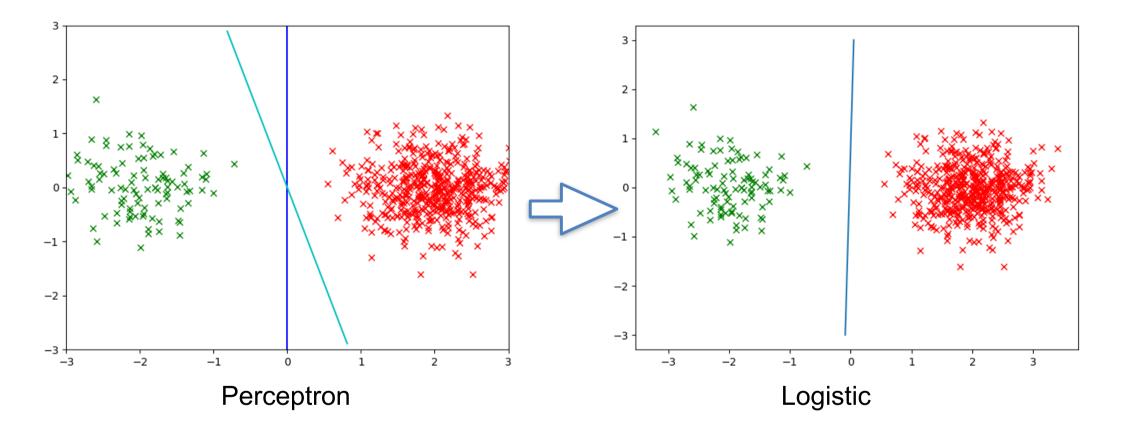
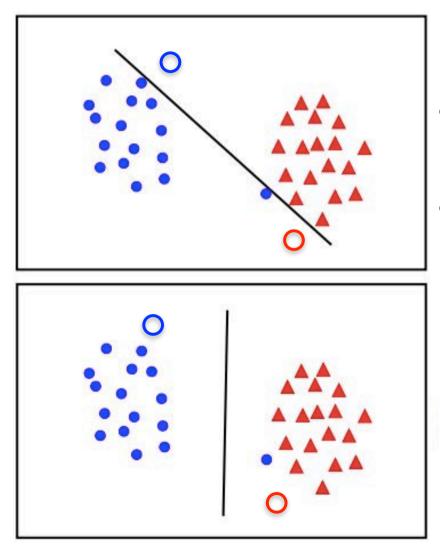
Maximizing the Margin

Pascal Fua IC-CVLab

Logistic Regression is Better than the Perceptron



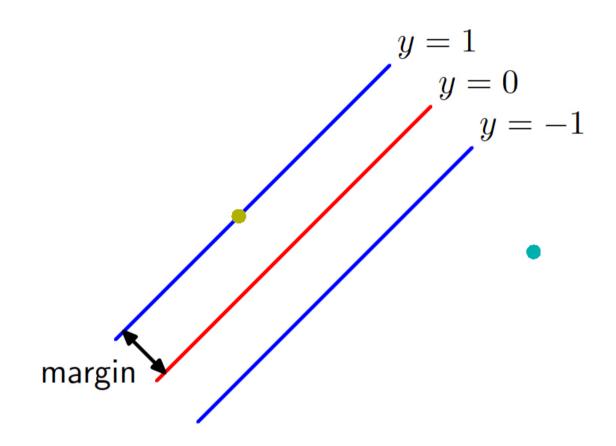
Outliers Can Cause Problems



- Logistic regression tries to minimize the error-rate at training time.
- Can result in poor classification rates at test time.

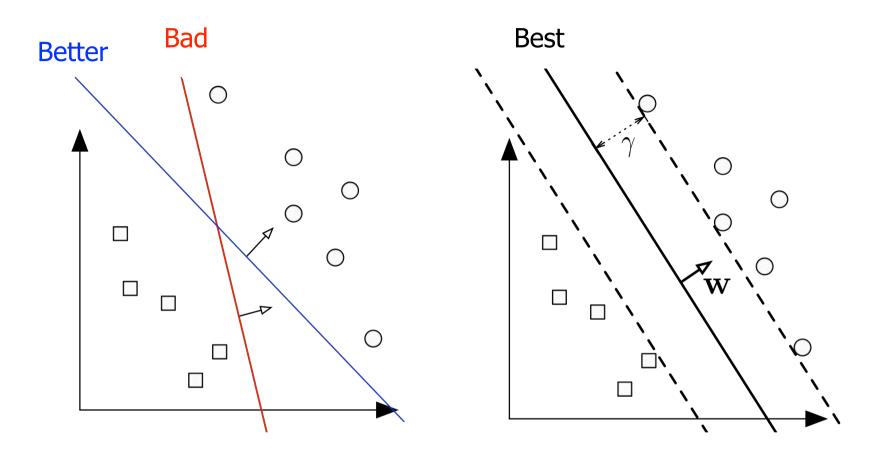
—> Must sometime accept to misclassify a few training samples.

Margin



The orthogonal distance between the decision boundary and the nearest sample is called the **margin**.

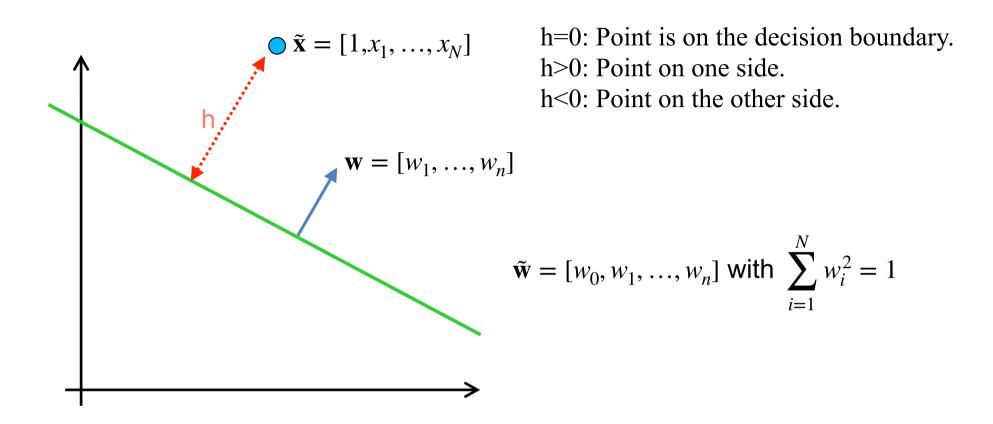
Maximizing the Margin



- The larger the margin, the better!
- The logistic regression does not guarantee a large one.

How do we maximize it?

Reminder: Signed Distance



Hyperplane: $\mathbf{x} \in \mathbb{R}^N$, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$, with $\tilde{\mathbf{x}} = [1 | \mathbf{x}]$.

Signed distance: $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$, with $\tilde{\mathbf{w}} = [w_0 | \mathbf{w}]$ and $||\mathbf{w}|| = 1$.

EPFL

Binary Classification in N Dimensions

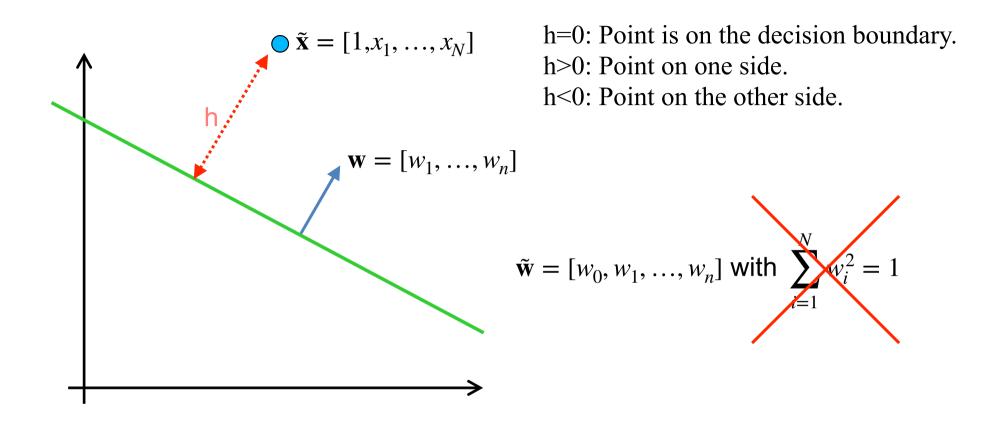
Hyperplane: $\mathbf{x} \in \mathbb{R}^N$, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$, with $\tilde{\mathbf{x}} = [1 | \mathbf{x}]$.

Signed distance: $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$, with $\tilde{\mathbf{w}} = [w_0 | \mathbf{w}]$ and $||\mathbf{w}|| = 1$.

Problem statement: Find $\tilde{\mathbf{w}}$ such that

- for all or most positive samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} > 0$,
- for all or most negative samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} < 0$.

Reformulating the Signed Distance Again

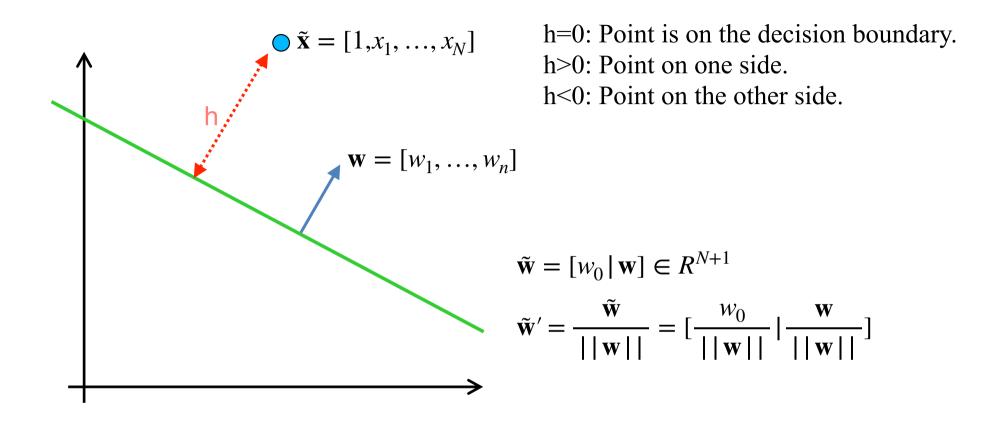


Hyperplane: $\mathbf{x} \in \mathbb{R}^N$, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$, with $\tilde{\mathbf{x}} = [1 | \mathbf{x}]$.

Signed distance: $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$, with $\tilde{\mathbf{w}} = [1 | \mathbf{w}]$ and $||\mathbf{w}|| = 1$.

EPFL

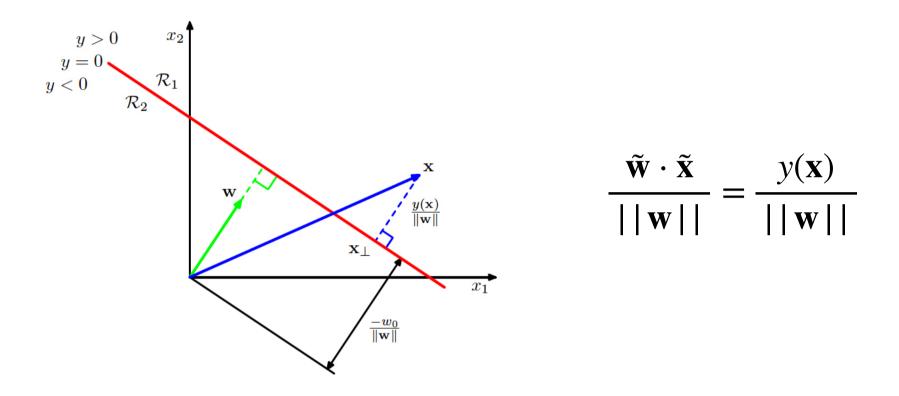
Reformulated Signed Distance



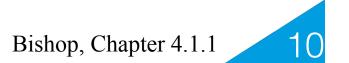
Hyperplane: $\mathbf{x} \in \mathbb{R}^N$, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$, with $\tilde{\mathbf{x}} = [1 | \mathbf{x}]$.

Signed distance:
$$\tilde{\mathbf{w}}' \cdot \tilde{\mathbf{x}} = \frac{\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}}{||\mathbf{w}||}, \forall \tilde{\mathbf{w}} \in \mathbb{R}^{N+1}.$$

Geometric Interpretation



We are going to use this to find a classifier whose decision boundary is as far as possible from all the points.



• Given a training set $\{(\mathbf{x}_n, t_n)_{1 \le n \le N}\}$ with $t_n \in \{-1, 1\}$ and solution such that all the points are correctly classified, we have

$$\forall n, \quad t_n(\tilde{\mathbf{w}}_n \cdot \tilde{\mathbf{x}}_n) > = 0 \; .$$

• We can write the **unsigned** distance to the decision boundary as

$$d_n = t_n \frac{(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n)}{||\mathbf{w}||}$$

—> A maximum margin classifier aims to maximize this distance for the point closest to the boundary, that, is maximize the minimum such distance.

$$\tilde{\mathbf{w}}^* = \operatorname{argmax}_{\tilde{\mathbf{w}}} \min_{n} \left(\frac{t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n)}{\|\mathbf{w}\|} \right)$$

$$\tilde{\mathbf{w}}^* = \operatorname{argmax}_{\tilde{\mathbf{w}}} \min_{n} \left(\frac{t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n)}{\|\mathbf{w}\|} \right)$$

- Unfortunately, this is a difficult optimization problem to solve.
- We will convert it into an equivalent, but easier to solve, problem.

- The signed distance is invariant to a scaling of \tilde{w} :

$$\tilde{\mathbf{w}} \to \lambda \tilde{\mathbf{w}} : d_n = t_n \frac{(\lambda \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n)}{||\lambda \mathbf{w}||} = \frac{(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n)}{||\mathbf{w}||}$$

- We can choose λ so that for the point m closest to the boundary, we have

$$t_m \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_m) = 1 \; .$$

• For all points we therefore have

 $t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n) \ge 1 ,$

and the equality holds for at least one point.

Linear Support Vector Machine

$$\begin{aligned} \forall n, \quad t_n(\tilde{\mathbf{w}} \cdot \mathbf{x}_n) &\geq 1 \\ \exists n \quad t_n(\tilde{\mathbf{w}} \cdot \mathbf{x}_n) &= 1 \\ \Rightarrow \min_n d_n &= \min_n \frac{t_n(\tilde{\mathbf{w}} \cdot \mathbf{x}_n)}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||} \end{aligned}$$

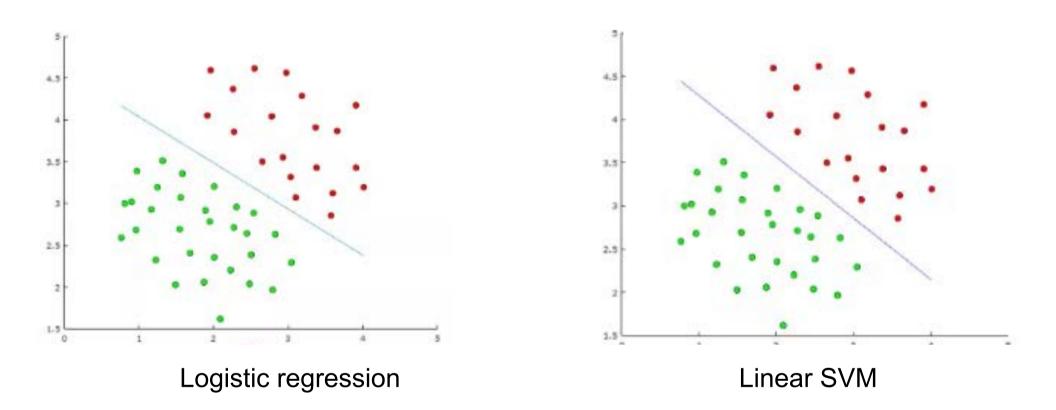
- To maximize the margin, we only need to maximize $1/||\mathbf{w}||$.
- This is equivalent to minimizing $\frac{1}{2} ||\mathbf{w}||^2$.
- We can find max margin classifier as

$$\mathbf{w}^* = min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$
 subject to $\forall n, \quad t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n) \ge 1$

• This is a quadratic program, which is a **convex** problem.

—> It can be solved to optimality.

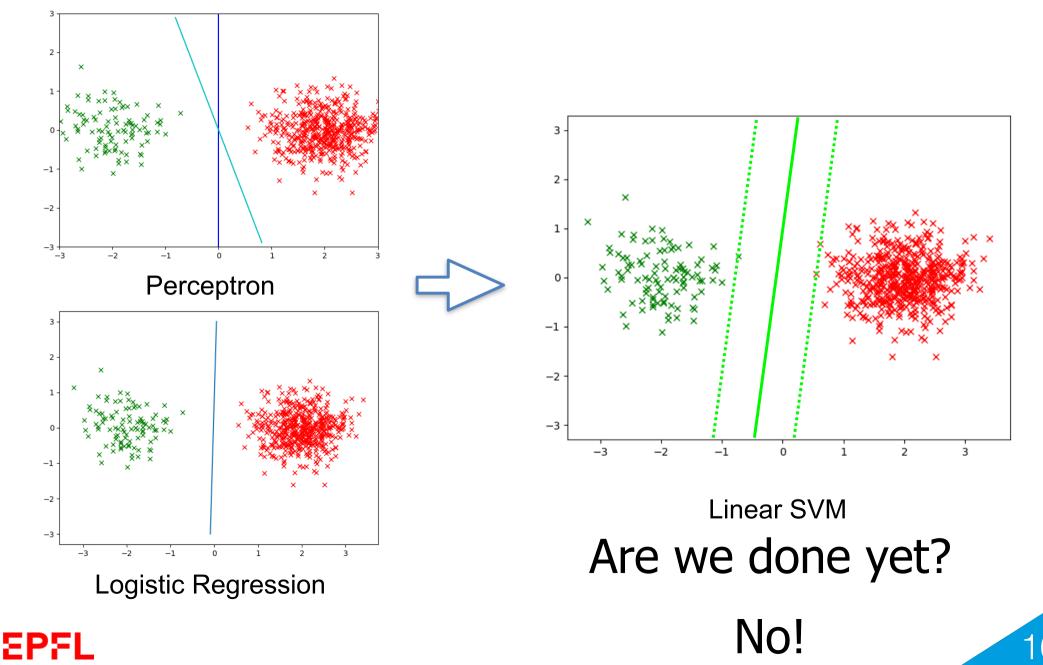
LR vs Linear SVM



- The LR decision boundary can come close to some of the training examples.
- The SVM tries to prevent that.

EPFI

From Perceptron and LR to Linear SVM



Rarely achievable in practice.

• Given a training set $\{(\mathbf{x}_n, t_n)_{1 \le n \le N}\}$ with $t_n \in \{-1, 1\}$ and solution such that all the points are correctly classified, we have

$$\forall n, t_n(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n) > = 1.$$

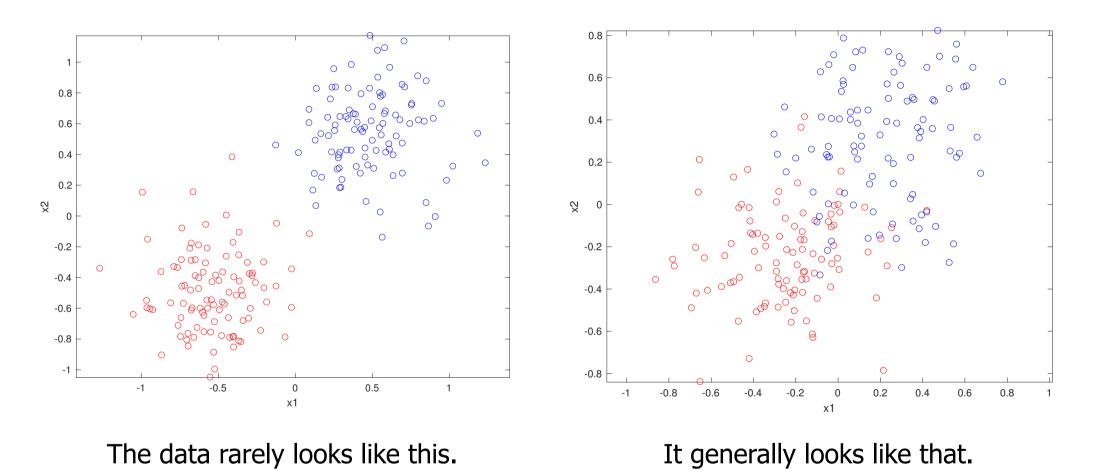
• We can write the **unsigned** distance to the decision boundary as

$$d_n = t_n \frac{(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n)}{||\mathbf{w}||}$$

—> A maximum margin classifier aims to maximize this distance for the point closest to the boundary, that, is maximize the minimum such distance.

$$\tilde{\mathbf{w}}^* = \operatorname{argmax}_{\tilde{\mathbf{w}}} \min_{n} \left(\frac{t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n)}{\|\mathbf{w}\|} \right)$$

Overlapping Classes



-> Must account for the fact that not all training samples can be correctly classified!

EPFL

18

Relaxing the Constraints

• The original problem

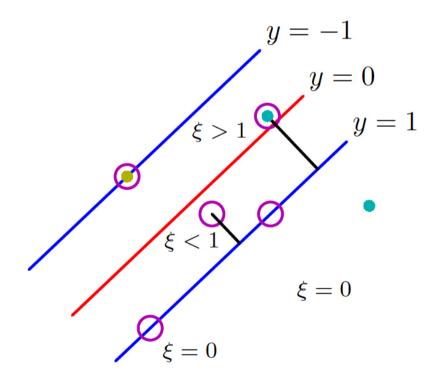
$$\mathbf{w}^* = min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$
 subject to $\forall n, t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n) \ge 1,$

cannot be satisfied.

• We must allow some of the constraints to violated, but as few as possible.

Slack Variables

- We introduce an additional slack variable ξ_n for each sample.
- We rewrite the constraints as $t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n) \ge 1 \xi_n$.
- $\xi_i \ge 0$ weakens the original constraints.



- If $0 < \xi_n \le 1$, sample *n* lies inside the margin, but is still correctly classified
- If $\xi_n \ge 1$, then sample *i* is misclassified

Naive Formulation

$$\mathbf{w}^* = min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$

subject to $\forall n, \quad t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n) \ge 1 - \xi_n \text{ and } \xi_n \ge 0$

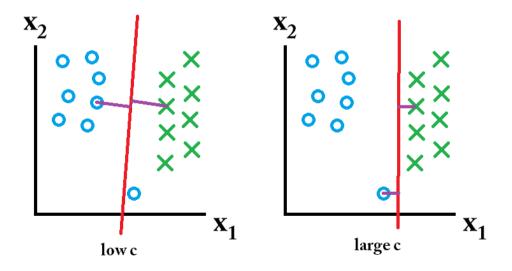
- This would simply allow the model to violate all the original constraints at no cost.
- This would result in a useless classifier.

Improved Formulation

$$\mathbf{w}^* = \min_{(\mathbf{w}, \{\xi_n\})} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^N \xi_n,$$

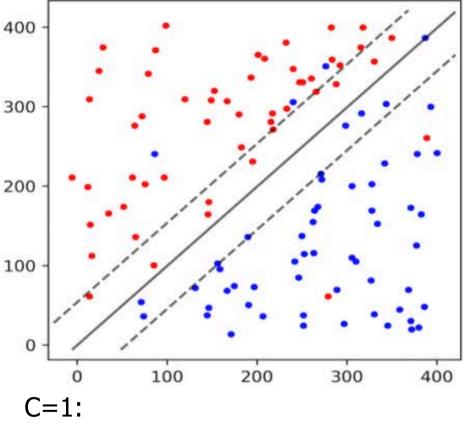
subject to $\forall n, \quad t_n \cdot (\tilde{\mathbf{w}} \cdot \mathbf{x}_n) \ge 1 - \xi_n \text{ and } \xi_n \ge 0.$

- C is constant that controls how costly constraint violations are.
- The problem is still convex.



http://www.cristiandima.com/basics-of-support-vector-machines/

Choosing the C Parameter



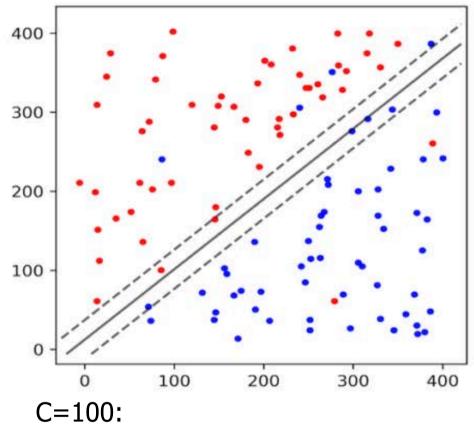
• Large margin.

EPFL

• Many training samples misclassified.

Which is best?

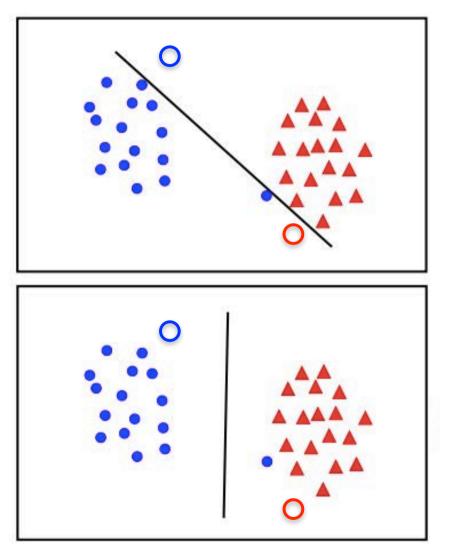
- It depends.
- Must use cross-validation, as we did for k-Means.



- Small margin.
- Few training samples misclassified.

23

Optimal vs Best



EPFL

- The points can be linearly separated but the margin is still very small.
- At test time the two circles will be misclassified.
- The margin is much larger but one training example is misclassified.
- At test time the two circles will be classified correctly.

—> Tradeoff between the number of mistakes on the training data and the margin.

Support Vector Machines

