MCAA lecture 5
Reversible chains \& detailed balance
Def: Let $\left(x_{n}, n \geqslant 0\right)$ be an ergodic Marka chainmith state space S. It is said to be reversible if its stationary dismibution \bar{u} satisfies the detailed balance equation:

$$
\pi_{i} p_{i j}=\pi_{j} p_{j i} \quad \forall i, j \in S
$$

Remark:

- $\pi=\pi P$ does not ensure that eq. is satisfied.
- If eq. $*$ is satisfied, then $\pi=\pi P$:

$$
(\pi P)_{j}=\sum_{i \in S} \pi_{i} p_{i j} \stackrel{\circledast}{=} \sum_{i \in S} \pi_{j} p_{j i}=\pi_{j} \underbrace{\sum_{i \in S} p_{j i}}_{=1 \quad \forall j \in S}=\pi_{j}
$$

- why "reversible"?

Assume that $\pi^{(0)}=\pi$ and look at the chain backwards in time:

It turns art that if eq. $*$ is satisfied, then the backward chain has the same transition probabilities as the forward chain.

Examples \& caunter-examples

- If $\exists_{i, j} \in S$ such that $p_{i j}>0$ but $p_{j i}=0$, then the detailed balance equation cannot be satisfied.
- Cyclic randan walk on $S=\{0,1, \ldots, N-1\}$, Node

$$
0<p, q<1, p+q=1
$$

limiting \& stat. dist. $\pi=\left(\frac{1}{N}, \ldots, \frac{1}{N}\right)$
(doubly stochastic matrix P)
detailed balance? $\pi_{i} p_{i j}=\pi_{j} p_{j i}$?

$$
\frac{1}{N} \cdot p=\frac{1}{N} \cdot q ?
$$

only if $p=q=\frac{1}{2}$?

- If S is finite and the matrix P is tridiagand, ie.

$$
P=(0) 0)_{2, ~ n o n-z e r o ~ c o e f f i c i e u l s ~}^{0}
$$

then the chain is reversible (provided it is also ergodic).
NB: For the cydic RW:

$$
P=\left(\begin{array}{ccccc}
0 & p & 0 & \cdots & 9 \\
9 & 0 & p & 0 & \cdots \\
0 & 9 & 0 & p & \cdots \\
\vdots & \cdots & \ddots & 0 \\
p & \cdots & 0 & 0 & p
\end{array}\right)
$$

- Consider two urns with N numbered balls.

At each step, pick a number between 1 \& N uniformly at randan; take the ball with this number and put it in the other urn.

State of the cham: $X_{n}=\#$ balls in urn 1 at time n Transition probabilities: $P_{i, i+1}=\frac{N-i}{N}, P_{i, i-1}=\frac{i}{N}$ tridiagonal
Detailed balance: $\pi_{i} p_{i, i+1}=\pi_{i+1} p_{i+1, i}$ ie. $\pi_{i} \frac{N-i}{N}=\pi_{i+1} \cdot \frac{i+1}{N}$ so $\bar{\pi}_{i+1}=\frac{N-i}{i+1} \cdot \pi_{i} \Rightarrow \pi_{i}=\frac{(N-i)(N-i+1) \ldots N}{i \cdot(i-1) \cdots-1} \cdot \pi_{0}=\binom{N}{i} \cdot \pi_{0}$ \& $\sum_{i=0}^{N} \pi_{i}=1 \Rightarrow \pi_{0}=1 / \sum_{i=0}^{N}\binom{N}{i}=1 / 2^{N}$

Rate of cawergence
Let $\left(X_{n}, n \geq 0\right)$ be an ergodic Marka chain an S with transition matrix P, initial distribution $\pi^{(0)}$ and stationary and limiting distribution 5 .
Morewer, we assume:

- S is finite, ie., $|S|=N$.
- detailed balance holds, ie., $\bar{\pi}_{i} p_{i j}=\pi_{j} P_{j i} \quad \forall i, j \in S$.

Our aim: to find an upper bound on

$$
\begin{aligned}
& \| \underbrace{P_{i}^{n}}_{i}-\pi U_{T V}=\frac{1}{2} \sum_{j \in S}\left|p_{i j}^{(n)}-\pi_{j}\right|\left(\underset{n \rightarrow \infty}{\longrightarrow} \begin{array}{c}
\text { by the } \\
\text { ergodic } \\
\text { the }
\end{array}\right) \\
& \text { isth ran of } P^{n} \\
&= \text { distribution at time n given } \pi^{(0)}=\delta_{i}
\end{aligned}
$$

Eigenvalues and eigenvectors of P
Define a new matrix Q as follows: $q_{i j}=\sqrt{\pi_{i}} \cdot P_{i j} ; \frac{1}{\sqrt{\pi_{j}}} i, j \in S$
Then: $q_{i i}=p_{i i} \quad \forall i \in S$

- $q_{i j} \geqslant 0 \quad \forall i, j \in S$, but $\sum_{j \in S} q_{i j} \neq 1$ in general
- $q_{i j}=q_{j i} \quad \forall i, j \in S$, ie. Q is symmetric:

Indeed: $q_{j i}=\sqrt{\pi_{j}} p_{j i} \frac{1}{\sqrt{\pi_{i}}}=\frac{1}{\sqrt{\pi_{j} \pi_{i}}} \cdot \pi_{j} p_{j i}$
(detailed balance) $=\frac{1}{\sqrt{\pi_{j} \pi_{i}}} \cdot \overline{\pi_{i}} p_{i j}=\sqrt{\bar{v}_{i}} p_{i j} \frac{1}{\sqrt{\pi_{j}}}=q_{i j}$

Spectral theorem
As Q is symmetric, there exist real numbers $\delta_{0} \geqslant \lambda_{1} \geqslant \ldots$
$\geqslant \lambda_{N-1} \quad(=$ the eigenvalues of $Q)$ and vectors $u^{(0)} \ldots u^{(N-1)}$
$(=$ the eigenvectors of $Q)$ such that $Q u^{(k)}=\lambda_{c} u^{(k)}$ $\forall o \leq k \leq N-1$
Morecuer, $u^{(0)}, \ldots, u^{(N-1)}$ forms an crthonorrual basis of \mathbb{R}^{N}.
Proposition
Define $\phi^{(k)}=\left(\frac{u_{j}^{(k)}}{\sqrt{\pi_{j}}}, j \in S\right)$. Then $P \phi^{(k)}=\lambda_{k} \phi^{(k)} \forall \leq \leq k \leq N+1$
Proof: $\left(P \phi^{(k)}\right)_{i}=\sum_{j \in s} p_{i j} \phi_{j}^{(k)}=\sum_{j \in s}\left(\frac{1}{\sqrt{\bar{\pi}_{i}}} q_{i j} j_{\overline{\pi_{i}}}\right) \frac{u_{j}^{(k)}}{\sqrt{\sqrt{\pi_{i}}}}$

$$
=\frac{1}{\sqrt{\bar{u}_{i}}} \sum_{j \in S} q_{i j} u_{j}^{(k)}=\frac{1}{\sqrt{\pi_{i}}}\left(Q u^{(k)}\right)_{i}=\frac{1}{\sqrt{\pi_{i}}} \lambda_{k} u_{i}^{(k)}=\lambda_{k} \phi_{i}^{(k)}
$$

$\forall o \leq k \leq N-1, \forall i \in S \#$

Facts about the eigenvalues of P (to be proven next week):

1. $\lambda_{0}=1$ and $\phi^{(0)}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 1\end{array}\right)$
2. $\left|\lambda_{k}\right| \leq 1 \quad \forall 1 \leq k \leq N-1$

3. $\lambda_{1}<1$ \& $\lambda_{N-1}>-1$

Define $\lambda_{*}=\max _{1 \leqslant k \leqslant N-1}\left|\lambda_{k}\right| \stackrel{\text { excrasie! }}{=} \max \left\{1_{1},-1_{N+1}\right\}<1$
Theorem: Under all the above assumptions (ergodic chain, finite S, detailed balance), it holds that

$$
\| P_{i}^{n}-\pi U_{T V} \leqslant \frac{\lambda_{*}^{n}}{2 \sqrt{\pi_{i}}} \quad \forall i \in S, \forall_{n} \geqslant 1
$$

Two more definitions

- The spectral gap of the chain is defined as follows:

$$
\begin{aligned}
& \gamma\left.\left.=1-\lambda_{*} \in\right] 0,1\right] \\
&=\min \left\{1-\lambda_{1}, \lambda_{v-1}+1\right\} \\
& \cdots \leq \frac{\lambda_{*}{ }^{n}}{2 \sqrt{\pi_{i}}}=\frac{(1-\gamma)^{n}}{2 \sqrt{\bar{\pi}_{i}}} \leq \frac{e^{-\gamma n}}{2 \sqrt{\pi_{i}}}
\end{aligned}
$$

the larger the γ, the faster the convergence

- The mixing time of the chain is defined as follows: For a given $\varepsilon>0, T_{\varepsilon}=\inf \left\{n \geqslant 1: \max _{i \in s}\left\|P_{i}^{n}-\pi\right\|_{\pi} \leq \varepsilon\right\}$ Haw does T_{ε} behove in terms of $N=|s|$?

Example: cyclic randan walk on $S=\{0, \ldots, N-1\}$ with $p=q=\frac{1}{2}$

$$
\begin{aligned}
& \pi=\left(\frac{1}{N}, \ldots \ldots, \frac{1}{N}\right)
\end{aligned}
$$

 ($P=$ arculant matrix)

Nodd: $\lambda_{*}=\left|\cos \left(\frac{2 \pi\left(\frac{N-1}{2}\right)}{N}\right)\right|$

$$
\begin{aligned}
& =\left|\cos \left(\pi\left(1-\frac{1}{N}\right)\right)\right|=\cos \left(\frac{\pi}{N}\right) \\
& \cong 1-\frac{\pi^{2}}{2 N^{2}}(N \text { large })
\end{aligned}
$$

So $\gamma=1-\lambda_{*} \cong \frac{\pi^{2}}{2 N^{2}}$:

$$
U P_{i}^{n}-\bar{u} u_{T v} \leqslant \frac{\lambda_{*}{ }^{n}}{2 \sqrt{\pi_{i}}}=\frac{\sqrt{N}}{2} \cdot\left(1-\frac{\pi^{2}}{2 v^{2}}\right)^{n} \leqslant \frac{\sqrt{N}}{2} \exp \left(-\frac{\pi^{2} n}{2 v^{2}}\right)
$$

$\leq \varepsilon$ when $n \gg N^{2}$

$$
\left(\text { Pareande, } n \sim \theta\left(N^{2} \log N\right)\right)
$$

So $T_{\varepsilon}=\inf \left\{n \geqslant 1: \max _{i \in S} u P_{i}-\pi u_{\pi} \leq \varepsilon\right\} \sim \theta\left(N^{2} \log N\right)$

