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Noise in Two-port Networks

Noisy Two-port — Equivalent Two-port Circuits
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= Model the noisy two-port such that the two circuit are equivalent
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Noise in Two-port Networks

Noisy Two-port — Y-parameter Representation

Inout

Noisy
two-port

_‘_o_

o

Noiseless
two-port

= The output noise current I,,,,,,+ depends on the two-port internal noise sources and on the
source admittance Ys

= A model of the noisy two-port that is independent of the source admittance Ys requires at

least two noise sources (either two current sources or two voltage sources or a

combination)

= Using the Y-parameter representation, the noisy two-port can then be modeled by

A
L=+ Vr+1, L1 =
Ly=Yy - +Y Vo+1,

Iﬂm=@=0

A
Lo _I2|V1:V2:0

where I,,; and I,,, represent all the noise sources within the two-port and are defined as
the input and output currents when the input and output are short-circuited

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.
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Noise in Two-port Networks

Noisy Two-port — ABCD Matrix Representation

= The noisy two-port can also be modelled by referring all the noise sources at the
input using the ABCD-parameters as shown below

/1 Inout
_o_’_ +o_

YS I:] V1l NOISy YS [

Inout

Noiseless

two-port two-port

[}

[

1
Vl = AV2 _B.]2 _|_Vn h 2|V1=V2=O Y21 2|V1_V2_()
[1:C'V2—D°[2+I A B Yll
n I, —D.]2|11:V2:O __E'12|11=V2:0

where V. is a noise voltage source that represents all the noise of the device
referred to the input when the source impedance is zero (input short-circuited)
and I,, is a noise current source that represents all noise of the device referred to
the input when the source admittance is zero (input open circuited)

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.
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Noise in Two-port Networks

Relation Between Noise Sources

= Noise sources of both representations I,,1, I,,, and V,, I, are related to each

other by
1
Vn:_L2 Ly=1,-11V,
1)
N
1, :]nl_Y_']nZ L ==YV,
21

= Since both of these sources (V;, and I, or I,,; and I,,,) are due to the same
physical noise sources within the device, they are usually correlated. The mean-
square values of sources V;, and I,, can be written in terms of the mean square
values of sources I,,; and I,,, according to

|]n2|

s
where the last term accounts for the correlation existing between source I,,; and
I,,,. The latter has to be evaluated from the internal noise sources.

|V | and |[,,l|2 = |[,,,1|2 + L

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.
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Noise in Two-port Networks

Correlation Admittance

= To account for the correlation usually existing between noise sources V,, and I,,
noise source I,, can be written as

]n :]nu +]nc :]nu +Yc'Vn

where [,,,, stands for the part of I,, uncorrelated to V, and I,,. represents the part
of I, that is fully correlated to Vn

= The correlation admittance Y. is then defined as

ady

n

V2

n

and the mean-square value of source I, is then given by

P Y 0,V +Y, V 1 | o[ +, |-|Vn|2J
=0 0 -

s

n

|In|2 :|[nu|2 +|Y

c

_|]

nc|

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.

E P .- I © C. Enz | 2022 Low-power radio design for the loT Slide 6 ICLAB




Noise in Two-port Networks

Correlation Coefficient

= The mean square values of the correlated and uncorrelated sources can also be
written as

el =¥l P =1l |

o =1 =[P = (1= 1ef )P

where ¢ is the normalized correlation factor defined as

where the following relation has been used to derive the last equation

In 'V; :]nu 'V; +Yc '|Vn|2 :Yc '|Vn|2
=0
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Noise in Two-port Networks

Equivalent Circuits of the Noisy Two-port

Inout

Noiseless
two-port

= The noisy two-port can be modelled by a noiseless two-port in cascade with a
noise two-port that includes noise sources 1}, and I,, and hence models all the
noise of the noisy two-port referred to the input

= The noise two-port can be modelled accounting for the correlation between the
current and voltage noise source in the following equivalent ways

S

I
V1l l V' V1l c -Ye l V'
o \*J o L & ] 4 \\ 7f 4 \*J
noiseless
H. Rothe and W. Dahlke, “Theory of Noisy Fourpoles,” Proc. of the IRE, Vol. 44, No. 6, June 1956.
H. Beneking, High Speed Semiconductor Devices, Chapman-Hall, 1994.
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Noise in Two-port Networks

Power Spectral Densities

= Noise sources 1}, and I,, are described by their noise power (or rms values)
considering a common noise bandwidth

= For narrow-band systems, sources 1}, and I,, can also be described by their power
spectral densities S,, and S;

= The noise current PSD can be splitted into a fully correlated term S;. and an
uncorrelated term S, according to

Sic :|Yc|2 Sy =[cf*-S; S =S, _|Yc|2 S :(1_|C|2)'Si
= where the correlation factor c is given by

S
C:Y. _U
c S

l
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Noise in Two-port Networks

Equivalent Noise Resistance and Conductance

= Considering that the noise sources V},, I,,,, and I, are treated as thermal noise
(even though they usually are not) produced by an equivalent resistance or
conductance, the PSD can be rewritten as

S, =4kT-R, S;=4kT-G; S;, =4kT-G;, S, =4kT-G;
resulting in
G =Gy =[1.f R, =(1-\*)- G, Gio =1 R, =|ef -G,
and the correlation factor is then given by
c=7, m and |c|2 =(G§ +B§)-RU/G1-
= Note that R, G;, G;,, and G;. are usually frequency dependent

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.
T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2™ ed., Cambridge University Press, 2004.
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Noise in Two-port Networks

Noise Factor Definition

= |n many circuits and systems we are actually interested in the signal-to-noise
ratio SN R defined as the ratio of the signal power to the noise power

= As the signal is amplified along the signal path, it also accumulates more noise

= The noise factor evaluates how the SNR is degraded along the path
2 SNR;,

F= > 1
SNR,,,;
= For an amplifier having a power gain G we can write
G-S;/(G-(N;+N,)) N N;

where N; + N, is the total noise power referred to the amplifier input, N, is the
input-referred noise power added by the amplifier to the noise power already
present at the input of the amplifier N;
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Noise in Two-port Networks

Equivalent Input-referred Total Noise Source

Yy
N o .

vl @ @ %Y w1l @ iz

[}

o
o

= The noise coming from the source I,,,-¢ adds to the input-referred noise sources
17, and I, of the two-port network to generate the total noise at the input of the
noiseless two-port

= The total noise can hence be modelled by the equivalent Norton noise current
source I,,;,; Which corresponds to the short-circuit current of the above left
schematic

V,
E:’ R ntot

[ =
Ys[] % @ % Ltor = Lyps + Ly + (Y +X2) -V,

H. Beneking, High Speed Semiconductor Devices, Chapman-Hall, 1994.
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Noise in Two-port Networks

Noise Factor of the Noisy Two-port Network

The current delivered at the two-port input is given by
Y
Ly = - YS-II-IYH Lys01

~ Iin

The total noise power delivered at the two-port input is then given by

'|Iin

ot |
YsHI] é Viri HI]YH Ni”|tot ZER{Zm}

Iin

. ot .
YSHI:I éﬂmvml HI:IYﬂ Nin|Vn:031n:0 - 9%{Zln} ) | 11|

e

The noise factor is then simply given by

F = Nin |t0t _ |I m‘ot|22
|

N |Vn=0,]n:0 |z

) ]ntot |2

Whereas the rms noise power delivered at the input coming from the source is

nrs
E P I- I © C. Enz | 2022 Low-power radio design for the loT
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Noise in Two-port Networks

Noise Factor of the Noisy Two-port Network

I ntot

Vi,
. AN o—t
Inrs A Inu c'Vn
YS:GS_I_-].BS YS[] Intot:[nrs'i'[nu'l'(YS'I'Yc)'Vn

O
2%

= Accounting for the fact that the noise source I,,,.¢ is uncorrelated to the other noise
sources V;, and I,,,, and that the noise current source I,,,, is by definition
uncorrelated with the voltage noise source 1}, the mean-square value of the total
noise current is then simply given by

|]nt0t|2 = |Inrs|2 +|]nu|2 +|Yc +YS|2 '|Vn|2

= From the above definition, the noise factor is then given by

|]ntot|2 1+ |]nu |2 +|Yc +Ys|2 '|Vn|2
|2 5

F =

1,s|” = 4kTB- G,

1

nrs

|z

nrs

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.
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Noise in Two-port Networks

Spot Noise Factor

= The spot noise factor is then obtained by replacing the mean square values by

the PSD , ,
F:1+Siu+|Yc+Yts*| 1):1_|_Gm+|Yc+YS| | vo_
4kT - G, G,
=1+2’“‘+[(G +G) +(By+B,) }g—

S

where G, By, G, and B, are defined as
Y,=G,+jB;, and Y.=G_.+jB,

= Note that the spot noise factor is usually frequency dependent, but for narrow-band
systems, it is about equal to the noise factor

= F increases with B but for a given B, it has a minimum wrt G

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.
T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2™ ed., Cambridge University Press, 2004.
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Noise in Two-port Networks

Minimum Noise Figure

= The noise factor F reaches a minimum F,,,;,, for a particular value of the source
admittance Y,,,r = Gopt +J * Bopt

= The optimum source conductance G, and susceptance B, can be expressed
in terms of the four circuit noise parameters R,,, G;,,, G and B,. according to

= The minimum noise factor F,,,;,, is then given by

Fipin =1+2R, (G, + G, ) =1+2R, \/i’” +G? +G,

()

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.
T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2™ ed., Cambridge University Press, 2004.
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Noise in Two-port Networks

Noise Factor and Noise Parameters

= The actual noise factor F may also be written in terms of the four noise
parameters F,,,;,,, R, G, @nd B, and the source admittance as

F = Frin +%.|:(GS _Gopf)z +(BS _BOPt)z}

S

= |nthe same way power gain can be maximized by impedance matching, the
noise can be minimized by setting the source admittance to Y,,.,;

= The situation F = F;;,, obtained for G; = G,,,; AND B; = B, corresponds to
noise matching

= Noise matching usually does not coincide with gain matching

= The R, /G, tells us something about the relative sensitivity of the noise factor to
departures from the optimum conditions

G. Gonzales, Microwave Transistor Amplifiers — Analysis and Design, 2" ed., Prentice-Hall, 1997, Appendix L.
T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2™ ed., Cambridge University Press, 2004.
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Noise in Two-port Networks

F..;,, versus Source Conductance G

= Assuming that B; = B, the noise increase due to deviation from the noise
matching condition is given by

2
G, G
_ Pt
F—Fmin|BS:BOpt =Ry Gope ' .{G St _1J
S

Bs = Bopt

M | 1 1 11 1 1 11
2 3 456 2 3 456

Gs / Gopt
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Noise in Two-port Networks

Noisy Two-port Parameters
= The four noise parameters Fp,in, Ry, Gopr and By, are usually obtained from
measurements

= They can then be used to derive the circuit noise parameters R,,, G;, G, and B, of
the noisy two-port circuit according to

G =|r ‘2-R —(G2 + B2 )R
1~ [Topt v 0) opt v
Foi, —2R,G,,; —1
pit
G, = B, = _Bopt
2R

v
" Gy, Gic can then be calculated as

Giy = (1_‘0‘2)' G Gi :‘C‘z G
with the correlation factor ¢ given by

G.+ jB, G2 +B2
c= / v J and |c|2 =— 5
\/ Go Bopt

opt
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Noise in Two-port Networks

Simplified Calculation of the Actual Noise Factor

Vnrs ‘Vneg
@ % —a0 @ O —0
Noisy Noiseless
Z V Z %
0 sy | e ] iscloss | Ve

= |f we are only interested in the actual noise factor F, the latter can be derived
without calculating Fyin, Ry, Gopr @nd Byt

= |t can be calculated from the above circuits where Z; = R + jXs and where
V,-s corresponds to the noise coming from the real part of the source impedance
with a PSD given by Sy, = 4kTRg

= First, calculate the output noise voltage V., and related PSD S, accounting
for all the noise sources inside the two-port and the noise source V,,.¢ with PSD

E P .- I © C. Enz | 2022 Low-power radio design for the loT Slide 20 ICLAB



Noise in Two-port Networks

Simplified Calculation of the Actual Noise Factor

Zs
o I

Noiseless
V‘”K> two-port lv"“t

O ———oO0

Calculate the voltage gain A,, = V,,,;:/V;,, which is in general complex, depends
on frequency and on the source impedance Zs

Calculate the input-referred noise PSD

Sy
SVneq o nmg
4,
= The noise factor is then given by
. SVneq _ SVneq _ Ryeq 1. Ryamp
Sy 4kTRg Ry Rg

nrs

where Ry, = Sy /(4kT) and Ry qmp = Rneq| is the input-referred
neq Rs=0
noise resistance due only to the two-port noise sources
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Noise in Two-port Networks

Simplified Calculation of the Actual Noise Factor

= This method is usually simpler than deriving Fyp,in, Ry, Gope @nd B,y particularly

when the source impedance is reduced to a resistance which is usually the case
for 50Q) systems, but it does not provide any information on the minimum
achievable noise factor

= However F,,;,, could be obtained from the above calculation but for this, the
source impedance has to remain complex Zs = Rg + jXs

= F..in Can then be obtained by differentiating F with respect to R and X

" R,,:and X, are obtained by solving

oF =0 and or =0
OR

X g=const S Rg=const

EPFI: © C. Enz | 2022 Low-power radio design for the loT Slide 22 ICLAB



Noise in Two-port Networks

The Friis Formula

[E F1 F2 [E Frot
y Vno u y Vno
S Ap1 Apz l t S Appot l :

= The noise factor F;,; of a cascade of two amplifiers each characterized by their
noise factors F; and F, and their available power gains Ap; and Ap, is given by

F—1

Pl

= The available power gain Ap, is defined as the available power at its output (the
power that it would deliver to a matched load) divided by the available source
power (the power that the source would deliver to a matched load)
Rl%’ll 5 A\%l . RS

(RS + Rinl) Routl

F;ot:Fi_F

Apy =

= (Can be generalized to the cascade of m stages
ol . il

Apy Apy - Apy -+ App

E P .- I © C. Enz | 2022 Low-power radio design for the loT Slide 23 ICLAB
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Outline

= Noise in Two-port Networks

= Noise in the MOS Transistor at RF
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Noise in the MOS Transistor at RF

Channel Noise and Terminal Noise Currents

S N 2 induced gate noise ]

nG

[ noisy piece of channel

ol I e I ¢ | P
[source noise]/ S IqD\(drain noise]

Vn
At low-frequency: 8/, = 6/ p BéSI nB\( induced substrate noise ]

= The thermal noise generated by voltage fluctuations in the channel appears at the
drain, source but also at the gate and bulk as terminal current fluctuations

= The channel voltage fluctuations are transferred to the drain and source through
the (trans)conductances and to the gate and bulk by capacitive coupling
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Noise in the MOS Transistor at RF

General and Simplified HF Thermal Noise Model

D

° g

AInD . Y /D
noiseless

f?
noisy. E Y noiseless Tl X Ako noiseless
N, forane \ N N
- N cofros D
éAInB

AInG AInB I =
G°—’—|F4—° B Go +—l¢ oB Go '
Al - Al Alng
Y/stAhs Tls Tls

= Als ™
$ $
S S S

-~

wno

Noisy transistor NQS noise model QS noise model LF noise model

= Normally requires one noise source per terminal

= Under quasi-static assumption, the source and drain noise PSD and the drain-
source cross-PSD are approximately equal

= Atlow-frequency (w < wys), the induced gate and substrate noise can be
ignored

= The thermal noise model then reduces to the single noise source between drain
and source

A.-S. Porret and C. Enz, IEE Proc.-Circuits Devices Syst., April 2004.
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Noise in the MOS Transistor at RF

Thermal Noise at the Drain (long-channel)

= Channel thermal noise power spectral density (PSD)

2
Al

where &,,p is the drain thermal noise parameter and y,,p, = n - §,,p the
thermal noise excess factor

= The drain conductance G, is bias dependent according to

( 2 2
2 2 ds T 49594 T 494
Gup 2 95 +39s+49da+39a+dd |5~ p S+qd SI
G, 3 +q,+1 - ’
spec QS Qd \%(qs+qd) W]
= |n saturation
1 n o~
7 qs+3/4 ) Wi 5:0.8 wi
5]’1D = — = ) and 7/nD = n5nD = )
3 g+l 2 S n-z=1 SI
Slide 27 m

E P .- I © C. Enz | 2022 Low-power radio design for the loT



Noise in the MOS Transistor at RF

Effect of Velocity Saturation

ASSLSSLSLSLLLYL,

[ —
high longitudinal

Carrier enter lectrical field Charge
velocity electncal el | puilds-up
saturation at drain

= For short-channel devices in Sl and saturation = lateral electrical field larger than
critical field = carrier velocity saturation

= Carrier velocity limited - additional charge builds up close to the drain >
additional thermal noise without increase of G,,, = increase of §,,5,; COMpared
to the long-channel value 2/3
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Noise in the MOS Transistor at RF

Short-channel Effects on y,,p (in saturation)

— 4F 4
>~ F :
..8 3 E L=40nm, YWi=1 00, OLYnD=O.O68 E 3 70X10-3
L . \\ . 60
§ 5 L=100nm, y,;=1.25, 0,,p=0.033 501~
L% 2 _ L=120nm, y,=1.26, a,,,=0.027 2 o 4op
C S 30

s /) /
B2 - 20
§ E Coefficient values * one standard deviation
= 1F 1 1or % i
© L A b =2.8489 + 0.108
E r 0 | | | |
= ;\ L=180nm, v,,=0.98, .,,,=0.016 3 0 S 10 19 20 25x10°
I_E O : L=240nm’YWI=086’ aYnD=00111 raal 1 L1 1111 ] O 1/L [1/nm]

0.1 1 10 100

Inversion Coefficient IC [-]

= The noise excess factor y,,p, can be modelled versus IC as
Ynp EYwi T Ay.p° IC
= Where y,,; and «,  are empirical factors
" a, , scalesapproximatively as a,, ~ = 2.85/L where L isinnm

A. Antonopoulos et al., “CMOS Small-Signal and Thermal Noise Modeling at High Frequencies,” TED, vol. 60, No. 11, Nov. 2013.
M. Chalkiadaki, PhD Thesis 2016.
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Noise in the MOS Transistor at RF
Example 1: Channel Thermal Noise Only

/1 7 /5

I2 1
|_| | | Gm'Vas Alp I Common- |
i lvz V1l Cas lVGS le V1l source le
v v T A l | v v | amplifier | 7

N L

Port1]
¢ HUod

v

= The input referred noise sources and the correlation admittance are calculated as

2
szynD/Gm GizynD/Gm'(wCGS) G.=0 B.=wlgg

= 7, and I,, are fully correlated since there is only one noise source I,

pGD:Yc' Rv/Gi =]

= The optimum source admittance and the minimum noise figure are given by

G, .-
G = /R—’—BC =0 By =—B,=—0Cgs Fpin =1+2R,(Gyp + G, ) =1
(%

= The optimum source admittance is simply equal to the conjugate match for
maximum gain
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Noise in the MOS Transistor at RF

Example 1: Channel Thermal Noise Only

= The reason why F,,;,, = 1 canbe explained as follows

. . l>
| Gm Vs Alp
% l lVGS lvz
O 2 L 0
Vl 1 1
Zin S =y 1
in n GS + - + ]O)CGS
JoL

= For Gy = G, = 0 and Lg made to resonate with Cy; at the operating

frequency, the quality factor of the input circuit becomes infinity and the gain at the
input becomes infinity, leading to a minimum noise factor of 1!
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Noise in the MOS Transistor at RF

Example 2: Effect of the Gate Resistance Noise
Avmg V,

I Iy Iy Re Iy I = S
- IJ 5 | o @ | GmVes Ao I, | Common-
V1l € e =1 le V1l Cas lVGS lVQ V1l source lVQ
voe MY Y T X v Y amplifier v
. S .

* For wR;C;s < 1, the noise parameters R,,, G; and Y. of the equivalent noisy
two-port are given by

2
7/nD (1+aG) G-:ynD'(a)CGs)z GC:(wCGS) RG BC:a)CGS
1+C¥G

7 /nD
R + R =
g, ¢ G, "G, 1+ag

= The gate resistance R directly adds to the input-referred resistance R,

" . represents the ratio of the noise PSD of the gate resistance to the input

referred channel noise
s 4kTRg G R

AkT ¥,p /G 7up
= V7, and I,, are now partially correlated accordmg to

<1

ag

R C()RGCGS + ]

pPGp =1
J1+ag \ /1 +ag
E P I- I © C. Enz | 2022 Low-power radio design for the loT Slide 32 m
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Noise in the MOS Transistor at RF

Example 2: Effect of the Gate Resistance Noise

= The optimum source admittance and the minimum noise factor are then given by

G 2 aG
G, = |[—-+-B=wC ~ wCpreo o for a- <l
opt Rv c GS +ag GS G G
Q)CGS
B t:_B =——E—Q)CGS for OlG<<l
Pt T g,
- Y
Fmin:1+2Rv.(G0pt+Gc):1+2(;ZD.a)CGS'(‘/aG +C‘)RGCGS)
m
. ‘R
=142y, o 2 with anGm G
2 VnD

where w; = G,,/Ce;s
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Noise in the MOS Transistor at RF

Comparison to Measurements on 40 nm Device

1.2 : :
[ | O Vg-Vqo=0.55V (IC = 29)
- | —— Analytical Model

09L ———- BSIME? Model

N |:min [d B]

o6k o FF o

F,= 190 GHz

i i | Yoo =3 :
03 0 T Rg=45Q |
| | G = 100 MANV 7
i og=0.15 §
0.0 '
0 5 10 15 20
Frequency [GHZ]
Foin =142y, 5 -Jag -— with g 212G
Wy VnD

= This simple model works very well for w <« w;
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Noise in the MOS Transistor at RF

Measured and Simulated Noise Parameters
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C. C. Enz and E. A. Vittoz, Charge-Based MOS Transistor Modeling — The EKV model for low-power and RF IC design, Wiley, 2006.
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Noise in the MOS Transistor at RF

Extracted Noise Factors for a 40nm Bulk CMOS Process

4.0¢ ; ; 3.5
E —A— Extracted Short Channel Value for y,p E M=6 OLynD_('YnD"I )/IC.

3.5 [ | @~ Extracted Short Channel Value for 8,6 : 3.0+ N=10 —
s Extracte.d Short Channel Value for ¢, 1 f 7 D ~ 1 + o . ]C

3.0 |— Theoretical Long Channel Value for y,p . 251 W=1.8 um n YuD |
[ |- - - Theoretical Long Channel Value for §,g ] . L=40 nm

YnD

25 ;_ = - = Theoretical Long Channel Value for cq ; 20l VD=1 1V
20k 1 | n=1.48
: ] 150 lpec=2.TMA

b

Noise Model Parameters

15F / o, =0.0698
1.0F LI Lo 1 R R R R R R N
E |
0.5 : 0.5 @ Extracted from Measurements | |
F —— Analytical Expression |C=29.8‘:
C 1 1 1 11 11 ll 1 1 11 1 11 ll 1 11 1 11
O'% 1 0.0 2 4 68 2 4 68 2 » 4 68
: 0.1 1 10 100
IC IC

= The previous values of the noise factors y,,p, 6,,c and c are given for long-
channel transistor ignoring the short-channel effects (SCE) such as velocity
saturation (VS)

= SCE and particularly VS tend to degrade the noise performance resulting in an
increase of y,,p and &, particularly in Sl where VS is predominant

= This is confirmed by the values shown below extracted from noise measurements
made on a 40 nm bulk CMOS device

M. Chalkiadaki and C. Enz, TMTT, 2015.
M. Chalkiadaki, PhD Thesis No. 7030, 2016
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L M. Chalkiadaki and C. Enz, TMTT, July 2015.
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Noise in the MOS Transistor at RF

NF_,;. and R versus IC for 40nm Bulk CMOS Process

= The minimum noise figure NF,,,;,, and input-referred noise resistance R,, show a
minimum in MI due to the sharp increase of y,,p at high IC




Noise in the MOS Transistor at RF

Actual Noise Figure

= The actual noise figure also shows a minimum in Ml
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M. Chalkiadaki, PhD Thesis 2016
M. Chalkiadaki and C. Enz, TMTT, July 2015,
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Noise in the MOS Transistor at RF

Noise Parameters for a 40nm Bulk CMOS Process
N-channel, M=6, N¢=10, W;=2 um, L;=40 nm, Vg=0V, V=11V

1.2 v Vg- Vg =0.05V
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L M. Chalkiadaki and C. Enz, TMTT, 2015.
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Noise in the MOS Transistor at RF

Shot Noise of the Gate Leakage Current

= |n addition to the IGN (thermal noise), there is also an additional component
coming from the gate leakage current which shows shot noise and has a PSD

given by
Sar, =241
10—19 _
W=10pm, L=10pm 10 ;
e o e MEAsuUre
107 VGS=2 v VDS=1 v _quG
o 1,=66.2 uA ~1072
€I I
o >
= =
m_° L)

Ll 1 1 ilil
107 107 107
gate current (A)

1072
0 20 40 60 80 100
frequency (kHz)

A. J. Scholten et al., TED, March 2003.
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Noise in the MOS Transistor at RF

Effect of the Gate Tunneling Current Shot Noise

= The effect of the shot noise coming from the tunneling current can be added by

redefining G,,; as

2 2

(@Css)” 2915 (@Cgs)”  Ig
GG (@) = PG - + =BG +
. " G,, 4kT " G,, 2U;

= The minimum noise factor is then given by

2
. . A [
Fooo—14 22D [G-(l—cg,)- 1+[ﬁj with a)cza)t-\/ G
G, -Ur @, 20,6 -G -Ur

c

= The gate tunneling current sets a non-zero minimum value of F,,,;,, at frequencies
below w,.

1+ 27”D'[G-(1—c§) for o<,
G, -Ur

min

1+2w£-\/7/nD -B.c -(l—cé) for o> o,
L !
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Noise in the MOS Transistor at RF

Shot Noise of the Gate Leakage Current
= The gate leakage shot noise is independent of frequency whereas the IGN and the
noise coming from the gate resistance are proportional to w?

= The plot (simulations) below shows that the gate noise for L=100nm is dominated
by shot noise for f<1GHz and by IGN and gate resistance noise for f>1GHz

1 0-21

102k Ves=Vos=1V

- t,,=1.5nm (EOT) L=1um
0
N with shot noise
= 1078 ~ — — = - without shot noise

o e L=100nm

w 1 0—26 P '

1 0—27 _ 7’ _ P -

10-28 1 L ,l I EREI I 1 1ittil

107 10 10° 10'

frequency (GHz)

A. J. Scholten et al., TED, March 2003.
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