Exercise 1 Bell states

1) One has to show that $\left\langle B_{x, y} \mid B_{x^{\prime}, y^{\prime}}\right\rangle=\delta_{x, x^{\prime}} \delta_{y, y^{\prime}}$. We show it explicitly for two cases:

$$
\begin{aligned}
\left\langle B_{00} \mid B_{00}\right\rangle & =\frac{1}{2}(\langle 00|+\langle 11|)(|00\rangle+|11\rangle) \\
& =\frac{1}{2}(\langle 00 \mid 00\rangle+\langle 00 \mid 11\rangle+\langle 11 \mid 00\rangle+\langle 11 \mid 11\rangle)
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& \langle 00 \mid 00\rangle=\langle 0 \mid 0\rangle\langle 0 \mid 0\rangle=1,\langle 00 \mid 11\rangle=\langle 0 \mid 1\rangle\langle 0 \mid 1\rangle=0 \\
& \langle 11 \mid 00\rangle=\langle 1 \mid 0\rangle\langle 1 \mid 0\rangle=0,\langle 11 \mid 11\rangle=\langle 1 \mid 1\rangle\langle 1 \mid 1\rangle=1
\end{aligned}
$$

Thus we get that $\left\langle B_{00} \mid B_{00}\right\rangle=\frac{1}{2}(1+0+0+1)=1$. Now let us consider

$$
\begin{aligned}
\left\langle B_{00} \mid B_{01}\right\rangle & =\frac{1}{2}(\langle 00|+\langle 11|)(|01\rangle+|10\rangle) \\
& =\frac{1}{2}(\langle 00 \mid 01\rangle+\langle 00 \mid 10\rangle+\langle 11 \mid 01\rangle+\langle 11 \mid 10\rangle) \\
& =\frac{1}{2}(0+0+0+0)=0 .
\end{aligned}
$$

2) The proof is by contradiction. Suppose there exists a_{1}, b_{1} and a_{2}, b_{2} such that

$$
\left|B_{00}\right\rangle=\left(a_{1}|0\rangle+b_{1}|1\rangle\right) \otimes\left(a_{2}|0\rangle+b_{2}|1\rangle\right) .
$$

Then we have

$$
\frac{1}{2}(|00\rangle+|11\rangle)=a_{1} a_{2}|00\rangle+a_{1} b_{2}|01\rangle+b_{1} a_{2}|10\rangle+a_{2} b_{2}|11\rangle .
$$

Comparing the coefficients of the orthornormal basis, one has

$$
\frac{1}{2}=a_{1} a_{2}, \frac{1}{2}=b_{1} b_{2}, a_{1} b_{2}=0, b_{1} a_{2}=0
$$

The third equality indicates that either $a_{1}=0$ or $b_{2}=0$ (or both). If $a_{1}=0$ we get a contradiction with the first equation. If on the other hand $b_{2}=0$, we get a contradiction with the second one. Therefore, there does not exist $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ such that $\left|B_{00}\right\rangle$ can be written as $\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$. Therefore, B_{00} is entangled.
3) We have

$$
\begin{aligned}
|\gamma\rangle \otimes|\gamma\rangle & =(\cos (\gamma)|0\rangle+\sin (\gamma)|1\rangle) \otimes(\cos (\gamma)|0\rangle+\sin (\gamma)|1\rangle) \\
& =\cos ^{2}(\gamma)|00\rangle+\cos (\gamma) \sin (\gamma)|01\rangle+\sin (\gamma) \cos (\gamma)|10\rangle+\sin ^{2}(\gamma)|11\rangle
\end{aligned}
$$

Similarly, we have

$$
\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle==\sin ^{2}(\gamma)|00\rangle-\cos (\gamma) \sin (\gamma)|01\rangle-\sin (\gamma) \cos (\gamma)|10\rangle+\cos ^{2}(\gamma)|11\rangle
$$

Combining the two terms, we find that

$$
\begin{aligned}
|\gamma\rangle \otimes|\gamma\rangle+\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle & =\left(\cos ^{2}(\gamma)+\sin ^{2}(\gamma)\right)|00\rangle+\left(\sin ^{2}(\gamma)+\cos ^{2}(\gamma)\right)|11\rangle \\
& =|00\rangle+|11\rangle
\end{aligned}
$$

and thus

$$
\frac{1}{\sqrt{2}}\left(|\gamma\rangle \otimes|\gamma\rangle+\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle\right)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|B_{00}\right\rangle
$$

4) From the rule of the tensor product

$$
\binom{a}{b} \otimes\binom{c}{d}=\binom{a\binom{c}{d}}{b\binom{c}{d}}=\left(\begin{array}{l}
a c \\
a d \\
b c \\
b d
\end{array}\right)
$$

we obtain the basis states as

$$
\begin{array}{ll}
|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), & |0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
|1\rangle \otimes|0\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), & |1\rangle \otimes|1\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{array}
$$

Thus, we have

$$
\begin{array}{ll}
\left|B_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right), & \left|B_{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right), \\
\left|B_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right), & \left|B_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) .
\end{array}
$$

Exercise 2 Entanglement

1) Our conventions for tensor products are

$$
\begin{array}{ll}
|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) & |0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
|1\rangle \otimes|0\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) & |1\rangle \otimes|1\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{array}
$$

Therefore we have

$$
|\Psi\rangle=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
0 \\
i \\
1
\end{array}\right)
$$

2) Suppose $|\Psi\rangle$ admits a product form $(\alpha|0\rangle+\beta|1\rangle) \otimes(\gamma|0\rangle+\delta|1\rangle)$. We are going to show that it would lead to contradiction. By expanding the tensor product, we have

$$
\alpha \gamma|0,0\rangle+\alpha \delta|0,1\rangle+\beta \gamma|1,0\rangle+\beta \delta|1,1\rangle=\frac{1}{\sqrt{3}}|0,0\rangle+\frac{i}{\sqrt{3}}|1,0\rangle+\frac{1}{\sqrt{3}}|1,1\rangle .
$$

Thus

$$
\begin{align*}
\alpha \gamma & =\frac{1}{\sqrt{3}} \tag{1}\\
\alpha \delta & =0 \tag{2}\\
\beta \gamma & =\frac{i}{\sqrt{3}} \\
\beta \delta & =\frac{1}{\sqrt{3}} \tag{3}
\end{align*}
$$

Eq. (1) implies that both α and γ are non-zero. Then by (2) δ has to be 0 . But this contradicts with (3).

Exercise 3 Copying or unitary attack from Eve in BB84

1) Given Alice sent $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$, by linearity, the state of the two photons in the lab of Eve just after she made the copying operation is

$$
\begin{aligned}
|\Psi\rangle & =U_{Z}\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes|b\rangle\right) \\
& =U_{Z} \frac{|0\rangle \otimes|b\rangle}{\sqrt{2}}+U_{Z} \frac{|1\rangle \otimes|b\rangle}{\sqrt{2}} \\
& =\frac{|0\rangle \otimes|0\rangle}{\sqrt{2}}+\frac{|1\rangle \otimes|1\rangle}{\sqrt{2}}=\frac{|00\rangle+|11\rangle}{\sqrt{2}} .
\end{aligned}
$$

2) In Bob's lab the outcome is $\frac{|0\rangle \pm|1\rangle}{\sqrt{2}}$ with probabilities $p_{ \pm}=\langle\Psi| \Pi_{ \pm}|\Psi\rangle$, where $|\Psi\rangle$ is given in Solution 3.1.

Following the hint, we have

$$
\begin{aligned}
\Pi_{ \pm}= & (|0\rangle\langle 0|+|1\rangle\langle 1|) \otimes\left(\frac{|0\rangle \pm|1\rangle}{\sqrt{2}}\right)\left(\frac{\langle 0| \pm\langle 1|}{\sqrt{2}}\right) \\
= & (|0\rangle\langle 0|+|1\rangle\langle 1|) \otimes\left(\frac{|0\rangle\langle 0| \pm|0\rangle\langle 1| \pm|1\rangle\langle 0|+|1\rangle\langle 1|}{2}\right) \\
= & \frac{1}{2}(|00\rangle\langle 00| \pm|00\rangle\langle 01| \pm|01\rangle\langle 00|+|01\rangle\langle 01| \\
& \quad+|10\rangle\langle 10| \pm|10\rangle\langle 11| \pm|11\rangle\langle 10|+|11\rangle\langle 11|) .
\end{aligned}
$$

The rest of the calculation is

$$
\begin{aligned}
\Pi_{ \pm}|\Psi\rangle & =\frac{1}{2 \sqrt{2}}(|00\rangle \pm|01\rangle \pm|10\rangle+|11\rangle), \\
p_{ \pm}=\langle\Psi| \Pi_{ \pm}|\Psi\rangle & =\frac{1}{\sqrt{2}} \cdot \frac{1}{2 \sqrt{2}}(\langle 00|+\langle 11|)(|00\rangle \pm|01\rangle \pm|10\rangle+|11\rangle) \\
& =\frac{1}{4}(\langle 00 \mid 00\rangle+\langle 11 \mid 11\rangle) \\
& =\frac{1}{2} .
\end{aligned}
$$

