentum with further information.



Image: Goodfellow et al. 2016

ow(1)

minimum




Previous slide.

Let us consider downward movement on an error function with a saddle. For some
Initial conditions, the trajectory is first attracted toward the saddle before it moves into

one of the two minima, depending on the Initial condition.



The error function for a small mini-batch
IS not Identical to that of the true full batch

old
minimum

€2
P\ \




The error function for a small mini-batch
IS not Identical to that of the true full batch

old
minimum

¥
) [ EP\ \

Wa



The error function for a small mini-batch
IS not Identical to that of the true full batch

old
minimum

€2
P\ \




Previous slide.
If the error function Is evaluated on a minibatch (which means only on part of the data),
the exact location of the minima and the saddle is different.

Therefore, for the first minibatch the gradient would lead to the minimum with positive
w, , and for the second minibatch toward the minimum with negative w,, .



dE w(1l real gradient: sum over all samples

dw stochastic gradient: one sample
]

E(w)

ldea: estimate mean and variance from k=1/a samples




Previous slide.

The situation Is even more extreme with stochastic gradient descent where a single
example Is evaluated at each time step — whereas the ‘true’ gradient is the one
evaluated on all examples (batch update).

The main idea of RMSprop and ADAM is to estimate the ‘mean’ gradient and its
variance by a running average.

Note that a momentum term with weight o can be seen as a running average of the
gradient of roughly 1/a. examples (see Exercises).

Recall the role of o In momentum

dE (w(2))

(n)
W,

Aw ™ (2) = —y +a Aw (1)



A good optimization algorithm
[ ] should have a different ‘effective learning rate’ for each weight
| ] should have smaller update steps for noisy gradients

| ] the weight change should be smaller for small gradients and larger for large ones,
as In standard gradient descent

| ] the weight change should be larger for small gradients and smaller for large ones

[ ] the weight change should be always the same size (unless gradient Is zero)



Previous slide.

Think about what YOU believe would be most useful. Make a commitment by ticking
one or several boxes. We will come back to these guestions later, at the end of this
part.



dE(w(l)) real gradient: sum over all samples

(n) N NN
AW (1) = dw () stochastic gradient: one sample

L,J

ldea: estimate mean and 2" moment from k=1/p samples

Running Mean: use momentum
dE (w(m))

()
dw W, ;

vi(’?) (m) = + P1 v(") (m—1)

Running second moment: average the squared gradient
dE dE
(n) (m) = (1 — Pz)( d(W((:)l)))( (W(m))) n pzn_,(;_’l) (m—1)

(n)
Y dwl., ;




Previous slide.
Hence, the mean of the gradient is estimated using a momentum term (‘online

average’) with parameter
P1

Similarly, the second moment of the gradient is estimated using an online average with
parameter

P2

Note that the second moments form a matrix of correlations. Here we focus on the
‘diagonal terms’ only which are simply the square of one component of the gradient.

Attention: 1. do not confuse this with the Hessian matrix of second derivatives.
2. do not confuse the second moment with the covariance matrix.
3. In the above notation p; and p, have slightly different ‘'normalizations’
when comparing the two terms on the right-hand side of each equation.



Example: Time series of gradient
consider 3 weights wi,w2,ws by sampling:
Raw Gradient: for Aw:.1.1: 0.9:1.1: 0.9: ...
dE (w(m)) for Aw..0.1:0.1: 0.1: 0.1 ...
Awi= T for Aw:.1.1;-0.9; 1.1 -0.9; ...
l
e e ‘Blackboard 3/Exerc. 1
dE (w(m))
< >

dw;

average the squared gradient over k samples

- (dE(w(m))) (dE(w(m))) S
dw; w;




Exercise 3a-C

We consider stochastic gradient descent in a network with three weights, (wq, ws, ws).

Evaluating the gradient for 100 input patterns (one pattern at a time), we observe the following time
series

for wy: observed gradients are 1.1; 0.9, 1.1; 0.9; 1.1; 0.9; ...

for we: observed gradients are 0.1; 0.1; 0.1; 0.1; 0.1; ...

for ws: observed gradients are 1.1; -0.9; 1.1; -0.9; 1.1; -0.9; ...

a. Calculate the mean gradient (first moment my) (gg) for wg, k € (1,2, 3].

b. Calculate the mean of the squared gradient (second moment ms) (g7) for wy, k € [1,2, 3].

c. Divide the result of (a) by that of (b) so as to calculate (g)/(g;) as well as (gx)/+/(g;) for wy,
ke (1,2, 3].

additional questions:
- How would you do an online estimate of () and (g¢?)

- How would you define a ‘signal-to-noise ratio’ of stochastic gradients?



The above ideas are at the core of several algos
- RMSprop
- RMSprop with momentum
- ADAM



Your notes on the exercise.



Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate €, decay rate p.

Require: Initial parameter @
Require: Small constant §, usually 107°, used to stabilize division by small
numbers.
Initialize accumulation variables r» = (
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:E{”, 2™ with
corresponding targets y'*).
Compute gradient: g < f_}! Vo >, L( f(:ﬂ('”; ). yti))
Accumulate squared gradient: r < pr + (1 —p)g© g
Compute parameter update: A@Q = v,‘;?? >g. | ﬁ applied element-wise)
Apply update: 0 <+ 0 + A6

end while

Goodfellow et al., Deep Learning 2016, MIT Press



Previous slide.

RMSprop algorithm.

The variables r estimate the diagonal elements of the second moment of the gradient.
The operator ‘circle-dot’ indicates elementwise multiplication.

The update step Is scaled by the square-root of the second moment.

The delta 1s a small number to stabilize the division.

There Is no smoothing of the gradient itself (ho momentum term).



Algorithm 8.6 RMSProp algorithm with Nesterov momentum

Require: Global learning rate €, decay rate p, momentum coefficient «.
Require: Initial parameter . initial velocity v.
Initialize accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch ot m examples from the training set {m(lj} . ,::E[m)} with
corresponding targets ym.
Compute interim update: 6« 0+ av
Compute gradient: g < 'n]’.!,?fi" S L(f(x;0),y")
AEEUIIlUl?:‘L(%%aé?g.ﬂiEHt: r«pr+(1—plgeg
Compute velocity update: v <+ av — ﬁ “g. (TIJE applied element-wise])
Apply update: 8 < 6 + v
end while

2"d moment

Goodfellow et al., Deep Learning 2016, MIT Press



Previous slide.

This Is the version with smoothing (the delta has been suppressed in the notation but
should always be kept in practice.)

Note that second moment and variance are not exactly the same (see also exercises).
For variance, you subtract the mean before you square.



Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, p; and ps in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant 6 used for numerical stabilization. (Suggested default:
10%)
Require: Initial parameters 6
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {;1:'[”. A *')} with

a

corresponding targets y'*).

Compute gradient: g < r—i Vo .. L( J('(ﬂl-..;(i]E 9). y[-;:))

L<— 1+ 1

Update biased first moment estimate: s «<— p1s+ (1 — p1)g

Update biased second moment estimate: r < por + (1 — p2)g © g
=]

Correct bias in first moment: § <«

1—p}
Correct bias in second moment: 7 < I ";}L
L
Compute update: A = —¢ ﬁifi (operations applied element-wise)
Apply update: 0 «+ 0 + A6
end while

Goodfellow et al., Deep Learning 2016, MIT Press



Previous slide.

The first moment Is the online average of the mean of the gradient, equivalent to the
momentum.

The second moment is similar to the variance. But in contrast to the variance, the mean
IS not subtracted before squaring.

The bias correction terms are a bit arbitrary. The idea Is that (as we have seen for the
momentum term earlier) evaluating a constant gradient using a momentum term with
parameter p gives effectively rise to a factor 1/[1-p] . However, since It takes some time
to build up this factor, one could artificially introduce this factor in the first few time steps
— and this is what is done in this algorithm. However, this argument makes sense only If

the gradient Is indeed constant over many steps!



The above ideas are at the core of several algos
- RMSprop
- RMSprop with momentum
- ADAM

Result: parameter movement slower In uncertain directions




Your notes.



Quiz (2" yote): RMSprop with Momentum and ADAM

A good optimization algorithm (take ADAM as example)
[ ] should have different ‘effective learning rate’ for each
weight

| | should (in batch mode) have the same weight update step
for small gradients and for large ones

| | should have smaller update steps for noisy gradients
during stochastic gradient descent



Your notes.



Summary:. THE END

- Momentum:
- suppresses oscillations (even In batch setting)
- Implicitly yields a learning rate ‘per weight’
- smoothens gradient estimate (in online setting)

- Adam and variants:
- adapt learning step size to certainty
- Include momentum
- smaller effective learning step for noisy directions



Previous slide.

We can distinguish three main features of momentum:

- It suppresses osclillations. Note that osclillations arise even In the batch setting if the
valley of the error function has steep slopes and the learning rate is chosen too big.

- In a narrow valley the effective step size of weight changes aligned with the valley
axis increases, whereas those point toward the steep walls of the valley decreases.

- In stochastic online gradient descent, momentum acts as an exponentially shaped
averaging filter.

In addition to momentum, Adam (and its variants) also estimate the second moment of
the gradient. This estimate can then be used to adapt the step size to the certainty:

smaller weight updates If the gradient estimate Is noisy (has a large second moment
compared to its mean).



Wulfram Gerstner
. =PrL
n"“lclal Nﬂ“ral NﬂtWﬂ"(s EPFL, Lausanne, Switzerland

L0SS Iandscane and optimization methods for deep learning

Part 6: No Free Lunch Theorem

1. Questions and Aims of this Lecture

2. Error function: minima and saddle points
3. Why are there so many saddle points?
Momentum

RMSprop and ADAM

No Free Lunch Theorem

o U1 &



Previous slide.

No Free Lunch theorems (there are several variants) are foundational and
philosophically important to answer the question: why do deep neural networks work so
well?



No Free Lunch Theorem

Which data set looks more noisy?

Commitment: Commitment:
Thumbs up Which data set IS easier to fit? Thumbs down



Previous slide.

et us start with two data sets.



No Free Lunch Theorem




Previous slide.

And here a possible explanation (hidden behind the blue boxes).



No Free Lunch Theorem




Your notes



No Free Lunch Theorem

The NO FREE LUNCH THEOREM
states

" that any two optimization
algorithms are equivalent when their

performance Is averaged across all
possible problems™

See Wikipedia/wiki/No free lunch_theorem

Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.
*Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.



https://en.wikipedia.org/wiki/Optimization_(mathematics)
http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

Previous slide.

The conclusion is: there Is no reason to believe that an algorithm that works well on one
data set will also work well on an arbitrarily chosen other data set.



No Free Lunch (NFL) Theorems

The mathematical statements are called

"NFL theorems because they demonstrate
that if an algorithm performs well on a
certain class of problems

then It necessarily pays for that with
degraded performance on the set of all
remaining problems”

See Wikipedia/wiki/No free lunch_theorem

Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.
*Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.



http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

Previous slide.

Even worse, If the algo works well on some problem, there must exist another problem
on which the algorithm works badly.



Quiz: No Free Lunch [NFL) Theorems

Take neural networks with many layers, optimized by
Backprop (with momentum/ADAM) as an example of deep learning

| | Deep learning performs better than most other algorithms
on real world problems.

| | Deep learning can fit everything.

| | Deep learning performs better than other algorithms on
all problems.



Your notes.



No Free Lunch (NFL) Theorems

- Choosing a deep network and optimizing It with
gradient descent Is an algorithm

- Deep learning works well on many real-world problems
- Somehow the prior structure of the deep network

matches the structure of the real-world problems
we are interested In.



Previous slide.

The reason that deep networks work well must be linked to the type of data on which
we test them.



No Free Lunch (NFL) Theorems

Geometry of the information flow In neural network




Previous slide.

One possible explanation of why neural networks work well is the notion of
hyperplanes. Even though the data Is local, you make a cut through the whole space.
This predefines additional ‘compartments’ that can be reused later for other data.

This argument might be applicable in the last few layers before the output.



_ I & B I
\ X

anlmgs . B EIl X x

birds \ Y x X

\ H, X y
| 4legs L~ \'~_7
wings
snout

fur

eyes

tall



Previous slide.

A specific illustration of this idea Is given here



siimmary: No Free Lunch (NFL) Theorems and Deen Networks

Somehow the prior structure of the deep network
matches the structure of the real-world problems
we are Interested In.

— Always use prior knowledge if you have some

Example: - images, translation invariance
- music, tone translation invariance
- known symmetries of tasks



Previous slide.

Prior knowledge Is important. We can use prior knowledge when we design the network
architecture.



Wulfram Gerstner
. =PrL
n"“lclal Nﬂ“ral NﬂtWﬂ"(s EPFL, Lausanne, Switzerland

L0SS Iandscane and optimization methods for deep learning

Part 7. Deep Networks versus Shallow Networks

Questions and Aims of this Lecture

Error function: minima and saddle points
Why are there so many saddle points?
Momentum

RMSprop and ADAM

No Free Lunch Theorem

Deep Networks versus Shallow Networks

NOoO A WDhE



Previous slide.

In the following we explore the idea of carving out regions In the space by hyperplanes.



How many different regions are carved
In Odim Input space

In 1dim Input space with:
O hyperplanes

1 hyperplane

2 hyperplanes?

3 hyperplanes?

4 hyperplanes?




Previous slide.

First we work in zero dimensions. There Is only one dot, this Is the smallest possible
region: d=0 - 1 region

We now work in one dimension (horizontal black axis).

The continuous axis Is one connected region.
If we add a first hyperplane, we cut the axis into 2 separate regions. Therefore we have

added one extra region.
After adding the nth hyperplane, we have n+1 regions. Each hyperplane adds one

‘crossing’ of the horizontal axis.

d =1 - n+1 regions (where n Is the number of hyperplanes in 1d)



How many different regions are carved
In 2dim Input space with:

3 hyperplanes?
4 hyperplanes?

Increase dimension
= turn hyperplane

= New crossing ]
= new regions



Previous slide.

Suppose we have n hyperplanes in 1 dimension.
This corresponds to n PARALLEL hyperplanes in 2 dimension. The number of separate
regions is still n+1, just as in 1 dimension.

Suppose now we slowly turn one of the hyperplanes into an ARBITRARY position.
Each time it crosses another hyperplane the tilting process creates a new region.
Hence n-1 new regions are created.

Repeat this with the all n hyperplanes. Each time | create (n-1) new regions — except
that | have now overcounted by a factor of 2.



How many different regions are carved

\’

In 2dim Input space by
n hyperplanes?

1+n+n(n-1)/2



Previous slide.

In 2 dimension:
| have n lines. If | tilt one line - adds n-1 new crossings - adds n-1 new regions.

| can do this for each of the n existing lines: they were parallel in the 1d setting, | turn it

= add new crossings.
Total (n)(n-1)/2 new crossings (corrected for counting twice).

But in 1d, | had already n+1 regions. Therefore, total number of regions Is given by the
formula 1 + n + n(n-1)/2



- - - ’
Distributed representation o
How many different regions afe carved
/

In 3d Input space by:

1 hyperplane
2 hyperplanes

3 hyperplanes?
4 hyperplanes?



Previous slide.
Let us extend the argument to three dimensions.

At the beginning it is easy, and the number of regions increases exponential.

But how do we treat 4 hyperplanes?



How many different regions are carved
In 3 dim Input space by:

3 hyperplanes?
4 hyperplanes?

we look at 4 vertical planes
from the top (birds-eye view)

Keep 3 fixed, but
then tilt 4" plane




Previous slide.

In 3 dimension:
| have n vertical hyperplanes, | look on these from the top. Thus the third dimension Is

not yet used. Now I tilt one of these hyperplanes.
-> the tilting adds as many new regions as there were crossings in 2 dimensions of

the remaining n-1 hyperplanes -> adds (n-1)(n-2)/2 new regions.

Again, this tilting argument can be repeated for each of the n vertical planes (but avoid
double counts!)

So we can build a proof by induction;
The number of NEW regions with n hyperplanes in d dimensions, iIs linked to the

number of crossings with n-1 hyperplanes in d-1 dimensions.

The total number of regions Is the NEW regions plus the number of OLD regions with n
hyperplanes in d-1 dimensions.



Number of regions cut out by n hyperplanes
In d —dimensional input space:

d
n
number = Z (])
]=0
N d
number~0(m

But, without additional layers, we cannot learn arbitrary targets
by assigning arbitrary class labels {+1,0} to each region,
unless exponentially many hidden neurons:

generalized XOR problem



Your notes.

Conclusion;

1. MANY regions created by a n hyperplanes in d dimension.

2. However, this does not mean that all of these can be assigned to arbitrary classes.
For example, 2 hyperplanes carve 4 regions, but an XOR configuration cannot be

solved unless we add an extra layer.

3. The argument can then be repeated for all layers. The input dimension in layer n Is
the number of neurons In layer n-1.



There are many, many regions!

But there Is a strong prior that we do not need
(for real-world problems) arbitrary labeling of these regions
INn the sense of a generalized XOR problem.

With polynomial number of hidden neurons:
- Generalization



Previous slide.

Intuitively speaking, hyperplanes can be re-used to assign labels, because the
configuration of XOR Is rather uncommon In real-world problems.
An example I1s shown In the next slide



Example: nearest neighbor representation

I

\
Y I
\ I
\ B EI

- - Nearest neighbor
Does not create
A new region here




Previous slide.
lllustration of the re-use of regions, carved out by hyperplanes, for several classes.

An alternative method to hyperplanes would be nearest-neighbor classification. In this
case the assignment to the orange and red classes would be extended, without carving
out a new region.



Performance as a function of number of layers
on an address classification task

96.5
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5 |

92.0
3 4 3 6 7 & 9 10 11

Layers

Test accuracy (percent)

Image: Goodfellow et al., Deep Learning, MIT Press 2016



Previous slide.

Increasing the number of layers increases performance.



Performance as a function of number of parameters
on an address classification task

Large, Shallow Models Overfit More
07
06 —e 3, convolution

+—+ 3, fully connected I
99 V—V 11. convolutional

04

93

Test accuracy (percent)

92

91
0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters x10

Image: Goodfellow et al., Deep Learning, MIT Press 2016



Previous slide.

For the same number of parameters (weights), a convolutional neural network with 11
layers performs better than a fully connected network with three layers.

For convolutional networks: see lecture ‘week 7,

Conclusion: experimentally it was found that deep networks perform better than shallow
ones.



- Somehow the prior structure of the deep network
matches the structure of the real-world problems
we are Iinterested In.

- The network reuses features learned In other contexts

Example: green car, red car, green bus, red bus,
tires, window, lights, house,
- generalize to red house with lights



Previous slide.

One potential (non-mathematical) explanation of the success of deep networks is the
fact that features in the real world in which we are interested extend over large regions
of the data space so that we have seen examples of green trees and green buses, but
also red cars, red buses and white houses, we can generalize to red houses.



Wulfram Gerstner
. =PrL
n"“lﬂlal Nﬂ“ral NﬂtWﬂrks EPFL, Lausanne, Switzerland

LosS landscape and optimization methods for deep learning
Objectives for today:

- Error function landscape:
there are many equivalent minima and even more saddle points
- Momentum
gives a faster effective learning rate in boring directions
- Adam
gives a faster effective learning rate in low-noise directions
- No Free Lunch: no algorithm is better than others

- Deep Networks: are better than shallow ones on
real-world problems due to feature sharing




