SOLUTION SUGGESTIONS SÉRIE 9 - EVEN NUMBERED EXERCISES

Solution (Exercise 2). Hint for $\mathbf{1}$ and 2 Let $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be an arbitrary orthonormal basis of \mathbb{R}^{n} and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map s.t. $T\left(e_{i}\right)=f_{i}$ where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard orthonormal basis. Since T maps the standard orthonormal basis to an orthonormal basis, it is orthogonal, i.e. the matrix of T in the standard basis satisfies $M_{T}^{t}=M_{T}^{-1}$.

Let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map with matrix M_{ϕ} in the standard basis. Its matrix in the basis $\left\{f_{1}, \ldots, f_{n}\right\}$ is given by $M_{T} M_{\phi} M_{T}^{-1}=$ $M_{T} M_{\phi} M_{T}^{t}$. From this the reader can easily check that if the matrix of ϕ is orthogonal in one orthonormal basis the same is true w.r.t. any orthonormal basis.

Hint for 4

From the expression for the matrix in different bases given above, we see that the determinant of a matrix is independent of the choice of basis and is therefore attached to the linear transformation.

Hint for 3

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an arbitrary basis of \mathbb{R}^{n}. We know that the matrix of ϕ is orthogonal w.r.t. this basis iff $<\phi\left(v_{i}\right), \phi\left(v_{j}\right)>=\delta_{i=j}$. Further $<\phi\left(v_{i}\right), \phi\left(v_{j}\right)>=<v_{i}, v_{j}>$, therefore the matrix is orthogonal w.r.t this basis iff the basis is orthonormal.

Solution (Exercise 4). This exercise deals with the action of orthogonal maps - $\operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0}$ on the set of orthonormal bases of $\mathbb{R}^{n}-\mathcal{B O}$.
(1) Let $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ be the standard orthonormal basis of \mathbb{R}^{n}. Let $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be another orthonormal basis. Let the linear transformation $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be defined by $\phi\left(e_{i}\right)=f_{i}$, the transformation ϕ is orthogonal since it maps the standard orthonormal basis to another orthonormal basis. This construction shows that the action of orthogonal maps on $\mathcal{B O}$ is transitive.

An orthogonal map fixing the standard orthonormal basis is identity, since orthogonal maps are linear. This shows that the stabiliser of any element of $\mathcal{B O}$ is trivial. So the map $\phi \in$ $\operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0} \mapsto\left\{\phi\left(e_{1}\right), \ldots, \phi\left(e_{n}\right)\right\} \in \mathcal{B O}$ induces a bijection

$$
\operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0} \simeq \mathcal{B O}
$$

(2) Given a vector $e \in S^{n-1}$ we can complete it to an element of $\mathcal{B O}$ i.e. $\exists f_{2}, \ldots, f_{n}$ s.t. $\left\{e, f_{2}, \ldots, f_{n}\right\} \in \mathcal{B O}$. This follows since any set of linearly independent vectors can be completed to a basis and applying Gram-Schmidt to make the basis orthonormal. Transitivity of action of $\operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0}$ on S^{n-1} follows easily from the transitivity of action of $\operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0}$ on $\mathcal{B O}$.
(3) Let $e \in S^{n-1}$ be any vector, by part (2) $\exists \psi \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0}$ s.t. $\psi\left(e_{n}\right)=e$. You can check that

$$
\operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0, e}=\psi \operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0, e_{n}} \psi^{-1}
$$

Therefore

$$
\operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0, e} \simeq \operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0, e_{n}}
$$

(4) Let $\phi \in \operatorname{Isom}\left(\mathbb{R}^{3}\right)_{0, e_{3}}$ have basis M_{ϕ} w.r.t. the standard orthonormal basis. Suppose

$$
M_{\phi}=\left(\begin{array}{ccc}
a & b & u \\
c & d & v \\
x & y & z
\end{array}\right)
$$

we have $\phi\left(e_{3}\right)=u e_{1}+v e_{2}+z e_{3}$, it follows that $u=0, v=$ $0, z=1 .<\phi\left(e_{1}\right), \phi\left(e_{3}\right)>=<e_{1}, e_{3}>=0$, on the other hand $<$ $\phi\left(e_{1}\right), \phi\left(e_{3}\right)>=<\phi\left(e_{1}\right), e_{3}>=x$. Similarly, $<\phi\left(e_{2}\right), \phi\left(e_{3}\right)>=<$ $e_{2}, e_{3}>=0$, on the other hand $<\phi\left(e_{2}\right), \phi\left(e_{3}\right)>=<\phi\left(e_{2}\right), e_{3}>=$ y. Further
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{t}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{t}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
So the result follows.
(5) Let $\phi \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)_{0, e_{n}}$ have basis $M_{\phi}=\left(f_{i j}\right)_{1 \leq i, j \leq n}$ w.r.t. the standard orthonormal basis. Here $f_{i j}=<\phi\left(e_{j}\right), e_{i}>$. Firstly $f_{\text {in }}=<\phi\left(e_{n}\right), e_{i}>=<e_{n}, e_{i}>=\delta_{i=n)}$. Further $f_{n i}=<\phi\left(e_{i}\right), e_{n}>=<$ $\phi\left(e_{i}\right), \phi\left(e_{n}\right)>=<e_{i}, e_{n}>=\delta_{i=n}$. Observe that the upper block $\widetilde{M_{\phi}}=\left(f_{i j}\right)_{1 \leq i, j \leq n-1}$ satisfies ${\widetilde{M_{\phi}}}^{t} \widetilde{M_{\phi}}=\widetilde{M_{\phi}}{\widetilde{M_{\phi}}}^{t}=I d_{n-1 \times n-1}$ so is orthogonal.

Solution (Exercise 6). Let $\phi_{V, W}: V \rightarrow W$ be a surjective linear isometry. If we have $\phi_{V, W}(v)=0$ for some $v \in V$ i.e. $\left|\phi_{V, W}(v)-0\right|=0$, we conclude that $|v-0|=0$ since $\phi_{V, W}$ is a linear isometry. So $\phi_{V, W}$ is also injective and hence $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Let us denote $\operatorname{dim}(V)=m$. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthonormal basis of \mathbb{R}^{n} s.t. $v_{1}, \ldots, v_{m} \in V$ (and so form an orthonormal basis of
V). Note this is possible since starting with an orthonormal basis of V extend it to a basis of \mathbb{R}^{n} and apply Gram-Schmidt procedure to get a basis with the given property. Similarly $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be an orthonormal basis of \mathbb{R}^{n} s.t. $w_{1}, \ldots, w_{m} \in W$. Define a linear transformation $\phi: V \rightarrow W$ by $\phi\left(v_{i}\right)=\phi_{V, W}\left(v_{i}\right)$ for $1 \leq i \leq m$ and $\phi\left(v_{i}\right)=w_{i}$ for $m+1 \leq i \leq n$.

Observe that $\phi(v)=\phi_{V, W}(v)$ for all $v \in V$. Further $\left\{\phi\left(v_{1}\right), \ldots ., \phi\left(v_{n}\right)\right\}$ are orthonormal (since $\phi_{V, W}$ is a linear isometry into W and $\left\{w_{m+1}, \ldots, w_{n}\right\}$ form an orthonormal basis of W^{\perp}) So ϕ is a linear isometry of \mathbb{R}^{n} extending $\phi_{V, W}$ as desired.

Solution (Exercise 8). We proceed as in Ex 1 to determine if the matrix is orthogonal and if so we determine its nature by calculating the eigenvalues. We can find the type just by looking at the trace and determinant:

$$
\frac{1}{9}\left(\begin{array}{ccc}
8 & 1 & 4 \\
1 & 8 & -4 \\
4 & -4 & -7
\end{array}\right)
$$

is orthogonal and is a reflection about the plane $\mathbb{R} v_{1} \oplus \mathbb{R} v_{2}$ where $v_{1}=$ $(1,1,0)$ and $v_{2}=(4,0,1)$ in the standard basis.

$$
\frac{1}{9}\left(\begin{array}{ccc}
8 & 1 & -4 \\
1 & 8 & -4 \\
4 & -4 & -7
\end{array}\right)
$$

is not orthogonal

$$
\frac{1}{3}\left(\begin{array}{ccc}
-2 & -1 & 2 \\
1 & 2 & 2 \\
-2 & 2 & -1
\end{array}\right)
$$

is orthogonal and its type is a rotation with axis $\mathbb{R}(0,2,1)$ and angle $\pm \arccos \left(\frac{2}{3}\right)$.

$$
\frac{1}{25}\left(\begin{array}{ccc}
-9 & -12 & -20 \\
-20 & 15 & 0 \\
-12 & -16 & 15
\end{array}\right)
$$

is orthogonal and its type is an antirotation with axis $\mathbb{R}(2,1,1)$ and angle $\pm \arccos \left(\frac{23}{25}\right)$.
Solution (Exercise 10). Let

$$
\varphi(x, y, z)=(X, Y, Z)
$$

with

$$
X=\frac{1}{9}(x-8 y+4 z)-1
$$

$$
\begin{aligned}
& Y=\frac{1}{9}(4 x+4 y+7 z)+2 \\
& Z=\frac{1}{9}(-8 x+y+4 z)+2
\end{aligned}
$$

(1) First we look at the linear part:

$$
\frac{1}{9}\left(\begin{array}{ccc}
1 & -8 & 4 \\
4 & 4 & 7 \\
-8 & 1 & 4
\end{array}\right)
$$

This is a rotation with axis $\mathbb{R}(-1,2,2)$ and angle $\frac{\pi}{2}$. The translation vector is parallel to the axis so this is a vissage. (φ has no fixed points.)
(2) let $\psi(x, y, z)=\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ with

$$
\begin{aligned}
X^{\prime} & =\frac{1}{3}(x+2 y+2 z)+1 \\
Y^{\prime} & =\frac{1}{3}(2 x+y-2 z)-1 \\
Z^{\prime} & =\frac{1}{3}(2 x-2 y+z)-1 .
\end{aligned}
$$

First we look at the linear part:

$$
\frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)
$$

This is a reflection about the plane $\mathbb{R}(1,1,0) \oplus \mathbb{R}(1,0,1)=$ $(\mathbb{R}(-1,1,1))^{\perp}$. The translation vector is perpendicular to the plane. The set of fixed points is the affine plane $(3 / 2,0,0)+$ $\mathbb{R}(1,1,0) \oplus \mathbb{R}(1,0,1), \psi$ is just the reflection w.r.t. this plane.
(3) The nature of $\varphi \circ \psi \circ \varphi^{-1}$: By the proof of exercise 9.1, the transformation $\varphi \circ \psi \circ \varphi^{-1}$ is a reflection about the affine plane $\varphi(3 / 2,0,0)+\mathbb{R} \varphi(1,1,0) \oplus \mathbb{R} \varphi(1,0,1)$.

Solution (Exercise 12). Let $a, b, c, d, e, f \in \mathbb{R}$. Consider $\varphi(x, y, z)=$ (X, Y, Z) in the standard basis with

$$
\begin{aligned}
X & =\frac{1}{d}(2 x-2 y+a z)+1 \\
Y & =\frac{1}{d}(x+b y+2 z)+e \\
Z & =\frac{1}{d}(c x-y+2 z)+f
\end{aligned}
$$

(1) First let us look at the linear part:

$$
\frac{1}{d}\left(\begin{array}{ccc}
2 & -2 & a \\
1 & b & 2 \\
c & -1 & 2
\end{array}\right)
$$

Using the fact that the linear part is an orthogonal matrix the rows are orthogonal to each other, we get

$$
a=1, b=2, c=-2
$$

and using the fact that each row has norm 1 we get

$$
d= \pm 3
$$

For φ to be a vissage, the linear part has to be special orthogonal, we conclude that

$$
d=3
$$

. The reader may calculate that the axis of this rotation is $\mathbb{R}(-1,1,1)$. Further for φ to be a vissage, the translation vector is not in $\operatorname{Im}\left(\varphi_{0}-\mathrm{id}\right)$. i.e.

$$
<(-1,1,1),(1, e, f)>\neq 0 \Longleftrightarrow e+f \neq 1
$$

(2) For φ to be an anti rotation, from calculations as above we have

$$
(a, b, c, d)=(1,2,-2,-3)
$$

and e, f are arbitrary reals.
(3) Let us assume that φ is not a vissage. From part (1) and part (2), we know that the linear part is either

$$
\frac{1}{3}\left(\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
-2 & -1 & 2
\end{array}\right)
$$

or

$$
\frac{-1}{3}\left(\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
-2 & -1 & 2
\end{array}\right)
$$

In the first case φ_{0} is a rotation with axis $\mathbb{R}(-1,1,1)$ and angle $\pm \frac{\pi}{3}$ and in the second case φ_{0} is an anti rotation with axis $\mathbb{R}(-1,1,1)$ and angle $\pm \frac{\pi}{3}$. In both these cases,

$$
\varphi_{0}^{6}=\operatorname{Id}_{\mathbb{R}^{3}}
$$

. Further since φ is not a vissage we have $\varphi(v)=\varphi_{0}(v)+u$ with $u=\left(\varphi_{0}-\mathrm{Id}\right) w$ for some $w \in \mathbb{R}^{3}$. We get

$$
\varphi(v)=\varphi_{0}(v+w)-w
$$

and inductively you can see that

$$
\varphi^{k}(v)=\varphi_{0}^{k}(v+w)-w
$$

In particular

$$
\varphi^{6}(v)=\varphi_{0}^{6}(v+w)-w=v+w-w=v
$$

since $\varphi_{0}^{6}=\operatorname{Id}_{\mathbb{R}^{3}}$.

