Solution 9

Traitement Quantique de l'Information

Exercise 1 Rotations on the Bloch sphere
A general vector can be written in the form $\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+\sin \left(\frac{\theta}{2}\right) e^{i \phi}|\downarrow\rangle$ in the Bloch sphere.
a) The eigenvectors for σ_{z} basis are $|\uparrow\rangle$ and $|\downarrow\rangle$, corresponding to $(\theta=0, \phi=0)$ and ($\theta=\pi, \phi=0$), respectively.
The eigenvectors for σ_{y} basis are $\frac{1}{\sqrt{2}}|\uparrow\rangle+\frac{i}{\sqrt{2}}|\downarrow\rangle$ and $\frac{1}{\sqrt{2}}|\uparrow\rangle-\frac{i}{\sqrt{2}}|\downarrow\rangle$, corresponding to ($\theta=\frac{\pi}{2}, \phi=\frac{\pi}{2}$) and ($\theta=\frac{\pi}{2}, \phi=-\frac{\pi}{2}$), respectively.
The eigenvectors for σ_{x} basis are $\frac{1}{\sqrt{2}}|\uparrow\rangle+\frac{1}{\sqrt{2}}|\downarrow\rangle$ and $\frac{1}{\sqrt{2}}|\uparrow\rangle-\frac{1}{\sqrt{2}}|\downarrow\rangle$, corresponding to ($\theta=\frac{\pi}{2}, \phi=0$) and ($\theta=\frac{\pi}{2}, \phi=\pi$), respectively.

The corresponding representation over the Bloch sphere is shown in Figure 1.

Figure 1 - Representation of basis vectors on Bloch Sphere
b) Using the general formula proved in homework 8 :

$$
\exp \left(i \frac{\theta}{2} \vec{\sigma} \cdot \vec{n}\right)=\cos \left(\frac{\theta}{2}\right) I+i \vec{\sigma} \cdot \vec{n} \sin \left(\frac{\theta}{2}\right)
$$

we obtain

$$
\begin{aligned}
\exp \left(-i \frac{\alpha}{2} \sigma_{x}\right) & =\cos \left(\frac{\alpha}{2}\right) I-i \sigma_{x}\left(\sin \left(\frac{\alpha}{2}\right)\right) \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\alpha}{2}\right) & -i \sin \left(\frac{\alpha}{2}\right) \\
-i \sin \left(\frac{\alpha}{2}\right) & \cos \left(\frac{\alpha}{2}\right)
\end{array}\right), \\
\exp \left(-i \frac{\beta}{2} \sigma_{y}\right) & =\cos \left(\frac{\beta}{2}\right) I-i \sigma_{y}\left(\sin \left(\frac{\beta}{2}\right)\right) \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\beta}{2}\right) & -\sin \left(\frac{\beta}{2}\right) \\
\sin \left(\frac{\beta}{2}\right) & \cos \left(\frac{\beta}{2}\right)
\end{array}\right), \\
\exp \left(-i \frac{\gamma}{2} \sigma_{z}\right) & =\cos \left(\frac{\gamma}{2}\right) I-i \sigma_{z}\left(\sin \left(\frac{\gamma}{2}\right)\right) \\
& =\left(\begin{array}{cc}
\cos \left(\frac{\gamma}{2}\right)-i \sin \left(\frac{\gamma}{2}\right) & 0
\end{array} \quad \begin{array}{c}
\cos \left(\frac{\gamma}{2}\right)+i \sin \left(\frac{\gamma}{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-i \frac{\gamma}{2}} & 0 \\
0 & e^{i \frac{\gamma}{2}}
\end{array}\right) .
\end{aligned}
$$

c) The matrix $\exp \left(-i \frac{\alpha}{2} \sigma_{x}\right)$ is a rotation matrix of angle α around the X-axis, thus the state vector $\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i \frac{2 \pi}{2}} \sin \left(\frac{\theta}{2}\right)|\downarrow\rangle$ is transformed to the vector $\cos \left(\frac{\theta-\alpha}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}} \sin \left(\frac{\theta-\alpha}{2}\right)|\downarrow\rangle$. One can see the transformation geometrically on the Bloch sphere, however one can also show by direct calculation :

$$
\exp \left(-i \frac{\alpha}{2} \sigma_{x}\right)\left(\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}} \sin \left(\frac{\theta}{2}\right)\right)|\downarrow\rangle=\cos \left(\frac{\theta-\alpha}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}} \sin \left(\frac{\theta-\alpha}{2}\right)|\downarrow\rangle .
$$

Similarly, one can see that $\exp \left(i \frac{\gamma}{2} \sigma_{z}\right)$ is a rotation of angle γ around the Z-axis. Therefore,

$$
\exp \left(-i \frac{\gamma}{2} \sigma_{z}\right)\left(\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i \frac{\pi}{2}} \sin \left(\frac{\theta}{2}\right)\right)|\downarrow\rangle=e^{-i \frac{\gamma}{2}}\left(\cos \left(\frac{\theta}{2}\right)|\uparrow\rangle+e^{i\left(\frac{\pi}{2}+\gamma\right)} \sin \left(\frac{\theta}{2}\right)|\downarrow\rangle\right) .
$$

Exercise 2 Entanglement creation by a magnetic interaction

The final state is (using that $|\uparrow\rangle,|\downarrow\rangle$ are eigenvectors of σ_{z} with eigenvalues +1 et -1).

$$
\begin{aligned}
e^{-\frac{i t}{\hbar} \mathcal{H}}\left|\psi_{0}\right\rangle & =e^{-i t J \sigma_{1}^{z} \otimes \sigma_{2}^{z}} \cdot \frac{1}{2}(|\uparrow \uparrow\rangle-|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle) \\
& =\frac{1}{2}\left(e^{-i t J}|\uparrow \uparrow\rangle-e^{i t J}|\uparrow \downarrow\rangle+e^{i t J}|\downarrow \uparrow\rangle-e^{-i t J}|\downarrow \downarrow\rangle\right) \\
& =\frac{e^{-i t J}}{2}\left(|\uparrow \uparrow\rangle-e^{2 i t J}|\uparrow \downarrow\rangle+e^{2 i t J}|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle\right) .
\end{aligned}
$$

a) for $t=\frac{\pi}{4 J}$ on a $e^{2 i t J}=e^{\frac{i \pi}{2}}=i$

$$
\Rightarrow\left|\psi_{t}\right\rangle=\frac{e^{-\frac{i \pi}{4}}}{2}(|\uparrow \uparrow\rangle-i|\uparrow \downarrow\rangle+i|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle) .
$$

b) suppose the state can be written
$(\alpha|\uparrow\rangle+\beta|\downarrow\rangle) \otimes(\gamma|\uparrow\rangle+\delta|\downarrow\rangle)=\alpha \gamma|\uparrow \uparrow\rangle+\alpha \delta|\uparrow \downarrow\rangle+\beta \gamma|\downarrow \uparrow\rangle+\beta \delta|\downarrow \downarrow\rangle$,
then $\alpha \gamma=1, \alpha \delta=-i, \beta \gamma=i, \beta \delta=-1$.
One can always set $\alpha=1$ (global phase). Thus $\gamma=1, \delta=-i, \beta=i$ et $\delta=i \Rightarrow$ contradiction on δ. You can also take any value for α and show the contradiction appears.
c) At $t=\frac{\pi}{2 J}$ with $e^{ \pm i t J}=e^{ \pm i \frac{\pi}{2}}= \pm i$,

$$
\begin{aligned}
\left|\psi_{t}\right\rangle & =\frac{1}{2}(-i|\uparrow \uparrow\rangle-i|\uparrow \downarrow\rangle+i|\downarrow \uparrow\rangle+i|\downarrow \downarrow\rangle) \\
& =\frac{-i}{\sqrt{2}}(|\uparrow\rangle-|\downarrow\rangle) \otimes \frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle)
\end{aligned}
$$

is a product state. So another $\frac{\pi}{4 J}$ time of evolution cancels the entanglement.
d) At $t=\frac{\pi}{J}$ with $e^{ \pm i t J}=e^{ \pm i \pi}=-1$,

$$
\begin{aligned}
\left|\psi_{t}\right\rangle & =\frac{1}{2}(-|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle+|\downarrow \downarrow\rangle) \\
& =\frac{-1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle) \otimes \frac{1}{\sqrt{2}}(|\uparrow\rangle-|\downarrow\rangle)
\end{aligned}
$$

is also a product state.

Complement on the Hamiltonian in matrix and Dirac notation.

1. Matrix notation. In the canonical bases, we have $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Using the tensor product rule one obtains that

$$
\begin{aligned}
\sigma_{1}^{z} \otimes \sigma_{2}^{z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

thus the Hamiltonian is

$$
\mathcal{H}=\left(\begin{array}{cccc}
\hbar J & 0 & 0 & 0 \\
0 & -\hbar J & 0 & 0 \\
0 & 0 & -\hbar J & 0 \\
0 & 0 & 0 & \hbar J
\end{array}\right)
$$

2. Dirac notation. In the bra-ket formalism one has $\sigma_{z}=|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow|$, thus

$$
\begin{aligned}
\sigma_{1}^{z} \otimes \sigma_{2}^{z} & =(|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow|) \otimes(|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow|) \\
& =|\uparrow \uparrow\rangle\langle\uparrow \uparrow|-|\uparrow \downarrow\rangle\langle\uparrow \downarrow|-|\downarrow \uparrow\rangle\langle\downarrow \uparrow|+|\downarrow \downarrow\rangle\langle\downarrow \downarrow| .
\end{aligned}
$$

Therefore, we have

$$
\mathcal{H}=\hbar J(|\uparrow \uparrow\rangle\langle\uparrow \uparrow|-|\uparrow \downarrow\rangle\langle\uparrow \downarrow|-|\downarrow \uparrow\rangle\langle\downarrow \uparrow|+|\downarrow \downarrow\rangle\langle\downarrow \downarrow|) .
$$

3. Connection between matrix and Dirac notations. Notice that to verify this one can use

$$
|\uparrow\rangle\langle\uparrow|=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),
$$

which implies that

$$
(|\uparrow\rangle\langle\uparrow|) \otimes(|\uparrow\rangle\langle\uparrow|)=|\uparrow \uparrow\rangle\langle\uparrow \uparrow|=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Similarly one can show that

$$
\begin{aligned}
& |\uparrow \downarrow\rangle\langle\uparrow \downarrow|=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& |\downarrow \uparrow\rangle\langle\downarrow \uparrow|=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& |\downarrow \downarrow\rangle\langle\downarrow \downarrow|=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

4. Eigenvalues and eigenvectors. One can see that the eigen-values are $\hbar J$ corresponding to the eigenvectors $|\uparrow \uparrow\rangle,|\downarrow \downarrow\rangle$ and $-\hbar J$ corresponding to the eigenvectors $|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle$.
