MICRO-461 Low-power Radio Design for the IoT

8. Low Noise Amplifiers (LNAs)

Christian Enz

Integrated Circuits Lab (ICLAB), Institute of Microengineering (IMT), School of Engineering (STI)

Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland

Outline

- **Low-Noise Amplifiers**
- Low-power LNA Design

Slide 1

General Considerations

- Since the LNA is the 1st-gain stage in the Rx path, its NF directly adds to the system NF
- The typical Rx noise figure ranges from 6 to 8 dB, it is expected that the antenna switch or duplexer contributes about 0.5 to 1.5 dB, the LNA about 2 to 3 dB, and the remainder of the chain about 2.5 to 3.5 dB
- The equivalent noise PSD at the input is given by $S_{neq} = 4kTR_{neq}$, the NF of a common-source LNA (neglecting the induced gate noise and the contributions of the following stages) is then simply

$$F = \frac{R_{neq}}{R_S} \cong 1 + \frac{\gamma_{nD}}{G_m \cdot R_S}$$

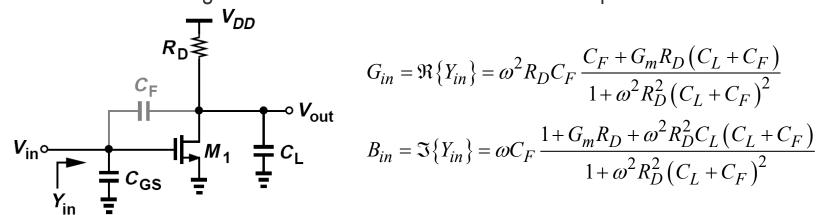
- Assuming the MOST is biased in strong inversion $G_m = 2I_D/(V_G V_{T0})$
- With NF=2dB and $R_S=50\Omega$, $R_{Neq}=29\Omega$. Neglecting the induced gate noise and assuming $V_G-V_{T0}=400mV$ the bias current is then 4.5 mA

General Considerations

- In addition to noise requirements, the LNA should also offer sufficient gain in order to reduce the noise contribution of the following stages
- It should have a sufficiently high IIP3 to avoid any intermodulation at the input
- Most of the time a 50Ω input (sometimes also output) impedance is (are) required
- The return input (output) loss should be small, the reverse isolation should be large and the LNA should be stable

Input Matching – Common Source Amplifier

• Several circuit configurations can be used to create a 50Ω input resistance



• Assuming $G_m R_D \gg 1$, $C_L \gg C_F$ and $\omega \approx 1/(R_D C_L)$

$$G_{in} = \Re\{Y_{in}\} \cong \frac{G_m}{2} \frac{C_F}{C_L}$$

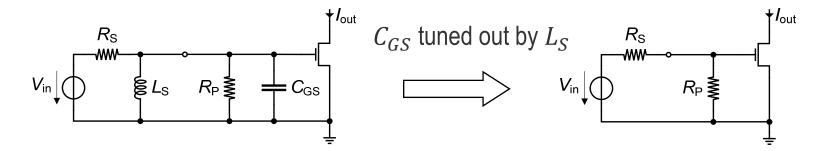
$$B_{in} = \Im\{Y_{in}\} \cong \omega C_F \frac{G_m R_D}{2}$$

- Proper choice of $2C_L/(G_mC_F)$ can yield 50Ω input resistance
- Low voltage gain at high frequencies due to bandwidth limitation at the output node

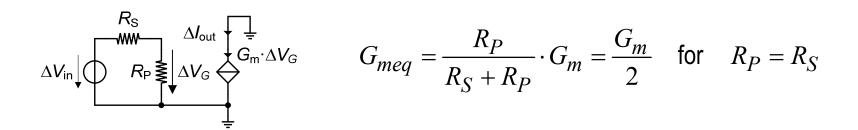
Common Source LNA (without matching network-LNA1)

• A resistor R_P can be added in parallel with the input and capacitance C_{GS} can be tuned out with an external inductor

at resonance frequency

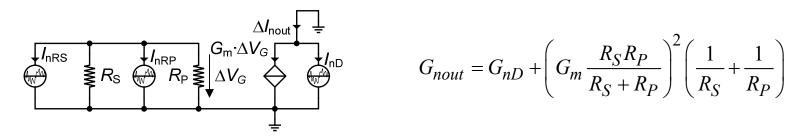


The equivalent transconductance (at resonance frequency) can be calculated from



Common Source LNA (without matching network-LNA1)

The thermal noise at the output (at resonance frequency) is given by



The input-referred equivalent noise resistance (including R_S noise) is given by

$$R_{neq} = \frac{G_{nout}}{G_{meq}^2} = R_S + \frac{R_S^2}{R_P} + \left(1 + \frac{R_S}{R_P}\right)^2 \frac{G_{nD}}{G_m^2} = R_S + \frac{R_S^2}{R_P} + \left(1 + \frac{R_S}{R_P}\right)^2 \frac{\gamma_{nD}}{G_m}$$

Finally the noise factor is obtained as

$$F = \frac{R_{neq}}{R_S} = 1 + \frac{R_S}{R_P} + \left(1 + \frac{R_S}{R_P}\right)^2 \frac{\gamma_{nD}}{G_m R_S} = 2 + \frac{4\gamma_{nD}}{G_m R_S} \quad \text{for} \quad R_P = R_S$$

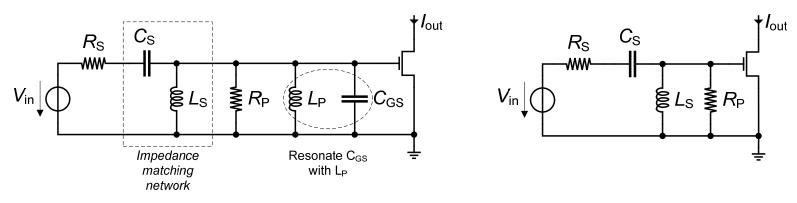
- Termination resistance R_P adds noise and lowers the gain by 6dB
- CS amplifier without termination R_P ($R_P \rightarrow \infty$ in above expression)

$$F = 1 + \frac{\gamma_{nD}}{G_m R_S}$$

A.-S. Porret, PhD Thesis, No. 2542, EPFL, 2002.

Common Source LNA (with matching network-LNA2)

- Resistance R_P can be made larger to reduce its noise current contribution
- An impedance matching network has then to be added in order to reduce the impedance seen from the source so it matches the source resistance

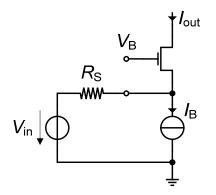


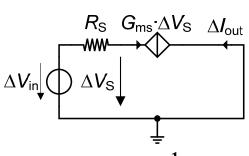
$$Q = \frac{X_S}{R_S} = \frac{R_P}{X_P} = \sqrt{\frac{R_P}{R_S} - 1} \qquad X_P = \omega_0 L_S = \frac{R_P}{Q} \qquad X_S = \frac{1}{\omega_0 C_S} = QR_S \qquad R_P = \left(1 + Q^2\right) R_S$$

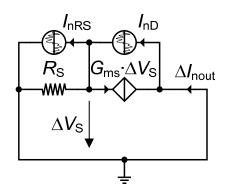
Voltage gain, equivalent transconductance and noise factor are then given by

$$A_v = \frac{\Delta V_G}{\Delta V_S} = \frac{1+jQ}{2} \quad G_{meq} \triangleq \frac{\Delta I_{out}}{\Delta V_{in}} = A_v G_m = (1+jQ)\frac{G_m}{2} \quad F = 2 + \frac{4\gamma_{nD}}{\left(1+Q^2\right)G_m R_S}$$

Common Gate LNA (without matching network-LNA3)







Input impedance:

- $Z_{in} = \frac{1}{G_{ms}}$
- Equivalent transconductance:

$$G_{meq} = \frac{\Delta I_{out}}{\Delta V_{in}} = -\frac{G_{ms}}{1 + G_{ms}R_S}\bigg|_{G_{ms}R_S = 1} = -\frac{G_{ms}}{2}$$

• Input-referred noise resistance:

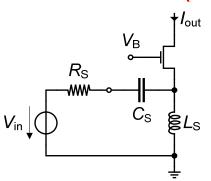
$$R_{neq} = R_S + \frac{G_{nD}}{G_{ms}^2} = R_S + \frac{S_{nD}}{G_{ms}}$$

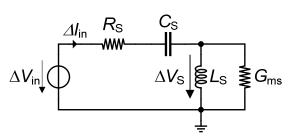
Noise factor:

$$F = \frac{R_{neq}}{R_S} = 1 + \frac{\delta_{nD}}{G_{ms}R_S} \bigg|_{G_{ms}R_S = 1} = 1 + \delta_{nD}$$

A.-S. Porret, PhD Thesis, No. 2542, EPFL, 2002.

Common Gate LNA (with matching network-LNA4)





- If R_S is too small it will lead to a high value of G_{ms} for having $Z_{in}=1/G_{ms}=R_S$, which results in a high power consumption
- An input impedance matching network is required, with the following parameters:

$$Q = \frac{X_S}{R_S} = \frac{R_P}{X_P} = \sqrt{\frac{R_P}{R_S} - 1}$$
 $X_P = \omega_0 L_S = \frac{1}{QG_{ms}}$ $X_S = \frac{1}{\omega_0 C_S} = QR_S$

The real part of the input impedance is then given by

$$R_{in} \triangleq \Re \left\{ Z_{in} \right\} = \frac{1}{G_{ms} \left(1 + Q^2 \right)}$$

• Input matching is then obtained by setting $R_{in} = R_S$, which leads to

$$G_{ms} = \frac{1}{\left(1 + Q^2\right)R_S}$$
 for which $R_{in} = R_S$ and $X_{in} \triangleq \Im\{Z_{in}\} = 0$

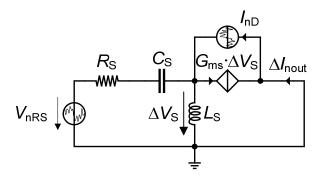
Common Gate LNA (with matching network-LNA4)

The voltage gain from ΔV_{in} to ΔV_{S} under impedance matching is given by

$$A_v = \frac{\Delta V_S}{\Delta V_{in}}\Big|_{\text{matched}} = \frac{1+jQ}{2}$$

Which leads to an equivalent transconductance given by

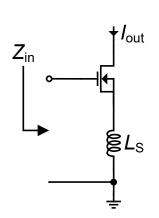
$$G_{meq}\Big|_{\text{matched}} = \frac{\Delta I_{out}}{\Delta V_{in}}\Big|_{\text{matched}} = A_v \cdot G_{ms} = (1+jQ) \cdot \frac{G_{ms}}{2}$$

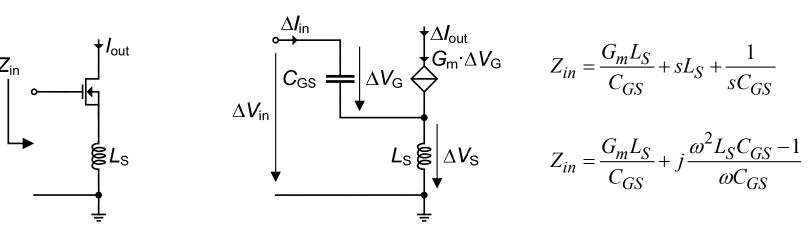


The total input noise resistance and noise factor under the above matched condition are then given by

$$R_{neq} \Big|_{\mathrm{matched}} = R_S + R_S \delta_{nD}$$
 $F \Big|_{\mathrm{matched}} = \frac{R_{neq}}{R_S} = 1 + \delta_{nD}$

Another method of creating a resistive input impedance without degrading the noise performance is to use inductive source degeneration

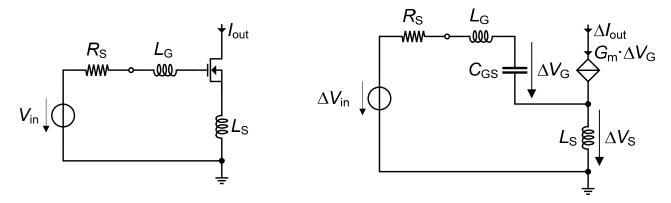




$$Z_{in} = \frac{G_m L_S}{C_{GS}} + sL_S + \frac{1}{sC_{GS}}$$

$$Z_{in} = \frac{G_m L_S}{C_{GS}} + j \frac{\omega^2 L_S C_{GS} - 1}{\omega C_{GS}}$$

- Z_{in} purely resistive at the resonant frequency set by C_{GS} and L_{S}
- However, L_S is actually chosen to match the source resistance R_S and hence cannot be used to tune out C_{GS}
- Additional degree of freedom is required to eliminate the remaining imaginary part
- Can be done by adding a series inductor L_G at the gate



- The remaining imaginary part can be tuned out thanks to a series inductor L_G
- The voltage gain from the input to the gate is then given by

$$A_{v} = \frac{\Delta V_{G}}{\Delta V_{in}} = \frac{1}{1 + (G_{m}L_{S} + R_{S}C_{GS})s + (L_{G} + L_{S})C_{GS}s^{2}} = \frac{1}{1 + \frac{s}{\omega_{0}Q} + \left(\frac{s}{\omega_{0}}\right)^{2}}$$
 with $\omega_{0} = \frac{1}{\sqrt{(L_{G} + L_{S})C_{GS}}}$ and $Q = \frac{1}{(G_{m}L_{S} + R_{S}C_{GS})\omega_{0}}$

The maximum voltage is reached for $\omega=\omega_0$ and is simply equal to Q

$$A_{v \max} = A_v(\omega = \omega_0) = Q = \frac{1}{(G_m L_S + R_S C_{GS})\omega_0} = \frac{1}{G_m \omega_0 L_S + 1/Q_L} \quad \text{with} \quad Q_L = \frac{1}{R_S \omega_0 C_{GS}}$$



• The equivalent transconductance $G_{meq} \triangleq \Delta I_{out}/\Delta V_{in}$ at resonance is now boosted by the Q of the series resonant circuit

$$G_{meq0} = G_{meq}(\omega = \omega_0) = A_{v\max}G_m = \frac{G_m}{(G_m L_S + R_S C_{GS})\omega_0}$$

The input impedance is then given by

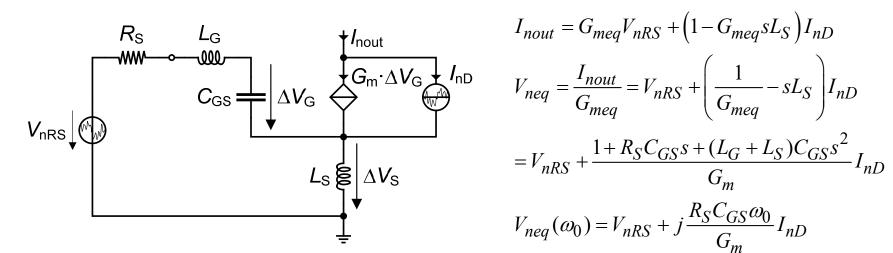
$$Z_{in} = \frac{G_m L_S}{C_{GS}} + s \left(L_S + L_G\right) + \frac{1}{s C_{GS}} \qquad Z_{in} = \frac{G_m L_S}{C_{GS}} + j \frac{\omega^2 \left(L_S + L_G\right) C_{GS} - 1}{\omega C_{GS}} \qquad Z_{in}\big|_{\omega = \omega_0} = \frac{G_m L_S}{C_{GS}}$$

• For impedance matching $R_S = G_m L_S / C_{GS}$ and hence

$$G_m L_S = R_S C_{GS}$$
 \Rightarrow $G_{meq0} = \frac{G_m}{2R_S C_{GS} \omega_0} = \frac{\omega_t}{2R_S \omega_0}$ with $\omega_t \cong \frac{G_m}{C_{GS}}$

ICLAB

The noise factor F at $\omega = \omega_0$ is then calculated from the circuit below



$$\begin{split} I_{nout} &= G_{meq} V_{nRS} + \left(1 - G_{meq} s L_S\right) I_{nD} \\ V_{neq} &= \frac{I_{nout}}{G_{meq}} = V_{nRS} + \left(\frac{1}{G_{meq}} - s L_S\right) I_{nD} \\ &= V_{nRS} + \frac{1 + R_S C_{GS} s + (L_G + L_S) C_{GS} s^2}{G_m} I_{nD} \\ V_{neq}(\omega_0) &= V_{nRS} + j \frac{R_S C_{GS} \omega_0}{G} I_{nD} \end{split}$$

From which we get the input referred noise resistance R_{neg}

$$R_{neq}(\omega_0) = R_S + \left(\frac{R_S C_{GS} \omega_0}{G_m}\right)^2 \cdot G_{nD} = R_S + \left(\frac{R_S C_{GS} \omega_0}{G_m}\right)^2 \cdot \gamma_{nD} G_m = R_S + \frac{\left(R_S C_{GS} \omega_0\right)^2 \gamma_{nD}}{G_m}$$

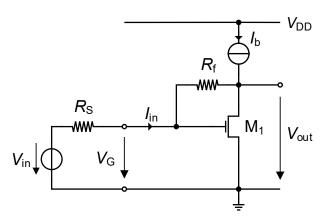
And the noise factor *F*

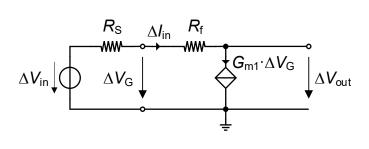
$$F(\omega_0) = \frac{R_{neq}(\omega_0)}{R_S} = 1 + \frac{\gamma_{nD}R_SC_{GS}^2\omega_0^2}{G_m} = 1 + \frac{\gamma_{nD}R_SC_{GS}\omega_0^2}{\omega_t} = 1 + \frac{\gamma_{nD}\omega_0}{Q_L\omega_t} \quad \text{with} \quad Q_L = \frac{1}{\omega_0R_SC_{GS}}$$

LNA Comparison

	Remark	LNA1	LNA2	LNA3	LNA4	LNA5
		V_{S} \downarrow	Vs S Resonate C ₂₅ with L ₂	V _{In} V _B V _B	V _B V _B C _S & L _S	V _{in} L _G
R_{in}	-	R_P	$\frac{R_P}{1+Q^2}$	$\frac{1}{G_{ms}}$	$\frac{1}{G_{ms}(1+Q^2)}$	$\frac{G_m L_S}{C_{GS}}$
G_{meq}	matched	$\frac{G_m}{2}$	$(1+jQ)\frac{G_m}{2}$	$-\frac{G_{ms}}{2}$	$(1+jQ)\frac{G_{ms}}{2}$	$\frac{\omega_t}{2R_S\omega_0}$
F	matched	$2 + \frac{4\gamma_{nD}}{G_m R_S}$	$2 + \frac{4\gamma_{nD}}{(1+Q^2)G_mR_S}$	$1 + \delta_{nD}$	$1 + \delta_{nD}$	$1 + \frac{\gamma_{nD}\omega_0}{Q_L\omega_t}$
NF_{min}	minimum obtained without any current limitation, i.e. for G_m or $G_{ms} \rightarrow \infty$ and under matched conditions	3 dB	3 dB	1.8 dB	1.8 dB	0 dB !
NF ₅₀	Value obtained for $Q < 7$, $R_S = 50\Omega$ and G_m or G_{ms} set by a bias current $I_b = 100 \mu A$	12.8 dB	3.7 dB (Q=7)	5.5 dB	1.8 dB	-

Resistive Feedback Wideband LNA





- The small-signal input impedance Z_{in} is given by $Z_{in} \triangleq \frac{\Delta V_G}{\Delta I_{in}} = \frac{1}{G_{in}}$
- Impedance matching is therefore obtained by setting $G_{m1} = 1/R_S$
- The small-signal voltage gain is given by

$$A_v \triangleq \frac{\Delta V_{out}}{\Delta V_{in}} = -\frac{G_{m1} \cdot R_f - 1}{G_{m1} \cdot R_S + 1} \qquad \qquad A_v \big|_{\text{matched}} = -\frac{R_f \left/ R_S - 1 \right|}{2}$$

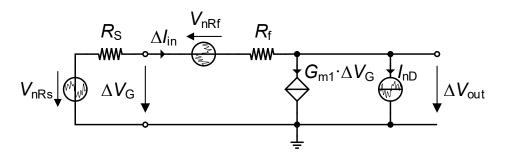
$$A_v \big|_{\mathsf{matched}} = - \frac{R_f \left/ R_S - 1 \right.}{2}$$

In practice $R_f \gg R_S$ for which the gain reduces to

$$A_v \cong -\frac{G_{m1} \cdot R_f}{G_{m1} \cdot R_S + 1}$$

$$A_v \big|_{\text{matched}} \cong -\frac{R_f}{2R_S}$$

Resistive Feedback Wideband LNA



It can be shown that the input-referred thermal noise resistance is R_{neq} given by

$$R_{neq} = R_S + \left(\frac{G_{m1} \cdot R_S + 1}{G_{m1} \cdot R_f - 1}\right)^2 \cdot R_f + \left(\frac{R_f + R_S}{G_{m1} \cdot R_f - 1}\right)^2 \cdot G_{nD1} \cong R_S + \left(\frac{2R_S}{R_f}\right)^2 \cdot R_f + R_S^2 \cdot G_{nD1}$$

• where $G_{nD1} = \gamma_{nD1} \cdot G_{m1}$. The noise factor is then given by

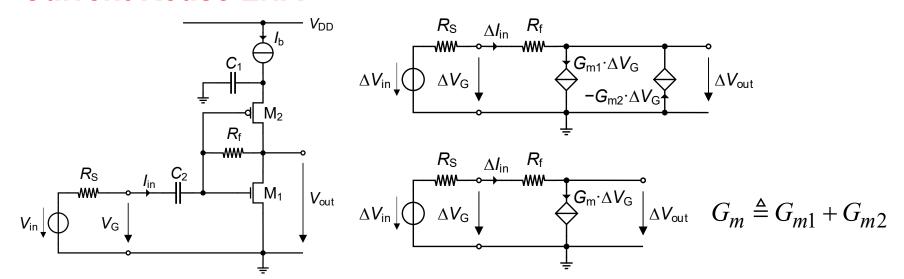
$$F = 1 + \left(\frac{G_{m1} \cdot R_S + 1}{G_{m1} \cdot R_f - 1}\right)^2 \cdot \frac{R_f}{R_S} + \left(\frac{R_f + R_S}{G_{m1} \cdot R_f - 1}\right)^2 \cdot \frac{G_{nD1}}{R_S} \cong 1 + \frac{4R_S}{R_f} + \gamma_{nD1}$$

- Assuming again that $R_f \gg R_S$ the noise factor further simplifies to

$$F \cong 1 + \gamma_{nD1}$$

• which again illustrates the importance of the transistor noise excess factor γ_{nD1}

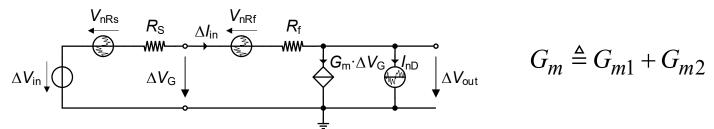
Current Reuse LNA



- As shown in the above small-signal schematics, the pMOS and nMOS transconductance come in parallel adding into a total transconductance $G_m = G_{m1} + G_{m2}$. Since M1 and M2 share the same bias current, G_m is about twice that obtained by a single transistor for the same bias current (particularly if both M1 and M2 are biased in WI)
- Merging the two transconductances results in the same schematic as the resistive feedback LNA. The input impedance Z_{in} and voltage gain are therefore given by

$$Z_{in} \triangleq \frac{\Delta V_G}{\Delta I_{in}} = \frac{1}{G_m} = \frac{1}{G_{m1} + G_{m2}} \qquad A_v \triangleq \frac{\Delta V_{out}}{\Delta V_{in}} = -\frac{G_m \cdot R_f - 1}{G_m \cdot R_S + 1}$$

Current Reuse LNA



- The above noise schematic is identical to the resistive feedback LNA except for the transconductance and the noise current source I_{nD} which accounts for both the noise from M1 and M2
- Assuming again that $R_f \gg R_S$, the input-referred noise resistance is given by

$$R_{neq} \cong R_S + \left(\frac{2R_S}{R_f}\right)^2 \cdot R_f + R_S^2 \cdot G_{nD} = R_S + \frac{4R_S^2}{R_f} + R_S^2 \cdot \gamma \cdot G_m$$

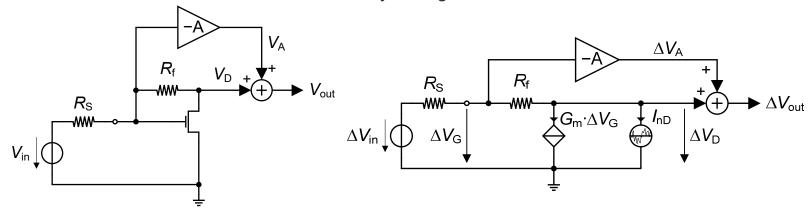
- where $G_{nD}\triangleq G_{nD1}+G_{nD2}$, $\gamma\triangleq (\gamma_{nD1}\cdot G_{m1}+\gamma_{nD2}\cdot G_{m2})/(G_{m1}+G_{m2})$ which is approximately $\gamma=\gamma_{nD1}=\gamma_{nD2}$ if $\gamma_{nD1}=\gamma_{nD2}$
- The noise factor under impedance matched condition $G_m = 1/R_S$ is then given by

$$F \cong 1 + \frac{4R_S}{R_f} + \gamma \cong 1 + \gamma$$
 for $R_f \gg R_S$

 The noise factor is identical to the resistive feedback LNA, but requires about half the current to achieve the same input impedance

Wide-band (WB) LNA with Noise Cancellation

The noise of an LNA can be reduced by using feed-forward noise cancellation



Gain is constructive for the input signal V_{in}

$$A_{D} = \frac{\Delta V_{D}}{\Delta V_{in}} = \frac{1 - G_{m} R_{f}}{1 + G_{m} R_{S}} \cong -\frac{R_{f}}{R_{S}}$$

$$A_{A} = \frac{\Delta V_{A}}{\Delta V_{in}} = \frac{-A}{1 + G_{m} R_{S}} \cong -\frac{A + G_{m} R_{f}}{1 + G_{m$$

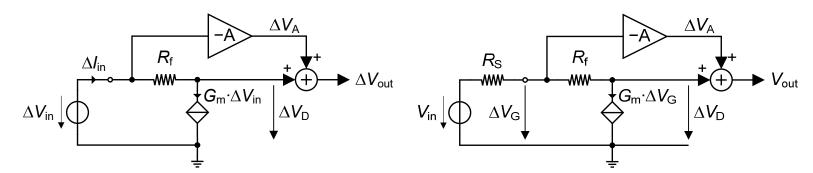
whereas it is destructive for the transistor noise source I_{nD}

$$Z_{mD} = \frac{\Delta V_D}{I_{nD}} = -\frac{R_f + R_S}{1 + G_m R_S}$$

$$Z_{mA} = \frac{\Delta V_A}{I_{nD}} = \frac{AR_S}{1 + G_m R_S}$$

$$Z_m = \frac{\Delta V_{out}}{I_{nD}} = Z_{mD} + Z_{mA} = \frac{AR_S - (R_f + R_S)}{1 + G_m R_S}$$

WB LNA with Noise Cancellation – Optimum Gain



• There is an optimum value of A for which the transistor noise is cancelled at the output (or equivalently $Z_m=0$)

$$A_{opt} = 1 + \frac{R_f}{R_S}$$
 which leads to: $A_{vopt} = -\frac{R_f}{R_S}$

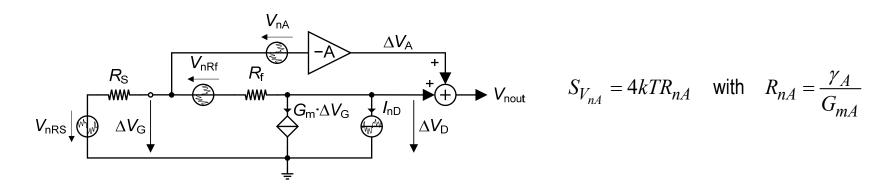
The input impedance is easily calculated as

$$Z_{in} = \frac{\Delta V_{in}}{\Delta I_{in}} = \frac{1}{G_m}$$

• For input matching condition $(Z_{in} = R_S)$, the optimum voltage gain A_{vopt} is then given by

 $A_{vopt} = -\frac{R_f}{R_S} = -G_m R_f$

WB LNA with Noise Cancellation – Noise Figure



 The noise figure can be calculated accounting for the noise added by the amplifier and the resistances

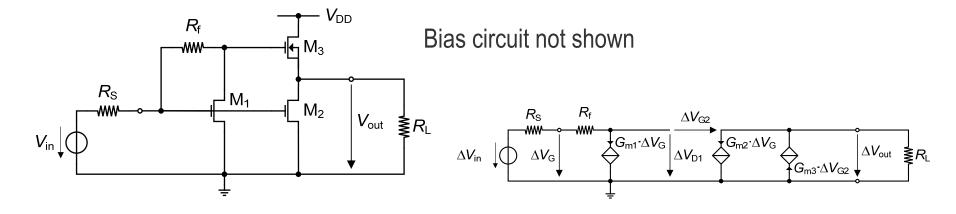
$$F = 1 + F_{G_{nD}} + F_{R_f} + F_{R_{nA}}$$

$$F_{G_{nD}} = \left(\frac{1 + R_f / R_S - A}{A - 1 + G_m R_f}\right)^2 \cdot G_{nD} R_S \quad F_{R_{nA}} = \left(\frac{A \left(1 + G_m R_S\right)}{A - 1 + G_m R_f}\right)^2 \frac{R_{nA}}{R_S} \quad F_{R_f} = \left(\frac{1 + G_m R_S}{A - 1 + G_m R_f}\right)^2 \frac{R_f}{R_S}$$

Imposing $A = A_{opt} = 1 + R_f/R_S$ results in $F_{GnD} = 0$ and hence

$$F_{opt} = 1 + \frac{R_S}{R_f} + \left(1 + \frac{R_S}{R_f}\right)^2 \cdot \frac{R_{nA}}{R_S} = 1 + \frac{R_S}{R_f} + \left(1 + \frac{R_S}{R_f}\right)^2 \cdot \frac{\gamma_A}{G_{mA}R_S}$$

WB LNA with Noise Cancellation – Implementation



• Same result as before with $A = G_{m2}/G_{m3}$ and assuming $G_{m3}R_L \gg 1$

$$A_v = \frac{\Delta V_{out}}{\Delta V_{in}} = -\frac{G_{m2}/G_{m3} + G_{m1}R_f - 1}{\left(1 + G_{m3}R_L\right)\left(1 + G_{m1}R_S\right)}G_{m3}R_L \cong -\frac{G_{m2}/G_{m3} + G_{m1}R_f - 1}{1 + G_{m1}R_S} \cong -\frac{G_{m2}/G_{m3} + G_{m1}R_f - 1}{1 + G_{m1}R_S} \cong -\frac{G_{m2}/G_{m3} + G_{m1}R_f - 1}{1 + G_{m1}R_S}$$

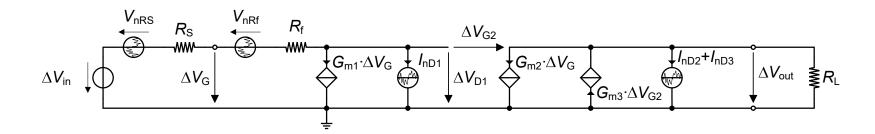
The noise contributed by M1 is cancelled for

$$A = \frac{G_{m2}}{G_{m3}} = A_{opt} = 1 + \frac{R_f}{R_S} \cong \frac{R_f}{R_S}$$
 for: $R_f \gg R_S$

The voltage gain then becomes

$$A_{vopt} = -\frac{G_{m3}R_L}{1 + G_{m3}R_L} \frac{R_f}{R_S} \cong -\frac{R_f}{R_S}$$
 for: $G_{m3}R_L \gg 1$

WB LNA with Noise Cancellation – Implementation



The optimum noise factor obtained for $G_{m2}/G_{m3}=A_{opt}=1+R_f/R_S$ is then given by

$$F_{opt} = 1 + \frac{R_S}{R_f} + \frac{\left(G_{nD2} + G_{nD3}\right)R_S}{\left(G_{m3}R_f\right)^2} = 1 + \frac{R_S}{R_f} + \frac{\gamma_{nD2}\left(1 + R_S/R_f\right) + \gamma_{nD3}R_S/R_f}{G_{m3}R_f}$$

• Since $R_S/R_f \cong 1/|A_{vopt}| \ll 1$, the noise of M3 can be neglected compared to the one of M2, resulting in

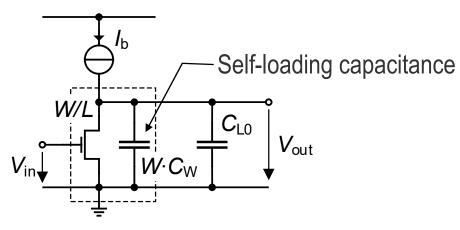
$$F_{opt} \cong 1 + \frac{R_S}{R_f} + \frac{\gamma_{nD2}}{G_{m3}R_f}$$

Outline

- Low-Noise Amplifiers
- Low-power LNA Design

Slide 25

Current Optimization in a CS Stage (without VS)



The voltage gain at high frequency ($\omega \gg \omega_u/A_{dc} = G_{ds}/C_L$) is given by

$$A_v = \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{G_m}{\omega C_L} = \frac{\omega_u}{\omega}$$

- where $\omega_u = G_m/C_L$ is the **gain-bandwidth** product
- We would like to find the **minimum current** for achieving a given voltage gain A_v at a given frequency ω
- This optimization of the bias current requires to include the self-loading capacitance that scales with W in the load capacitance $C_L = C_{L0} + W \cdot C_W$
- T. Melly, EPFL PhD Thesis No. 2231, 2000.
- A.-S. Porret, EPFL PhD Thesis No. 2542, 2002.
- A. Mangla, M. A. Chalkiadaki, F. Fadhuile, T. Taris, Y. Deval, and C. C. Enz, Microelectronics Journal, vol. 44, pp. 570-575, July 2013.

Current Optimization in a CS Stage (without VS)

The bias current can be written in terms of the inversion coefficient IC and transistor aspect ratio W/L as

$$I_b = I_{spec \square} \cdot \frac{W}{L} \cdot IC$$

The gain A_v or gain-bandwidth product ω_u is given by $\omega_u = G_m/C_L$ where the transconductance can also be written in terms of IC and W/L as

$$G_m = \frac{I_{spec\square}}{nU_T} \cdot \frac{W}{L} \cdot g_{ms}(IC) \quad \text{with} \quad g_{ms}(IC) = \frac{\sqrt{4IC + 1} - 1}{2} = \frac{2IC}{\sqrt{4IC + 1} + 1}$$

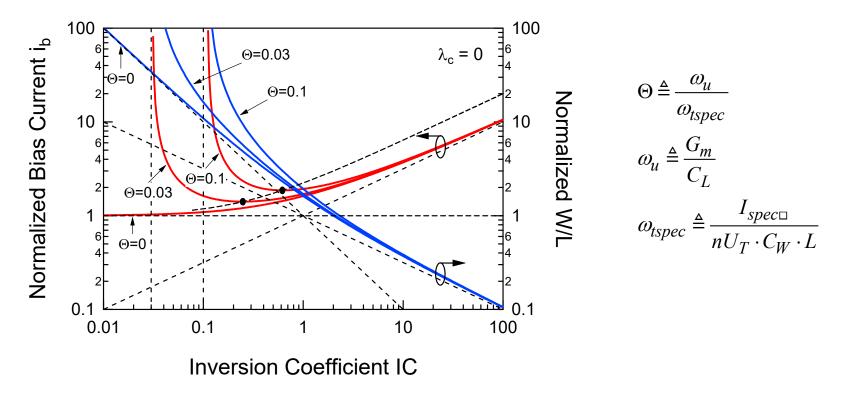
The above equations can be solved for I_b and W/L, giving the following normalized equations

$$i_{b} \triangleq \frac{I_{b}}{I_{spec}} \frac{1}{\Omega} = \frac{IC}{g_{ms} - \Theta} \qquad \qquad \Omega \triangleq \frac{\omega_{u}}{\omega_{L}} \quad \omega_{u} \triangleq \frac{G_{m}}{C_{L}} \quad \omega_{L} \triangleq \frac{I_{spec}}{nU_{T} \cdot C_{L0}}$$

$$AR \triangleq \frac{W}{L} \cdot \frac{1}{\Omega} = \frac{1}{g_{ms} - \Theta} \qquad \qquad \Theta \triangleq \frac{\omega_{u}}{\omega_{tspec}} \quad \omega_{tspec} \triangleq \frac{I_{spec}}{nU_{T} \cdot C_{W} \cdot L}$$

- C. C. Enz and A. Pezzotta, MIXDES 2016.
- C. Enz, F. Chicco, and A. Pezzotta, IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 73-81, Autumn 2017.

Minimum Bias Current (without VS)



- Self-loading cannot be ignored and introduces a minimum bias current for achieving a given gain-bandwidth product
- For reasonable values of the gain, the minimum current is achieved for an inversion coefficient in the moderate inversion region
- C. C. Enz and A. Pezzotta, MIXDES 2016.
- C. Enz, F. Chicco, and A. Pezzotta, IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 73-81, Autumn 2017.

Optimum IC for Minimum Bias Current (without VS)

The **optimum** IC, assuming no VS, for which the bias current is minimum is given by $IC_{opt} = 2\Theta \cdot (1+\Theta) + (1+2\Theta) \cdot \sqrt{\Theta \cdot (1+\Theta)} \cong 2\Theta + \sqrt{\Theta} \quad \text{since} \quad \Theta \ll 1$

• There is a minimum IC below which the specified gain-bandwidth ω_u can no more be achieved (assuming no VS)

$$IC_{lim} = \Theta \cdot (\Theta + 1) \cong \Theta$$

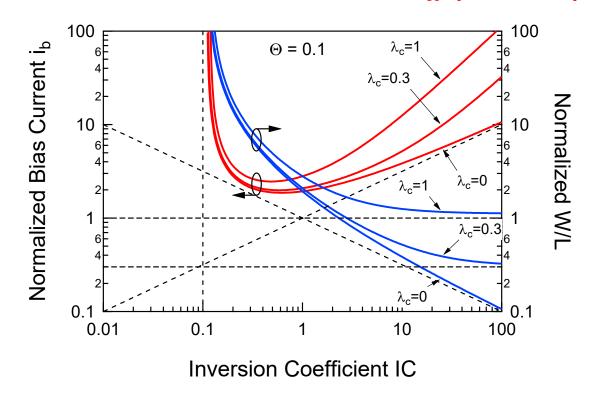
- This value corresponds to the vertical lines in the previous plot
- The normalized gain-bandwidth can be written as

$$\Omega = \frac{W/L}{1 + \kappa \cdot W/L} \cdot g_{ms} \cong \frac{g_{ms}}{\kappa} \quad \text{for} \quad \frac{W}{L} \gg 1 \quad \text{where} \quad \kappa \triangleq \frac{C_w \cdot L}{C_{L0}}$$

 The above condition on IC also corresponds to the maximum gain-bandwidth that can be reached for a given IC (again assuming no VS)

$$\Omega_{max} = \frac{\sqrt{4IC + 1} - 1}{2\kappa}$$

Constant Gain-Bandwidth Product ω_n (with VS)



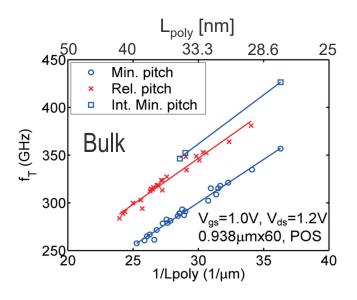
- The current saving is even greater when accounting for VS
- The optimum IC is slightly reduced due to VS and the minimum bias current is slightly increased
- C. C. Enz and A. Pezzotta, MIXDES 2016.
- C. Enz, F. Chicco, and A. Pezzotta, IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 73-81, Autumn 2017.

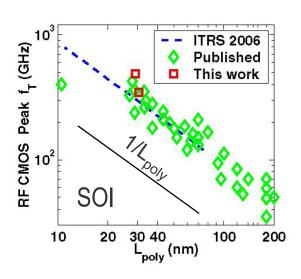
Example: 24GHz Amplifier in 40nm

- Target: A_v=15dB at ω =24GHz with C₁=18.5 fF gives Ω =0.83
- For L=L_{min}=40nm (ℓ =1) we have IC_{opt}=6.3, i_{bopt}=8.78 and w_{opt}=1.41

- Denormalizing for the given 40nm technology parameters and plugging the values in the BSIM6 model leads to a simulated gain of 14dB at 24GHz
- Verification with ADS and BSIM6

Low-power LNA Design





- High-f_t of deep-submicron CMOS process can be traded against power consumption by moving operating point to moderate or even weak inversion
- Similar to low-frequency analog design, the power consumption of RF LNA can be optimized using the normalized current efficiency factor

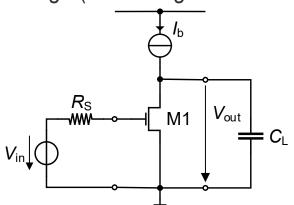
$$\text{current efficiency} \triangleq \frac{G_m \cdot n \cdot U_T}{I_D}$$

Hongmei Li, et al., VLSI Symposium 2007

Sungjae Lee, et al., IEDM 2007

Figure-of-Merit for Low Power RF

The voltage gain and noise factor of a common-source stage loaded by a similar stage (i.e. having a fan-out FO equal to 1 and hence $C_L = C_{GS}$) are given by



$$A_v \triangleq \frac{\Delta V_{out}}{\Delta V_{in}} \cong -\frac{G_m}{G_{ds} + j\omega C_L} \cong -\frac{G_m}{j\omega C_L} = j\frac{\omega_u}{\omega}$$

where
$$\omega_u \cong \frac{G_m}{C_L} = \frac{G_m}{C_{GS}} \cong \omega_t$$
 assuming $FO = 1$
$$F = 1 + \frac{\gamma_{nD}}{G_m R_S}$$

$$F = 1 + \frac{\gamma_{nD}}{G_m R_S}$$

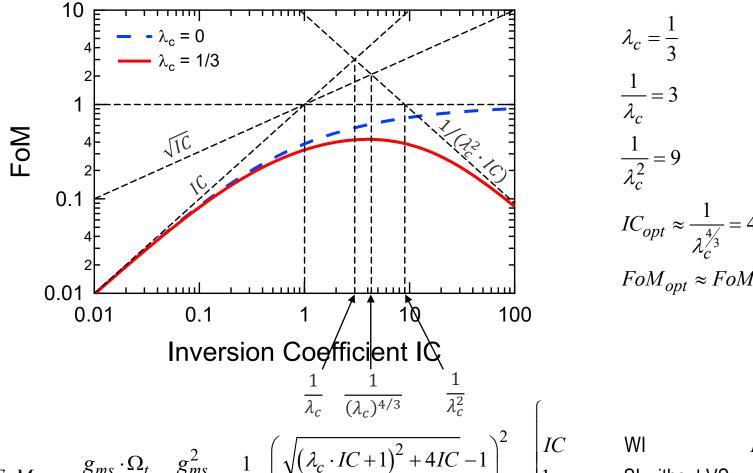
(assuming thermal noise from transistor M1 and resistance R_S only)

A FoM can be defined in order to maximize the gain-bandwidth product and minimize the noise factor at a given current

$$FoM \triangleq \frac{\omega_u}{(F-1) \cdot I_b} \cong \frac{R_S}{\gamma_{nD}} \cdot \frac{G_m \cdot \omega_t}{I_b}$$

- This FoM is proportional to the $G_m/I_b \cdot \omega_t$ ratio, which is an important FoM for lowpower RF IC design
- A. Shameli and P. Heydari, *ISLPED* 2006
- T. Taris, et al., RFIC 2011
- A. Mangla, J.-M. Sallese and C. Enz, MIXDES 2011

The $G_m/I_D \cdot F_t$ FoM is Maximum in Moderate Inversion



$$\lambda_c = \frac{1}{3}$$

$$\frac{1}{\lambda_c} = 3$$

$$\frac{1}{\lambda_c^2} = 9$$

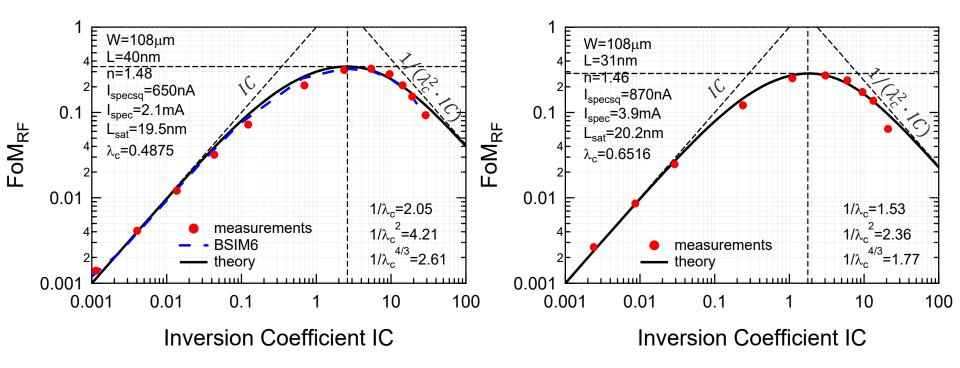
$$IC_{opt} \approx \frac{1}{\lambda_c^{4/3}} = 4.33$$

$$FoM_{opt} \approx FoM(IC_{opt}) = 0.43$$

$$FoM_{RF} = \frac{g_{ms} \cdot \Omega_t}{IC} = \frac{g_{ms}^2}{IC} = \frac{1}{IC} \cdot \left(\frac{\sqrt{\left(\lambda_c \cdot IC + 1\right)^2 + 4IC} - 1}{\lambda_c \cdot \left(\lambda_c \cdot IC + 1\right) + 2} \right)^2 \\ \cong \begin{cases} IC & \text{WI} & IC \ll 1 \\ 1 & \text{SI without VS} & IC \gg 1 \text{ and } \lambda_c = 0 \\ \frac{1}{\lambda_c^2 \cdot IC} & \text{SI with VS} & IC \gg 1 \end{cases}$$

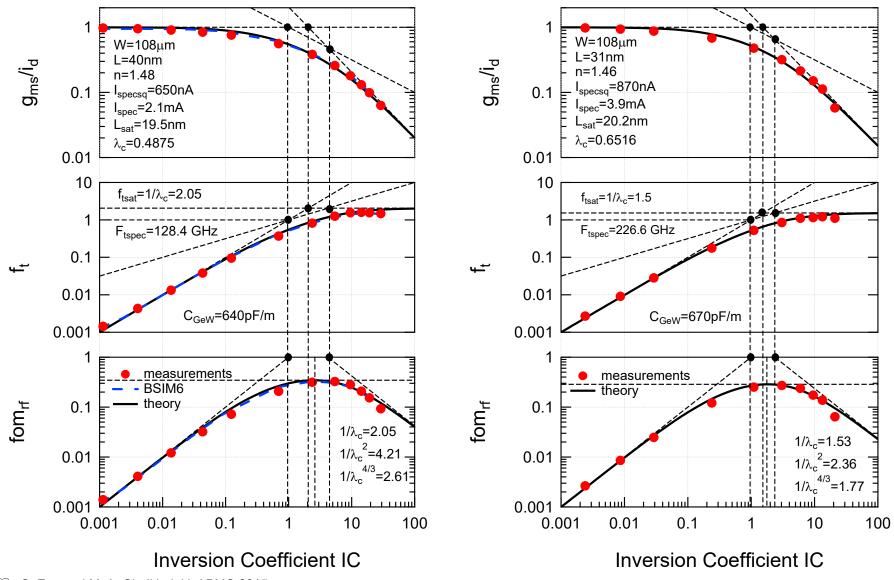
C. Enz and M. A. Chalkiadaki, APMC 2015.

The $G_m/I_D \cdot F_t$ FoM vs. IC for 40nm and 28nm Bulk CMOS



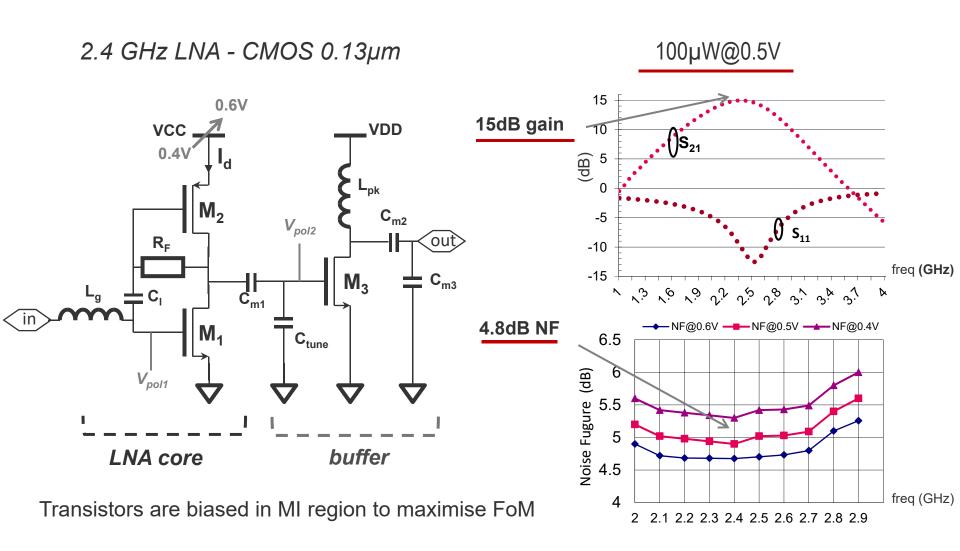
$$FoM_{RF} = \frac{g_{ms} \cdot \Omega_t}{IC} = \frac{g_{ms}^2}{IC} = \frac{1}{IC} \cdot \left(\frac{\sqrt{(\lambda_c \cdot IC + 1)^2 + 4IC} - 1}}{\lambda_c \cdot (\lambda_c \cdot IC + 1) + 2} \right)^2$$

Combined FoMs vs. IC for 40nm and 28nm Bulk CMOS



C. Enz and M. A. Chalkiadaki, APMC 2015.

Ultra Low Power LNA – Maximize $G_m/I_D \cdot F_t$ FoM in MI

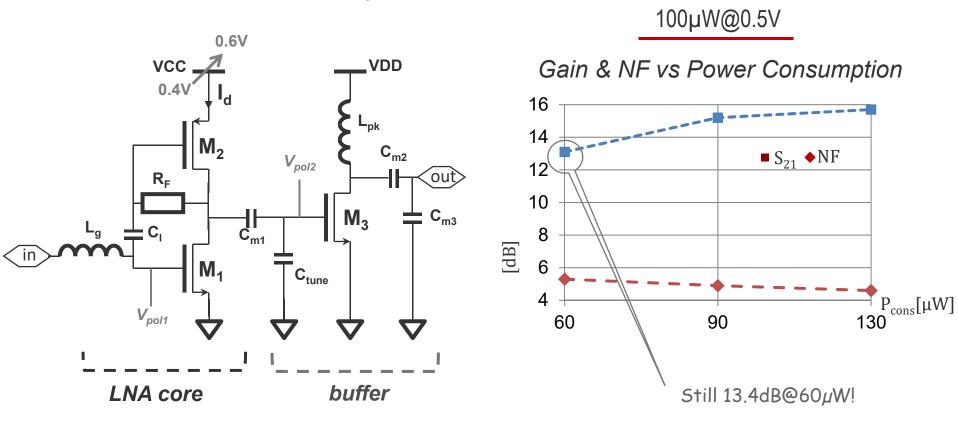


T. Taris, et al., RFIC 2011

Courtesy T. Taris, Univ. of Bordeaux, France

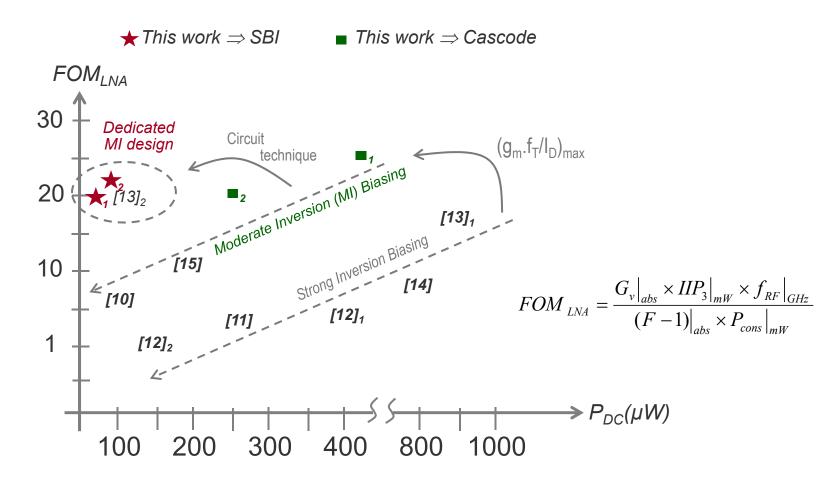
Ultra Low Power LNA – Maximize $G_m/I_D \cdot F_t$ FoM in MI

2.4 GHz LNA - CMOS 0.13μm



Transistors are biased in MI region to maximise FoM

Ultra Low Power LNA – Comparison with SOTA



^[10] A. Shameli"A novel Ultra Low Power Low Noise Amplifier using Differential Inductor Feedback", IEEE ESSCIRC, Montreux, Switzerland, Sep. 2006, pp.352-355

^[11] B. G. Perumana, "A fully monolithic 260-µW, 1-GHz subthreshold low noise amplifier," IEEE MiWCL, Vol. 15, N°. 6, pp. 428-430, June 2005.

^{12]} H. Lee , "A 3 GHz subthreshold CMOS low noise amplifier," *IEEE RFIC Symposium*, San Francisco, CA, USA, June 2006, pp.545-548 [13] V. Aaron, « A subthreshold low-noise amplifier optimized for ultra-low -power applications in the ISM band", *IEEE MTT*, Vol. 56, N°2, pp. 286-292, feb. 2008

^[14] J. Li, S. Hassan "A 0.7 V 850µW CMOS LNA for UHF RFID reader", *MOTL*, Vol. 52, N°12, pp. 2780-2782, dec. 2010

^[15] C.J. Jeong, W. Qu, Y. Sun, D.Y. Soon, S.K. Han, S.G. Lee "A 1.5 V, 140 µA CMOS Ultra Low Power Common Gate LNA", IEEE RFIC, Baltimore, USA, June 2011, pp. 203-206