1) The "Ket" and the associated Dirac or usual vector notations are:

- $|H\rangle=\binom{1}{0}$ and $\langle H|=\left(\begin{array}{ll}1 & 0\end{array}\right)$
- $|V\rangle=\binom{0}{1}$ and $\langle H|=\left(\begin{array}{ll}0 & 1\end{array}\right)$
- $\alpha|H\rangle+\beta|V\rangle=\binom{\alpha}{\beta}$ and $\alpha^{*}\langle H|+\beta^{*}\langle V|=\left(\begin{array}{ll}\alpha^{*} & \beta^{*}\end{array}\right)$

2) In Dirac notation:

$$
\begin{aligned}
& \left(\gamma^{*}\langle H|+\delta^{*}\langle V|\right)(\alpha|H\rangle+\beta|V\rangle) \\
= & \gamma^{*} \alpha\langle H \mid H\rangle+\gamma^{*} \beta\langle H \mid V\rangle+\delta^{*} \alpha\langle V \mid H\rangle+\delta^{*} \beta\langle V \mid V\rangle \\
= & \gamma^{*} \alpha+\delta^{*} \beta
\end{aligned}
$$

because $\langle H \mid V\rangle=\langle V \mid H\rangle=0$ and $\langle H \mid H\rangle=\langle V \mid V\rangle=1$.
The equivalent vector notation is

$$
\left(\begin{array}{ll}
\gamma^{*} & \delta^{*}
\end{array}\right)\binom{\alpha}{\beta}=\gamma^{*} \alpha+\delta^{*} \beta
$$

3) We have $R^{\top}=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$ and $R^{\dagger}=R^{\top, *}=\left(\begin{array}{cc}0 & -i \\ -i & 0\end{array}\right)$. Thus

$$
\begin{aligned}
R R^{\dagger} & =\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
R^{\dagger} R & =\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Matrices satisfying $M M^{\dagger}=M^{\dagger} M=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ are called unitary matrices.
Let us compute $R(\alpha|H\rangle+\beta|V\rangle)$ in Dirac notation. By linearity of matrix operations,

$$
\begin{aligned}
R(\alpha|H\rangle+\beta|V\rangle) & =\alpha R|H\rangle+\beta R|V\rangle \\
& =\alpha i|V\rangle+\beta i|H\rangle \\
& =i(\alpha|V\rangle+\beta|H\rangle) .
\end{aligned}
$$

$$
\alpha|H\rangle+\beta|V\rangle \text { incoming }
$$

$$
i(\beta|H\rangle+\alpha|V\rangle) \text { outgoing }
$$

4) We have

$$
\begin{aligned}
S|H\rangle & =\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{i} \\
& =\frac{1}{\sqrt{2}}(|H\rangle+i|V\rangle), \\
S|V\rangle & =\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right)\binom{0}{1}=\frac{1}{\sqrt{2}}\binom{i}{1} \\
& =\frac{1}{\sqrt{2}}(i|H\rangle+|V\rangle), \\
& =\frac{\alpha+i \beta}{\sqrt{2}}|H\rangle+\frac{i \alpha+\beta}{\sqrt{2}}|V\rangle . \\
& \\
&
\end{aligned}
$$

5) The semi-transparent mirror leaves photons in state $S(\alpha|H\rangle+\beta|V\rangle)$. The state is then measured by the detector D which detects photons in state $|V\rangle$. Therefore, the probability of finding a photon in D is the probability of finding a photon in state $|V\rangle$ given that
photons in state $S(\alpha|H\rangle+\beta|V\rangle)$ are produced. By the measurement postulate (which will be formally introduced in Chapter 3 of the lecture note) we have

$$
\operatorname{Prob}(D)=\mid\left.\langle V| S(\alpha|H\rangle+\beta|V\rangle)\right|^{2}
$$

From the previous question we have

$$
\begin{aligned}
S(\alpha|H\rangle+\beta|V\rangle) & =\frac{\alpha+i \beta}{\sqrt{2}}|H\rangle+\frac{i \alpha+\beta}{\sqrt{2}}|V\rangle, \\
\langle V| S(\alpha|H\rangle+\beta|V\rangle) & =\frac{\alpha+i \beta}{\sqrt{2}}\langle V \mid H\rangle+\frac{i \alpha+\beta}{\sqrt{2}}\langle V \mid V\rangle \\
& =\frac{i \alpha+\beta}{\sqrt{2}} .
\end{aligned}
$$

So we find

$$
\operatorname{Prob}(D)=\left|\frac{i \alpha+\beta}{\sqrt{2}}\right|^{2}=\frac{1}{2}|i \alpha+\beta|^{2}=\frac{1}{2}\left(\alpha^{2}+\beta^{2}\right)=\frac{1}{2} .
$$

6) The state after S is

$$
S|H\rangle=\frac{1}{\sqrt{2}}(|H\rangle+i|V\rangle)
$$

The state after R is

$$
\begin{aligned}
R S|H\rangle & =\frac{1}{\sqrt{2}}(R|H\rangle+i R|V\rangle) \\
& =\frac{i}{\sqrt{2}}(|V\rangle+i|H\rangle)
\end{aligned}
$$

The state after the second S is

$$
\begin{aligned}
S R S|H\rangle & =\frac{i}{\sqrt{2}}(S|V\rangle+i S|H\rangle) \\
& =\frac{i}{\sqrt{2}}\left(\frac{i|H\rangle+|V\rangle}{\sqrt{2}}+i \cdot \frac{|H\rangle+i|V\rangle}{\sqrt{2}}\right) \\
& =-|H\rangle
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \operatorname{Prob}\left(D_{1}\right)=|\langle V \mid H\rangle|^{2}=0 \\
& \operatorname{Prob}\left(D_{2}\right)=|\langle H \mid H\rangle|^{2}=1 .
\end{aligned}
$$

All photons are detected in D_{2} ! For "classical balls" we would expect a split between D_{1} and D_{2}. For example, if S act as half-half splitters we would expect $\operatorname{Prob}\left(D_{1}\right)=$ $\operatorname{Prob}\left(D_{2}\right)=1 / 2$. The quantum behavior is completely different!

