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Logistic Regression is Better 
than the Perceptron

Perceptron Logistic

But ….
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Outliers Can Cause Problems

• Logistic regression tries to minimize 
the error-rate at training time. 

• Can result in poor classification rates 
at test time.  

—> Must sometime accept to 
misclassify a few training samples.  
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Margin

The orthogonal distance between the decision boundary 
and the nearest sample is called the margin. 

Bishop, Chapter 7.1
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• The larger the margin, the better! 
• The logistic regression does not guarantee a large one. 

Maximizing the Margin

How do we maximize it? 

BadBetter Best
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Reminder: Signed Distance

w = [w1, …, wn]
h

h=0: Point is on the decision boundary. 
h>0: Point on one side. 
h<0: Point on the other side.

x̃ = [1,x1, …, xN]

Signed distance: , with  and  w̃ ⋅ x̃ w̃ = [w0 |w] | |w | | = 1.

Hyperplane:  0, with .x ∈ RN, w̃ ⋅ x̃ = x̃ = [1 |x]

w̃ = [w0, w1, …, wn] with 
N

∑
i=1

w2
i = 1
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Binary Classification in N Dimensions

Signed distance: , with  and  w̃ ⋅ x̃ w̃ = [w0 |w] | |w | | = 1.

Hyperplane:  0, with .x ∈ RN, w̃ ⋅ x̃ = x̃ = [1 |x]

Problem statement: Find  such that 
• for all or most positive  samples , 
• for all or most negative samples . 

w̃
w̃ ⋅ x̃ > 0
w̃ ⋅ x̃ < 0
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Reformulating the Signed Distance Again

w = [w1, …, wn]
h

h=0: Point is on the decision boundary. 
h>0: Point on one side. 
h<0: Point on the other side.

x̃ = [1,x1, …, xN]

w̃ = [w0, w1, …, wn] with 
N

∑
i=1

w2
i = 1

Signed distance: , with  and  w̃ ⋅ x̃ w̃ = [1 |w] | |w | | = 1.

Hyperplane:  0, with .x ∈ RN, w̃ ⋅ x̃ = x̃ = [1 |x]
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Reformulated Signed Distance

w = [w1, …, wn]
h

h=0: Point is on the decision boundary. 
h>0: Point on one side. 
h<0: Point on the other side.

x̃ = [1,x1, …, xN]

w̃ = [w0 |w] ∈ RN+1

w̃′ =
w̃

| |w | |
= [

w0

| |w | |
|

w
| |w | |

]

Signed distance: , .w̃′ ⋅ x̃ =
w̃ ⋅ x̃
| |w | |

∀w̃ ∈ RN+1

Hyperplane:  0, with .x ∈ RN, w̃ ⋅ x̃ = x̃ = [1 |x]
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Geometric Interpretation

We are going to use this to find a classifier 
whose decision boundary is as far as possible 
from all the points.

w̃ ⋅ x̃
| |w | |

=
y(x)

| |w | |

Bishop, Chapter 4.1.1



11

Maximum Margin Classifier

• Given a training set  with  and solution 
such that all the points are correctly classified, we have 

 . 
• We can write the unsigned distance to the decision boundary as  

 

—> A maximum margin classifier aims to maximize this distance for 
the point closest to the boundary, that, is maximize the minimum 
such distance. 

 

{(xn, tn)1≤n≤N} tn ∈ {−1,1}

∀n, tn(w̃n ⋅ x̃n) > = 0

dn = tn
(w̃ ⋅ x̃n)
| |w | |

w̃* = argmaxw̃ min
n ( tn ⋅ (w̃ ⋅ xn)

∥w∥ )
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Maximum Margin Classifier

 

• Unfortunately, this is a difficult optimization problem to solve. 
• We will convert it into an equivalent, but easier to solve, problem.  

w̃* = argmaxw̃ min
n ( tn ⋅ (w̃ ⋅ xn)

∥w∥ )
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Maximum Margin Classifier

• The signed distance is invariant to a scaling of : 

 . 

• We can choose l so that for the point m closest to the boundary, we 
have  

 . 
• For all points we therefore have 

 , 
and the equality holds for at least one point.  

w̃

w̃ → λw̃ : dn = tn
(λw̃ ⋅ x̃n)
| |λw | |

=
(w̃ ⋅ x̃n)
| |w | |

tm ⋅ (w̃ ⋅ xm) = 1

tn ⋅ (w̃ ⋅ xn) ≥ 1
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Linear Support Vector Machine

 

• To maximize the margin, we only need to maximize . 

• This is equivalent to minimizing . 

• We can find max margin classifier as 

 subject to  

• This is a quadratic program, which is a convex problem. 

—> It can be solved to optimality.   

∀n, tn(w̃ ⋅ xn) ≥ 1
∃n tn(w̃ ⋅ xn) = 1

⇒ minndn = minn
tn(w̃ ⋅ xn)

| |w | |
=

1
| |w | |

1/ | |w | |
1
2

| |w | |2

w* = minw
1
2

| |w | |2 ∀n, tn ⋅ (w̃ ⋅ xn) ≥ 1
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LR vs Linear SVM

• The LR decision boundary can come close to some 
of the training examples.  

• The SVM tries to prevent that. 

Logistic regression Linear SVM
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From Perceptron and LR 
to Linear SVM

Perceptron

Linear SVM

Are we done yet? 

No! 
Logistic Regression
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Maximum Margin Classifier

• Given a training set  with  and solution 
such that all the points are correctly classified, we have 

 . 
• We can write the unsigned distance to the decision boundary as  

 

—> A maximum margin classifier aims to maximize this distance for 
the point closest to the boundary, that, is maximize the minimum 
such distance. 

 

{(xn, tn)1≤n≤N} tn ∈ {−1,1}

∀n, tn(w̃ ⋅ x̃n) > = 1

dn = tn
(w̃ ⋅ x̃n)
| |w | |

w̃* = argmaxw̃ min
n ( tn ⋅ (w̃ ⋅ xn)

∥w∥ )

Rarely achievable in practice.
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Overlapping Classes
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The data rarely looks like this. It generally looks like that.

—> Must account for the fact that not all training samples can be correctly classified!
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Relaxing the Constraints

• The original problem 

subject to , 

cannot be satisfied.  

• We must allow some of the constraints to violated, but as few as 
possible.  

w* = minw
1
2

| |w | |2 ∀n, tn ⋅ (w̃ ⋅ xn) ≥ 1
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Slack Variables
• We introduce an additional slack variable  for each sample. 

• We rewrite the constraints as . 

•  weakens the original constraints.

ξn

tn ⋅ (w̃ ⋅ xn) ≥ 1 − ξn

ξi ≥ 0

• If , sample  lies inside the 
margin, but is still correctly classified 

• If , then sample  is misclassified

0 < ξn ≤ 1 n

ξn ≥ 1 i
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Naive Formulation

  

subject to  

• This would simply allow the model to violate all the original 
constraints at no cost. 

• This would result in a useless classifier.

w* = minw
1
2

| |w | |2

∀n, tn ⋅ (w̃ ⋅ xn) ≥ 1 − ξn and ξn ≥ 0
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Improved Formulation

 , 

subject to . 

• C is constant that controls how costly constraint violations are. 
• The problem is still convex.

w* = min(w,{ξn})
1
2

| |w | |2 + C
N

∑
n=1

ξn

∀n, tn ⋅ (w̃ ⋅ xn) ≥ 1 − ξn and ξn ≥ 0

http://www.cristiandima.com/basics-of-support-vector-machines/
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Choosing the C Parameter

C=1: 
• Large margin. 
• Many training samples misclassified.

C=100: 
• Small margin. 
• Few training samples misclassified.

Which is best? 
• It depends.  
• Must use cross-validation, as we did for k-Means.  
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Optimal vs Best

• The points can be l inear ly 
separated but the margin is still 
very small.  

• At test time the two circles will be 
misclassified. 

• The margin is much larger but one 
training example is misclassified. 

• At test time the two circles will be 
classified correctly. 

—> Tradeoff between the number of mistakes on the training 
data and the margin.   
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Support Vector Machines


