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Solution (Exercise 1). Let G be a group with p elements. Let

F(G,A) = {f : G −→ A}

For h ∈ G, f ∈ F(G,A), h ? f ∈ F(G,A) is defined by

h ? f(g) := f(gh)

called right translation of f by h.
(1) (Right translation is a right action) For h1, h2, g ∈ G, f ∈
F(G,A), (h1h2)?f(g) = f(gh1h2) = h2?f(gh1) = h1?(h2?f)(g)
as desired.

Clearly eG ? f = f .

(2) Let h ∈ G, h 6= eG, ordG(h) 6= 1. By Lagrange’s theorem
ordG(h) | |G|, so ordG(h) = p. (since |G| = p is prime.) There-
fore any element h 6= eG generates G, i.e. every element of G
is a power of h. We have h ? f = f =⇒ g ? f = f ∀ g ∈ G in
particular f(g) = g ? f(eG) = f(eG) ∀ g ∈ G. In other words, f
is constant.

(3) By the Orbit-Stabilizer thm and the theorem of Lagrange, every
orbit has either p elements or 1 element. By the discussion
in the previous point, the orbits with one element precisely
correspond to constant functions. We have

|F(G,A)| = p.|set of orbits with p elements|+1.|set ofconstant functions|

ap = p.|set of orbits with p elements|+ 1.a

No. of orbits = |set of orbits with p elements|+|set ofconstant functions| = ap − a
p

+a

(4) Fermat’s little theorem follows since |set of orbits with p elements|
is an integer. So p|(ap − a) for every positive integers a, and
also for negative integers by replacing a by −a.

Solution (Exercise 2). See Série 1 Corrigé
1
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Solution (Exercise 4). Suppose G acts transitively on a set X. Let
x ∈ X be s.t. the group Gx acts transitively on X − {x}. We wish
to show that every point in X has the property that its stabiliser acts
transitively on X minus the point. Let y ∈ X be arbitrary and h ∈ G
be s.t. h(x) = y. We have Gy = hGxh

−1 and suppose z1, z2 ∈ X be
different from y, let wi = h−1zi we have w 6= x and by assumption ∃
g ∈ Gx s.t. gw1 = w2. It follows that g′ = hgh−1 ∈ Gy and g′(z1) = z2
as desired (i.e.) (1)⇔ (2).

Now assume (2). Let (x, y), (u, v) ∈ X × X − ∆X i.e. x 6= y and
u 6= v. Since the action of G on X is transitive, ∃ g1 ∈ G s.t. g1(x) = u
and let y′ := g1(y). We observe that u 6= y′ since if g1(x) = g1(y) by
applying g−11 we may conclude x = y. By (2) ∃ g2 ∈ Gu s.t. g2(y′) = v.
So we have g2g1(x, y) = (u, v) i.e. (2) =⇒ (3).

Let us assume (3), let x ∈ X and u, v ∈ X be arbitrary different
from x, we have (x, u), (x, v) ∈ X × X − ∆X . By (3) ∃ g ∈ G s.t.
g(x, u) = (x, v), i.e. g ∈ Gx and g(u) = v. We have proved (2).

Solution (Exercise 3). We would like to present a solution of Exercise
3 along the lines of Exercise 4: Let X := R2 and G = Isom(R2), we
know that G acts transitively on X.

The following statements are equivalent:
(1) ∃ x ∈ X s.t. Gx acts transitively up to preserving distances i.e.
∀ y, z ∈ X s.t. d(x, y) = d(x, z) ∃ g ∈ Gx s.t. gy = z.

(2) ∀ x ∈ X, Gx acts transitively up to preserving distances i.e. ∀
x, y, z ∈ X s.t. d(x, y) = d(x, z) ∃ g ∈ Gx s.t. gy = z.

(3) The orbits of the action of G on X×X are given by (X×X)r :=
{(x, y)|x, y ∈ X with d(x, y) = r} for every r ≥ 0.

We will leave the proof of the above equivalence to the reader – it is
similar to the proof of exercise 4. Let us use the above result to prove
exercise 3. Using (1) =⇒ (3) in order to show G acts transitively
on (X ×X)1 it suffices to check G0 (linear isometries) acts transitively
on X upto preserving distances. But this clear since ∀ y, z ∈ X s.t.
d(0, y) = d(0, z) ∃ a rotation g ∈ G0 s.t. gy = z.

Solution (Exercise 5). We make a table with elements of D8, their
order and number of fixed points in F(4, c): Here r is an order 4 ro-
tation and s is the reflection about a line through a pair of opposite
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sides. (r2s will then be reflection about a line through the perpendic-
ular sides, rs, r3s will be reflection about line through pair of opposite
vertices)

Element Order No. of fixed points
Identity 1 c4

r 4 c
r2 2 c2

r3 4 c
s 2 c2

rs 2 c3

r2s 2 c2

r3s 2 c3

By Burnside’s formula, the number of possible necklaces:

|D8\F(4, c)| = 1

8
(c4 + 2c3 + 3c2 + 2c)

The number of orbits by Burnside formula is :

|C4\F(4, c)| = 1

4
(c4 + c2 + 2c)

Remark. Note that conjugate elements have same order and number
of fixed points. Being conjugate is an equivalence relation and the
equivalence classes are called conjugacy classes.

Solution. We are interested in the number of colorings of a regular
pentagon, we tabulate according to the conjugacy classes:

Class No.of elts Order No. of fixed points
Identity 1 1 c5

{r2, r−2} 2 5 c
{r, r−1} 2 5 c

Reflections 5 2 c3

By Burnside formula, the number of necklaces is
1

10
(c5 + 5c3 + 4c)

�

Solution (Exercise 7). We may view the carbon atoms as forming a
regular hexagon and each molecule as a coloring of this hexagon by two
colors – namely chlorine and hydrogen. So the problem is to count the
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number of distinct colourings of a regular hexagon with 2 colours. As
we have seen in the course, we can label the hexagon and view each
coloring as a map from the set of labels to the colors. The group of
isometries of the hexagon (isomorphic to the dihedral group D12) acts
on the labels and therefore on the labeled colourings of the hexagon.
The distinct colourings will correspond to distinct orbits under this
action. The strategy is to count the number of orbits using Burnside
formula. We have tabulated the various classes of elements, the num-
ber of elements of each class, the order and the number of fixed points.
Note that the order and number of fixed points will depend only on
the class of the element – since any two elements of the same class
are conjugate to each other by an element of D12. Let r denote the
generator of the subgroup of rotations of D12.

Class No.of elts Order No. of fixed points
Identity 1 1 26 = 64
{r3} 1 2 23 = 8
{r2, r−2} 2 3 22 = 4
{r, r−1} 2 6 2

Reflection through a pair of opposite vertices 3 2 24 = 16
Reflection through a pair of opposite sides 3 2 23 = 8

By Burnside formula, the number of molecules is
1

12
(1.64 + 1.8 + 2.4 + 2.2 + 3.16 + 3.8) =

156

12
= 13

�

Solution (Exercise 8). Let φ : X −→ Y be a morphism of G − sets
which is bijective.

∀x ∈ X, g ∈ G, φ(gx) = gφ(x) =⇒ ∀y ∈ Y, g ∈ G, gφ−1(y) = φ−1(gy)

Solution (Exercise 9). Let φ : X −→ Y be a morphism of G-sets.

We want to show there is a unique map φ : G\X −→ G\Y defined by
φ(G.x) = G.y. This map is well defined because G.x1 = G.x2 implies
∃ g ∈ G s.t. x2 = gx1, we have φ(x2) = φ(g.x1) = gφ(x1) (the last
equality is because φ is a morphism of G-sets) i.e. Gφ(x1) = Gφ(x2).
Uniqueness is clear.

Observe the following idX : X −→ X the identity map is a morphism
of G-sets and idX = idG\X . Let φ1 : X −→ Y and φ2 : Y −→ Z be
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morphism of G-sets. We have φ2 ◦φ1 : X −→ Z is a morphism of G-sets
and φ2 ◦ φ1 = φ2 ◦ φ1. It follows therefore that if φ : X −→ Y is an
isomorphism of G-sets, we have φ−1 = φ

−1 and so φ is a bijection.

Remark. Fix a group G and consider the class of G − sets. The
correspondence from G − sets to sets sending X to G\X and φ ∈
HomG−sets(X, Y ) to φ ∈ Hom(G\X,G\Y ) is a functor.

Solution (Exercise 10). Let X be a G-set and x ∈ X, let Gx be
the orbit of x and Gx the stabilizer of x under the action of G. The
Orbit-Stabilizer theorem says the map

gGx ∈ G/Gx 7→ gx ∈ Gx
is a well defined map and moreover a bijection.

We want to observe that in fact G/Gx is a G-set the action being
defined by

h.(gGx) := (hg)Gx

for h ∈ G. The reader is left to check that this is a well defined left
action of G. Likewise Gx is a G-set with the action defined by

h.(y) = hy

for h ∈ G and y ∈ Gx. (Note that if y = gx, hy = (hg)x, so in fact
hy ∈ Gx.) Again the reader should check that this is a left action.
(This is clear because it is the restriction of the action on X to Gx.)
With these definitions of actions, it is clear that the bijection defined
above is in fact a morphism of G-sets.


