Homework 4
 Traitement Quantique de l'Information

Exercise 1 Polarization observable and measurement principle
Consider the "measurement apparatus" (in the below figure) constituted of "an analyzer and a detector". The incoming (initial) state of the photon is linearly polarized:

$$
|\theta\rangle=\cos \theta|x\rangle+\sin \theta|y\rangle
$$

When the photodetector clicks we record +1 and when it does not click we record -1 . Thus the "polarization observable" is represented by the 2×2 matrix

$$
P_{\alpha}=(+1)|\alpha\rangle\langle\alpha|+(-1)\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|
$$

where $|\alpha\rangle=\cos \alpha|x\rangle+\sin \alpha|y\rangle$ and $\left|\alpha_{\perp}\right\rangle=-\sin \alpha|x\rangle+\cos \alpha|y\rangle$ are the two vectors of the measurement basis. Note that the two orthogonal projectors of the measurement basis are $\Pi_{\alpha}=|\alpha\rangle\langle\alpha|$ and $\Pi_{\alpha_{\perp}}=\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|$.

1) Show that $\Pi_{\alpha}^{2}=\Pi_{\alpha}, \Pi_{\alpha_{\perp}}^{2}=\Pi_{\alpha_{\perp}}$ and $\Pi_{\alpha} \Pi_{\alpha_{\perp}}=\Pi_{\alpha_{\perp}} \Pi_{\alpha}=0$.
2) Check the following formulas:

$$
\begin{aligned}
|\langle\theta \mid \alpha\rangle|^{2} & =\langle\theta| \Pi_{\alpha}|\theta\rangle, \\
\left|\left\langle\theta \mid \alpha_{\perp}\right\rangle\right|^{2} & =\langle\theta| \Pi_{\alpha_{\perp}}|\theta\rangle
\end{aligned}
$$

3) Let $p= \pm 1$ the random variable corresponding to the event click / no-click of the detector. Express $\operatorname{Prob}(p= \pm 1)$ with simple trigonometric functions and check that the two probabilities sum to one.
4) Deduce from 3) $\mathbb{E}(p)$ and $\operatorname{Var}(p)$ and check that you find the same expressions by directly computing $\langle\theta| P_{\alpha}|\theta\rangle$ and $\langle\theta| P_{\alpha}^{2}|\theta\rangle-\langle\theta| P_{\alpha}|\theta\rangle^{2}$ in Dirac notation.

Exercise 2 Interferometer with an atom on the upper path
Consider the following set-up where an atom may absorb the photon on the upper arm of the interferometer.

The Hilbert space of the photon is here \mathbb{C}^{3} with basis states

$$
|H\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),|V\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),|\mathrm{abs}\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

the semi-transparent and reflecting mirrors are modeled by the unitary matrices

$$
S=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right), \quad R=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and the "absorption-reemission" process ${ }^{1}$ is modeled by the unitary matrix

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Note that in Dirac notation

$$
A=|H\rangle\langle\mathrm{abs}|+|V\rangle\langle V|+|\mathrm{abs}\rangle\langle H|
$$

This models three possible transitions: $A|H\rangle=|\mathrm{abs}\rangle$ (absorption); $A|\mathrm{abs}\rangle=|H\rangle$ (emission); and $A|V\rangle=|V\rangle$ (nothing happens).

1) Write down all matrices in Dirac notation and then compute the unitary operator $U=$ $S A R S$ representing the total evolution process of this interferometer.
2) Given that the initial state is $|H\rangle$, what is the state after the second semi-transparent mirror? What are the probabilities of the following three events: click in D_{1}; or click in D_{2}; or no clicks in D_{1} nor D_{2} ? Verify the probabilities sum to to 1 .

[^0]3) Suppose the photon-atom interaction is not absorption-reemission but some other process modeled by a matrix. Which of the two following matrices would be legitimate in QM?
\[

\left($$
\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}
$$\right) or\left($$
\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}
$$\right)
\]

and why?

[^0]: ${ }^{1}$ On the picture E_{0} and E_{1} are two energy levels of the atom corresponding to ground state and excited state; but you can ignore this aspect in this problem.

