Maximizing the Margin

Pascal Fua
|C-CVLab




Logistic Regression is Better
than the Perceptron
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Outliers Can Cause Problems

e Logistic regression tries to minimize
the error-rate at training time.

e (Can result in poor classification rates

at test time.
) .O
'-. .: % ::f P _—> Must sometime_ accept to
X ,haks misclassify a few training samples.
') A
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margin

The orthogonal distance between the decision boundary
and the nearest sample is called the margin.

P-L Bishop, Chapter 7.1 A



Maximizing the Margin

Best

e The larger the margin, the better!
e The logistic regression does not guarantee a large one.

How do we maximize it? ﬁ
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Reminder: Sighed Distance

@x=[1x,...,x] h=0: Point is on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

w=[w,...,w,]

N
W = [wy, wy, ..., w,] wWith Z wl.2 =1
i=1

\4

Hyperplane: x € RN, W . % =0, withx =[1]x].

Signed distance: W - X, with w = [w,|w] and | |w|| = 1.
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Binary Classification in N Dimensions

Hyperplane: x € RN, W . % =0, withx =[1]x].

Signed distance: w - X, with w = [w,|w] and | |W || = 1.

Problem statement: Find w such that
o for all or most positive samples w - X > 0,

» for all or most negative samples w - X < 0.
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Reformulating the Signed Distance Again

@x=[1x,...,x] h=0: Point is on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

w=[w,...,w,]

W = [wy, wy, ..., w,] wWith

\4

Hyperplane: x € RN, W . % =0, withx =[1]x].

Signed distance: w - X, with w = [1|w] and | |W]|]| = 1.
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Reformulated Signed Distance

@x=[1x,...,x] h=0: Point is on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

w=[w,...,w,]

W = [w,|w] € RN*!
~, w W W
| [w]] [Iw ] [w]]

\4

Signed distance: W’ - X , VW € RVt
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Geometric Interpretation

We are going to use this to find a classifier
whose decision boundary is as far as possible
from all the points.

P=L Bishop, Chapter 4.1.1 A
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Maximum Margin Classifier

« Given a training set {(X,,,%,);<,<y} With ¢, € {—1,1} and solution
such that all the points are correctly classified, we have
Vn, t(w,-X)>=0.

* We can write the unsigned distance to the decision boundary as
(W-X,)

o I wl

—> A maximum margin classifier aims to maximize this distance for
the point closest to the boundary, that, 1s maximize the minimum

such distance.

3 . [t (W-X,
w* = argmaxg min
" [[wii
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Maximum Margin Classifier

L (1, (W)
W* = argmaxg min

n

» Unfortunately, this 1s a difficult optimization problem to solve.

* We will convert 1t into an equivalent, but easier to solve, problem.

.
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Maximum Margin Classifier

* The signed distance is invariant to a scaling of w:

W—o Aw:d =1 = .
1AWl [Iw]]

* We can choose A so that for the point m closest to the boundary, we
have

t,-(W-x )=1,
e For all points we therefore have
L-(wW-x)>1,

and the equality holds for at least one point.




Linear Support Vector Machine

Vn, t(W-x)> 1
In t(W-x,)=1

= min,d, = min, =

* To maximize the margin, we only need to maximize 1/||w]||.

 This is equivalent to minimizing 5 | | w| |2.

We can find max margin classifier as

wW* = minwal | w | |2subject toVn, t -(W-x)2>1

 This 1s a quadratic program, which 1s a convex problem.
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—> It can be solved to optimality. A
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LR vs Linear SVM

Logistic regression Linear SVM

e The LR decision boundary can come close to some
of the training examples.

e The SVM tries to prevent that.

.-



From Perceptron and LR
to Linear SVM
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Maximum Margin Classifier

Rarely achievable in practice.

« Given a training set {(X,,,%,);<,<n} With ¢, € .1} and solution
such that all the points are correctly classified, we have

Vn, t(wW-X)>=1.

* We can write the unsigned distance to the decision boundary as
(W-X,)

o I wl

—> A maximum margin classifier aims to maximize this distance for
the point closest to the boundary, that, 1s maximize the minimum

such distance.

3 . [t (W-X,
w* = argmaxg min
" [[wii
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Overlapping Classes
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The data rarely looks like this. It generally looks like that.

—> Must account for the fact that not all training samples can be correctly classified!
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Relaxing the Constraints

* The original problem

1
w* = min,— | | w||*subject tc £ (W-x,) > 1,

cannot be satisfied.

 We must allow some of the constraints to violated, but as few as
possible.

B
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Slack Variables

- We introduce an additional slack variable &, for each sample.
- We rewrite the constraintsas ¢, - (W-x,) > 1 —¢&,.

- £, > 0 weakens the original constraints.

- If0 <&, < 1, sample n lies inside the
margin, but 1s still correctly classified

- If £, > 1, then sample i 1s misclassified

=Pr-L A
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Naive Formulation

: 2
W*:mmw5||w||

subjectto Vn, ¢ -(W-x)>1—-¢ and&, >0

 This would simply allow the model to violate all the original
constraints at no cost.

e This would result in a useless classifier.
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Improved Formulation

. I PR -
w¥ =mln(w’{§n})5||W|| +C25n,

n=1

subjectto Vn, ¢,-(W-x)>1-¢& and&, > 0.

- C 1s constant that controls how costly constraint violations are.

» The problem is still convex.

X, V X,
o% ><X o% ><><
OGN\)(X Oo *x
O o x)( O o x)(
Xx Xx
o G
X1 X1

lowec large c

http://www.cristiandima.com/basics-of-support-vector-machines/ A
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Choosing the C Parameter

400 A 400 A

300 - 300 A

200 A 200 A

100 + 100 A

0 +

0 100 200 300 400

C=1: C=100:
e Large margin. e Small margin.
e Many training samples misclassified. e Few training samples misclassified.

Which is best?
e [t depends.

e Must use cross-validation, as we did for k-Means.
P-L é



Optimal vs Best

e The points can be linearly
separated but the margin is still
very small.

e At test time the two circles will be
misclassified.

e The margin is much larger but one
training example is misclassified.

o At test time the two circles will be
classified correctly.

—> Tradeoff between the number of mistakes on the training

data and the margin.
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.



Support Vector Machines

0% 10% 20% 30% 40% 50% 60%

Logistic Regression
Decision Trees
Random Forests
Neural Networks
Bayesian Techniques
Ensemble Methods
svvs [T
Gradient Boosted Machines
CNNs
RNNs
Other

Evolutionary Approaches - 5.5%

HMMs [ 5.4%

Markov Logic Networks - 4.9%

GANs [} 2.8%
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