MICRO-461 Low-power Radio Design for the IoT

10. Oscillators 10.2. Phase Noise

Christian Enz

Integrated Circuits Lab (ICLAB), Institute of Microengineering (IMT), School of Engineering (STI)

Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland

Outline

- Fundamentals
- Linear analysis
- Nonlinear analysis

Limit Cycle in the V-I State Space

 $V = A \cdot \cos(\omega_0 t + \phi(t))$

D. Ham and A. Hajimiri, "Virtual damping and Einstein relation in oscillators," JSSC, vol. 38, No. 3, pp. 407-418, March 2003.

© C. Enz | 2022

Low-power radio design for the IoT (MICRO-461)

Manifestation of Phase Noise

Courtesy D. Ham, Tutorial on Phase Noise, ESSCIRC 2014.

Phase Diffusion Seen through an Ensemble of Oscillators

D. Ham and A. Hajimiri, "Virtual damping and Einstein relation in oscillators," JSSC, vol. 38, No. 3, pp. 407-418, March 2003.

© C. Enz | 2022

Low-power radio design for the IoT (MICRO-461)

Phase Diffusion

• Neglecting the amplitude fluctuations, the output voltage of an oscillator is given by

$$v(t) = A \cdot \cos\left(\omega_0 t + \phi(t)\right)$$

- Where $\phi(t)$ represents the phase fluctuation and is a random process
- The instantaneous noise frequency is then given

$$\Delta \omega(t) = \frac{d\phi(t)}{dt}$$

and hence

$$\phi(t) = \int_{0}^{t} \Delta \omega(\tau) \cdot d\tau + \phi(0)$$

F. Herzel and B. Razavi, "A Study of Oscillator Jitter Due to Supply and Substrate Noise," TCAS II, Vol. 46, No. 1, pp. 56-62, Jan. 1999.
 H. Hegazi, J. Rael and A. Abidi, *The Designer's Guide to High-Purity Oscillators*, Springer, 2005.

Fundamentals

Oscillator Output Power Spectral Density

• If it is assumed that the instantaneous frequency noise fluctuation $\Delta \omega$ is a white noise with constant PSD and ACF given by

$$R_{\Delta\omega}(\tau) = 2D \cdot \delta(\tau)$$

• where D is the diffusivity, then $\phi(t)$ is a Wiener process having a Gaussian distribution centered around $\phi(0)$ and a variance that increases linearly with time

$$\sigma_{\phi}^2(t) = 2D \cdot t$$

The ACF of the sine wave is then obtained as

$$R_{v}(\tau) = \mathrm{E}\left[v(t+\tau) \cdot v(t)\right] = \frac{A^{2}}{2} \cdot \cos(\omega_{0}\tau) \cdot \exp\left[-D \cdot |\tau|\right]$$

 The single-sided PSD of the sine wave is then obtained by taking the Fourier transform, resulting in

$$S_v(\omega) = A^2 \cdot \frac{D}{\left(\omega - \omega_0\right)^2 + D^2}$$

F. Herzel and B. Razavi, "A Study of Oscillator Jitter Due to Supply and Substrate Noise," TCAS II, Vol. 46, No. 1, pp. 56-62, Jan. 1999.
 H. Hegazi, J. Rael and A. Abidi, *The Designer's Guide to High-Purity Oscillators*, Springer, 2005.

Fundamentals

Linewidth Broadening and Phase Noise

• It can be shown that the resulting PSD of v(t) is a Lorentzian

• The corresponding phase noise at a given offset $\Delta \omega$ is defined as the ratio of the PSD at $\omega_0 + \Delta \omega$ to the total carrier power $A^2/2$

$$L(\Delta \omega) = \frac{S_v(\omega)}{\frac{A^2}{2}} = \frac{2D}{\Delta \omega^2 + D^2} \cong \frac{2D}{\Delta \omega^2} \quad \text{for} \quad \Delta \omega \gg D$$

F. Herzel and B. Razavi, "A Study of Oscillator Jitter Due to Supply and Substrate Noise, TCAS II, Vol. 46, No. 1, pp. 56-62, Jan. 1999.
 H. Hegazi, J. Rael and A. Abidi, *The Designer's Guide to High-Purity Oscillators*, Springer, 2005.

Additive Noise and Noisy Phasor

• An harmonic oscillator delivers a noisy signal typically given by

$$V(t) = A \cdot (1 + \varepsilon(t)) \cdot \sin(\omega_0 t + \phi(t)) \quad \text{with} \quad \varepsilon(t) \triangleq \frac{\Delta A(t)}{A}$$

where A and ω_0 are the amplitude and frequency of the carrier without noise and $\varepsilon(t)$ and $\phi(t)$ represent the variations of amplitude and phase induced by the noise sources having a bandwidth much smaller than ω_0 . Note that if the waveform is not sinusoidal, then V(t) represents the fundamental.

• Can be viewed as a noisy phasor $\vec{V}(t)$

$$\vec{\mathbf{V}}(t) \triangleq A \cdot (1 + \varepsilon(t)) \cdot e^{j\omega_0 t} \cdot e^{j\phi(t)}$$

with

$$V(t) = \Re\left\{\vec{\mathbf{V}}(t)\right\}$$

Fundamentals

Close-in Phase Noise

- The additive noise can be decomposed into AM (or in-phase I) and PM (or quadrature Q) components
- The phase angle fluctuation is then given by

 The (unilateral) PSD of this angle fluctuation is then given by the ratio of the PSD of the PM component to the power of the carrier (A is the peak value!)

$$S_{\phi}(\Delta \omega) = \frac{S_{V_{n-pm}}}{A^2/2}$$

Indr

Single Sideband Phase Noise

• Close-in phase noise is usually dominated by the PM component leading to

$$S_{\phi}(\Delta \omega) \cong \frac{S_{V_n}}{A^2/2}$$

 The standardized single sideband (SSB) phase noise *L* as measured by the phase noise analyzer is defined as

$$L(\Delta \omega) \triangleq \frac{S_{\phi}(\Delta \omega)}{2} = \frac{1}{2} \frac{S_{V_n}}{A^2/2} = \frac{S_{V_n}}{A^2}$$

• The SSB phase noise \mathcal{L} is measured in dBc/Hz

Leeson's Empirical Model

- Empirical model
- Slope −3 comes from up-converted 1/f noise, slope −2 from thermal noise
- Close to the carrier, the phase noise is determined by the up-converted 1/f noise
- Parameters F and $\Delta \omega_{1/f}$ are not easy to obtain analytically and are hence extracted from measurements

Outline

- Fundamentals
- Linear analysis
- Nonlinear analysis

Linear Phase Noise Analysis – Parallel LC Oscillator

The small-signal equivalent circuit of a generic parallel LC oscillator including the noise sources due to the resistive losses in the tank G_L (actually its parallel equivalent conductance given below) and the noise coming from the active nonlinear circuit (usually a transconductor) is shown below

The (unilateral) PSD of the noise sources are given by

$$S_{I_{nGL}} = 4kT \cdot G_L$$
 and $S_{I_{nGc}} = 4kT \cdot \gamma G_c$

where γ is the transconductor excess noise factor

Parallel LC Oscillator – Voltage Noise

 In steady-state condition, the losses are compensated by the negative conductance provided by the circuit and hence the circuit reduces to

$$Z = \frac{V_n}{I_n} = \frac{Z_0}{j \cdot \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

with $Z_0 = \sqrt{\frac{L}{C}} \quad \omega_0 = \frac{1}{\sqrt{LC}}$

Close to the carrier, we have

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \cong 2\frac{\Delta\omega}{\omega_0} \quad \text{with} \quad \Delta\omega = \omega - \omega_0 \quad \text{and hence} \quad Z \cong \frac{Z_0}{j2\frac{\Delta\omega}{\omega_0}} = -\frac{j\omega_0 Z_0}{2\Delta\omega}$$

The PSD of the noise voltage fluctuations is then given by

$$S_{V_n} = (1+\gamma) \cdot 4kTG \cdot \left(\frac{\omega_0 Z_0}{2\Delta\omega}\right)^2 = \frac{(1+\gamma) \cdot 4kT}{G} \cdot \left(\frac{\omega_0}{2Q\Delta\omega}\right)^2 = \frac{(1+\gamma) \cdot kT}{G \cdot Q^2} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2$$

where $Z_0 = 1/(G \cdot Q)$ has been used

```
Linear analysis
```

Parallel LC Oscillator – SSB Phase Noise

• The standardized single sideband (SSB) phase noise \mathcal{L} is then given by

$$L(\Delta\omega) = \frac{S_{\phi}(\Delta\omega)}{2} = \frac{S_{V_n}}{A^2} = \frac{(1+\gamma)\cdot 4kT}{G\cdot A^2} \cdot \left(\frac{\omega_0}{2Q\Delta\omega}\right)^2 = \frac{(1+\gamma)\cdot kT}{G\cdot Q^2\cdot A^2} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2$$

where *A* is the carrier peak amplitude

- Phase noise *L* is inversely proportional to the square of the offset frequency Δω and the square of the amplitude A
- It is also inversely proportional to Q^2 , but this is assuming that G is constant and independent of Q (which is actually not always the case as we will see later)
- The noise factor used in the Leeson expression of the $1/\omega^2$ portion of the spectrum can then easily be identified as

$$F = 1 + \gamma$$

Parallel LC Oscillator – Alternative Expressions of PN

• Losses in the LC tank are usually dominated by losses in the inductor which are represented by a series resistor r related to the loss conductance G_L by

$$G_L = G = \frac{1}{r \cdot \left(1 + Q_L^2\right)} \cong \frac{1}{r \cdot Q_L^2} \quad \text{for} \quad Q_L \gg 1$$

• Assuming an ideal capacitor, the *Q* of the parallel circuit is equal to the inductor Q_L and hence $S_{V_n} = (1 + \gamma) \cdot kT \cdot r \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2$

which does not depend on Q^2 anymore

• It can also be written in terms of Q and the impedance level $1/(\omega_0 C) = Z_0$ as

$$S_{V_n} = \frac{(1+\gamma) \cdot kT}{Q \cdot \omega_0 C} \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2 = \frac{(1+\gamma) \cdot kT \cdot Z_0}{Q} \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2$$

 Which leads to the following equivalent expressions of the standardized single sideband (SSB) phase noise *L*

$$L(\Delta\omega) = \frac{(1+\gamma) \cdot kT}{G \cdot Q^2 \cdot A^2} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2 = \frac{(1+\gamma) \cdot kT \cdot r}{A^2} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2 = \frac{(1+\gamma) \cdot kT}{Q \cdot \omega_0 C \cdot A^2} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2 = \frac{(1+\gamma) \cdot kT \cdot Z_0}{Q \cdot A^2} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2$$

Linear Phase Noise Analysis – Pierce Oscillator

• The equivalent small-signal circuit including the noise sources from the inductor V_{nL} , MOS transistor I_{nm} and bias current source I_{nb} is given below

 The active circuit, including its noise sources, can be replaced by its Thévenin source

Linear analysis

Pierce Oscillator – Noise Transfer Functions

• At the resonance frequency the inductor loss r is compensated by the negative resistance $-R_c$ provided by the circuit. The latter then simplifies to

• The noise transfer function from sources V_{nL} and V_{nc} to V_n are given by

$$H_{nL}(\omega) = \frac{V_n}{V_{nL}} = \frac{1}{1 - (\omega/\omega_0)^2} \text{ and } H_{nc}(\omega) = \frac{V_n}{V_{nc}} = -\frac{(\omega/\omega_0)^2}{1 - (\omega/\omega_0)^2} \text{ with } \omega_0 = \frac{1}{\sqrt{LC_{eq}}}$$

• At an offset frequency $\Delta \omega \ll \omega_0$ from the carrier we have

$$\omega = \omega_0 + \Delta \omega \quad \rightarrow \quad \frac{\omega}{\omega_0} = 1 + \frac{\Delta \omega}{\omega_0} \quad \rightarrow \quad \left(\frac{\omega}{\omega_0}\right)^2 = \left(1 + \frac{\Delta \omega}{\omega_0}\right)^2 \cong 1 + 2\frac{\Delta \omega}{\omega_0}$$

$$H_{nL}(\Delta \omega) \cong -\frac{\omega_0}{2\Delta \omega} \text{ and } H_{nc}(\Delta \omega) \cong \frac{\omega_0}{2\Delta \omega}$$

Pierce Oscillator – Voltage Noise

The noise voltage PSD is given by

$$S_{V_n} = \left|H_{nL}\right|^2 S_{V_{nL}} + \left|H_{nc}\right|^2 S_{V_{nc}} \cong \left(\frac{\omega_0}{2\Delta\omega}\right)^2 \left(S_{V_{nL}} + S_{V_{nc}}\right) \quad \text{with} \quad S_{V_{nL}} = 4kT \cdot r$$

where $S_{V_{nc}}$ has to be evaluated from the following circuit

$$Z_{nm} = -\frac{C_1}{G_m C_3 + s \left(C_1 C_2 + C_1 C_3 + C_2 C_3\right)} \cong -\frac{C_1}{s \left(C_1 C_2 + C_1 C_3 + C_2 C_3\right)} = -\frac{C_1}{C_1 + C_2} \cdot \frac{1}{s C_{eq}}$$

$$S_{V_{nc}} = 4kT \cdot \left(\frac{C_1}{C_1 + C_2} \cdot \frac{1}{\omega_0 C_{eq}}\right)^2 \cdot \left(\gamma_{nm} G_{mm} + \gamma_{nb} G_{mb}\right)$$

Linear analysis

Pierce Oscillator – Voltage Noise across Tank

• Finally the noise voltage PSD is given by

$$S_{V_n} \cong kT \cdot r \cdot (1 + \gamma) \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2$$

where γ is the noise excess factor representing the noise contribution of the circuit and given by

$$\gamma = \frac{1}{r} \cdot \left(\frac{C_1}{C_1 + C_2} \cdot \frac{1}{\omega_0 C_{eq}} \right)^2 \cdot \left(\gamma_{nm} G_{mm} + \gamma_{nb} G_{mb} \right) = \frac{Q}{\omega_0 C_{eq}} \cdot \left(\frac{C_1}{C_1 + C_2} \right)^2 \cdot \left(\gamma_{nm} G_{mm} + \gamma_{nb} G_{mb} \right)$$
$$C_{eq} = C_3 / / C_{12} = \frac{C_1 C_2 + C_1 C_3 + C_2 C_3}{C_1 + C_2}$$

• Since the critical transconductance is given by

$$G_{mcrit} = r \cdot \omega_0^2 \cdot \frac{\left(C_1 C_2 + C_1 C_3 + C_2 C_3\right)^2}{C_1 C_2} = r \cdot \omega_0^2 \cdot \frac{C_1}{C_2} \cdot \left(\frac{C_1 + C_2}{C_1}\right)^2 \cdot C_{eq}^2$$

• The γ noise excess factor can also be written as

$$\gamma = \frac{C_1}{C_2} \cdot \frac{\gamma_{nm}G_{mm} + \gamma_{nb}G_{mb}}{G_{mcrit}}$$

```
Linear analysis
```

Pierce Oscillator – Noise Excess Factor

• Since the minimum G_{mcrit} is obtained for $C_1 = C_2$, the γ noise excess factor reduces to

$$\gamma = \frac{\gamma_{nm}G_{mm} + \gamma_{nb}G_{mb}}{G_{mcrit}} \quad \text{for} \quad C_1 = C_2$$

• Since $G_{mm}/G_{mcrit} > 3$, for ensuring start-up and reaching the desired amplitude, the noise can be slightly degraded by the active part of the oscillator

Pierce Oscillator – Noise at the Output

• V_n is the noise voltage across the resonator. Usually we are more interested in the noise at the oscillator output V_{nout}

• And hence
$$S_{V_{nout}} = \left(\frac{C_1}{C_1 + C_2}\right)^2 \cdot S_{V_n} = \left(\frac{C_1}{C_1 + C_2}\right)^2 \cdot kT \cdot r \cdot (1 + \gamma) \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2$$

• The SSB phase noise at the output is then given by

$$L(\Delta\omega) = \frac{S_{V_{nout}}}{A^2} = \frac{kT \cdot r \cdot (1+\gamma)}{A^2} \cdot \left(\frac{C_1}{C_1 + C_2}\right)^2 \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2 = \frac{kT \cdot (1+\gamma)}{A^2 \cdot Q \cdot \omega_0 C_{eq}} \cdot \left(\frac{C_1}{C_1 + C_2}\right)^2 \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2$$

with Q given by
$$Q = \frac{\omega_0 L}{r} = \frac{1}{\omega_0 C_{eq} r}$$
 $C_{eq} = C_3 //C_{12} = \frac{C_1 C_2 + C_1 C_3 + C_2 C_3}{C_1 + C_2}$

Pierce Oscillator – ADS HB Simulations (WI)

Pierce Oscillator – ADS HB Simulations (WI)

Technology and physical parameters

UT	n	nUT	VT0n	Ispecn
25.87 m	1.271	32.89 m	455.0 m	715.0 n

Specifications

f0	QL	C2	х	IC	L1
1.000 G	10.00	5.000 p	3.041	100.0 m	180.0 n

А	C1	C3	L	r	Gmcrit	Icrit	lb	Ispec	W1
100.0 m	5.000 p	250.0 f	9.220 n	5.793	6.919 m	227.6 u	448.6 u	4.486 m	1.129 m

Slight shift in resonant frequency due to fairly low inductor Q ($Q_L = 10$).

Amplitude of the fundamental component at the gate is exactly equal to 100 mv and a bit larger at the drain (107 mV)

Amplitude of quasi-sinusoid is almost exactly 100mV (100.5mV) at the gate and slightly larger at the drain (116 mV)

Pierce Oscillator – ADS Transient Simulations (WI)

Technology and physical parameters

UT	n	nUT	VT0n	Ispecn
25.87 m	1.271	32.89 m	455.0 m	715.0 n

Specifications

fO	QL	C2	х	IC	L1
1.000 G	10.00	5.000 p	3.041	100.0 m	180.0 n

Calculated parameters

A	C1	C3	L	r	Gmcrit	lcrit	lb	Ispec	W1
100.0 m	5.000 p	250.0 f	9.220 n	5.793	6.919 m	227.6 u	448.6 u	4.486 m	1.129 m

Pierce Oscillator – ADS SSB Phase Noise Simulation (WI)

100.0 m

5.000 p

250.0 f

9.220 n

	Technolo	gy and physic	al parameters						
UT	n	nUT	VT0n	Ispecn					
25.87 m	1.271	32.89 r	n 455.0 ı	m 715.0	n				
Specifications									
fO	C	۱L	C2	x		С	L1]	
1.000	G	10.00	5.000 p	3.04	1	100.0 m	180.0 n		
	·			Calculated	parameters				
А	C1	C3	L	r	Gmcrit	lcrit	lb	Ispec	W1
									1

5.793

6.919 m

Only accounting for thermal coming from main transistor (current source is noiseless and flicker noise of transistor has been turned off by setting KF=0 see schematic)

SSB Phase Noise (thermal noise only)

Am	gamma	F
0.107	1.253	2.253

227.6 u

448.6 u

4.486 m

1.129 m

Phase noise calculated with simulated amplitude (since goes with the square) Very good match between model and simulations despite the linear analysis

© C. Enz | 2022

Pierce Oscillator – ADS HB Simulations (SI)

Pierce Oscillator – ADS HB Simulations (SI)

Technology and physical parameters

UT	n	nUT	VT0n	Ispecn
25.87 m	1.271	32.89 m	455.0 m	715.0 n

Specifications

fO	QL	C2	х	IC	L1
1.000 G	10.00	5.000 p	9.122	20.80	1.000 u

Slight shift in resonant frequency due to fairly low inductor Q ($Q_L = 10$). Amplitude of the fundamental component at the gate is lower than expected (239 mV). This probably due to the fact that we have additional effects (such mobility reduction and velocity saturation) which are not accounted for in the simple quadratic model.

Simulations much more sensitive than in WI. Does not always converge. Amplitude is slightly lower than 300mV (240mV) at the gate and at the drain (260mV)

© C. Enz | 2022

m1

Mìn

m7

Valley

time=541.2psec ts(HB.D)=0.512

m2 ind Delta=5.119E-10 dep Delta=0.524 Max, Delta Mode ON

time=2.014nsec ts(HB.G2)=0.535

ind Delta=-1.510E-9 dep Delta=0.479

Peak, Delta Mode ON

Pierce Oscillator – ADS Transient Simulations (SI)

Technology and physical parameters

UT	n	nUT	VT0n	Ispecn
25.87 m	1.271	32.89 m	455.0 m	715.0 n

Specifications

f0	QL	C2	х	IC	L1
1.000 G	10.00	5.000 p	9.122	20.80	1.000 u

Calculated parameters

Α	C1	C3	L	r	Gmcrit	Ibcrit	lb	Ispec	W1
300.0 m	5.000 p	250.0 f	9.220 n	5.793	6.919 m	733.9 u	1.468 m	70.55 u	98.68 u

Pierce Oscillator – ADS SSB Phase Noise Simulation (SI)

Only accounting for thermal coming from main transistor (current source is noiseless)

Very good match between model and simulations despite the linear analysis

UT n nUT VT0n Ispecn 25.87 m 1.271 32.89 m 455.0 m 715.0 n	Technology and physical parameters									
25.87 m 1.271 32.89 m 455.0 m 715.0 n Specifications	UT		n	nL	Т		VT0n		Ispecn	
Specifications	25.87 m		1.271	32	89 m		455.0 r	m	715.0 n	
	Specifications									

[fO	QL	C2	х	IC	L1
	1.000 G	10.00	5.000 p	9.122	20.80	1.000 u

	Calculated parameters									
[A	C1	C3	L	r	Gmcrit	lbcrit	lb	Ispec	W1
	300.0 m	5.000 p	250.0 f	9.220 n	5.793	6.919 m	733.9 u	1.468 m	70.55 u	98.68 u

Linear analysis

 The equivalent small-signal circuit including the noise sources from the inductor, MOS transistor and bias current source is given below

 The active circuit, including its noise sources, can be replaced by its Thévenin source

$$R_{c} \cong \frac{G_{ms}C_{1}C_{2}}{\omega_{0}^{2}(C_{1}C_{2} + C_{1}C_{3} + C_{2}C_{3})^{2}} = \frac{G_{ms}}{(\omega_{0}C_{eq})^{2}} \cdot \frac{C_{1}C_{2}}{(C_{1} + C_{2})^{2}}$$

$$R_{c} \cong \frac{G_{ms}C_{1}C_{2}}{\omega_{0}^{2}(C_{1}C_{2} + C_{1}C_{3} + C_{2}C_{3})^{2}} = \frac{G_{ms}}{(\omega_{0}C_{eq})^{2}} \cdot \frac{C_{1}C_{2}}{(C_{1} + C_{2})^{2}}$$

$$C_{eq} = C_{3} + C_{12} = C_{3} + \frac{C_{1}C_{2}}{C_{1} + C_{2}} = \frac{C_{1}C_{2} + C_{1}C_{3} + C_{2}C_{3}}{C_{1} + C_{2}}$$

Linear analysis

• At the resonance frequency the inductor loss r is compensated by the negative resistance $-R_c$ provided by the circuit. The latter then simplifies to

• The noise transfer function from sources V_{nL} and V_{nc} to V_n are given by

$$H_{nL}(\omega) = \frac{V_n}{V_{nL}} = \frac{1}{1 - (\omega/\omega_0)^2} \text{ and } H_{nc}(\omega) = \frac{V_n}{V_{nc}} = -\frac{(\omega/\omega_0)^2}{1 - (\omega/\omega_0)^2} \text{ with } \omega_0 = \frac{1}{\sqrt{LC_{eq}}}$$

• At an offset frequency $\Delta \omega \ll \omega_0$ from the carrier we have

$$\omega = \omega_0 + \Delta \omega \quad \rightarrow \quad \frac{\omega}{\omega_0} = 1 + \frac{\Delta \omega}{\omega_0} \quad \rightarrow \quad \left(\frac{\omega}{\omega_0}\right)^2 = \left(1 + \frac{\Delta \omega}{\omega_0}\right)^2 \cong 1 + 2\frac{\Delta \omega}{\omega_0}$$

$$H_{nL}(\Delta \omega) \cong -\frac{\omega_0}{2\Delta \omega} \text{ and } H_{nc}(\Delta \omega) \cong \frac{\omega_0}{2\Delta \omega}$$

Linear analysis

The noise voltage PSD is given by

$$S_{V_n} = \left|H_{nL}\right|^2 S_{V_{nL}} + \left|H_{nc}\right|^2 S_{V_{nc}} \cong \left(\frac{\omega_0}{2\Delta\omega}\right)^2 \left(S_{V_{nL}} + S_{V_{nc}}\right) \quad \text{with} \quad S_{V_{nL}} = 4kT \cdot r$$

where $S_{V_{nc}}$ has to be evaluated from the following circuit

Linear analysis

• Finally the noise voltage PSD is given by

$$S_{V_n} \cong kT \cdot r \cdot (1 + \gamma) \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2$$

where γ is the noise excess factor representing the noise contribution of the circuit and given by

$$\gamma = \frac{1}{r} \cdot \left(\frac{C_1}{C_1 + C_2} \cdot \frac{1}{\omega_0 C_{eq}} \right)^2 \cdot \left(\delta_{nm} G_{msm} + \left(\frac{C_2}{C_1} \right)^2 \cdot \gamma_{nb} G_{mb} \right)$$
$$= \frac{Q}{\omega_0 C_{eq}} \cdot \left(\frac{C_1}{C_1 + C_2} \right)^2 \cdot \left(\delta_{nm} G_{msm} + \left(\frac{C_2}{C_1} \right)^2 \cdot \gamma_{nb} G_{mb} \right)$$

• Since the critical transconductance is given by

$$G_{mscrit} = r \cdot \omega_0^2 \cdot \frac{(C_1 C_2 + C_1 C_3 + C_2 C_3)^2}{C_1 C_2} = r \cdot \omega_0^2 \cdot \frac{C_1}{C_2} \cdot \left(\frac{C_1 + C_2}{C_1}\right)^2 \cdot C_{eq}^2$$

• The γ noise excess factor can also be written as

$$\gamma = \frac{C_1}{C_2} \cdot \frac{\delta_{nm} G_{msm}}{G_{mscrit}} + \frac{C_2}{C_1} \cdot \frac{\gamma_{nb} G_{mb}}{G_{mscrit}}$$

Linear Noise Analysis of Colpitts Oscillator

• Since minimum G_{mscrit} is obtained for $C_1 = C_2$, the γ noise excess factor reduces to $\delta = G_1 + \gamma + G_2$.

$$\gamma = \frac{\delta_{nm}G_{msm} + \gamma_{nb}G_{mb}}{G_{mscrit}} \quad \text{for} \quad C_1 = C_2$$

- Since usually $G_{msm}/G_{mscrit} > 3$ for ensuring start-up and reaching the desired amplitude, the noise can be significantly degraded by the active part of the oscillator
- The SSB phase noise is then given by

$$L(\Delta \omega) = \frac{S_{V_n}/2}{A^2/2} = \frac{kT \cdot r \cdot (1+\gamma)}{A^2} \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2 = \frac{kT \cdot (1+\gamma)}{A^2 \cdot Q \cdot \omega_0 C_{eq}} \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2$$

with Q given by
$$Q = \frac{\omega_0 L}{r} = \frac{1}{\omega_0 C_{eq} r}$$

 Note that this is still a linear analysis not accounting for the time variance of the circuit

Colpitts Oscillator – ADS HB Simulations

Colpitts Oscillator – ADS HB Simulations

Technology and physical parameters

UT	n	nUT	VT0n	Ispecn
25.87 m	1.271	32.89 m	455.0 m	715.0 n

Specifications

f0	QL	C2	х	IC	L1
1.000 G	10.00	5.000 p	3.865	100.0 m	180.0 n

A	C1	C3	L	r	Icrit	lb	Ispec	W1	Gmscrit	lcrit
100.0 m	5.000 p	250.0 f	9.220 n	5.793	179.0 u	416.3 u	4.163 m	1.048 m	6.919 m	179.0 u

Amplitude is almost exactly 100mV (100.5mV) at the source and slightly larger at the drain (116 mV)

Slight shift in resonant frequency due to parasitic capacitances coming from transistor and not accounted for

© C. Enz | 2022

PF

Colpitts Oscillator – ADS Transient Simulations

Technology and physical parameters

UT	n	nUT	VT0n	Ispecn
25.87 m	1.271	32.89 m	455.0 m	715.0 n

Specifications

fO	QL	C2	х	IC	L1
1.000 G	10.00	5.000 p	3.865	100.0 m	180.0 n

Calculated parameters

А	C1	C3	L	r	Icrit	lb	Ispec	W1	Gmscrit	Icrit
100.0 m	5.000 p	250.0 f	9.220 n	5.793	179.0 u	416.3 u	4.163 m	1.048 m	6.919 m	179.0 u

Colpitts Oscillator – ADS SSB Phase Noise Simulation

Technology and physical parameters									
UT n nUT VT0n Ispecn									
25.87 m 1.271 32.89 m 455.0 m 715.0 n									

Specifications

fO	QL	C2	х	IC	L1					
1.000 G	10.00	5.000 p	3.865	100.0 m	180.0 n					

Caculated parameters										
A	C1	C3	L	r	lcrit	lb	Ispec	W1	Gmscrit	lcrit
100.0 m	5.000 p	250.0 f	9.220 n	5.793	179.0 u	416.3 u	4.163 m	1.048 m	6.919 m	179.0 u

Only accounting for thermal coming from main transistor (current source is noiseless)

SSB Phase Noise (thermal noise only)

Very good match between model and simulations despite the linear analysis

Extracted Noise Factor (thermal noise only)

Ξ

Linear analysis

Linear Noise Analysis of the Cross-coupled Oscillator

- The same approach can be used for the cross-coupled pair oscillator
- The small-signal circuit including the noise sources is given below

 The cross-coupled pair , including its noise sources, can be replaced by its Thévenin source

$$R_c \cong \frac{G_m}{2\omega_0^2 \cdot C^2}$$
$$C_{eq} = C$$

Linear analysis

Linear Noise Analysis of Cross-coupled Oscillator

- The equivalent Thévenin noise source of the circuit V_{nc} is obtained from the circuit shown below
- Note that if perfect matching is assumed, under the small-signal approximation, the noise coming from the bias source I_{nb} does not contribute to the differential noise source V_n

• The noise voltage PSD due to the circuit is then given by

$$S_{V_{nc}} = 2 \cdot \left(\frac{1}{\omega_0 2C}\right)^2 \cdot 4kT \cdot \gamma_n G_m = \frac{2 \cdot kT \cdot \gamma_n G_m}{\omega_0^2 \cdot C^2}$$

Linear Noise Analysis of Cross-coupled Oscillator

Similarly to the Colpitts oscillator, the noise voltage PSD is given by

$$S_{V_n} = |H_{nL}|^2 S_{V_{nL}} + |H_{nc}|^2 S_{V_{nc}} \cong \left(\frac{\omega_0}{2\Delta\omega}\right)^2 \left(S_{V_{nL}} + S_{V_{nc}}\right) \text{ with } S_{V_{nL}} = 4kT \cdot r$$

Which reduces to

$$S_{V_n} \cong kT \cdot r \cdot (1 + \gamma) \cdot \left(\frac{\omega_0}{\Delta \omega}\right)^2$$

• The phase noise is then given by

$$\mathbb{L}(\Delta\omega) = \frac{S_{V_n}/2}{A^2/2} = \frac{kT \cdot r \cdot (1+\gamma)}{A^2} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2 = \frac{kT \cdot (1+\gamma)}{A^2 \cdot Q_L \cdot \omega_0 C} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2$$

where γ is the noise excess factor representing the noise contribution of the circuit and given by

$$\gamma = \frac{\gamma_n G_m}{2r \cdot \omega_0^2 \cdot C^2} = \frac{\gamma_n G_m \cdot Q_L}{2 \cdot \omega_0 \cdot C} = \gamma_n \cdot \frac{G_m}{G_{mcrit}}$$

• Since
$$G_{mcrit} = 2r \cdot \omega_0^2 \cdot C^2 = \frac{2C \cdot \omega_0}{Q_L}$$
 and $Q_L = \frac{\omega_0 L}{r} = \frac{1}{\omega_0 rC}$

Outline

- Fundamentals
- Linear analysis
- Nonlinear analysis

Oscillators are Time-Variant Systems

Even for an ideal LC oscillator, the phase response is *<u>Time Variant.</u>*

Amplitude Restoring Mechanism

Once Introduced, phase error persists indefinitely.

Non-linearity quenches amplitude changes over time.

Phase Impulse Response

The phase impulse response of an arbitrary oscillator is a time varying step
 i(t)

• The unit impulse response is

$$h_{\phi}(t,\tau) = \frac{\Gamma(\omega_0 \tau)}{q_{\max}} \cdot u(t-\tau)$$

- Γ(x) is a dimensionless function periodic in 2π describing how much phase change results from applying an impulse at time t = T · x/(2π) and u(t) is the unit step
- Dividing $\Gamma(x)$ by q_{max} makes the response independent of the amplitude
- q_{max} is the maximum charge on the tank capacitor C for an amplitude A

$$q_{\max} = C \cdot A$$

Nonlinear analysis

Impulse Sensitivity Function (ISF)

The ISF quantifies the sensitivity of every point in the waveform to perturbations.

A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.

Low-power radio design for the IoT (MICRO-461)

Phase Response to an Arbitrary Source

• The phase response is then given by

$$\varphi(t) = \int_{-\infty}^{+\infty} h_{\varphi}(t,\tau) \cdot i(\tau) \cdot d\tau = \frac{1}{q_{\max}} \cdot \int_{-\infty}^{t} \Gamma(\omega_0 \tau) \cdot i(\tau) \cdot d\tau$$

This corresponds to the following equivalent block diagram

A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.

© C. Enz | 2022

Phase Noise Due to White Noise

Assuming that the source *i*(*t*) is a white noise of PSD *S_i*, the phase noise is given by

$$L(\Delta\omega) = \frac{\Gamma_{rms}^2}{q_{max}^2 \cdot 2\Delta\omega^2} \cdot S_i$$

• Where Γ_{rms}^2 is the rms value of the ISF Γ

$$\Gamma_{rms}^{2} = \frac{1}{2\pi} \cdot \int_{0}^{2\pi} |\Gamma(x)|^{2} \cdot dx = \frac{1}{2} \cdot \sum_{n=0}^{+\infty} |c_{n}|^{2}$$

A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.

© C. Enz | 2022

Nonlinear analysis

Nonlinear Expression under Linear Operation

We can check that for linear operation we get back to the earlier expressions derived above

$$L(\Delta\omega) = \frac{\Gamma_{rms}^2}{q_{max}^2 \cdot 2\Delta\omega^2} \cdot S_i$$

- Replacing $S_i = 4kT(1+\gamma)G$ and $q_{\max} = C \cdot A$
- In case of linear operation Γ_{rms}^2 is simply $\frac{1}{2}$, resulting in

$$L(\Delta\omega) = \frac{kT(1+\gamma)G}{C^2 \cdot A^2 \cdot \Delta\omega^2}$$

• Remembering that $Q = \frac{\omega_0 C}{G} \rightarrow C = \frac{Q \cdot G}{\omega_0}$ $L(\Delta \omega) = \frac{kT(1+\gamma)\omega_0^2}{A^2 \cdot Q^2 \cdot G \cdot \Delta \omega^2}$

which corresponds to one of the expression obtained from the linear analysis (slide 8)

Nonlinear analysis

ISF Fourier Series Decomposition

• Since the ISF is periodic, it can be expanded into a Fourier series

$$\Gamma(\omega_0 t) = c_0 + \sum_{n=1}^{+\infty} c_n \cdot \cos(n \,\omega_0 t + \theta_n)$$

The phase response can then be written as

A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.

© C. Enz | 2022

Noise Folding

A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.

© C. Enz | 2022

Effect of Symmetry

$$c_0 = \frac{1}{2\pi} \cdot \int_0^{2\pi} \Gamma(x) \cdot dx$$

The dc value of the ISF is governed by rise and fall time symmetry, and controls the contribution of low frequency noise to the phase noise.

A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.

© C. Enz | 2022

Low-power radio design for the IoT (MICRO-461)

Nonlinear analysis

1/f³ Corner of Phase Noise Spectrum

 Due to noise folding, the 1/f³ noise corner of the phase noise is not the same as the 1/f noise of the device noise source (it is usually smaller)

• By designing for a symmetric waveform, the performance degradation due to low frequency noise can be minimized (by minimizing coefficient c_0)

Time Varying Current in Colpitts Oscillator

Nonlinear analysis

Cyclostationary Properties, Time Domain

- Noise sources are not stationnary but cyclo-stationnary
- This can be modeled by a noise modulating function defining a new effective ISF

A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.

© C. Enz | 2022

Effective ISF of the Colpitts Oscillator

A. Hajimiri and T. Lee, JSSC, Feb. 1998; T. Lee and A. Hajimiri, JSSC, March 2000; T. Lee, Cambridge, 2nd-ed. 2004.

© C. Enz | 2022