MICRO-461 Low-power Radio Design for the IoT

11. RF Power Amplifiers

Christian Enz, Vladimir Kopta

Integrated Circuits Lab (ICLAB), Institute of Microengineering (IMT), School of Engineering (STI)

Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland

Outline

- Introduction and Definitions
- Basic Power Amplifiers
 - Linear Power Amplifiers classes A, AB, B and C
 - Switching Power Amplifiers classes D, E, (F)
- Linearization and Efficiency Enhancement Techniques

Introduction

- CMOS technology is not optimized for high-power and high-frequency operation
- The driver behind CMOS is the price and high level of integration
- For high-end applications (space, military) dedicated technologies are indispensable
- Mid-range applications are dominated by CMOS

P. Reynaert and M. Steyaert, *RF Power Amplifiers for Mobile Communications*, Springer, 2006.

EPFI

Introduction

- Most important aspects of power amplifiers:
 - Output power Low supply voltage of deep submicron technology nodes makes it difficult to achieve power levels needed for some applications
 - Efficiency The key metric of power amplifiers, determines autonomy of the system (the PA is usually the most power hungry block in the system)
 - Linearity important for high-performance systems employing complex modulation schemes (QAM, OFDM etc.). Low power systems tend to use simpler schemes with no amplitude modulation in order to simplify implementation of power amplifiers
 - Gain traditionally power gain, although in modern CMOS technologies can be replaced by driving requirements (input power cannot be defined for a purely capacitive load)

Signal Properties

- In order to optimize a power amplifier it is necessary to understand signal properties
- Constant Envelope the envelope of the transmitted signal constant over time, possible to use a non-linear amplifier, typically more efficient – phase or frequency modulated signals
- Non-Constant Envelope the signal envelope varies with time, linear power amplifier is necessary, typically less efficient

Signal PDF

- Amplitude variation can be quantified using Peak-to-Average Power Ratio (PAPR), defined as the ratio of maximum and average power
- A more complete description of amplitude modulation can be given using a PDF of the envelope signal
 - PDF of a constant envelope signal corresponds to a Dirac impulse

PA Definitions

 Output power is the power delivered to the load, usually interested in maximum output power and average output power

$$P_{tot} = \langle p(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} p(t) dt$$
$$P_o = \langle v_{out}(t) \cdot i_{out}(t) \rangle = \frac{\langle v_{out}^2(t) \rangle}{P} = \frac{V_{o,rm}^2}{P}$$

 R_L

 R_L

Power gain – traditionally used for PAs with a real input impedance. For CMOS
PAs up to 10 GHz input impedance is capacitive and hence input power cannot be
defined
G_P

$$G_{p,dB} = 10\log\frac{P_o}{P_{in}}$$

PA Definitions

- Different ways to define efficiency of power amplifiers:
 - Drain efficiency:

$$\eta_d = \frac{P_o}{P_{DC,PA}}$$

- Note that only power at the fundamental frequency is relevant
- It is possible to define conversion efficiency as a ratio of total output power to the DC power consumption
- Overall efficiency:

P. Reynaert and M. Steyaert, RF Power Amplifiers for Mobile Communications, Springer, 2006.

Power Added Efficiency (PAE):

Efficiency Optimization

 If the PDF of the signal is known and drain efficiency as a function of signal envelope (amplitude) is known then average drain efficiency can be calculated as:

$$\eta_d = \int_0^{A_{max}} \eta_d(A) \cdot p(A) \cdot dA$$

- As a general rule efficiency and linearity are contradictory requirements
 - Nonlinear amplifiers typically exhibit higher efficiency

Outline

- Introduction and Definitions
- Basic Power Amplifiers
 - Linear Power Amplifiers classes A, AB, B and C
 - Switching Power Amplifiers classes D, E, (F)
- Linearization and Efficiency Enhancement Techniques

Common Source Amplifier

- All the power amplifiers that will be mentioned today use a common source configuration
- How are they different to common source amplifiers you have seen before? Here we are talking about large signals! The aim is to maximize efficiency and output power
- Purely resistive load limits achievable amplitude to $V_{DD}/2$ and efficiency to 25%
- Can we do better?

Class A Power Amplifier

- Instead of a resistor a large inductor is used in the drain of the transistor
 - Short circuit for DC, and open for AC signals (RF choke)
- DC value of the drain voltage is equal to V_{DD}
- Output signal can swing from 0 to 2V_{DD}
- Load separated by a DC blocking capacitor
 - Short circuit for AC signals, open for DC
- Transistor is assumed ideal:
 - Saturation voltage is 0
- Passive components assumed ideal
 - No losses

Basic amplifiers

Class A Power Amplifier

Output power of a class A amplifier and DC consumption are given by:

$$P_o = \frac{V_o^2}{2R_L}$$
 , $P_{DC} = V_{DD}I_{DC} = \frac{V_{DD}^2}{R_L}$

• The theoretical drain efficiency is then given by:

$$\eta_d = \frac{P_o}{P_{DC}} = \frac{1}{2} \left(\frac{V_o}{V_{DD}} \right)^2 = 0.5 \text{ if } V_o = V_{DD}$$

- Maximum efficiency of a class A amplifier is 50%
- Reduces with square of the output amplitude
- Highest linearity

Class B Power Amplifier

- Class B power amplifier each transistor only conducts half the time
- Idea: increase the efficiency by switching transistors off for a period of time

DC power, output power and efficiency:

$$P_{DC} = \frac{2}{\pi} I_P V_{DD}, \quad P_o = \frac{1}{2} I_P^2 R_L, \quad \eta_D = \frac{\pi}{4} \frac{V_o}{V_{DD}}$$

Maximum efficiency around 78.4%

Efficiency of class B

- Another advantage of class B is that the output efficiency is proportional to V_o
- Efficiency drops slower for power back-off
- Better characteristic for amplitude modulated signas

- Reducing the conduction angle from 2π to π leads to an increase in efficiency
- An arbitrary conduction angle can be chosen
- Determined by the bias of the transistor
- Assume the current pulse is shaped like a part of a sine wave
 - This waveform generates higher harmonics
 - Output resonant load acts as open for the fundamental and short for all higher harmonics

• For a given current, magnitude of the n-th harmonic can be calculated as:

$$I_n = \frac{1}{\pi} \int_{-\alpha/2}^{\alpha/2} \frac{I_{max}}{1 - \cos(\alpha/2)} \left[\cos(\theta) - \cos(\alpha/2) \right] \cos(n\theta) d\theta$$
$$I_1 = \frac{I_{max}}{2\pi} \frac{\alpha - \sin(\alpha)}{1 - \cos(\alpha/2)}$$

• DC current is given by:

$$I_{DC} = \frac{1}{2\pi} \int_{-\alpha/2}^{\alpha/2} \frac{I_{max}}{1 - \cos(\alpha/2)} \left[\cos(\theta) - \cos(\alpha/2) \right] d\theta$$
$$= \frac{I_{max}}{2\pi} \frac{2\sin(\alpha/2) - \alpha\cos(\alpha/2)}{1 - \cos(\alpha/2)}$$

Basic amplifiers

Reduced Conduction Angle

 It is then possible to calculate the theoretical efficiency for a given conduction angle and compare different classes of PAs

- The efficiency increases as the conduction angle decreases, however:
 - Output power decreases for a zero conduction angle the output power tends to zero
 - Driving requirements increase larger signal swing is needed at the gate (to generate a larger current pulse) resulting in increased power consumption of the driver - important for low power transmitters
 - For a capacitive load dissipated power is proportional to $\sim fCV^2$
 - Increases with the input amplitude higher for a lower conduction angle
- Class C is rarely used in practice due to low output power and high driving requirements

Saturated Class A

- So far the assumption was that the maximum amplitude is *V*_{DD}
- Assume we start from the class A amplifier and increase the drive so that the drain voltage starts to clip
- As the driving signal increases the clipping angle increases
- In the limit case the drain current and voltage become square waves

Saturated class A

- In the limiting case there is no overlap between the drain current and the drain voltage - no losses in the transistor
- But the output voltage contains higher harmonics \rightarrow loss of efficiency
- Total output power and DC power are given by:

$$P_{o,tot} = \frac{V_{DD}^2}{R_L}$$

Fundamental output voltage is given by:

$$V_o = V_{DD} \cdot 4/\pi$$

Resulting in output power given by:

$$P_o = \frac{(V_{DD} \cdot 4/\pi)^2}{2R_L}$$

• And finally a maximum efficiency of:

$$\eta = \frac{\left(4/\pi\right)^2}{2} = 8/\pi^2 \approx 81\%$$

Class F

- Saturated class A amplifier eliminates losses in the transistor, but power is lost in output harmonics resulting in 81% efficiency
- Losses in higher harmonics can be avoided by introducing a tuned load that removes higher harmonics and shapes the drain current and voltage
- In this way a class F amplifier is derived

Class F

- Class F can achieve the theoretical drain efficiency of 100%
- Efficiency improves with addition of each resonator

Class F

- Class F is impractical due to a large number of passive components
- In practice all of these components will add losses
- Difficult to integrate on chip
- Instead of using a large number of resonators a transmission line can be used
 - Again, due to length of transmission lines, impractical for frequencies below 10 GHz
 - Transmission line also introduces some losses

Class D

- Class F is not a switching amplifier, only when an infinite number of resonators are used and the drain voltage is square a transconductor can be replaced with a switch
- Class D is the first real switching amplifier
- Two transistors are needed a PMOS and an NMOS
- Essentially an inverter with a resonant load

Class D

- If the switches are ideal drain voltage will be a square wave
- Resonant load removes all the higher harmonics from the output current
- As a result output current is a sine
- Ideally transistor losses are eliminated and output efficiency reaches 100%

Class D

- Although theoretically class D reaches 100% efficiency there are several issues:
- Driving requirements two transistors need to be driven, more power dissipated in the driving stage

$$P_{diss} = \frac{1}{2} f C V^2$$

- At the same time efficiency of the class D is inversely proportional to the switch resistance, meaning that the output transistors need to be wide and hence input capacitance will be large
- Output parasitic capacitance is constantly charged and discharged by the two switches resulting in losses
- Class E solves some of these issues

- This discussion will be limited to qualitative analysis of the class E amplifier
- In general class E is analyzed entirely in the time domain
- Requires solving nonlinear differential equations
- Capacitance C₁ can be used to absorb the parasitic drain capacitance
- Only one switching transistor needed
- Achieves a theoretical efficiency of 100%

- To understand the operation of a class E amplifier we must make some assumptions
- The output current is a sine
- Resonator C₀ L₀ removes all the higher harmonics
- Since the RF choke current is constant, when the switch is open capacitor current is given by:

Basic amplifiers

Class E

• When the switch is open the capacitor voltage grows according to:

$$v_{C_1}(t) = \frac{1}{C_1} \int_0^\infty \left(I_{DC} - I_o \sin(\omega t + \varphi) \right) dt$$

= $\frac{1}{C_1} \left(I_{DC} \cdot t + \frac{I_o}{\omega} \cdot \cos(\omega t + \varphi) \right) + K_0$

• It is interesting to observe the behavior of v_c from π to 2π - start and end value are the same

- If the switch is open and closed in precisely the right moments the capacitor voltage will be 0
- This is known as the Zero Voltage Switching (ZVS) and eliminates losses on C₁
- In addition, if the first derivative of the drain voltage is also 0 sensitivity to component values is reduced
- Ideal drain voltage and current are shown below:

- Analytical derivation is somewhat complex but can be done for a case with lossless passive components
- Expressions for components and output power are then given by:

$$C_{1} = \frac{8}{\pi(\pi^{2}+4)} \frac{1}{\omega R_{L}} \approx 0.1836 \frac{1}{\omega R_{L}}$$
$$L_{x} = \frac{\pi(\pi^{2}-4)}{16} \frac{R_{L}}{\omega} \approx 1.1525 \frac{R_{L}}{\omega}$$
$$P_{o} = \frac{8}{\pi^{2}+4} \frac{V_{DD}^{2}}{R_{L}} \approx 0.5768 \frac{V_{DD}^{2}}{R_{L}}$$

- One known issue with class E power amplifier is that the drain voltage goes up to almost 4V_{DD}
- Might cause reliability issues if care is not taken
- Good news is that the current through transistor is 0 when the voltage is high
- Highest efficiency in practical applications
- Also highly nonlinear, cannot be used for amplitude modulated signals...
 - ...at least not without some special techniques that will be discussed later

Cascode PA

- Output transistors can be stacked to provide a larger output voltage range
- Output voltage is split between the two transistors supply can be increased
- Possible to us a thick gate transistor for the cascode (higher oxide breakdown voltage)
- Possible to stack several devices

Outline

- Introduction and Definitions
- Basic Power Amplifiers
 - Linear Power Amplifiers classes A, AB, B and C
 - Switching Power Amplifiers classes D, E, (F)
- Linearization and Efficiency Enhancement Techniques

Efficiency Enhancement and Linearization

- Predistortion
- Adaptive Biasing
- Envelope tracking
- Doherty Amplifier
- Outphasing
- Envelope Elimination and Restoration (Polar Amplifier)
- Digitally controlled PA

Predistortion

- Most PAs (even the ones we called linear) have a non linear relation between the input and output signal
- In order to provide good linearity the input signal can be predistorted
- Distortion that negates the PA nonlinearity is intentionally introduced to the signal to provide a linear overall characteristic
- The PA nonlinearity needs to be known
- If this is not the case, or if PA characteristic changes over time (or temperature) feedback techniques need to be used

Adaptive Bias

- If a class A input signal amplitude decreases, output amplitude will decrease as well
- If the supply voltage and bias current remain the same, the efficiency drops with the square of output voltage as shown before
- If the bias current of the class A amplifier scales with the output voltage the efficiency will scale as:

$$\eta_2 = \frac{V_p^2 / (2R_{in})}{(V_p / R_{in}) V_{DD}} \\ = \frac{V_p}{2V_{DD}}.$$

 If in addition the supply voltage scales, the drain efficiency remains constant at 50%

Envelope Tracking

- Envelope tracking amplifiers dynamically adjust the bias point of the main PA to improve efficiency at power back-off
- One way to implement such a transmitter is to add a power detector (or an envelope detector) in the RF path
- The power detector provides information on output power and dynamically adjusts the bias point of the PA (supply voltage or bias current)
- Envelope tracking does not improve peak efficiency, only average

Doherty Amplifier

- Doherty amplifier uses two amplifiers to improve the overall linearity while achieving better efficiency
- The main PA usually operates in class A or AB
- In the high output power regime this amplifier starts to saturate effectively loosing its linearity
- At that point the auxiliary amplifier (usually class C) kicks in to compensate for the nonlinearity of the main amplifier

Doherty Amplifier

- The problem is how to tie the two amplifiers
- The transmission line at the output of the main (carrier) PA inverts the impedance
- It can be shown that the impedance of the main amplifier is a function of the relative strengths of the two amplifiers α

$$Z_1 = Z_0 \left(\frac{Z_0}{R_L} - \alpha\right)$$

 As the output power increases so does α, maintaining constant drain voltage of the main amplifier as the power increases (load modulation)

Outphasing

- Basic idea: use two constant envelope amplifiers to produce a non-constant envelope signal (also known as LINC - LInear amplification with Nonlinear Components)
- By varying the phase of V1 and V2 a variable envelope signal can be generated
- Since the two PAs can be nonlinear a high efficiency can be achieved

Outphasing

- It is easy to see how to generate the two outphasing signals by looking at the phasor diagram
- The two signals can be generated in the baseband and then upconverted to the carrier frequency (more efficient than separating the two phase modulated signals at RF)
- The main issue is how to implement an efficient combiner for the two signals

Outphasing

- Issues with outphasing:
- Mismatch between the two paths
- Larger bandwidth needed for the two outphasing signals than the composite signal
- Interaction between the two amplifiers through the combining network
 - Ideal combiner should be passive, lossless and provide perfect isolation
 - In reality the signal of one amplifier affects the other
 - Assuming the two amplifiers act as voltage buffers and that an ideal transformer is used for summation it can be shown that impedances seen by each amplifier are given by:

$$Z_1 = \frac{R_L}{2} - j \cot \theta \frac{R_L}{2}$$
$$Z_2 = \frac{R_L}{2} + j \cot \theta \frac{R_L}{2}.$$

- Can be partially negated by parallel reactances
- Chireix's combiner

Digitally Controlled PA

- Quadrature baseband signals can be converted to amplitude and phase signals in the baseband
- Phase signal is then directly used to control the frequency synthesizer
- Amplitude signal (digital) can be used to control the output power
- In this example the PA is split into slices, each slice driven by the same phase modulated carrier
- Different stages can be turned on and off to control output power

Digitally Controlled PA

- One way to implement digital control is to simply turn the cascode transistor on and off
- No combining network all PA slices must operate as current sources to sum the currents at the output
- Similar to controlling the bias point of the PA
- Moderate efficiency combined with good linearity

• Polar amplifiers use amplitude and phase signals instead of I and Q signals

- In the previous example a digital signal controls a number of linear Pas
- Now, instead of using a large number of linear PAs, the idea is to find a way to control output power of the class E PA
- Need hard switching at the input, output power cannot be controlled using the input signal
- Output power of a class E stage determined by the supply voltage
- It is possible to use voltage regulator to modulate the supply of the class E power amplifier

- Loss in the linear regulator limits achievable efficiency
- The lower the supply voltage the more power is lost in the regulator
- It is possible to use a switching regulator instead
- Capable of achieving very high efficiency
- Issues:
- Ripple coupled to output
- Bandwidth of the amplitude signal
- Stability of the converter
- One solution is to combine a switching and a linear

Regulator to get the best of both

- Problems with the polar architecture
- Delay mismatch between the amplitude and phase path
 - Causes spectral regrowth
 - May require complex compensation techniques if high linearity is required
- AM-PM conversion
 - Changes in amplitude affect the phase of the output signal
 - Again results in spectral regrowth

