
Solution 9
Traitement Quantique de l’Information

Exercise 1 Rotations on the Bloch sphere

A general vector can be written in the form cos
(
θ
2

)
|↑⟩+ sin

(
θ
2

)
eiϕ |↓⟩ in the Bloch sphere.

a) The eigenvectors for σz basis are |↑⟩ and |↓⟩, corresponding to (θ = 0, ϕ = 0) and
(θ = π, ϕ = 0), respectively.
The eigenvectors for σy basis are 1√

2
|↑⟩ + i√

2
|↓⟩ and 1√

2
|↑⟩ − i√

2
|↓⟩, corresponding to

(θ = π
2
, ϕ = π

2
) and (θ = π

2
, ϕ = −π

2
), respectively.

The eigenvectors for σx basis are 1√
2
|↑⟩ + 1√

2
|↓⟩ and 1√

2
|↑⟩ − 1√

2
|↓⟩, corresponding to

(θ = π
2
, ϕ = 0) and (θ = π

2
, ϕ = π), respectively.

The corresponding representation over the Bloch sphere is shown in Figure 1.
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Figure 1 – Representation of basis vectors on Bloch Sphere

b) Using the general formula proved in homework 8 :

exp

(
i
θ

2
σ⃗ · n⃗

)
= cos

(
θ

2

)
I + iσ⃗ · n⃗ sin

(
θ

2

)
,
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we obtain

exp
(
−iα

2
σx

)
= cos

(α
2

)
I − iσx(sin

(α
2

)
)

=

(
cos

(
α
2

)
−i sin

(
α
2

)
−i sin

(
α
2

)
cos

(
α
2

) )
,

exp

(
−iβ

2
σy

)
= cos

(
β

2

)
I − iσy(sin

(
β

2

)
)

=

(
cos

(
β
2

)
− sin

(
β
2

)
sin

(
β
2

)
cos

(
β
2

) )
,

exp
(
−iγ

2
σz

)
= cos

(γ
2

)
I − iσz(sin

(γ
2

)
)

=

(
cos

(
γ
2

)
− i sin

(
γ
2

)
0

0 cos
(
γ
2

)
+ i sin

(
γ
2

))
=

(
e−i γ

2 0

0 ei
γ
2

)
.

c) The matrix exp
(
−iα

2
σx
)

is a rotation matrix of angle α around the X-axis, thus the state
vector cos

(
θ
2

)
|↑⟩+eiπ2 sin

(
θ
2

)
|↓⟩ is transformed to the vector cos

(
θ−α
2

)
|↑⟩+eiπ2 sin

(
θ−α
2

)
|↓⟩.

One can see the transformation geometrically on the Bloch sphere, however one can also
show by direct calculation :

exp
(
−iα

2
σx

)(
cos

(
θ

2

)
|↑⟩+ ei

π
2 sin

(
θ

2

))
|↓⟩ = cos

(
θ − α

2

)
|↑⟩+ ei

π
2 sin

(
θ − α

2

)
|↓⟩ .

Similarly, one can see that exp
(
iγ
2
σz
)

is a rotation of angle γ around the Z-axis. Therefore,

exp
(
−iγ

2
σz

)(
cos

(
θ

2

)
|↑⟩+ ei

π
2 sin

(
θ

2

))
|↓⟩ = e−i γ

2

(
cos

(
θ

2

)
|↑⟩+ ei(

π
2
+γ) sin

(
θ

2

)
|↓⟩

)
.

Exercise 2 Entanglement creation by a magnetic interaction

The final state is (using that | ↑⟩, | ↓⟩ are eigenvectors of σz with eigenvalues +1 et −1).

e−
it
ℏ H|ψ0⟩ = e−itJσz

1⊗σz
2 · 1

2
(|↑↑⟩ − |↑↓⟩+ |↓↑⟩ − |↓↓⟩)

=
1

2

(
e−itJ |↑↑⟩ − eitJ |↑↓⟩+ eitJ |↓↑⟩ − e−itJ |↓↓⟩

)
=
e−itJ

2

(
|↑↑⟩ − e2itJ |↑↓⟩+ e2itJ |↓↑⟩ − |↓↓⟩

)
.

a) for t = π
4J

on a e2itJ = e
iπ
2 = i

⇒ |ψt⟩ = e−
iπ
4

2
(|↑↑⟩ − i |↑↓⟩+ i |↓↑⟩ − |↓↓⟩).
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b) suppose the state can be written
(α |↑⟩+ β |↓⟩)⊗ (γ |↑⟩+ δ |↓⟩) = αγ |↑↑⟩+ αδ |↑↓⟩+ βγ |↓↑⟩+ βδ |↓↓⟩,
then αγ = 1, αδ = −i, βγ = i, βδ = −1.
One can always set α = 1 (global phase). Thus γ = 1, δ = −i, β = i et δ = i ⇒
contradiction onδ. You can also take any value for α and show the contradiction appears.

c) At t = π
2J

with e±itJ = e±iπ
2 = ±i,

|ψt⟩ =
1

2
(−i |↑↑⟩ − i |↑↓⟩+ i |↓↑⟩+ i |↓↓⟩)

=
−i√
2
(|↑⟩ − |↓⟩)⊗ 1√

2
(|↑⟩+ |↓⟩)

is a product state. So another π
4J

time of evolution cancels the entanglement.
d) At t = π

J
with e±itJ = e±iπ = −1,

|ψt⟩ =
1

2
(− |↑↑⟩+ |↑↓⟩ − |↓↑⟩+ |↓↓⟩)

=
−1√
2
(|↑⟩+ |↓⟩)⊗ 1√

2
(|↑⟩ − |↓⟩)

is also a product state.

Complement on the Hamiltonian in matrix and Dirac notation.

1. Matrix notation. In the canonical bases, we have σz =

(
1 0
0 −1

)
. Using the tensor

product rule one obtains that

σz
1 ⊗ σz

2 =

(
1 0
0 −1

)
⊗
(
1 0
0 −1

)

=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,

thus the Hamiltonian is

H =


ℏJ 0 0 0
0 −ℏJ 0 0
0 0 −ℏJ 0
0 0 0 ℏJ

 .

2. Dirac notation. In the bra-ket formalism one has σz = |↑⟩ ⟨↑| − |↓⟩ ⟨↓|, thus

σz
1 ⊗ σz

2 = (|↑⟩ ⟨↑| − |↓⟩ ⟨↓|)⊗ (|↑⟩ ⟨↑| − |↓⟩ ⟨↓|)
= |↑↑⟩ ⟨↑↑| − |↑↓⟩ ⟨↑↓| − |↓↑⟩ ⟨↓↑|+ |↓↓⟩ ⟨↓↓| .

Therefore, we have

H = ℏJ(|↑↑⟩ ⟨↑↑| − |↑↓⟩ ⟨↑↓| − |↓↑⟩ ⟨↓↑|+ |↓↓⟩ ⟨↓↓|).
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3. Connection between matrix and Dirac notations. Notice that to verify this one
can use

|↑⟩ ⟨↑| =
(
1
0

)(
1 0

)
=

(
1 0
0 0

)
,

which implies that

(|↑⟩ ⟨↑|)⊗ (|↑⟩ ⟨↑|) = |↑↑⟩ ⟨↑↑| =
(
1 0
0 0

)
⊗
(
1 0
0 0

)
=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Similarly one can show that

|↑↓⟩ ⟨↑↓| =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

|↓↑⟩ ⟨↓↑| =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,

|↓↓⟩ ⟨↓↓| =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

4. Eigenvalues and eigenvectors. One can see that the eigen-values are ℏJ corres-
ponding to the eigenvectors |↑↑⟩ , |↓↓⟩ and −ℏJ corresponding to the eigenvectors
|↑↓⟩ , |↓↑⟩.
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