Homework 5

Traitement Quantique de l'Information

Exercise 1 Bennett 1992 Protocol for quantum key distribution
The analysis of BB84 shows that the important point is the use of non-orthogonal states. BB92 retains this characteristic but simply uses two states instead of four.

Encoding by Alice: Alice generates a random sequence e_{1}, \ldots, e_{N} of bits that she keeps secret. She sends to Bob the quantum bits $|0\rangle$ if $e_{i}=0$ and $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ if $e_{i}=1$. The state of the quantum bit sent by Alice is thus $H^{e_{i}}|0\rangle$.

Decoding by Bob: Bob generates a random sequence d_{1}, \ldots, d_{N} of bits that he keeps secret. He measures the received quantum bit $H^{e_{i}}|0\rangle$ in the basis $\{|0\rangle,|1\rangle\}$ (Z basis) or in the basis $\{H|0\rangle, H|1\rangle\}$ (X basis) according to the value $d_{i}=0$ or $d_{i}=1$. So the measurement basis of Bob is $\left\{H^{d_{i}}|0\rangle, H^{d_{i}}|1\rangle\right\}$. He registers $y_{i}=0$ if the outcome is $H^{d_{i}}|0\rangle$ (i.e. if it is $|0\rangle$ or $H|0\rangle$) and $y_{i}=1$ if the outcome is $H^{d_{i}}|1\rangle$ (i.e. if it is $|1\rangle$ or $H|1\rangle$).

Public discussion phases: Bob announces on a public channel his measurement outcome y_{1}, \ldots, y_{N}.

Secret key generation: You will propose it in question 3).

1) Prove that just after Bob's measurements:

$$
\begin{array}{ll}
P\left(y_{i}=0 \mid e_{i}=d_{i}\right)=1 & P\left(y_{i}=1 \mid e_{i}=d_{i}\right)=0 \\
P\left(y_{i}=0 \mid e_{i} \neq d_{i}\right)=\frac{1}{2} & P\left(y_{i}=1 \mid e_{i} \neq d_{i}\right)=\frac{1}{2}
\end{array}
$$

2) Deduce that $P\left(e_{i}=1-d_{i} \mid y_{i}=1\right)=1$.

Hint: You can convince yourself that this is necessarily the case from the above probabilities; but you can also prove it more in detail by using Bayes' rule $P(A \mid B)=\frac{P(A \cup B)}{P(B)}=$ $\frac{P(B \mid A) P(A)}{P(B)}$.
3) Based on the result in 2) propose a secret key generation scheme. Show that the secret key has length $\approx N / 4$ (discuss with your neighbors).
4) Propose a security check.

Exercise 2 No-cloning theorem

In class we saw that unitarity and tensor product structure imply the no-cloning theorem. Here we show that linearity and tensor product structure also imply the no-cloning theorem.

Suppose a common cloning machine U exists for all inputs $|\Psi\rangle \in \mathbb{C}^{2}$ in the Hilbert space. In other words we suppose that there exist U a 4×4 matrix acting on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ such that $U|\Phi| \otimes|0\rangle=|\Phi\rangle \otimes|\Phi\rangle$.

Let $|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$ where $|\alpha|^{2}+|\beta|^{2}=1$. You apply the definition of the copying operator and claim that

$$
U|\Psi\rangle \otimes \mid \text { blank }\rangle=\alpha|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle .
$$

But your neighbord, just with the same definition of the copying operator, claims that

$$
U|\Psi\rangle \otimes \mid \text { blank }\rangle=\alpha^{2}|0\rangle \otimes|0\rangle+\alpha \beta|0\rangle \otimes|1\rangle+\alpha \beta|1\rangle \otimes|0\rangle+\beta^{2}|1\rangle \otimes|1\rangle .
$$

1) Elaborate in detail the mathematical steps that you and your neighbord each have in mind to reach these two conclusions.
2) Under what condition on α and β are the two conclusions equivalent? What does this mean with respect to cloning?

Exercise 3 On the Bell states

We recall form the lecture that the four Bell states $\left|B_{00}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$, $\left|B_{01}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle),\left|B_{10}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle-|1\rangle \otimes|0\rangle),\left|B_{11}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle-|1\rangle \otimes|1\rangle)$, form an orthonormal basis.

Let $U=(C N O T) H \otimes I$ the 4×4 unitary matrix. Here the control-NOT operation is defined by $\operatorname{CNOT}(|x\rangle \otimes|y\rangle)=|x\rangle \otimes|y \oplus x\rangle$, for any $x, y \in\{0,1\}$ (x is called the control bit, y is called the target bit, and $y \oplus x$ is the modulo 2 sum). We recall that the Hadamard matrix is $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ and I the 2×2 identity matrix.

1) Compute the following states: $U|0\rangle \otimes|0\rangle=$?, $U|0\rangle \otimes|1\rangle=$?, $U|1\rangle \otimes|0\rangle=$?, $U|1\rangle \otimes|1\rangle=$?. You should recognize the four Bell states.
2) Based on the fact that the Bell states are entangled (i.e., there does not exist $\left|\phi_{1}\right\rangle \in \mathbb{C}^{2}$, $\left|\phi_{2}\right\rangle \in \mathbb{C}^{2}$ such that a Bell state can be factored into $\left|\phi_{1}\right\rangle \otimes\left|\phi_{2}\right\rangle$), show that the CNOT operation cannot be written as a tensor product of two 2×2 unitary matrices. In other words show there does not exist U_{1} and U_{2} such that $C N O T=U_{1} \otimes U_{2}$.
