
SOLUTION SUGGESTIONS SÉRIE 9 - EVEN
NUMBERED EXERCISES

Solution (Exercise 2). Hint for 1 and 2 Let {f1, f2, ..., fn} be an
arbitrary orthonormal basis of Rn and T : Rn −→ Rn be a linear map
s.t. T (ei) = fi where {e1, ..., en} is the standard orthonormal basis.
Since T maps the standard orthonormal basis to an orthonormal basis,
it is orthogonal, i.e. the matrix of T in the standard basis satisfies
M t

T =M−1
T .

Let φ : Rn −→ Rn be a linear map with matrix Mφ in the standard
basis. Its matrix in the basis {f1, ..., fn} is given by MTMφM

−1
T =

MTMφM
t
T . From this the reader can easily check that if the matrix of

φ is orthogonal in one orthonormal basis the same is true w.r.t. any
orthonormal basis.

Hint for 4
From the expression for the matrix in different bases given above,

we see that the determinant of a matrix is independent of the choice
of basis and is therefore attached to the linear transformation.

Hint for 3
Let {v1, ..., vn} be an arbitrary basis of Rn. We know that the matrix

of φ is orthogonal w.r.t. this basis iff < φ(vi), φ(vj) >= δi=j. Further
< φ(vi), φ(vj) >=< vi, vj >, therefore the matrix is orthogonal w.r.t
this basis iff the basis is orthonormal.

Solution (Exercise 4). This exercise deals with the action of orthogo-
nal maps – Isom(Rn)0 on the set of orthonormal bases of Rn – BO.

(1) Let {e1, e2, e3, ...., en} be the standard orthonormal basis of Rn.
Let {f1, f2, ..., fn} be another orthonormal basis. Let the lin-
ear transformation φ : Rn −→ Rn be defined by φ(ei) = fi,
the transformation φ is orthogonal since it maps the standard
orthonormal basis to another orthonormal basis. This construc-
tion shows that the action of orthogonal maps on BO is transi-
tive.

An orthogonal map fixing the standard orthonormal basis is
identity, since orthogonal maps are linear. This shows that the
stabiliser of any element of BO is trivial. So the map φ ∈
Isom(Rn)0 7→ {φ(e1), ..., φ(en)} ∈ BO induces a bijection

Isom(Rn)0 ' BO
1
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(2) Given a vector e ∈ Sn−1 we can complete it to an element of BO
i.e. ∃ f2, ..., fn s.t. {e, f2, ..., fn} ∈ BO. This follows since any
set of linearly independent vectors can be completed to a basis
and applying Gram-Schmidt to make the basis orthonormal.
Transitivity of action of Isom(Rn)0 on Sn−1 follows easily from
the transitivity of action of Isom(Rn)0 on BO.

(3) Let e ∈ Sn−1 be any vector, by part (2) ∃ ψ ∈ Isom(Rn)0 s.t.
ψ(en) = e. You can check that

Isom(Rn)0,e = ψIsom(Rn)0,enψ
−1

Therefore

Isom(Rn)0,e ' Isom(Rn)0,en

(4) Let φ ∈ Isom(R3)0,e3 have basis Mφ w.r.t. the standard or-
thonormal basis. Suppose

Mφ =

Ö
a b u
c d v
x y z

è
we have φ(e3) = ue1 + ve2 + ze3, it follows that u = 0, v =

0, z = 1. < φ(e1), φ(e3) >=< e1, e3 >= 0, on the other hand <
φ(e1), φ(e3) >=< φ(e1), e3 >= x. Similarly, < φ(e2), φ(e3) >=<
e2, e3 >= 0, on the other hand< φ(e2), φ(e3) >=< φ(e2), e3 >=
y. FurtherÇ
a b
c d

åt Ç
a b
c d

å
=

Ç
a b
c d

åÇ
a b
c d

åt
=

Ç
1 0
0 1

å
So the result follows.

(5) Let φ ∈ Isom(Rn)0,en have basis Mφ = (fij)1≤i,j≤n w.r.t. the
standard orthonormal basis. Here fij =< φ(ej), ei >. Firstly
fin =< φ(en), ei >=< en, ei >= δi=n). Further fni =< φ(ei), en >=<
φ(ei), φ(en) >=< ei, en >= δi=n. Observe that the upper blockfiMφ = (fij)1≤i,j≤n−1 satisfies fiMφ

tfiMφ = fiMφ
fiMφ

t
= Idn−1×n−1 so

is orthogonal.

Solution (Exercise 6). Let φV,W : V −→ W be a surjective linear isom-
etry. If we have φV,W (v) = 0 for some v ∈ V i.e. |φV,W (v)− 0| = 0, we
conclude that |v − 0| = 0 since φV,W is a linear isometry. So φV,W is
also injective and hence dim(V ) = dim(W ).

Let us denote dim(V ) = m. Let {v1, v2, ..., vn} be an orthonormal
basis of Rn s.t. v1, ..., vm ∈ V (and so form an orthonormal basis of
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V). Note this is possible since starting with an orthonormal basis of
V extend it to a basis of Rn and apply Gram-Schmidt procedure to
get a basis with the given property. Similarly {w1, w2, ..., wn} be an
orthonormal basis of Rn s.t. w1, ..., wm ∈ W . Define a linear transfor-
mation φ : V −→ W by φ(vi) = φV,W (vi) for 1 ≤ i ≤ m and φ(vi) = wi
for m+ 1 ≤ i ≤ n.

Observe that φ(v) = φV,W (v) for all v ∈ V . Further {φ(v1), ...., φ(vn)}
are orthonormal (since φV,W is a linear isometry intoW and {wm+1, ..., wn}
form an orthonormal basis of W⊥) So φ is a linear isometry of Rn ex-
tending φV,W as desired.

Solution (Exercise 8). We proceed as in Ex 1 to determine if the
matrix is orthogonal and if so we determine its nature by calculating
the eigenvalues. We can find the type just by looking at the trace and
determinant:

1

9

Ö
8 1 4
1 8 −4
4 −4 −7

è
is orthogonal and is a reflection about the plane Rv1

⊕Rv2 where v1 =
(1, 1, 0) and v2 = (4, 0, 1) in the standard basis.

1

9

Ö
8 1 −4
1 8 −4
4 −4 −7

è
is not orthogonal

1

3

Ö
−2 −1 2
1 2 2
−2 2 −1

è
is orthogonal and its type is a rotation with axis R(0, 2, 1) and angle
± arccos(2

3
).

1

25

Ö
−9 −12 −20
−20 15 0
−12 −16 15

è
is orthogonal and its type is an antirotation with axis R(2, 1, 1) and

angle ± arccos(23
25
).

Solution (Exercise 10). Let

ϕ(x, y, z) = (X, Y, Z)

with
X =

1

9
(x− 8y + 4z)− 1
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Y =
1

9
(4x+ 4y + 7z) + 2

Z =
1

9
(−8x+ y + 4z) + 2

(1) First we look at the linear part:

1

9

Ö
1 −8 4
4 4 7
−8 1 4

è
This is a rotation with axis R(−1, 2, 2) and angle π

2
. The trans-

lation vector is parallel to the axis so this is a vissage. (ϕ has
no fixed points.)

(2) let ψ(x, y, z) = (X ′, Y ′, Z ′) with

X ′ =
1

3
(x+ 2y + 2z) + 1

Y ′ =
1

3
(2x+ y − 2z)− 1

Z ′ =
1

3
(2x− 2y + z)− 1.

First we look at the linear part:

1

3

Ö
1 2 2
2 1 −2
2 −2 1

è
This is a reflection about the plane R(1, 1, 0)⊕R(1, 0, 1) =
(R(−1, 1, 1))⊥. The translation vector is perpendicular to the
plane. The set of fixed points is the affine plane (3/2, 0, 0) +
R(1, 1, 0)⊕R(1, 0, 1), ψ is just the reflection w.r.t. this plane.

(3) The nature of ϕ ◦ ψ ◦ ϕ−1: By the proof of exercise 9.1, the
transformation ϕ ◦ψ ◦ϕ−1 is a reflection about the affine plane
ϕ(3/2, 0, 0) + Rϕ(1, 1, 0)⊕Rϕ(1, 0, 1).

�

Solution (Exercise 12). Let a, b, c, d, e, f ∈ R. Consider ϕ(x, y, z) =
(X, Y, Z) in the standard basis with

X =
1

d
(2x− 2y + az) + 1

Y =
1

d
(x+ by + 2z) + e

Z =
1

d
(cx− y + 2z) + f
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(1) First let us look at the linear part:

1

d

Ö
2 −2 a
1 b 2
c −1 2

è
Using the fact that the linear part is an orthogonal matrix

the rows are orthogonal to each other, we get

a = 1, b = 2, c = −2
and using the fact that each row has norm 1 we get

d = ±3
For ϕ to be a vissage, the linear part has to be special orthog-
onal, we conclude that

d = 3

. The reader may calculate that the axis of this rotation is
R(−1, 1, 1). Further for ϕ to be a vissage, the translation vector
is not in Im(ϕ0 − id). i.e.

< (−1, 1, 1), (1, e, f) >6= 0 ⇐⇒ e+ f 6= 1

(2) For ϕ to be an anti rotation, from calculations as above we have

(a, b, c, d) = (1, 2,−2,−3)
and e, f are arbitrary reals.

(3) Let us assume that ϕ is not a vissage. From part (1) and part
(2), we know that the linear part is either

1

3

Ö
2 −2 1
1 2 2
−2 −1 2

è
or

−1
3

Ö
2 −2 1
1 2 2
−2 −1 2

è
In the first case ϕ0 is a rotation with axis R(−1, 1, 1) and angle
±π

3
and in the second case ϕ0 is an anti rotation with axis

R(−1, 1, 1) and angle ±π
3
. In both these cases,

ϕ6
0 = IdR3

. Further since ϕ is not a vissage we have ϕ(v) = ϕ0(v) + u
with u = (ϕ0 − Id)w for some w ∈ R3. We get

ϕ(v) = ϕ0(v + w)− w



6 SOLUTION SUGGESTIONS SÉRIE 9 - EVEN NUMBERED EXERCISES

and inductively you can see that
ϕk(v) = ϕk0(v + w)− w

In particular
ϕ6(v) = ϕ6

0(v + w)− w = v + w − w = v

since ϕ6
0 = IdR3 .

�


