
1

Alpha Go
and

Reinforcement Learning
Vincent Lepetit and Pascal Fua

ParisTech EPFL

2

Historical Perspective
1997: Chess program Deep Blue defeats Garry Kasparov.

Until 2015: Go programs still play at amateur level.

October 2015: AlphaGo defeats Fan Hui, European Go champion, 5-0. First time
a program has beaten a professional player.

March 2016: AlphaGo Lee defeats Lee Sedol, one of the best world players, 4–1.

2017: Publication of AlphaGo Zero. 100-0 victory against AlphaGo after 3 days of
training.

2018: Publication of AlphaZero. Same algorithm learns to play Go, Chess, and
Shogi. Defeats all previous programs at Chess and Shogi.

2022: An algorithm of the same nature is used to control plasma in EPFL’s
Tokamak

3

Artificial Intelligence

Machine Learning

Deep Learning

Support Vector Machines

Boosting
Random Forests

Expert Systems A*

min-max

Machine Learning:
Algorithms whose performance
can be improved using training
data.

Deep Learning:
Algorithms whose performance
can be improved using a lot of
training data.

Lenet VGG

ResNet

Artificial Intelligence:
Algorithms that search the space
of possible solutions.

4

AI Formulation of Peg Solitaire

5

AI Formulation of Peg Solitaire

6

AI Formulation of Peg Solitaire

7

AI Formulation of Peg Solitaire

8

AI Formulation of Peg Solitaire

9

AI Formulation of Peg Solitaire

10

AI Formulation of Peg Solitaire

11

AI Formulation of Peg Solitaire

12

AI Formulation of Peg Solitaire

13

AI Formulation of Peg Solitaire

14

AI Formulation of Peg Solitaire

15

AI Formulation of Peg Solitaire

16

AI Formulation of Peg Solitaire

—>In theory, the problem
can be solved by exploring
a large tree of possibilities.

17

Chess

18

Chess

…
(20 possibilities)

19

Chess

…
(20 possibilities)

20

Chess

…
(20 possibilities)

(oracle)

Chess

…
(20 possibilities)

(oracle)

…
(28 possibilities)

21

22

Chess

…
(20 possibilities)

(oracle)

…

Exploring the whole tree game until
we find a winning path is not doable:
There are more than 10120 possible
games!

(28 possibilities)

23

Chess

…
(20 possibilities)

(oracle)

…

Classic solution:

1) Explore the tree of possible games
down to some depth.

2) Use a ‘proxy’ function P(s) to predict
who will win, given the state s of the
board at that depth.

24

Proxy Function P(s)

Given the state s of the board, the proxy function P(s)

• should be positive if the Whites are likely to win;
• should be negative if the Blacks are likely to win;
• Its absolute value should increase with the confidence.

How to build such a function?

25

Building the Proxy Function (1)

First, introduce ‘Features’ fi(s) based on expert knowledge such
as:
• fh(s) = 1 if the White Queen is still alive, 0 otherwise;

• fi(s) = 1 if the Black Queen is still alive, 0 otherwise;

• fj(s) = 1 if the White Bishop #1 is still alive, 0 otherwise;

• fk(s) = number of possible moves for Black;

• fl(s) = +∞ if Black is mate, -∞ if White is mate, 0 otherwise.

• etc…

26

Second, write P as a linear combination of the features:

How can we learn the ai weights?
!Use many games from the history of chess to optimize.

This approach thus requires human expertise:
1. To design the features;
2. To estimate good weights for the features.

Building the Proxy Function (2)

27

MinMax Algorithm

• The proxy function is evaluated after a set number of moves.
• To assign values and moves in the other nodes, one picks the

min score for the adversary and the largest for oneself.
• This still requires a lot of computation even when building the

tree only down to a certain level.
• Can be sped up using heuristics such as alpha-beta pruning.

28

Alpha-Beta Pruning

• The max and min levels represent the turn of the player and
the adversary, respectively.

• When traversing the tree from left to right, the grayed-out
subtrees need not be evaluated, as they correspond to states
no better than those that have been explored.

• This helps and makes it possible to play chess on a
cellphone.

The opponent can do no lower 5

The opponent can reach 4 or better.

29

Go

…

19x19=361
 possible moves

Estimated number of possible games:
10172 vs 10120 for chess.

—> Massively larger!

19

19

 360
 possible moves

30

Goal: Building Territories

31

Proxy Function?

For this situation.

32

Proxy Function?

And this one.

33

• Very complex.

• Difficult to build a good
proxy function.

And that one.

Proxy Function?

34

Mastering the Game of Go without Human
Knowledge
David Silver, Julian Schrittwieser, Karen
Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen,
Timothy Lillicrap, Fan Hui, Laurent Sifre,
George van den Driessche, Thore Graepel, Demis
Hassabis.
Nature, 2017.

Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning
Algorithm
David Silver, Thomas Hubert, Julian
Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre,
Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, Demis Hassabis
Science, 2018.

The AlphaGo Zero Algorithm

35

Policy and Value

 Let us assume we are given the function

• denotes the current state of the goban.
• p is the policy, that is, the vector of probabilities pa that playing

move a will lead to victory.

How should we use it?
• In theory, we could choose to play action â = .
• In practice, f is never perfect, and it is often better to explore many

possible moves to decide on the next action.

f : 𝒮 → p
𝒮

arg maxap(a)

36

Monte Carlo Tree Search

Allow the system to play against itself many times:

1. For each move, play according to the probabilities in

and the number of times a node has been visited before.

2. Run each simulation until the end of the game. Keep track of how

many times each board is visited along with wins and losses.

3. Update all p accordingly and record in a set T.

➡ A large set that can be used to retrain f.

➡An iterative algorithm that progressively improves the policies.

p = f(𝒮, Θ)

(𝒮, p)

T = {…, (𝒮, p), …}

37

Implementing the Function F

• The state of the goban can be represented by two binary images,
one for white and one for black.

• They can be used as input to a CNN.

Go Ban
representation

0 0 1 1 0

0 1 0 0 0

0 0 1 1 0

0 1 1 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 1 1 0 0

0 0 0 0 0

Whites

Blacks

38

CNNs to the Rescue

0 0 1 1 0

0 1 0 0 0

0 0 1 1 0

0 1 1 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 1 1 0 0

0 0 0 0 0

Whites

Blacks

• f is be implemented by a CNN with weights .
• T is used to learn the weights.

Θ

f (, Θ) = (p, ν)

39

Why Does this Work?

• If a move results in a win, the search is implemented in
such as way that the corresponding board is more likely to
be visited again.

• The policy updates are based on the number of times a
node is visited and its probability will increase.

But
• If a board is initially given a low probability, it may never

be explored even if it is a good one.
• Heuristics are required to prevent this kind of behavior.
• The real algorithm is more complex than what is shown

on these slides.

40

Optional: Policy and Value Revisited

 Let us assume we are given the function

• denotes the current state of the goban.
• p is the policy, that is, the vector of probabilities pa that playing

move a will lead to victory.
• is the probability that a policy p will lead to victory.

➡ It can be used to bias the MCTS algorithm and make it visit
unexplored nodes.

f : 𝒮 → p, ν
𝒮

ν

41

Training Process

1. Initialize the parameters 𝛩 of f randomly and play against itself.
2. Run many simulations and create a training set T.
3. Use T to retrain f.
4. Goto 2.

• Simple in principle but the devil is in the details.
• Requires immense amounts of computing power.

Silver et al. Nature’17

42

From Go to Nuclear Fusion

Variable Configuration Tokamak (TCV) at EPFL

43

Optional: Deep Control

• The policies involve driving the magnets in the Tokamak.
• They are learned from simulation data.

Degrave et al., Nature’22

44

Optional: Dynamic Soaring

• We plan to design for ease of control.
• We will use dynamic soaring to prove the concept.

45

Reinforcement Learning

• The algorithm described on the previous slides
tries many different policies and learns from its
mistakes.

• This requires large numbers of simulations to
cover the space of possibilities well.

• It is a generic paradigm that works well, but
mostly on simulations and computer games so far.

• But the Tokamak experiment is very real …

See details in

