
Homework 5: Solution
Traitement Quantique de l’Information

Exercise 1 Bennett 1992 Protocol for quantum key distribution

1) When di = ei, Bob measures the qubit in the same basis as the preparation basis used by
Alice. In other words if ei = di = 0 the transmitted qubit state is |0〉 and the measurement
is in the Z-basis then this yields a measurement result |0〉 with probability 1. A similar
argument holds if ei = di = 1 and the transmitted qubit is H |0〉 and the measurement
is in the X-basis which yields a measurement result H|0〉 with probability 1. Thus when
di = ei we certainly have yi = 0. So

P (yi = 0|ei = di) = 1, P (yi = 1|ei = di) = 0.

When di 6= ei then, for example ei = 1 and di = 0, the transmitted state is |ψ〉 = H |0〉 but
the measurement is done in the Z-basis which results in |0〉 or |1〉 with equal probability
because | 〈0|ψ〉 |2 = | 〈1|ψ〉 |2 = (1/

√
2)2 = 1/2. So

P (yi = 0|ei 6= di) =
1

2
, P (yi = 1|ei 6= di) =

1

2
.

2) We observe from the above analysis that yi = 1 only when di 6= ei. Indeed if yi = 1 then
Alice and Bob know that ei = 1− di for sure, i.e.

P (ei = 1− di|yi = 1) = 1.

This can be proved more formally from Bayes’ rule:

P (ei = 1− di|yi = 1) =
P (yi = 1|ei = 1− di)P (ei = 1− di)

P (yi = 1)
=

1
2
× 1

2
1
4

= 1

where for the denominator we used

P (yi = 1) = P (yi = 1|ei = di)P (ei = di) + P (yi = 1|ei 6= di)P (ei 6= di)

= 0× 1

2
+

1

2
× 1

2
=

1

4
.

Here we have assumed that P (ei 6= di) = P (ei = di) = 1
2
.

3) The secret key is then generated as follows: Alice and Bob reveal the yi’s and keep the
ei = 1− di such that yi = 1 as their secret bits. The other ei and di are discarded. The
length of the resulting secret key is around N ×P (yi = 1) = N/4, a quarter of the length
of the main sequence.
We observe a few differences with respect to BB84. First the common secret bits are here
constituted from a subset of the encoding and decoding bits. Second the length of the
secret key is halved with respect to BB84. However the main advantage of BB92 over
BB84 is that in BB92 we manipulate only two non-orthogonal states instead of four in
BB84.
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4) Alice and Bob can do a security check by exchanging a small fraction εN/4, 0 < ε� 1of
the secure bits via public channel. If the test is successful they keep the rest of the common
substring secure: thus they have succeeded in generating a common secure string. If there
is no attack from Eve’s side and the transmission channel is perfect, then as we explained
we have ei = 1− di whenever yi = 1. The test should check that

P (ei = 1− di|yi = 1) = 1.

In practice Alice and Bob check that

#(i such that ei = 1− di given that yi = 1) = εN/4

which means that the empirical probability is one.

Exercise 2 No-cloning theorem

1) For |Ψ〉 = |0〉, the machine should give U |0〉 ⊗ |blank〉 = |0〉 ⊗ |0〉. For |Ψ〉 = |1〉, the
machine should give U |1〉 ⊗ |blank〉 = |1〉 ⊗ |1〉. The first claim follows by linearity,

U (α |0〉+ β |1〉)⊗ |blank〉 = αU |0〉 ⊗ |blank〉+ βU |1〉 ⊗ |blank〉
= α |0〉 ⊗ |0〉+ β |1〉 ⊗ |1〉 .

The second claim is based on applying directly the definition to |Ψ〉,

U (α |0〉+ β |1〉)⊗ |blank〉 = (α |0〉+ β |1〉)⊗ (α |0〉+ β |1〉)
= α2 |0〉 ⊗ |0〉+ αβ |0〉 ⊗ |1〉+ αβ |1〉 ⊗ |0〉+ β2 |1〉 ⊗ |1〉 .

2) The two equations are equivalent when (α, β) = (0, 1) or (α, β) = (1, 0), which corre-
sponds to two orthogonal input states |Ψ〉 = |0〉 and |1〉. This means that it is possible
to copy two orthogonal states with an appropriate machine U but no cloning is possible
when the set of input states is not orthogonal.

Remark : In class we showed that no cloning theorem follows from unitary and the tensor
product structure. Here we show that it also follows from linearity and tensor product
structure. Thus in principle we could make a theory that preserves the no-cloning theorem
that abandons linearity or unitarity (but not both).

Exercise 3 Bell states

1) For the first question we have

(CNOT )(H ⊗ I)|x〉 ⊗ |y〉 = CNOT
1√
2

(
|0〉+ (−1)x|1〉

)
⊗ |y〉

=
1√
2
CNOT |0〉 ⊗ |y〉+

1√
2

(−1)xCNOT |1〉 ⊗ |y〉

=
1√
2
|0〉 ⊗ |y〉+

1√
2

(−1)x|1〉 ⊗ |y ⊕ 1〉

= |Bxy〉
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2) For the second question we remark that if CNOT could be written as U1 ⊗ U2 then we
would have

(CNOT )(H ⊗ I)|x〉 ⊗ |y〉 = (U1 ⊗ U2)(H ⊗ I)|x〉 ⊗ |y〉
= (U1H)⊗ (U2I)|x〉 ⊗ |y〉
= (U1H|x〉)⊗ (U2|y〉)

and therefore we would have that |Bxy〉 are product states. But we proved in class they
are entangled so we have a contradiction.
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