Exercise 1 Polarization observable and measurement principle

1) In Homework 3, we have checked that $\langle\alpha \mid \alpha\rangle=\left\langle\alpha_{\perp} \mid \alpha_{\perp}\right\rangle=1$ and $\left\langle\alpha \mid \alpha_{\perp}\right\rangle=\left\langle\alpha_{\perp} \mid \alpha\right\rangle=0$. Therefore, we have

$$
\begin{aligned}
\Pi_{\alpha}^{2} & =|\alpha\rangle\langle\alpha \mid \alpha\rangle\langle\alpha|=|\alpha\rangle\langle\alpha|=\Pi_{\alpha} \\
\Pi_{\alpha_{\perp}}^{2} & =\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp} \mid \alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|=\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|=\Pi_{\alpha_{\perp}} \\
\Pi_{\alpha} \Pi_{\alpha_{\perp}} & =|\alpha\rangle\left\langle\alpha \mid \alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|=0 \\
\Pi_{\alpha_{\perp}} \Pi_{\alpha} & =\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp} \mid \alpha\right\rangle\langle\alpha|=0
\end{aligned}
$$

2)

$$
\begin{aligned}
|\langle\theta \mid \alpha\rangle|^{2} & =\langle\theta \mid \alpha\rangle\langle\theta \mid \alpha\rangle^{*}=\langle\theta \mid \alpha\rangle\langle\alpha \mid \theta\rangle=\langle\theta| \Pi_{\alpha}|\theta\rangle, \\
\left|\left\langle\theta \mid \alpha_{\perp}\right\rangle\right|^{2} & =\left\langle\theta \mid \alpha_{\perp}\right\rangle\left\langle\theta \mid \alpha_{\perp}\right\rangle^{*}=\left\langle\theta \mid \alpha_{\perp}\right\rangle\left\langle\alpha_{\perp} \mid \theta\right\rangle=\langle\theta| \Pi_{\alpha_{\perp}}|\theta\rangle
\end{aligned}
$$

3) The probabilities are

$$
\begin{aligned}
& \operatorname{Prob}(p=+1)=|\langle\alpha \mid \theta\rangle|^{2}=|\cos \alpha \cos \theta+\sin \alpha \sin \theta|^{2}=(\cos (\theta-\alpha))^{2} \\
& \operatorname{Prob}(p=-1)=\left|\left\langle\alpha_{\perp} \mid \theta\right\rangle\right|^{2}=|-\sin \alpha \cos \theta+\cos \alpha \sin \theta|^{2}=(\sin (\theta-\alpha))^{2}
\end{aligned}
$$

and they sum to 1 ,

$$
\operatorname{Prob}(p=+1)+\operatorname{Prob}(p=-1)=(\cos (\theta-\alpha))^{2}+(\sin (\theta-\alpha))^{2}=1
$$

4) The expectation is

$$
\begin{aligned}
\mathrm{E}[p] & =(+1) \operatorname{Prob}(p=+1)+(-1) \operatorname{Prob}(p=-1) \\
& =(\cos (\theta-\alpha))^{2}-(\sin (\theta-\alpha))^{2} \\
& =\cos (2(\theta-\alpha))
\end{aligned}
$$

and the variance is

$$
\begin{aligned}
\operatorname{Var}(p) & =\mathrm{E}\left[p^{2}\right]-(\mathrm{E}[p])^{2} \\
& =1-(\mathrm{E}[p])^{2} \\
& =(\cos (\theta-\alpha))^{2}-(\sin (\theta-\alpha))^{2} \\
& =1-(\cos (2(\theta-\alpha)))^{2} \\
& =(\sin (2(\theta-\alpha)))^{2}
\end{aligned}
$$

In fact they should match with the computation in Dirac notation because

$$
\begin{aligned}
\langle\theta| P_{\alpha}|\theta\rangle & =\langle\theta|\left((+1) \Pi_{\alpha}+(-1) \Pi_{\alpha_{\perp}}\right)|\theta\rangle \\
& =(+1)\langle\theta| \Pi_{\alpha}|\theta\rangle+(-1)\langle\theta| \Pi_{\alpha_{\perp}}|\theta\rangle \\
& =(+1) \operatorname{Prob}(p=+1)+(-1) \operatorname{Prob}(p=-1) \\
& =\mathrm{E}[p]
\end{aligned}
$$

and

$$
\begin{aligned}
\langle\theta| P_{\alpha}^{2}|\theta\rangle & =\langle\theta|\left((+1) \Pi_{\alpha}+(-1) \Pi_{\alpha_{\perp}}\right)^{2}|\theta\rangle \\
& =\langle\theta|\left(\Pi_{\alpha}^{2}-\Pi_{\alpha} \Pi_{\alpha_{\perp}}-\Pi_{\alpha_{\perp}} \Pi_{\alpha}+\Pi_{\alpha_{\perp}}^{2}\right)|\theta\rangle \\
& =\langle\theta|\left(\Pi_{\alpha}+\Pi_{\alpha_{\perp}}\right)|\theta\rangle \\
& =(+1)^{2}\langle\theta| \Pi_{\alpha}|\theta\rangle+(-1)^{2}\langle\theta| \Pi_{\alpha_{\perp}}|\theta\rangle \\
& =(+1)^{2} \operatorname{Prob}(p=+1)+(-1)^{2} \operatorname{Prob}(p=-1) \\
& =\mathrm{E}\left[p^{2}\right]
\end{aligned}
$$

thereby giving $\mathrm{E}[p]=\langle\theta| P_{\alpha}|\theta\rangle$ and $\operatorname{Var}(p)=\mathrm{E}\left[p^{2}\right]-(\mathrm{E}[p])^{2}=\langle\theta| P_{\alpha}^{2}|\theta\rangle-\langle\theta| P_{\alpha}|\theta\rangle^{2}$.
Exercise 2 Interferometer with an atom on the ray

1) The matrices in Dirac notation are

$$
\begin{aligned}
& \left.S=\frac{1}{\sqrt{2}}|H\rangle\langle H|+\frac{1}{\sqrt{2}}|H\rangle\langle V|+\frac{1}{\sqrt{2}}|V\rangle\langle H|-\frac{1}{\sqrt{2}}|V\rangle\langle V|+\mid \text { abs }\right\rangle\langle\text { abs }| \\
& R=|H\rangle\langle V|+|V\rangle\langle H|+\mid \text { abs }\rangle\langle\text { abs }| .
\end{aligned}
$$

To find $U=S A R S$ we proceed by steps:

$$
\begin{aligned}
R S & =\frac{1}{\sqrt{2}}|H\rangle\langle H|-\frac{1}{\sqrt{2}}|H\rangle\langle V|+\frac{1}{\sqrt{2}}|V\rangle\langle H|+\frac{1}{\sqrt{2}}|V\rangle\langle V|+|\mathrm{abs}\rangle\langle\mathrm{abs}|, \\
A R S & =|H\rangle\langle\mathrm{abs}|+\frac{1}{\sqrt{2}}|V\rangle\langle H|+\frac{1}{\sqrt{2}}|V\rangle\langle V|+\frac{1}{\sqrt{2}}|\mathrm{abs}\rangle\langle H|-\frac{1}{\sqrt{2}}|\mathrm{abs}\rangle\langle V|
\end{aligned}
$$

and finally

$$
\begin{aligned}
U=S A R S=\frac{1}{2}|H\rangle\langle H| & +\frac{1}{2}|H\rangle\langle V|+\frac{1}{\sqrt{2}}|H\rangle\langle\mathrm{abs}| \\
& -\frac{1}{2}|V\rangle\langle H|-\frac{1}{2}|V\rangle\langle V|+\frac{1}{\sqrt{2}}|V\rangle\langle\mathrm{abs}| \\
& +\frac{1}{\sqrt{2}}|\mathrm{abs}\rangle\langle H|-\frac{1}{\sqrt{2}}|\mathrm{abs}\rangle\langle V| .
\end{aligned}
$$

2) As $S A R S|H\rangle=\frac{1}{2}|H\rangle-\frac{1}{2}|V\rangle+\frac{1}{\sqrt{2}}|a b s\rangle$, the probabilities of the three events are

$$
\begin{aligned}
& \left.\operatorname{Prob}\left(D_{1}\right)=|\langle V| S A R S| H\right\rangle\left.\right|^{2}=\frac{1}{4} \\
& \left.\operatorname{Prob}\left(D_{2}\right)=|\langle H| S A R S| H\right\rangle\left.\right|^{2}=\frac{1}{4} \\
& \operatorname{Prob}(\mathrm{abs})=|\langle\operatorname{abs}| S A R S| H\rangle\left.\right|^{2}=\frac{1}{2}
\end{aligned}
$$

which sum to 1 .
3) A legitimate matrix has to be unitary. The first matrix

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

is not unitary because

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \neq I
$$

The second matrix

$$
\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

is unitary because

$$
\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I .
$$

Thus the second matrix may model the absorption and reemission of the photon. Note also that this matrix acts like a Hadamard matrix on the subspace $\{|H\rangle,|a b s\rangle\}$.

