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The Barkhausen Criteria

 Most oscillators can be viewed as positive feedback systems with 𝐻ሺ𝜔ሻ being 
the feed forward gain and 𝐺ሺ𝜔ሻ the transfer function of the feedback circuit which 
is usually a frequency selective network (resonator)

 Oscillations occur at 𝜔଴ if the loop gain 𝐻 𝜔଴ 𝐺ሺ𝜔଴ሻ is exactly equal to unity, 
leading to the Barkhausen criteria
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 The feedback network is usually frequency dependent and hence determines the 
oscillation frequency

 The Barkhausen criteria allows to derive the oscillation frequency, but does not say 
anything about the oscillation amplitude

 The latter is determined by the circuit nonlinearities
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The 3-points oscillator
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The 3-Points Oscillator – Barkhausen Criteria

 Many basic (single transistor) oscillators can be described by the generic 3-points oscillator

 The transistor parasitic can be embedded into the impedances 𝑍௞ (like for example the 
transistor input and output impedances are included in 𝑍ଵ and 𝑍ଶ defining 𝑍ଵᇱ and 𝑍ଶᇱ )

 Opening the loop at the gate allows to calculate the loop gain
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𝑍௜௡: transistor input impedance

 The loop gain has to be equal to unity to satisfy the Barkhausen criteria
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The 3-Points Oscillator – Basic Oscillators

 In the case all the components of the feedback network are reactive 𝑍௞ ൌ 𝑗𝑋௞
(𝑘 ൌ 1,2,3), neglecting the input impedance 𝑍௜௡ but accounting for the output 
impedance 𝑍௢௨௧ ൌ 1 𝐺ௗ௦⁄
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 Since 𝐴ௗ௖ ൐ 0, 𝑍ଶ should be of the same type of reactance than 𝑍ଵ, whereas 𝑍ଷ
should be of opposite sign leading to the following four basic single transistor 
oscillators depending on which node is the ground node
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The 3-Points Oscillator – Critical Transconductance

 The resonant frequency is then given by
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 The critical transconductance required to maintain the oscillation is given by

where 𝑄௅ is the unloaded 𝑄 of the inductor

 The larger the loss 𝑟 (the smaller the 𝑄௅), the larger the required 𝐺௠௖௥௜௧

 𝐺௠௖௥௜௧ also increases with frequency 𝜔଴ and parasitic capacitances 𝐶ଵ and 𝐶ଶ

Barkhausen criteria:

with:

Leads to:
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The 3-Points Oscillator – Oscillation Conditions
 Oscillations are maintained for 
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 Oscillations vanish if 

 Oscillations amplitude increase if 
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Accounting for Loss in Output Conductance
 If the output conductance is accounted for, the Barkhausen criteria becomes
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 The oscillation frequency is then slightly modified by the presence of the output 
conductance

 The critical transconductance is then given by

 The critical transconductance has to be larger by 𝛼 · 𝐺ௗ௦ compared to the case 
where 𝐺ௗ௦ is negligible
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Negative Resistance Analysis Method
 In a linear analysis, any oscillator can be viewed as a resonant circuit (𝑋௠ and 
𝑋௖) in series with a negative resistance െ𝑅௖ that compensates for the loss 𝑅௠

 The impedance seen at the input of the circuit 𝑍௖ should hence have a negative 
real part െ𝑅௖ and a negative imaginary part െ𝑋௖
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Such that their sum is equal to zero:
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Negative Resistance Analysis Method
 The corresponding small-signal circuit is given by
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 The oscillation frequency is then given by the condition on the imaginary part
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 The critical transconductance to insure oscillation is given by setting 𝑅௖ ൌ 𝑟
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which corresponds to the result obtained earlier using the Barkhausen criteria
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Negative Resistance Analysis Method
 The same analysis can be conducted accounting for capacitance 𝐶ଷ embedding 

the parasitic capacitances of the inductor and the transistor
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 Which leads to
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Impedance Locus
 When plotted in the complex plane for a 

given frequency (usually the resonance 
frequency 𝜔଴), versus the parameter 
𝐺௠, the circuit impedance 𝑍௖ሺ𝐺௠ሻ
describes a half-circle

 The impedance െ𝑍௠ ൌ െ𝑟 െ 𝑗𝜔𝐿 of 
the lossy inductor can be plotted versus 
𝜔 and describes a vertical line at െ𝑟

 The condition 𝑍௖ ൌ െ𝑍௠ corresponds 
to the intersections of the circle and the 
line (points A and B)

 It can be shown that only point A 
corresponds to a stable point

 By definition, at point A we have:
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Impedance Locus
 𝐺௠௖௥௜௧ and 𝜔଴ can be found by solving
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 𝑅௖ reaches a minimum (max in absolute value) given by

 If 𝑟 ൐ 𝑅௖,௠௔௫ there are no intersections and no oscillations can take place

 The condition for a solution to exist is hence given by

 If 𝐶ଵ and/or 𝐶ଶ decrease, point A moves downwards and 𝜔଴ increases

 If 𝐶ଷ ൌ 0 the circle becomes a horizontal line independent of 𝐺௠
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𝒎𝒄𝒓𝒊𝒕 for Given 𝟎 and 𝑳

 In the case the oscillation frequency 𝜔଴ and the quality factor of the inductor 𝑄௅
are set, 𝐺௠௖௥௜௧ can be found from

© C. Enz | 2022 Low-power radio design for the IoT Slide 14

which leads to

 The solution obviously only exists if

 An approximate solution can be found for 𝑄௅ ≫ 1
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Approximation of 𝒎𝒄𝒓𝒊𝒕

 As shown above, the oscillation frequency depends on 𝑟 and therefore on the 
quality factor 𝑄௅ of the inductor which is not desirable since it may vary 
significantly

 When losses are small (𝑟 small) or 𝑄௅ becomes large, the vertical line gets closer 
to the imaginary axis and the sensitivity of 𝜔଴ to 𝑄௅ becomes small

 In this condition, the oscillation frequency can be approximated by setting 𝐺௠ ൌ 0
in 𝑋௖ 𝜔,𝐺௠ ൌ 𝑋௠ሺ𝜔ሻ and solving for 𝜔 leads to
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Minimum Value of 𝒎𝒄𝒓𝒊𝒕

 As shown above, 𝐺௠௖௥௜௧ is minimum for 𝛼ଵ ൌ 1 (𝐶ଵ ൌ 𝐶ଶ)
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Sinusoidal Control Voltage
 For 𝐺௠ ൐ 𝐺௠௖௥௜௧, the oscillation will start and amplitude will grow, generating 

harmonic components due to the nonlinearity of the active element

 The above analysis was linear assuming small-signal operation. It did not give any 
information about the oscillation amplitude. This can only be obtained from a 
nonlinear analysis which is not always possible to achieve in an analytical form
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 If the quality factor of the resonator is 
assumed large (typically 𝑄௅ ൐ 10), the 
current going through the LC tank is filtered 
from its harmonics and generates a voltage at 
the gate that can be considered as quasi-
sinusoidal

where 𝑉 ଴ is the dc gate voltage when there 
are no oscillations (𝐴 ൌ 0)
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Nonlinear Analysis of the Pierce Oscillator (weak inv.)
 In the case of the Pierce oscillator the gate voltage 

can therefore be assumed to be sinusoidal
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 Notice that it is essentially capacitance 𝐶ଷ that couples harmonic components 
directly to the gate. Therefore the assumption of the gate voltage being quasi-
sinusoidal only holds if 𝐶ଷ is much smaller than 𝐶ଵଶ
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 If the transistor is biased in weak inversion, the drain 
current is then given by
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Nonlinear Analysis of the Pierce Oscillator (WI)
 Function 𝑒௫·௖௢௦ሺఠబ௧ሻ can be developed in a Fourier series given by
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where �஻଴ሺ𝑥ሻ and �஻௡ሺ𝑥ሻ are the modified Bessel functions of the first kind of 
order 0 and 𝑛

 The drain current is then given by
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where 𝐼ௗ௖ is the average current (dc current) given by
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 Notice that in the case of the 3-points oscillators, the dc current 𝐼ௗ௖ is set by a 
constant bias current 𝐼௕, whereas 𝐼଴ is the quiescent current defined as the 
current that flows when there are no oscillations (or their amplitude is zero 𝑥 ൌ 0)
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Quiescent Current 𝟎 and Voltage 𝑮𝟎

 The average of 𝑒௫·௖௢௦ሺఠబ௧ሻ is given by �஻଴ሺ𝑥ሻ which increases exponentially

 For the 3-points oscillators, the dc current 𝐼ௗ௖ is maintained constant and equal to 𝐼௕
 The current 𝐼଴ and hence the gate bias voltage 𝑉 ଴ need therefore to decrease in order 

to compensate for the increase in �஻଴ሺ𝑥ሻ and maintain the dc current equal to 𝐼௕
 There is therefore a relation between the oscillation amplitude and the dc bias which will 

be derived later
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Drain Current Waveforms

 The above plot shows the drain current normalized to 𝐼௦௣௘௖ for several oscillation 
amplitudes and accounting for the dependence of 𝐼଴ and 𝐼ௗ௖ (𝐼௕) on 𝑥
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Drain Current Harmonics
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Harmonics for Large Amplitudes

 It is interesting to note that for large values of 𝑥, all harmonics tend to the same 
value, since
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Equivalent Impedance for the Fundamental Component
 The active element is usually nonlinear and generates harmonic components in 

the drain current

 The latter are filtered out by the resonator even though the current across it can be 
strongly distorted

 The energy exchange between the active element and the resonator occurs 
therefore mostly at the fundamental frequency

 The active circuit can therefore be replaced by the impedance for the fundamental 
defined as
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where 𝐼ሺଵሻ is the complex current at the fundamental frequency which depends on 
the amplitude of the sinusoidal voltage 𝑉
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Transconductance for the Fundamental Component
 At low frequency the variation of the fundamental component of the drain current 
∆𝐼஽ ଵ ሺ𝑡ሻ and of the gate voltage ∆𝑉 ሺ𝑡ሻ are in-phase

 The small-signal transconductance can be replaced by the transconductance for 
the fundamental 𝐺௠ሺଵሻ given by
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 The transconductance for the fundamental can be rewritten by introducing the dc 
current 𝐼௕

where 𝐺௠ ൌ 𝐼௕ 𝑛𝑈்⁄ is the small-signal transconductance set by the bias 
current 𝐼௕
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Transconductance for the Fundamental Component

 The above plot shows the transconductance for the fundamental normalized to the 
small-signal transconductance versus the normalized oscillation amplitude

 The amplitude will stabilize for 𝐺௠ሺଵሻ ൌ 𝐺௠௖௥௜௧ which is the condition that finally 
determines the oscillation amplitude
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Bias Current versus Amplitude
 In weak inversion the condition 𝐺௠ሺଵሻ ൌ 𝐺௠௖௥௜௧ translates into
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 Since for 𝑥 ≫ 1
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 we have

 or

 𝐼௕௖௥௜௧௠௜௡ ≜ 𝑛𝑈் ⋅ 𝐺௠௖௥௜௧ is the minimum current (reached in WI) to achieve 
𝐺௠௖௥௜௧ for 𝑥 ൌ 0
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DC Gate Voltage Bias Shift
 In case the bias current is set to the quiescent current 𝐼௕ ൌ 𝐼଴, by definition of 𝐼଴, 

the oscillation amplitude is zero (𝑥 ൌ 0)
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 For 𝐼௕ ൐ 𝐼଴, oscillations will start to grow until the condition 𝐺௠ሺଵሻ ൌ 𝐺௠௖௥௜௧ is 
reached, at which the oscillations will stabilize with an amplitude set by 
𝐼௕ 𝐼௕௖௥௜௧௠௜௡⁄

 As shown in the previous plot, the dc drain current would increase wrt 𝑥, but it is 
actually constant and set to 𝐼௕ by the current source. Since the current cannot 
grow when the oscillations are growing, the dc gate voltage has to adjust so that 
𝐼ௗ௖ ൌ 𝐼௕

 𝑉 ଴ and 𝐼଴ therefore decrease compared to the condition 𝑉 ଴ ൌ 𝑉 ௖௥௜௧ and 𝐼଴ ൌ
𝐼௕ ൌ 𝐼௕௖௥௜௧௠௜௡ for which 𝑥 ൌ 0

 The quiescent voltage 𝑉 ଴ and the quiescent current 𝐼଴ are therefore indirectly 
also functions of the oscillation amplitude and hence of the 𝐼௕ 𝐼௕௖௥௜௧⁄ ratio
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DC Gate Voltage Bias Shift
 For a given bias current 𝐼௕ and minimum critical bias current 𝐼௕௖௥௜௧௠௜௡, the 

relation between the quiescent current 𝐼଴ and the oscillation amplitude 𝑥 can be 
found from the oscillation condition
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 Introducing the definition of the quiescent current 𝐼଴, we get

 We see that for a given 𝐼௕௖௥௜௧௠௜௡ and bias current 𝐼௕, as the amplitude grows, at 
the same time the overdrive voltage decreases according to
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where 𝑉 ௖௥௜௧௠௜௡ is the gate voltage for a bias current 𝐼௕ ൌ 𝐼௕௖௥௜௧௠௜௡, i.e. 𝑥 ൌ 0
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DC Gate Bias Voltage Shift

 As mentioned earlier, the gate bias has to decrease when the oscillations are 
growing to maintain the dc drain current equal to the bias current
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Amplitude and Gate Voltage Bias Shift vs Bias Current

 For a given resonator and hence a given 𝐼௕௖௥௜௧௠௜௡, this plot shows the bias 
current 𝐼௕ that is required for achieving a given amplitude 𝐴 and the resulting gate 
bias shift decrease
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Example – The Pierce Oscillator

 Since the inductance 𝑄௅ is not very high, the above approximation is not very 
accurate. The exact solution is then given by
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C1

C2

C3
r
L

Ib
VDD

VG

Vout

𝑓଴ ൌ 1 𝐺𝐻𝑧,𝑄௅ ൌ 10,𝐶ଵ ൌ 𝐶ଶ ൌ 1 𝑝𝐹,𝐶ଷ ൌ 1 𝑝𝐹

 This leads to 𝐿 ൌ 17.256 𝑛𝐻 and 𝑟 ൌ 10.8 Ω

 The inductance value is then found from
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Pierce Oscillator Example – Bias Current in WI
 If we assume that the transistor operates in weak inversion (with 𝑛 ൌ 1.3), the 

critical current is given by
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 Setting the oscillation amplitude to 𝐴 ൌ 100 𝑚𝑉, we get
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Pierce Oscillator Example in WI – Transient Simulations

 Transient simulations performed with an ideal 
exponential transconductor

 The amplitude is slightly larger than 100mV (119 
mV). This comes from the fact that 𝑄௅ is not that 
large generating harmonics which is in contradiction 
with the assumption of a sinusoidal gate voltage

 The above theory is based on the fundamental 
component only assuming a large Q and hence that 
the harmonics are negligible
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Pierce Oscillator Example in WI  – HB Simulations

 Harmonic balance SS simulations 
performed with an ideal exponential 
transconductor

 Consistent with transient simulations
 The amplitude is slightly larger than 

100mV (119 mV)
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Pierce Oscillator in Strong Inversion
 The same analysis can be carried out assuming the transistor is operating in 

strong inversion

 It can be handled analytically as long as the oscillation amplitude 𝐴 is assumed to 
be smaller than the overdrive voltage 𝑉 െ 𝑉 ଴ in order for the current to remain 
positive avoiding any current clipping

 In this case the gate voltage and the drain current are given by
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Pierce Oscillator in Strong Inversion
 Normalizing and developing the quadratic function leads to
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 The normalized dc current for 𝑥 ൏ 𝑣௚௧଴ is given by
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 Where 𝑖଴ is the dc current for zero amplitude
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Bias Voltage and Current

 The required normalized bias overdrive voltage 𝑣௚௧ (normalized bias current 𝑖௕ or 
inversion factor) for a given critical overdrive voltage 𝑣௚௧௖௥௜௧ (critical current 
𝑖௕௖௥௜௧) assuming 𝑥 ൏ 𝑣௚௧௖௥௜௧ is given by
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Transconductance for the Fundamental
 The fundamental component for 𝑥 ൏ 𝑣௚௧଴ is given by
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 From the dc constraint, we get the relation between 𝑖଴ and 𝑣௚௧଴ which should both 
decrease with the amplitude 𝑥
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Transconductance for the Fundamental
 The small-signal transconductance is given by
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 The transconductance for the fundamental normalized to the small-signal 
transconductance is then given by
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 The critical condition is then given by
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 Since there is no current clipping and no bias shift, it is not surprising to find that
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Pierce Oscillator Example – Bias in SI
 If we assume the transistor operates in strong inversion (with 𝑛 ൌ 1.3)

and choose the operating overdrive voltage as 𝑉 െ 𝑉 ଴ ൌ 300 𝑚𝑉 and the 
oscillation amplitude as 𝐴 ൌ 200 𝑚𝑉, we can then calculate the normalized 
amplitude as
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 The critical overdrive and critical current can then be calculated as
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 The specific current is then obtained as
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 The critical current and the required bias current are given by
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Pierce Oscillator Example in SI – Transient Simulations

 Transient simulations performed with an ideal 
quadratic transconductor

 The amplitude at the drain (235 mV) and at the 
gate (220 mV) are slightly higher than 200mV

 The above theory is based on the fundamental 
component only assuming a large Q and hence 
that the harmonics are negligible
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Pierce Oscillator Example in SI  – HB Simulations
A

m
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 Harmonic balance SS simulations 
performed with an ideal quadratic 
transconductor

 The amplitude at the gate is exactly 
200mV, whereas the amplitude at the 
drain is slightly larger (235mV)
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Design Procedure (Strong Inversion)
 From the 𝑄 of the tank and the capacitances, deduce the required 𝐺௠௖௥௜௧

 Choose an appropriate critical overdrive voltage 𝑉 ௖௥௜௧ െ 𝑉 ଴ (normalized form 𝑣௚௧௖௥௜௧) or 
critical inversion factor 𝑖௕௖௥௜௧ ൌ 𝑣௚௧௖௥௜௧ 2⁄ ଶ which correspond to the average overdrive 
and bias current at the operating point

 We can now find the specific current according to

© C. Enz | 2022 Low-power radio design for the IoT Slide 45

2 T mcrit T mcrit
spec

gtcrit bcrit

nU G nU GI
i

 
 

v

 Calculate the desired normalized amplitude 𝑥 ൌ 𝐴 𝑛𝑈்⁄

 For the chosen normalized critical overdrive voltage (or inversion factor) and normalized 
amplitude, deduce the normalized overdrive voltage or bias current from
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 The bias current 𝐼௕ required for the desired amplitude is then given by
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Design Procedure (from Weak to Strong Inversion)
 From the 𝑄 of the tank and the capacitances, deduce the required 𝐺௠௖௥௜௧

 Choose an appropriate inversion factor 𝑖௕௖௥௜௧
 Calculate the minimum critical bias current 𝐼௕௖௥௜௧௠௜௡
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 Calculate the desired normalized amplitude 𝑥 ൌ 𝐴 𝑛𝑈்⁄

 For the chosen inversion factor 𝑖௕௖௥௜௧ and normalized amplitude 𝑥, deduce the normalized 
bias current 𝐼௕ 𝐼௕௖௥௜௧௠௜௡⁄ from the abacus (next slide)

 Deduce the actual bias current
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The Colpitts Oscillator – Circuit Impedance

 Analysis almost identical to the Pierce except that 𝐺௠ is replaced with 𝐺௠௦
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The Colpitts Oscillator – Critical Transconductance
 For 𝐺௠௦ ≪ 𝜔଴ 𝐶ଷ⁄ 𝐶ଵ𝐶ଶ ൅ 𝐶ଵ𝐶ଷ ൅ 𝐶ଶ𝐶ଷ , 𝑅௖ and 𝑋௖ simplify to
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 The oscillation frequency is approximated by

 And the critical (source) transconductance is given by
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Nonlinear Analysis of the Collpits Oscillator (weak inv.)
 In the case of the Collpits oscillator the source 

voltage can be assumed to be sinusoidal
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 Same analysis than the Pierce oscillator and hence the results and normalized 
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Example – The Colpitts Oscillator

 Since the inductance 𝑄௅ is not very high, the above approximation is not very 
accurate. The exact solution is then given by
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Colpitts Oscillator Example in WI – Transient Simulations

 Transient simulations performed with an ideal 
exponential transconductor

 The amplitude is almost exactly 100mV
 The above theory is based on the fundamental 

component only assuming a large Q and hence 
that the harmonics are negligible
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Colpitts Oscillator Example in WI  – HB Simulations

 Harmonic balance SS simulations 
performed with an ideal quadratic 
transconductor

 The amplitude at the gate is exactly 
200mV, whereas the amplitude at the 
drain is slightly larger (235mV)
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Colpitts Oscillator in Strong Inversion
 Similar analysis than for the Pierce oscillator. In this case we have

© C. Enz | 2022 Low-power radio design for the IoT Slide 55

 

0 0
2

0

2
0 0 0

2
0 0 0

( ) cos( )

( )( )
2

cos( )
2

cos( )
4

for

S S

P S
D spec

T

P S
spec

T

spec
ps ps

V t V A t

V V tI t I
U

V V A tI
U

I
x t x







  

 
  

 

   
  

 

    v v

 The results and plots obtained for the Pierce oscillator in strong inversion can be 
used for the Colpitts oscillator accounting for the different normalization given by
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Colpitts Oscillator in Strong Inversion
 Normalizing and developing the quadratic function leads to
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 The normalized dc current for 𝑥 ൏ 𝑣௣௦଴ is given by
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Transconductance for the Fundamental (Colpitts)
 The fundamental component for 𝑥 ൏ 𝑣௣௦଴ is given by
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Transconductance for the Fundamental (Colpitts)
 The small-signal source transconductance is given by
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 The transconductance for the fundamental normalized to the small-signal 
transconductance is then given by
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Transconductance for the Fundamental (Colpitts)
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Bias Voltage and Current (Colpitts)

 The required bias overdrive voltage 𝑣௣௦ (bias current 𝑖௕) for a given critical 
saturation voltage 𝑣௣௦௖௥௜௧ (critical current 𝑖௕௖௥௜௧) assuming 𝑥 ൏ 𝑣௣௦଴ is given by
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Colpitts Oscillator Example – Bias in SI
 If we assume the transistor operates in strong inversion (with 𝑛 ൌ 1.3)

and choose the operating saturation voltage as 𝑉௉ െ 𝑉ௌ ൌ 300 𝑚𝑉 and the 
output oscillation amplitude as ∆𝑉௢௨௧ ൌ 200 𝑚𝑉 corresponding to an amplitude 
of the source voltage of 𝐴 ൌ ∆𝑉ௌ ൌ 100 𝑚𝑉, we can then calculate the 
normalized amplitude as
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 The critical overdrive and critical current can then be calculated as
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 The specific current is then obtained as
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 The critical current and the required bias current are given by



The 3-points oscillator

ICLAB

Colpitts Oscillator Example in SI – Transient Simulations

 Transient simulations performed with an ideal 
quadratic transconductor

 The amplitude at the source (99mV) and at the 
drain (199mV) are almost exactly 100mV and 
200mV

 The above theory is based on the fundamental 
component only assuming a large Q and hence 
that the harmonics are negligible
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Colpitts Oscillator Example in SI  – HB Simulations

 Harmonic balance SS simulations 
performed with an ideal quadratic 
transconductor

 The amplitude at the gate is exactly 
200mV, whereas the amplitude at the 
drain is slightly larger (235mV)
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Nonlinear Effects

 Plot of the input impedance 𝑍௜௡ሺଵሻ
evaluated for the fundamental component 
versus the bias current 𝐼௕ swept from 1 μA
to 1.7 mA for different current amplitudes 
𝐼௜௡ (1μA, 50μA, 100μA, 200μA and 500μA)

 For small amplitudes (𝐼௜௡ ൌ 1 𝜇𝐴), we get 
the circle obtained from the linear analysis, 
but for large amplitudes, the locus starts to 
deviate from the circle obtained for small 
amplitude due to nonlinear effects

© C. Enz | 2022 Low-power radio design for the IoT Slide 64

 tItI ins 0cos)( 

in

in
c

in

in
c I

V
Z

I
VZ )1(

)1(  and

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Im
{Z

c(
1)

} [
k

]

-8 -6 -4 -2 0
Re{Zc(1)} [k]

Iin = 1 µA

50 µA

100 µA

200 µA

500 µA

Sweep of the bias current 𝐼௕
for different amplitudes 𝐼௜௡



The 3-points oscillator

ICLAB

Nonlinear Effects
 Plot of the input impedance 𝑍௜௡ሺଵሻ

evaluated for the fundamental component 
versus the current amplitude 𝐼௜௡ swept 
from 1μA to 1mA for different bias currents 
𝐼௕ (20μA, 100μA, 200μA, 500μA and 1mA)

 The locus always starts on the circle 
obtained for small amplitude with a 
direction tangent to the circle and then 
deviates from it due to nonlinear effects

 The actual operating point can be quite far 
from the one obtained with the linear 
analysis

 There may eventually be no operating 
point when the bias current becomes too 
large, even though the small-signal 
analysis would show an intersection
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Unstable Point at Very Large Bias Current
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Outline
 General considerations

 The 3-points oscillator

 The cross-coupled pair oscillator
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The Cross-coupled Pair Oscillator – Principle
 A balanced LO signal is most often required

 Can be generated by the cross-coupled pair oscillator shown below
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 If fully balanced operation is assumed

 And hence
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Critical 𝒎

 The circuit impedance 𝑍௖ is then given by
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 And hence

 Solving for 𝐺௠௖௥௜௧ and 𝜔଴ results in
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Large-signal Analysis (weak inversion)
 The differential current in WI is given by
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 The output waveform for a sinusoidal differential voltage 
is then given by

 The output waveform is periodic and can be developed in a Fourier series

with
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Large-signal Analysis (weak inversion)
 We are mostly interested in the fundamental component given by
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 Unfortunately there is no analytical solution for this integral

 For 𝑥 ≪ 1, it can nevertheless be approximated by
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 For large signal amplitudes, the output waveform becomes a square wave and 
hence for 𝑥 ≫ 1 we have
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Transconductance for the Fundamental
 The transconductance for the fundamental component is then given by
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 Or in normalized form
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Transconductance for the Fundamental
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