
MICRO-461
Low-power Radio Design for the IoT

10. Oscillators
10.2. Phase Noise

Christian Enz
Integrated Circuits Lab (ICLAB), Institute of Microengineering (IMT), School of Engineering (STI)

Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland



ICLAB

Outline
 Fundamentals

 Linear analysis

 Nonlinear analysis

© C. Enz | 2022 Low-power radio design for the IoT (MICRO-461) Slide 1



Fundamentals

ICLAB

Limit Cycle in the V-I State Space

 D. Ham and A. Hajimiri, "Virtual damping and Einstein relation in oscillators," JSSC, vol. 38, No. 3, pp. 407-418, March 2003.

 0cos ( )V A t t   
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Manifestation of Phase Noise

 Courtesy D. Ham, Tutorial on Phase Noise, ESSCIRC 2014.
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Fundamentals
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Phase Diffusion Seen through an Ensemble of Oscillators

 D. Ham and A. Hajimiri, "Virtual damping and Einstein relation in oscillators," JSSC, vol. 38, No. 3, pp. 407-418, March 2003.
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Fundamentals

ICLAB

Phase Diffusion
 Neglecting the amplitude fluctuations, the output voltage of an oscillator is given by 

 0( ) cos ( )t A t t   v

 Where 𝜙 𝑡 represents the phase fluctuation and is a random process

 The instantaneous noise frequency is then given

( )( ) d tt
dt
 

 and hence

0

( ) ( ) (0)
t

t d       

 F. Herzel and B. Razavi, “A Study of Oscillator Jitter Due to Supply and Substrate Noise,” TCAS II, Vol. 46, No. 1, pp. 56-62, Jan. 1999.
 H. Hegazi, J. Rael and A. Abidi, The Designer's Guide to High-Purity Oscillators, Springer, 2005.
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Fundamentals
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Oscillator Output Power Spectral Density
 If it is assumed that the instantaneous frequency noise fluctuation ∆𝜔 is a white 

noise with constant PSD and ACF given by

2( ) 2t D t  

 F. Herzel and B. Razavi, “A Study of Oscillator Jitter Due to Supply and Substrate Noise,” TCAS II, Vol. 46, No. 1, pp. 56-62, Jan. 1999.
 H. Hegazi, J. Rael and A. Abidi, The Designer's Guide to High-Purity Oscillators, Springer, 2005.

 The ACF of the sine wave is then obtained as

( ) 2 ( )R D     

 where 𝐷 is the diffusivity, then 𝜙 𝑡 is a Wiener process having a Gaussian 
distribution centered around 𝜙 0 and a variance that increases linearly with time
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 The single-sided PSD of the sine wave is then obtained by taking the Fourier 
transform, resulting in
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ICLAB

Linewidth Broadening and Phase Noise
 It can be shown that the resulting PSD of 𝑣 𝑡 is a Lorentzian

 The corresponding phase noise at a given offset ∆𝜔 is defined as the ratio of the 
PSD at 𝜔 ∆𝜔 to the total carrier power 𝐴 2⁄
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 F. Herzel and B. Razavi, “A Study of Oscillator Jitter Due to Supply and Substrate Noise, TCAS II, Vol. 46, No. 1, pp. 56-62, Jan. 1999.
 H. Hegazi, J. Rael and A. Abidi, The Designer's Guide to High-Purity Oscillators, Springer, 2005.
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Fundamentals
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Additive Noise and Noisy Phasor
 An harmonic oscillator delivers a noisy signal typically given by

   0
( )( ) 1 ( ) sin ( ) ( )with A tV t A t t t t
A

    
     

where 𝐴 and 𝜔 are the amplitude and frequency of the carrier without noise and 
𝜀 𝑡 and 𝜙 𝑡 represent the variations of amplitude and phase induced by the 
noise sources having a bandwidth much smaller than 𝜔 . Note that if the 
waveform is not sinusoidal, then 𝑉 𝑡 represents the fundamental.

 Can be viewed as a noisy phasor 𝑉 𝑡
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Fundamentals
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Close-in Phase Noise
 The additive noise can be decomposed into AM (or in-phase I) and PM (or 

quadrature Q) components

 The phase angle fluctuation is then given by

n-pmarctan - -
-

-
sincen pm n pm

n am
n am

V V
V A

A V A


 
   



2( )
2

-n pmVS
S

A
  

 The (unilateral) PSD of this angle fluctuation is then given by the ratio of the PSD 
of the PM component to the power of the carrier (𝐴 is the peak value!)
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Single Sideband Phase Noise
 Close-in phase noise is usually dominated by the PM component leading to

2 2
( ) 1( )
2 2 2

n nV VS SS

A A
 




  � 

 The standardized single sideband (SSB) phase noise ℒ as measured by the 
phase noise analyzer is defined as

2( )
2
nVSS

A
  

 The SSB phase noise ℒ is measured in dBc/Hz
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Fundamentals
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Leeson’s Empirical Model

 Empirical model

 Slope −3 comes from up-converted 1/f noise, slope −2 from thermal noise

 Close to the carrier, the phase noise is determined by the up-converted 1/f noise

 Parameters 𝐹 and ∆𝜔 / are not easy to obtain analytically and are hence 
extracted from measurements
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Linear analysis

ICLAB

L cG G G  

Linear Phase Noise Analysis – Parallel LC Oscillator
 The small-signal equivalent circuit of a generic parallel LC oscillator including the 

noise sources due to the resistive losses in the tank 𝐺 (actually its parallel 
equivalent conductance given below) and the noise coming from the active 
nonlinear circuit (usually a transconductor) is shown below
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 The (unilateral) PSD of the noise sources are given by

4 4and
nGL nGcI L I cS kT G S kT G   

where 𝛾 is the transconductor excess noise factor
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Parallel LC Oscillator – Voltage Noise
 In steady-state condition, the losses are compensated by the negative 

conductance provided by the circuit and hence the circuit reduces to
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L C
InGL+InGc

Vn

Z( )

 Close to the carrier, we have

 The PSD of the noise voltage fluctuations is then given by

     22 2
0 0 0 0

2
1 4 1

1 4
2 2nV

kT kTZS kTG
G Q G Q

   


  
                        

where 𝑍 1 𝐺 · 𝑄⁄ has been used
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Parallel LC Oscillator – SSB Phase Noise
 The standardized single sideband (SSB) phase noise ℒ is then given by
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where 𝐴 is the carrier peak amplitude

 Phase noise ℒ is inversely proportional to the square of the offset frequency ∆𝝎
and the square of the amplitude 𝑨

 It is also inversely proportional to 𝑄 , but this is assuming that 𝐺 is constant and 
independent of 𝑄 (which is actually not always the case as we will see later)

 The noise factor used in the Leeson expression of the 1 𝜔⁄ portion of the 
spectrum can then easily be identified as

1F  
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Parallel LC Oscillator – Alternative Expressions of PN
 Losses in the LC tank are usually dominated by losses in the inductor which are 

represented by a series resistor 𝑟 related to the loss conductance 𝐺 by
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 Assuming an ideal capacitor, the 𝑄 of the parallel circuit is equal to the inductor 𝑄
and hence
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which does not depend on 𝑄 anymore

 It can also be written in terms of 𝑄 and the impedance level 1 𝜔 𝐶 𝑍⁄ as
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 Which leads to the following equivalent expressions of the standardized single 
sideband (SSB) phase noise ℒ
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Linear analysis

ICLAB

Linear Phase Noise Analysis – Pierce Oscillator
 The equivalent small-signal circuit including the noise sources from the inductor 
𝑉 , MOS transistor 𝐼 and bias current source 𝐼 is given below
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 The active circuit, including its noise sources, can be replaced by its Thévenin
source
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Note that 𝑉 is not the voltage at the 
output but the voltage across 𝐿
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Pierce Oscillator – Noise Transfer Functions
 At the resonance frequency the inductor loss 𝑟 is compensated by the negative 

resistance 𝑅 provided by the circuit. The latter then simplifies to
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 The noise transfer function from sources 𝑉 and 𝑉 to 𝑉 are given by

 
 
  eqnc

n
nc

nL

n
nL LCV

VH
V
VH 1

1
)(

1
1)( 02

0

2
0

2
0







 





 withand

 At an offset frequency ∆𝜔 ≪ 𝜔 from the carrier we have
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Pierce Oscillator – Voltage Noise
 The noise voltage PSD is given by
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where 𝑆 has to be evaluated from the following circuit
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Pierce Oscillator – Voltage Noise across Tank
 Finally the noise voltage PSD is given by
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where 𝛾 is the noise excess factor representing the noise contribution of the circuit 
and given by
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 Since the critical transconductance is given by
  22
1 2 1 3 2 32 2 21 1 2

0 0
1 2 2 1

mcrit eq
C C C C C C C C CG r r C

C C C C
 

   
        

 

 The 𝛾 noise excess factor can also be written as 
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Pierce Oscillator – Noise Excess Factor
 Since the minimum 𝐺 is obtained for 𝐶 𝐶 , the 𝛾 noise excess factor 

reduces to 
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 Since 𝐺 𝐺⁄ 3, for ensuring start-up and reaching the desired 
amplitude, the noise can be slightly degraded by the active part of the oscillator
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Pierce Oscillator – Noise at the Output
 𝑉 is the noise voltage across the resonator. Usually we are more interested in the 

noise at the oscillator output 𝑉
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 And hence  
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with 𝑄 given by rCr
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 The SSB phase noise at the output is then given by
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Pierce Oscillator – ADS HB Simulations (WI)
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Eqn

HARMONIC BALANCE

EPFL
EKV  version 2.6

Var
Eqn

Var
Eqn

Var
Eqn

HarmonicBalance

OscPort

Tran

DC

VAR

VAR

I_Noise

VAR

VAR

V_DC

ekv_va_Model

VAR

HB1

EKVN

Osc1

Tran1

DC1

Technology

Specifications

ParametersCalculation

Noise

SRC4

Bias

SRC3

L1

R1

C1 C2

C3
EKV1

Ib

AllParams=
KF=0
AF=0.8265
AGAMMA=1E-6
AKP=1E-6
AVTO=1E-6
HDIF=2e-07

RSH=600.0
IBN=1.0
IBBT=0.0
IBB=270.0e+6
IBA=0.0
LK=3.80e-7
Q0=0.000420
LETA=220.0e-3
WETA=0.0
DW=3.9e-8
DL=-7.6e-8
LAMBDA=0.340
UCEX=1.76
UCRIT=3.75e+6
E0=5.917e+7

THETA=0.0
BEX=-1.569
KP=420.0e-6
PHI=990.0e-3
GAMMA=0.540
TCV=6.03e-4
VTO=VT0n
XJ=1.6e-7
COX=8.46e-3
NS=1.0
M=1.0
TNOM=27
W=10E-6
L=10E-6
TYPE=1

Order[1]=15
Freq[1]=f0

L1=0.18E-6
IC=0.1
C2=5E-12
QL=10

T0=273
UT=0.025875
kT=qelectron*UT
T=kT/boltzmann

w0=2*pi*f0
C1=C2
C3=0.1*C12
C12=C1*C2/(C1+C2)
Ceq=C12+C3
L2=1/(w0**2*Ceq*(1+1/QL**2))
L=(Gmcrit**2*C3+w0**2*(C1+C2)*(C1*C2+C1*C3+C2*C3))/(w0*((Gmcrit*C3)**2+w0**2*(C1*C2+C1*C3+C2*C3)**2))/w0
r=w0*L/QL
Gmcrit1=w0/QL*(C1+C2)*(1+C3/C12)
Gmcrit=w0*QL*C2*alpha1/(2*alpha3)*(1-sqrt(1-(2*alpha3/(alpha1*QL))**2*(alpha1+1)*(1+alpha1+alpha1/alpha3)))
Icrit=Gmcrit*nUT
x=A/nUT
a1=0.5
a2=0.2

SInD=4*kT*n/2*Gm
Gm=Ib/nUT

I_Noise=InD

NoiseNode[2]="G2"
NoiseNode[1]="D"
PhaseNoise=yes
NoiseOutputPort=2
NLNoiseDec=10
NLNoiseStop=10.0 MHz
NLNoiseStart=10 kHz
NLNoiseMode=yes
Oversample[1]=8

chi=(1+a1*x+a2*x**2)/(a1*x+a2*x**2)

f0=1G InD=sqrt(SInD)

VDD=1.8

W=W1
L=L1
Model=EKVN

Ispec=Ib/IC

StopTime=500.0 nsec
MaxTimeStep=0.01 nsec

A=0.1

alpha3=C3/C2

Ib=Icrit*x/2*chi

Vdc=VDD

Idc=Ib

L=L

R=r

nUT=n*UT

C=C3

alpha1=C1/C2

S=Ispec/Ispecn

C=C1

Tcelsius=T-T0

C=C2

n=1.271

W1=S*L1

KFn=8.1E-24
Ispecn=0.715E-6
VT0n=0.455

G1

VDD

D

G2

Simulation using the full EKV 2.6 model for a 
180nm CMOS generic process.
Transistor biased in WI with 𝐼𝐶 0.1
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Pierce Oscillator – ADS HB Simulations (WI)

© C. Enz | 2022 Low-power radio design for the IoT (MICRO-461) Slide 24

Gate voltage Drain voltage

Drain current

Slight shift in resonant frequency due to fairly low inductor 𝑄
(𝑄 10).
Amplitude of the fundamental component at the gate is exactly
equal to 100 mv and a bit larger at the drain (107 mV)

Amplitude of quasi-sinusoid is almost exactly 100mV (100.5mV) 
at the gate and slightly larger at the drain (116 mV)
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Pierce Oscillator – ADS Transient Simulations (WI)
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Pierce Oscillator – ADS SSB Phase Noise Simulation (WI)
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Calculated parameters

A

100.0 m

C1

5.000 p

C3

250.0 f

L

9.220 n

r

5.793  

Gmcrit

6.919 m

Icrit

227.6 u

Ib

448.6 u

Ispec

4.486 m

W1

1.129 m

Specifications

f0

1.000 G

QL

10.00  

C2

5.000 p

x

3.041  

IC

100.0 m

L1

180.0 n

Technology and physical parameters

UT

25.87 m

n

1.271  

nUT

32.89 m

VT0n

455.0 m

Ispecn

715.0 n

Only accounting for thermal coming from main transistor (current source is noiseless 
and flicker noise of transistor has been turned off by setting KF=0 see schematic)

Phase noise calculated with simulated amplitude (since goes with the square)
Very good match between model and simulations despite the linear analysis
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ParametersCalculation

C1

I_Probe1

C2

C3
EKV1

Ib

AllParams=
KF=0
AF=0.8265
AGAMMA=1E-6
AKP=1E-6
AVTO=1E-6
HDIF=2e-07

RSH=600.0
IBN=1.0
IBBT=0.0
IBB=270.0e+6
IBA=0.0
LK=3.80e-7
Q0=0.000420
LETA=220.0e-3
WETA=0.0
DW=3.9e-8
DL=-7.6e-8
LAMBDA=0.340
UCEX=1.76
UCRIT=3.75e+6
E0=5.917e+7

THETA=0.0
BEX=-1.569
KP=420.0e-6
PHI=990.0e-3
GAMMA=0.540
TCV=6.03e-4
VTO=VT0n
XJ=1.6e-7
COX=8.46e-3
NS=1.0
M=1.0
TNOM=27
W=10E-6
L=10E-6
TYPE=1

Order[1]=15
Freq[1]=f0

L1=1E-6
VG_VT0=0.3
C2=5E-12
QL=10

T0=273
UT=0.025875
kT=qelectron*UT
T=kT/boltzmann

alpha1=C1/C2
W1=S*L1
S=Ispec/Ispecn
Ibcrit=Ispec*icrit

Ib=Ispec*IC
Ispec=2*nUT*Gmcrit/vgtcrit
IC=icrit+x**2/8
icrit=(vgtcrit/2)**2
vgtcrit=sqrt(vgt**2-x**2/2)
Gmcrit=w0*QL*C2*alpha1/(2*alpha3)*(1-sqrt(1-(2*alpha3/(alpha1*QL))**2*(alpha1+1)*(1+alpha1+alpha1/alpha3)))

r=w0*L/QL
L=(Gmcrit**2*C3+w0**2*(C1+C2)*(C1*C2+C1*C3+C2*C3))/(w0*((Gmcrit*C3)**2+w0**2*(C1*C2+C1*C3+C2*C3)**2))/w0

Ceq=C12+C3
C12=C1*C2/(C1+C2)

NoiseNode[1]=G2  
NoiseNode[2]=G1

I_Noise=InD

NoiseNode[2]="G2"
NoiseNode[1]="D"
PhaseNoise=no
NoiseOutputPort=2
NLNoiseDec=10
NLNoiseStop=10.0 MHz
NLNoiseStart=10 kHz
NLNoiseMode=
Oversample[1]=8

C3=0.1*C12

f0=1G

alpha3=C3/C2

VDD=1.8

W=W1
L=L1
Model=EKVN

x=A/nUT

NoiseNode[3]=D 

StopTime=1000 nsec
MaxTimeStep=0.01 nsec

SInD=4*kT*2/3*n*Gm
InD=sqrt(SInD)
Gm=2*Ib/(VG_VT0)

Ib1=1E-3
dC1=0.25E-12
dC2=0.25E-12

A=0.3

C1=C2

Vdc=VDD

Idc=Ib

L=L

R=r

nUT=n*UT

C=C3

vgt=VG_VT0/nUT

C=C1-dC1

Tcelsius=T-T0

C=C2-dC2

n=1.271

w0=2*Pi*f0

KFn=8.1E-24
Ispecn=0.715E-6
VT0n=0.455

G1

VDD

D

G2

Pierce Oscillator – ADS HB Simulations (SI)
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Simulation using the full EKV 2.6 model for a 
180nm CMOS generic process.
Transistor biased in SI with 𝑉 𝑉 300𝑚𝑉
Amplitude set to 300 mV
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Calculated parameters

A

300.0 m

C1

5.000 p

C3

250.0 f

L

9.220 n

r

5.793  

Gmcrit

6.919 m

Ibcrit

733.9 u

Ib

1.468 m

Ispec

70.55 u

W1

98.68 u

Specifications

f0
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1.000 u

Technology and physical parameters

UT

25.87 m

n

1.271  

nUT

32.89 m

VT0n

455.0 m

Ispecn

715.0 n

Pierce Oscillator – ADS HB Simulations (SI)
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Gate voltage
Drain voltage

Drain current

Simulations much more sensitive than in WI. Does not always converge.
Amplitude is slightly lower than 300mV (240mV) at the gate and at the 
drain (260mV)

Slight shift in resonant frequency due to fairly low inductor 𝑄 (𝑄 10).
Amplitude of the fundamental component at the gate is lower than 
expected (239 mV). This probably due to the fact that we have additional 
effects (such mobility reduction and velocity saturation) which are not 
accounted for in the simple quadratic model.
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Pierce Oscillator – ADS Transient Simulations (SI)
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Calculated parameters
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455.0 m
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Calculated parameters
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1.000 u

Technology and physical parameters
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n

1.271  

nUT

32.89 m
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455.0 m
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715.0 n

Pierce Oscillator – ADS SSB Phase Noise Simulation (SI)
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Only accounting for thermal coming from 
main transistor (current source is noiseless)

Very good match between model and simulations despite the linear analysis



Linear analysis

ICLAB

Linear Noise Analysis of Colpitts Oscillator
 The equivalent small-signal circuit including the noise sources from the inductor, 

MOS transistor and bias current source is given below
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Gms· VS
C2C1

Vn

VS

C3
Inm

Inb

L

VnLr

 The active circuit, including its noise sources, can be replaced by its Thévenin
source
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Linear Noise Analysis of Colpitts Oscillator
 At the resonance frequency the inductor loss r is compensated by the negative 

resistance 𝑅 provided by the circuit. The latter then simplifies to
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 The noise transfer function from sources 𝑉 and 𝑉 to 𝑉 are given by
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Linear Noise Analysis of Colpitts Oscillator
 The noise voltage PSD is given by
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where 𝑆 has to be evaluated from the following circuit
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Linear Noise Analysis of Colpitts Oscillator
 Finally the noise voltage PSD is given by
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where 𝛾 is the noise excess factor representing the noise contribution of the circuit 
and given by
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 Since the critical transconductance is given by
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 The 𝛾 noise excess factor can also be written as 
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Linear Noise Analysis of Colpitts Oscillator
 Since minimum 𝐺 is obtained for 𝐶 𝐶 , the 𝛾 noise excess factor 

reduces to 
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 Since usually 𝐺 𝐺⁄ 3 for ensuring start-up and reaching the desired 
amplitude, the noise can be significantly degraded by the active part of the 
oscillator

 The SSB phase noise is then given by 
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with 𝑄 given by
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 Note that this is still a linear analysis not accounting for the time variance of the 
circuit
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Colpitts Oscillator – ADS HB Simulations
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Parameter Value

f0 1 GHz

A 100 mV

QL 10

C2 5 pF

a1 1

a3 1

IC 0.1

L 0.18 µm

EPFL
EKV  version 2.6

HB NOISE CONTROLLER

TRANSIENT

DC

HARMONIC BALANCE

Var
Eqn

Var
Eqn

Var
Eqn

Var
Eqn

Var
Eqn

VAR

VAR

VAR

DC

I_Probe

HarmonicBalance

VAR

VAR

Tran

V_DC

NoiseCon

OscPort

I_Noise
V_DC

ekv_va_Model

EKV1

Specifications

Bias

HB1

Osc1

C1

DC1

Noise

Technology

Tran1

SRC4

ParametersCalculation

NC1

L1

SRC5

R1

SRC3

Ib

I_Probe1

C3

C2

EKVN

W=W1
L=L1
Model=EKVN

AllParams=

Ib=Icrit*x/2*chi

Q0=0.000420

chi=(1+a1*x+a2*x**2)/(a1*x+a2*x**2)
a2=0.2
a1=0.5
x=A/UT

IC=0.1

Icrit=Gmscrit*UT
Gmscrit=w0*QL*C2*alpha1/(2*alpha3)*(1-sqrt(1-(2*alpha3/(alpha1*QL))**2*(alpha1+1)*(1+alpha1+alpha1/alpha3)))

C2=5E-12

Gmscrit1=w0/QL*(C1+C2)*(1+C3/C12)
r=w0*L/QL
L=(Gmscrit**2*C3+w0**2*(C1+C2)*(C1*C2+C1*C3+C2*C3))/(w0*((Gmscrit*C3)**2+w0**2*(C1*C2+C1*C3+C2*C3)**2))/w0

QL=10

IBA=0.0

f0=1G

C1=C2

Ceq=C12+C3
C12=C1*C2/(C1+C2)

LAMBDA=0.340

C3=0.1*C12

VDD=1.8

L=L

Freq[1]=f0
Order[1]=15
Oversample[1]=8

LETA=220.0e-3

FundIndex=1
MaxLoopGainStep=

Steps=10
NumOctaves=2
Z=1.1 Ohm
V=

UCRIT=3.75e+6

DL=-7.6e-8

UCEX=1.76

DW=3.9e-8

HDIF=2e-07

RSH=600.0

SInD=4*kT*2/3*Gms
InD=sqrt(SInD)

I_Noise=InD

KFn=8.1E-24
betan=420E-6
Ispecn=0.715E-6
VT0n=0.455
nUT=n*UT
n=1.271
Tcelsius=T-T0
T=kT/boltzmann

T0=273

MaxTimeStep=0.01 nsec
StopTime=500.0 nsec

NoiseNode[2]="S"
NoiseNode[1]="D"
PhaseNoise=no
NoiseOutputPort=2

UT=0.025875
NLNoiseStart=10 kHz

NLNoiseDec=10

Vdc=VG0

VG0=1

alpha3=C3/C2
alpha1=C1/C2
W1=S*L1
S=Ispec/Ispecn

L1=0.18E-6

Ispec=Ib/IC

COX=8.46e-3
XJ=1.6e-7
VTO=VT0n

NLNoiseMode=

M=1.0
NS=1.0

TNOM=27
W=10E-6
L=10E-6
TYPE=1

A=0.1

LK=3.80e-7

w0=2*pi*f0

AF=0.8265
KF=0

AGAMMA=1E-6
AKP=1E-6
AVTO=1E-6

L2=1/(w0**2*Ceq)

IBB=270.0e+6
IBBT=0.0
IBN=1.0

Vdc=VDD

kT=qelectron*UT

PHI=990.0e-3

NoiseNode[1]=D 

R=r

WETA=0.0

NLNoiseStop=10.0 MHz

C=C2

Gms=Ib/UT

TCV=6.03e-4

C=C1

C=C3

GAMMA=0.540

NoiseNode[2]=S  

THETA=0.0

Idc=Ib

E0=5.917e+7

BEX=-1.569
KP=420.0e-6

VDD

G

D

S
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Colpitts Oscillator – ADS HB Simulations
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Source voltage

Drain voltage

Drain current

Slight shift in resonant frequency due to 
parasitic capacitances coming from 
transistor and not accounted for

Amplitude is almost exactly 100mV (100.5mV) at 
the source and slightly larger at the drain (116 mV)
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Colpitts Oscillator – ADS Transient Simulations

© C. Enz | 2022 Low-power radio design for the IoT (MICRO-461) Slide 38



Linear analysis

ICLAB

Colpitts Oscillator – ADS SSB Phase Noise Simulation
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Only accounting for thermal coming from 
main transistor (current source is noiseless)

Very good match between model and simulations despite the linear analysis
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V_DC
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SRC3

Ib

I_Probe1

C3
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W=W1
L=L1
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L=L

FundIndex=1
MaxLoopGainStep=

Steps=10
NumOctaves=2
Z=1.1 Ohm
V=

I_Noise=InD

Vdc=VG0

Vdc=VDD

R=r

C=C2

C=C1

C=C3

Idc=Ib

VDD

G

D

S



Linear analysis

ICLAB

Linear Noise Analysis of the Cross-coupled Oscillator
 The same approach can be used for the cross-coupled pair oscillator
 The small-signal circuit including the noise sources is given below
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C
Gm· V1

V2

Yb

V1

Gm· V2
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Vn
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In1In2

Inb

rL

VnL

 The cross-coupled pair , including its noise sources, can be replaced by its 
Thévenin source
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Linear Noise Analysis of Cross-coupled Oscillator
 The equivalent Thévenin noise source of the circuit 𝑉 is obtained from the circuit 

shown below
 Note that if perfect matching is assumed, under the small-signal approximation, 

the noise coming from the bias source 𝐼 does not contribute to the differential 
noise source 𝑉
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 The noise voltage PSD due to the circuit is then given by
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Linear Noise Analysis of Cross-coupled Oscillator
 Similarly to the Colpitts oscillator, the noise voltage PSD is given by
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where 𝛾 is the noise excess factor representing the noise contribution of the circuit 
and given by
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 The phase noise is then given by
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ICLAB

Outline
 Fundamentals

 Linear analysis

 Nonlinear analysis
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Oscillators are Time-Variant Systems
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C Li(t)
δ t τ–( )

t

i(t)

t

Vout

t

Vout

τ

Impulse injected at the peak of amplitude.

ΔV

ΔV

Even for an ideal LC oscillator, the phase response is Time Variant.

Impulse injected at zero crossing.
τ

τ

 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Amplitude Restoring Mechanism
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Once Introduced, phase error persists indefinitely.
Non-linearity quenches amplitude changes over time.

θ

Δθ

V

dV
dt--------Limit

Cycle

a

b

ΔV

Active Device

C L
δ t τ–( )

t

i(t)

τ

G -G(A)i(t)

 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Phase Impulse Response
 The phase impulse response of an arbitrary oscillator is a time varying step 
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φ t( )
hφ t τ,( )

0 t

i(t)

τ 0 τ t

i t( )

 The unit impulse response is
0

max

( )( , ) ( )h t u t
q
 

 


  

 Γ 𝑥 is a dimensionless function periodic in 2 describing how much phase 
change results from applying an impulse at time 𝑡 𝑇 · 𝑥 2𝜋⁄ and 𝑢 𝑡 is the 
unit step

 Dividing Γ 𝑥 by 𝑞 makes the response independent of the amplitude

 𝑞 is the maximum charge on the tank capacitor 𝐶 for an amplitude 𝐴

maxq C A 

 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Impulse Sensitivity Function (ISF)
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t

t

t

t

V out t( ) V out t( )

Γ ω 0t( ) Γ ω 0t( )

LC Oscillator Ring Oscillator

The ISF quantifies the sensitivity of every point in the waveform to perturbations.

Waveform

ISF

 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Phase Response to an Arbitrary Source

 The phase response is then given by
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Ideal
Integration

Phase
Modulation

 This corresponds to the following equivalent block diagram

 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Phase Noise Due to White Noise

 Assuming that the source 𝑖 𝑡 is a white noise of PSD 𝑆 , the phase noise is given 
by
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 Where Γ is the rms value of the ISF Γ
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 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Nonlinear Expression under Linear Operation
 We can check that for linear operation we get back to the earlier expressions 

derived above
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which corresponds to one of the expression obtained from the linear analysis (slide 8)
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ISF Fourier Series Decomposition
 Since the ISF is periodic, it can be expanded into a Fourier series
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 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Noise Folding
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 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Effect of Symmetry
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Symmetric rise and fall time

t
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Asymmetric rise and fall time

The dc value of the ISF is governed by rise and fall time symmetry, and
controls the contribution of low frequency noise to the phase noise.
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 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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1/f3 Corner of Phase Noise Spectrum
 Due to noise folding, the 1/f3 noise corner of the phase noise is not the same as 

the 1/f noise of the device noise source (it is usually smaller)
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 By designing for a symmetric waveform, the performance degradation due to low 
frequency noise can be minimized (by minimizing coefficient 𝑐 )

 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Time Varying Current in Colpitts Oscillator
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 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.
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Cyclostationary Properties, Time Domain
 Noise sources are not stationnary but cyclo-stationnary

 This can be modeled by a noise modulating function defining a new effective ISF
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where 𝑖 is a stationary noise source 
and the effective ISF is defined as

( ) ( ) ( )eff x x x 

 A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.



Nonlinear analysis

ICLAB

Effective ISF of the Colpitts Oscillator
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