
Formal requirements for
virtualizable third

generation architectures
Lei Yan

POCS 21

Theorem 1

For any conventional 3rd generation computer, a virtual machine
monitor may be constructed if the set of sensitive instructions for that
computer is a subset of the set of privileged instructions.

Subject

Hardware model:

• Mode (User/Supervisor)

• Virtual memory (base and bound)

• Traps

• Still the essence of modern architectures

States:

• S = (E, M, P, R)

Property

A VMM can be constructed that meets the following requirements:

• Equivalence

• Running unmodified OS

• OS has no idea if it runs on real or virtual machine

• Safety

• Resource control

• Efficiency

• Direct execution

Property

VMM construction: trap and emulate architecture

• Safety

• Isolate guests using virtual memory

• Isolate VMM from guests using privilege modes

• Equivalence

• Nothing we can do for unprivileged instructions. What about privileged instructions?

• They trap so VMM can emulate them.

• Example: how to emulate a syscall from a guest app?

• Isolate guest OS from guest app?

• Efficiency

Precondition

The set of sensitive instructions for that computer is a subset of the
set of privileged instructions

• Privileged instructions

• Instruction I is privileged if it traps in user mode but does not trap in supervisor mode

• Sensitive instructions

• Control sensitive: instruction changes the amount of resources (R) or the processor mode
(M) (and does not cause memory trap)

• Behavior sensitive: instruction behaves differently depending on M and R

• Innocuous

Precondition

What if control sensitive instructions do not trap?

• Breaks safety

What if behavior sensitive instructions do not trap?

• Breaks equivalence

What about innocuous?

• Breaks nothing

Modern architectures (e.g., x86) is non-virtualizable, how does
existing techniques (hard-/software) workaround this?

• VT-x (http://www.cs.columbia.edu/~cdall/candidacy/pdf/Uhlig2005.pdf)

• Binary translation

• Paravirtualization

http://www.cs.columbia.edu/~cdall/candidacy/pdf/Uhlig2005.pdf

Is it always beneficial to pursue full-virtualization, i.e., equivalence?

• VMM cannot take advantage of high level information in VM:

• Cannot deschedule a core of VM that waits for lock

• VMM provides abstraction over physical resources

• Recall exokernel

Xen and the Art of
Virtualization

POCS’21 Recitation
Lei Yan

Slides adopted from Mark Sutherland

Xen
● Full virtualization has drawbacks

○ Full virtualization of un-modified OS requires a virtualizable architecture
■ Commodity x86 architectures are not P&G virtualizable

○ In many scenarios, exposing a subset of physical resources is desirable
■ Optimizing page placement for cache locality
■ Use real time to handle TCP timeouts correctly

● Solution: Paravirtualization

Full/Para-virtualized Machine Abstractions

Full Virtualization Paravirtualized

CPU
- Trap-and-emulate
- Syscalls emulated before passed to

the guest OS

- Guest OS runs in de-privileged mode
- Interrupts/exceptions go through VMM
- Syscalls can be short-cut into guest OS

Memory
- Guest has the illusion of the entire

contiguous physical memory
- VMM manages all relocations

- Guest allocates/manages its own pages
- Page table updates go through VMM

Full-virtualization Paging
● “shadow page tables”

○ Trap on page table updates and reflect the updates to the hardware page table

Full-virtualization of Paging - II
● Maintaining Shadow page table is costly

○ Syncing the virtual page table seen by the guest and the “shadow” table seen by hardware
■ E.g., propagation of the dirty bit.

Paravirtualization Abstraction
● What changes to the VM abstraction could allow the guest OSes themselves

to modify their page tables?

● How would this remove the need for “shadow” page tables?

Modern Developments: Extended Page Tables
● Almost all CPUs now have a feature called EPT
● EPT works by defining a “nested page walk” for each level of the guest PT

Modern Developments of I/O virt: IOV
● In Xen’s approach, how many layers are there in the I/O procedure?

○ Device → HW-visible I/O ring → Xen I/O ring → Guest → User

● Do you see a performance problem here?

● Today’s devices support native I/O Virtualization (IOV)
○ Multiple HW-visible rings, interrupt descriptors, etc…
○ Device → HW-visible I/O ring → Guest → User
○ Software also exists to remove the guest OS from that path

Modern Developments of I/O virt: VT-d
● Fundamental job of I/O: bring data blocks in and out of memory (DMA)
● How does this interact with paging?

○ Device → HW-visible I/O ring → Guest → User

● Do you see any problems here related to isolation?
○ Hint: think about who puts addresses onto the HW-visible rings

