
Congestion Control
In The Internet

Part 2:
Implementation
JY Le Boudec

2021
1

Contents

6. TCP Reno
7. TCP Cubic

8. ECN and AQM, DC-TCP
9. New Directions

2

6. Congestion Control in the Internet is in TCP

TCP is used to avoid congestion in the Internet
in addition to what was shown about TCP, a TCP source adjusts its window
to the congestion status of the Internet
(slow start, congestion avoidance)
this avoids congestion collapse and ensures some fairness

TCP sources interpret losses as a negative feedback

UDP sources have to implement their own congestion control
Some UDP sources imitate TCP : “TCP friendly”
Some UDP sources (e.g. QUIC) implement the same code as
TCP congestion control

3

TCP Reno, New Reno, Vegas, etc

The congestion control module of TCP exists in ! ≫ 1 versions;
Popular versions are

TCP Reno with SACK (historic version)
TCP Cubic (widespread today in Linux servers)
Data Center TCP (Microsoft and Linux servers)
TCP-BBR (Google, Whatsapp, etc)

4

TCP Reno Congestion Control
Uses ≈AIMD and Slow Start

TCP adjusts the window size based on the approximation rate ≈ !

"##

W = min (cwnd, offeredWindow)
offeredWindow = window obtained by TCP’s window field
cwnd = controlled by TCP congestion control

Negative feedback = loss, positive feedback = ACK received
increase is ≈ additive (≈+1 MSS per RTT),
Multiplicative Decrease (%$ = 0.5)

Slow start with increase factor *% = 2 per round trip time (approx.)

Loss detected by timeout → slow start
Loss detected by fast retransmit → fast recovery (see next)

5

TCP Implementations of…
Multiplicative decrease:

ssthresh = 0.5 × cwnd
Additive increase:

for every ack received cwnd = cwnd + MSS×MSS / cwnd
(if we counted in packets, this would be cwnd+=1/cwnd

this is slightly less than additive increase
other implementations exist: for example: wait until the cwnd
bytes are acked and then increment cwnd by 1 MSS

6

cwnd
=

1 MSS

2.5 2.92 3.83

How TCP approximates…
…multiplicative increase : (Slow Start)

non dupl. ack received during slow start ->
cwnd = cwnd + MSS (in bytes) (1)

if cwnd = ssthresh then go to congestion avoidance

(1) is equivalent in packets to
cwnd = cwnd + 1 (in packets)

7

32 5cwnd = 1 seg 4 6 7 8

AIMD and Slow Start

target window of slow start is called ssthresh («slow start threshold»)
there is a slowstart phase initially and after every packet loss detected by
timeout

8

loss
loss

!

window size

additive increase

= “congestion avoidance”

multiplicative decrease= reduction of target window by !"

slow start

cwnd

initial
ssthresh

loss

loss

Fast Recovery

Slow start used when we assume that the network condition is new or
abruptly changing
i.e. at beginning and after loss detected by timeout
In all other packet loss detection events, slow start is not used, but “fast
recovery” is used instead

Problem to be solved: the formula “rate ≈ !

"##
” is not true when there is a

packet loss – sliding window operation may stop sending

With Fast Recovery
target window is halved
But congestion window is allowed to increase beyond the target window
until the loss is repaired

9

Fast Recovery Details

When loss is detected by 3 duplicate acks
ssthresh = 0.5 ´ current-size
ssthresh = max (ssthresh, 2 ´ MSS)
cwnd = ssthresh + 3 ´ MSS (exp. increase)
cwnd = min (cwnd, 64K)

For each duplicated ACK received
cwnd = cwnd + MSS (exp. increase)
cwnd = min (cwnd, 64K)

When loss is repaired
cwnd = ssthresh

Goto congestion avoidance
10

Fast Recovery Example

11

ssthresh=cwnd = 800
seq=201:301
seq=301:351
seq=351:401
seq=401:501

ssthresh=cwnd=813
seq=501:601

seq=601:701

seq=701:801
ssthresh=407, cwnd=707

seq=201:301
seq=801:901

ssthresh=407, cwnd=807
ssthresh=407, cwnd=907

seq=901:1001
ssthresh=407, cwnd=1007

ssthresh=407, cwnd=407

Ack = 201,win=1’000

Ack = 201,win=1’000

Ack = 201,win=1’000
Ack = 201,win=1’000

Ack = 201,win=1’000

Ack = 901,win=1’000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Ack = 201,win=1’000

Ack = 201,win=1’000

TcpMaxDupACKs=3
During congestion avoidance:

cwnd ← cwnd + !""!
#$%&

MSS = 100

12

At	time	1,	the	sender	is	in	“congestion	avoidance”	mode.	The	congestion	window	increases	with	every	
received	non-duplicate	ack (as	at	time	6).	The	target	window	(ssthresh)	is	equal	to	the	congestion	window.

The	second	packet	is	lost.	

At	time	12,	its	loss	is	detected	by	fast	retransmit,	i.e.	reception	of	3	duplicate	acks.	The	sender	goes	into	“fast	
recovery”	mode.	The	target	window	is	set	to	half	the	value	of	the	congestion	window;	the	congestion	window	
is	set	to	the	target	window	plus	3	packets	(one	for	each	duplicate	ack received).

At	time	13	the	source	retransmits	the	lost	packet.	At	time	14	it	transmits	a	fresh	packet.	This	is	possible	
because	the	window	is	large	enough.	The	window	size,	which	is	the	minimum	of	the	congestion	window	and	
the	advertised	window,	is	equal	to	707.	Since	the	last	acked byte	is	201,	it	is	possible	to	send	up	to	907.

At	times	15,	16	and	18,	the	congestion	window	is	increased	by	1	MSS,	i.e.	100	bytes,	by	application	of	the	fast	
recovery	algorithm.	At	time	15,	this	allows	to	send	one	fresh	packet,	which	occurs	at	time	17.

At	time	19	the	lost	packet	is	acked,	the	source	exits	the	fast	recovery	mode	and	enters	congestion	avoidance.	
The	congestion	window	is	set	to	the	target	window.

How many new segments of
size 100 bytes can the
source send at time 20 ?

A. 1
B. 2
C. 3
D. 4
E. ≥ 5
F. 0
G. I don’t know

13

Solution
Answer C
The congestion window is 407, the advertised window is 1000, and the last
ack received is 901.
The source can send bytes 901 to 1308, the segment 901:1001 was already
sent, i.e. the source can send 3 new segments of 100 bytes each.

14

Assume a TCP flow uses WiFi with high loss ratio. Assume some
packets are lost in spite of WiFi retransmissions. When a packet is
lost on the WiFi link…

A. The TCP source knows it is a loss due to channel errors and not
congestion, therefore does not reduce the window

B. The TCP source thinks it is a congestion loss and reduces its window
C. It depends if the MAC layer uses retransmissions
D. I don’t know

15

Solution
Answer B: the TCP source does not know the cause of a loss.

16

Fairness of TCP Reno
For long lived flows, the rates obtained with TCP Reno are as if they were distributed

according to utility fairness, with utility of flow / given by 0& 1& = '

()
arctan))()

√'

with 1! = rate (in MSSs) = 7/9&, t! = RTT (see “Rate adaptation, Congestion Control and
Fairness: A Tutorial" https://ica1www.epfl.ch/PS_files/LEB3132.pdf)
For sources that have same RTT, the fairness of TCP is between maxmin fairness and
proportional fairness, closer to proportional fairness.

17

rescaled utility
functions;
RTT = 100 ms
maxmin approx. is + , = 1 − ,!"

≈maxmin

proportional fairness
AIMD

Reno

TCP Reno and RTT

TCP Reno tends to distribute rate so as to maximize utility of source

/ given by 0& 1& = '

()
arctan))()

√'

The utility 0 depends on the roundtrip time 9;

18

The utility 0 is a
decreasing function

of 9

What does this imply ?

!! and !" send to destination using one TCP connection each,
RTTs are 60ms and 140ms. Bottleneck is link « router-
destination ». Who gets more ?

A. :$ gets a higher throughput
B. :' gets a higher throughput
C. Both get the same
D. I don’t know

19

router destination
10 Mb/s, 20 ms 1 Mb/s 10 ms

10 Mb/s, 60 ms

S1

S2

Solution

For long lived flows, the rates obtained with
TCP are as if they were distributed according
to utility fairness, with utility of flow / given

by 0 1& = '

()
arctan))()

√'

:$ has a smaller RTT than :'
The utility is less when RTT is large, therefore
TCP tries less hard to give a high rate to
sources with large RTT. :' gets less.

Answer A.

20

The RTT Bias of TCP Reno

With TCP Reno, two competing sources with different RTTs are not treated
equally

source with large RTT obtains less
A source that uses many hops obtains less rate because of two combined
factors, one is desired, the other happens by accident:

1. this source uses more resources. The mechanic of
proportional fairness leads to this source having less rate – this is
desirable in view of the theory of fairness.

2. this source has a larger RTT. The mechanics of additive increase leads to
this source having less rate – this is an undesired bias in the design of
TCP Reno.

Cause is : additive increase is one packet per RTT (instead of one packet
per constant time interval).

21

TCP Reno
Loss - Throughput Formula

22

Consider a large TCP connection (many bytes to transmit)
Assume we observe that, in average, a fraction q of packets is lost (or marked
with ECN)

The throughput should be close to ; = 011 $.''

"## 3

Formula assumes: transmission time negligible compared to RTT, losses are
rare, time spent in Slow Start and Fast Recovery negligible, losses occur
periodically.

(see “Rate adaptation, Congestion Control and Fairness: A Tutorial"
https://ica1www.epfl.ch/PS_files/LEB3132.pdf)

Guess the ratio between the throughputs
q1 and q2 of S1 and S2

A. ;$ =
4

5
;'

B. ;$ = ;'
C. ;$ =

5

4
;'

D. ;$ =
$%

4
;'

E. None of the above
F. I don’t know

23

router
Destination

10 Mb/s, 20 ms 1 Mb/s 10 ms

10 Mb/s, 60 ms

S1

S2

Solution

If processing time is negligible and router drops packets in the same
proportion for all flows, then throughput is proportional to 1/RTT, thus
6*
*
+*
= 6,

*
+,

i.e. ;$ =
5

4
;'

Answer C.

24

time

ACK numbers S1

S2

TCP Friendly UDP Applications
UDP applications that can adapt their rate have to implement congestion
control.
One method is to use the congestion control module of TCP: e.g. QUIC’s,
which is over UDP, uses Cubic’s congestion control (in its original version) or
Reno’s congestion control (in the standard version).

Another method (e.g. for videoconferencing application) is to control the rate
by computing the rate that TCP Reno would obtain. E.g.: TFRC (TCP-Friendly
Rate Control) protocol

application adapts the sending rate (by modifying the coding rate for
audio and video)
feedback is received in form of count of lost packets, used by source to
estimate drop proba <

source sets rate to 1 = 011 $.''

"## 3
(TCP Reno loss throughput formula)

25

7. TCP Cubic

TCP Reno serves as the reference for congestion control in the Internet as it
was the first mature implementation of congestion control.
TCP Reno has a number of shortcomings. Can you cite a few ?

26

Solution
RTT bias – not nice for users in New Zealand
Periodic losses must occur, not nice for application (e.g video streaming).
TCP controls the window, not the rate. Large bursts typically occur when
packets are released by host following e.g. a window increase – not nice for
queues in the internet, makes non smooth behaviour.
Self inflicted delay: if network buffers (in routers and switches) are large, TCP
first fills buffers before adapting the rate. The RTT is increased unnecessarily.
Buffers are constantly full, which reduces their usefulness (bufferbloat) and
increases delay for all users. Interactive, short flows see large latency when
buffers are large and full.

27

Long Fat Networks (LFNs)

In an LFN, additive increase is too slow

(slide from Presentation: "Congestion Control on High-Speed Networks”, Injong Rhee, Lisong Xu, Slide 7)
the figure assumes congestion avoidance implements a strict additive increase, losses are detected by fast
retransmit and ignores the “fast recovery” phase. MSS = 1250B, RTT = 100 msec

28

Packet loss

Time (RTT)Congestion avoidance

Packet loss Packet loss

cwnd

Slow start

Packet loss

100,000 10Gbps

50,000 5Gbps

1.4 hours 1.4 hours 1.4 hours

TCP

Slow	Increase
cwnd =	cwnd +	

1

Fast	Decrease
cwnd =	cwnd *	

0.5

TCP Cubic modifies Congestion Control
Why ? increase TCP rate fast on LFNs
How ? TCP Cubic keeps the same slow start, congestion avoidance, fast
recovery phases as TCP Reno, but:
• Multiplicative Decrease is ×0.7 (instead of ×0.5)
• During congestion avoidance, the increase is not additive but cubic
Say congestion avoidance
is entered at time =% = 0 and let
778) = value of cwnd when loss is
detected.
Let 7 = = 778) + 0.4 = − A 4

with A such that 7 0 = 0.7 778)
Then the window increases like
7(=) until a loss occurs again.

Units are : data = 1MSS; time = 1s

29

Additive Increase (≈Reno)
with RTT = 0.1 s

Cubic

:#$%

;

Cubic versus Reno

30

Cubic increases window in concave way until reaches 778) then
increases in a convex way
Cubic’s window function is independent of RTT;
is slower than Reno when RTT is small, larger when RTT is large

Additive Increase (≈Reno)
with RTT = 1 s

Cubic
Additive Increase (≈Reno)

with RTT = 0.1 s
Cubic

W(t)

t

The Cubic Window Increase
Cubic makes sure it is at least as fast as additive increase with an additive
increase term E<=>&< (discussed later):

7?@0A = = 7(0) + E<=>&<
B

"##

if 7 = < 7?@0A = then Cubic replaces 7 = by 7?@0A =
⇒ Cubic’s window ≥ AIMD’s window
⇒ When RTT or bandwidth-delay product is small, Cubic does the same
as a modified Reno with additive increase E<=>&< MSS per RTT (instead of
1) and multiplicative decrease H<=>&< = 0.7.

E<=>&< is computed such that this modified Reno has the same loss-

throughput formula as standard Reno ⇒ E<=>&< = 3 $CD-./)-
$ED-./)-

= 0.529

⇒ Cubic’s throughput ≥ Renoʹ throughput with equality when RTT or
bandwidth-delay product is small

31

Cubic’s Other Bells and Whistles

Cubic’s Loss throughput formula

; ≈ max $.%FG

"##0.,230.32
, $.''

"## 3

in MSS per second.
Cubic’s formula is same as Reno
for small RTTs and small BW-delay
products.

A TCP Cubic connection gets more
throughput than TCP Reno when bit-rate and
RTT are large

Other Cubic details: #456computation uses a more complex mechanism called “fast
convergence” - see Latest IETF Cubic RFC / Internet Draft
or http://elixir.free-electrons.com/linux/latest/source/net/ipv4/tcp_cubic.c

32

q

Mb/s

Reno
RTT = 12.5 ms

RTT = 800 ms

Cubic @ RTT = 100 ms

http://elixir.free-electrons.com/linux/latest/source/net/ipv4/tcp_cubic.c

8. ECN and AQM: The Bufferbloat Syndrom
Using loss as a congestion indication has major drawback: losses to
application + latency due to bufferbloat.

33

From : N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V.

Jacobson, “BBR: Congestion-Based Congestion Control,” ACM Queue,

vol. 14, no. 5, pp. 50:20–50:53, Oct. 2016.

round-trip
time

window size

rate

A

B

RTTHIJ
bottleneck

link capacity

Optimal
Operating

Point

Loss Based
Congestion

Control
Operating

Point

from [Hock et al, 2017] Mario Hock, Roland Bless, Martina Zitterbart, “Experimental Evaluation
of BBR Congestion Control”, ICNP 2017:

The previous figure illustrates that if the amount of inflight data is just large enough to fill the
available bottleneck link capacity, the bottleneck link is fully utilized and the queuing delay is
still zero or close to zero. This is the optimal operating point (A), because the bottleneck link is
already fully utilized at this point. If the amount of inflight data is increased any further, the
bottleneck buffer gets filled with the excess data. The delivery rate, however, does not increase
anymore. The data is not delivered any faster since the bottleneck does not serve packets any
faster and the throughput stays the same for the sender: the amount of inflight data is larger,
but the round-trip time increases by the corresponding amount. Excess data in the buffer is
useless for throughput gain and a queuing delay is caused that rises with an increasing amount
of inflight data. Loss-based congestion controls shift the point of operation to (B) which implies
an unnecessary high end-to-end delay, leading to “bufferbloat” in case the buffer sizes are
large.

34

ECN and RED

Explicit Congestion Notification (ECN) aims at avoiding these problems

What ? signal congestion without dropping packets (≈ DECbit)
How ? router marks packet instead of dropping
TCP destination echoes the mark back to source
At the source, TCP interprets a marked packet as if there would be a loss
detected by fast retransmit

35

Explicit Congestion Notification (ECN)

36

payload
TCP
header

IP
header

S
R

S	reduces window

1. S sends a packet using TCP
2. Packet is received at congested router buffer; router marks the Congestion

Experienced (CE) bit in IP header
3. Receiver sees CE in received packet and set the ECN Echo (ECE) flag in the

TCP header of packets sent in the reverse direction
4. 5,6 Packets with ECE are received by source.
7. Source applies multiplicative decrease of the congestion window.

Source sets the Congestion Window Reduced (CWR) flag in TCP header. The
receiver continues to set the ECE flag until it receives a packet with CWR set.
Multiplicative decrease is applied only once per window of data (typically,
multiple packets are received with ECE set inside one window of data).

37

Put correct labels

A. 1= CA, 2 = SS
B. 1 = SS, 2 = MD
C. 1 = CA, 2 = MD
D. I don’t know

38

assume TCP with ECN is used and there
is no packet loss CA :congestion avoidance

SS : slow start = multiplicative increase

MD : multiplicative decrease

Solution
Answer C

39

ECE received

ECE received

!

window size

congestion avoidance

multiplicative decrease= reduction of target window by !"

ECN flags in IP and TCP headers
2 bits in IP header : 4 possible codepoints:

non ECN Capable (non ECT)
ECN capable ECT(0) and ECT(1)

historically used at random; today used to
differentiate congestion control
(TCP Cubic vs DCTCP)

ECN capable and congestion experienced (CE)
If congested, router marks ECT(0) or ECT(1) packets; discards non ECT packets

2 bits in TCP header
ECE is set by R to inform S of congestion
CWR (congestion window reduced) set by S to inform R that ECE was received
and R can stop sending ECE until receiver receives a TCP header with CWR set
When receiving ECE, S reduces window only once per RTT. R sets ECE in all TCP
headers until CWR is received or until new CE packet received.

40

RED (Random Early Detection)
Why ? when to mark a packet with ECN
How ? queue estimates its average queue length

avg ¬ a ´ measured + (1 - a) ´ avg
incoming packet is marked with probability given by RED curve

a uniformization procedure is also applied to prevent bursts of marking events

RED is an example of Active Queue Management (AQM)

41

avg (queue size)th-min th-max

max-p

1

q (marking probability)

Active Queue Management

AQM can also be applied even if ECN is not supported
In such a case, e.g. with RED, a packet is dropped with proba < computed by
the RED curve

packet may be discarded even if there is some space available !

Expected benefit
avoid bufferbloat – reduce latency
avoid irregular drop patterns

Contrast to passive queue management = drop a packet when queue is full =
“Tail Drop”

42

In a network where all flows use TCP with ECN and all
routers support ECN, we expect that …

A. there is no packet loss
B. there is no packet loss due to congestion
C. there is no packet loss due to congestion in routers
D. none of the above
E. I don’t know

43

Solution
Answer C
We expect that routers do not drop packets due to congestion if all TCP
sources use ECN
However there might be congestion losses in bridges, and there might be
non-congestion losses (transmission errors)

44

Data Centers and TCP
What is a data center ?

a room with lots of racks of PCs and switches
youtube, CFF.ch, switchdrive, etc

What is special about data centers ?
most traffic is TCP
very small latencies (10-100 Ps)
lots of bandwidth, lots of traffic
internal traffic (distributed computing) and external (user requests and their
responses)
many short flows with low latency required (user queries, mapReduce
communication)
some jumbo flows with huge volume (backup, synchronizations) may use an
entire link

45

What is your preferred combination for TCP flows
inside a data center ?

A. TCP Reno, no ECN no RED
B. TCP Reno and ECN
C. TCP Cubic, no ECN no RED
D. TCP Cubic and ECN
E. I don’t know

46

Solution
Answers B or D
Without ECN there will be bufferbloat, which means high latency for short
flows
Cubic has better performance than Reno when bandwidth-delay product is
large, which may occur in data centers.

Standard operation of ECN (e.g. with Reno or Cubic) still has drawbacks for
jumbo flows in data center settings:

multiplicative decrease by 50%
or 30% is still abrupt ⇒
throughput inefficiency

47

Data Center TCP

Why ? Improve performance for jumbo flows when ECN is used. Same as
Reno except avoids the brutal multiplicative decrease by 50%.
How ?

TCP source estimates proba of congestion Q

Multiplicative decrease is ×HAK#KL = 1 − M

'

ECN echo is modified so that the proportion of CE marked Acks ≈ the
probability of congestion

48

In a data center: two large TCP flows compete for a
bottleneck link; one uses DCTCP, the other uses
Cubic/ECN. Both have same RTT.

A. Both get roughly the same throughput
B. DCTCP gets much more throughput
C. Cubic gets much more throughput
D. I don’t know

49

Solution
Answer B.
If latency is very small, Cubic with ECN has same performance as Reno with
ECN, i.e. same as AIMD with multiplicative decrease =×0.5 and window
increase of 1 packet per RTT during congestion avoidance.
DCTCP is similar, in particular has same window increase, but with

multiplicative decrease =× 1 − M

'
so the multiplicative decrease is always

less. DCTCP decreases less and increases the same, therefore it is more
aggressive.

In other words, DCTCP competes unfairly with other TCPs; it cannot be
deployed outside data centers (or other controlled environments). Inside
data centers, care must be given to separate the DCTCP flows (i.e. the
internal flows) from other flows. This can be done with class-based queuing.

50

9. Beyond Loss/ECN Based Congestion Control

TCP-BBR
Per Class Queuing

51

Evolution of Buffer Drain Time in the Internet

Buffer Drain Time = buffer capacity / link rate
To keep buffer drain time constant, the product (memory speed × memory
size) should scale faster than link rate, which is technologically not feasible.

• In internet core links (100 Gb/s, 1 Tb/s): buffer drain time decreases, is
now fraction of ms, much less than RTT
⇒ impossible to react correctly within round trip time ⇒ feedback control
is inadequate

• Access network (1 Gb/s): buffer drain time increases to 10s of seconds
⇒ Bufferbloat unless ECN is used

52

TCP-BBR
Bottleneck Bandwidth and RTT

TCP-BBR published by Google in 2016 [Caldwell et al 2016]
What ? Avoid per packet feedback
How ? BBR-TCP source:
1. controls rate (not window) (pacing)
2. estimates the bottleneck bandwidth and the min RTT separately
3. tries to keep amount of inflight data close to

bottleneck bandwidth × minRTT (optimal operating point)

53

N.	Cardwell,	Y.	Cheng,	C.	S.	Gunn,	S.	H.	Yeganeh,	and	V.	
Jacobson,	“BBR:	Congestion-Based	Congestion	
Control,”	ACM	Queue,	vol.	14,	no.	5,	pp.	50:20–50:53,	
Oct.	2016

Operation of BBRv1

• source views network as a single link
(the bottleneck link)

• estimates RTT by taking the min over the last 10 sec
• estimates bottleneck rate (bandwidth); RN= max of delivery rate

over last 10 RTTs; delivery rate = amount of acked data per Δ=
• send data at rate RN×T(=)

where T = = 1.25; 0.75, ; 1; 1; 1; 1; 1; 1 i.e. c(t) is 1.25 during one RTT,
then 0.75 during one RTT, then 1 during 6 RTTs (“probe bandwidth”
followed by “drain excess” followed by steady state)

• data is paced using a spacer at the source
• max data in flight is limited to 2×RN×VWWOPB and by the offered window
• there is also a special startup phase with exponential increase of rate
• no reaction to losses or ECN

54

Figure from:
Ware, R., Mukerjee, M.K.,
Seshan, S. and Sherry, J., 2019,
October. Modeling bbr's
interactions with loss-based
congestion control.
In Proceedings of the internet
measurement conference (pp.
137-143).

Performance of BBRv1
Google and other data center companies report
improvement on throughput

55

http://blog.cerowrt.org/post/bbrs_basic_beauty/

Performance of BBRv1
But…BBRv1 takes no feedback from network – no reaction

to loss or ECN
• [Hock et al, 2017] find that BBRv1’s estimated

bottleneck bandwidth ignores how many flows
are competing → fairness issues with BBR flows
of different RTTs and with BBR versus other
TCPs

• [Ware et al, 2019] find that in-flight cap,
designed as a safety mechanism, is
determinant.

Google started BBRv2 to address these and
other shortcomings – stay tuned !

56

Hock, M., Bless, R. and
Zitterbart, M., 2017,
October. Experimental
evaluation of BBR
congestion control. In
2017 IEEE 25th
International Conference
on Network Protocols
(ICNP) (pp. 1-10). IEEE.

Ware, R.,
Mukerjee, M.K.,
Seshan, S. and
Sherry, J., 2019,
October. Modeling
bbr's interactions
with loss-based
congestion control.
In Proceedings of
the internet
measurement
conference (pp.
137-143).

Class Based Queuing

In general, all flows compete in the Internet using the congestion control
method of TCP. It is possible to modify the competition and separate flows
using per-class queuing.
E.g. routers classify packets (using an access list)

each class is guaranteed a rate
classes may exceed the guaranteed rate by borrowing from other classes if
there is spare capacity

This is implemented in routers with dedicated queues for every class and a
scheduler such as Weighted Round Robin (WRR) or Deficit Round Robin (DRR).

WRR and DRR have one queue per class. At every round, queues are visited in sequence. WRR serves
Q& packets of class R in one round. DRR serves S& bits of class R in one round.

Used in enterprise or industrial networks to support non congestion controlled
flows (e.g. real-time flows); in provider networks to separate customers / isolate
suspicious flows (network virtualization).

57

Example of Class-Based Queuing

Class 1 is guaranteed a rate of 2.5 Mb/s; can exceed this rate by
borrowing capacity available from the total 10 Mb/s if class 2 does not
need it. Class 2 is guaranteed a rate of 7.5 Mb/s; can exceed this rate
by borrowing capacity available from the total 10 Mb/s if class 1 does
not need it

58

10 Mb/s 10 Mb/s10 Mb/s

Sensor PMU1 Sensor PMU2

PC1 PC2

S1
UDP at 1 Mb/s UDP at 1 Mb/s

1 TCP connection
RTT= 100 msec

1 TCP connection
RTT = 100 msec

class 1
rate = 2.5 Mb/s

class 2
rate = 7.5 Mb/s

Which rates will PC1 and PC2 achieve ?

A. 5 Mb/s each
B. 4 Mb/s each
C. PC1: 5 Mb/s, PC2: 3 Mb/s
D. I don’t know

59

PC1 and PC2 see this network ↑
Since PMU1 and PMU2 stream at 1 Mb/s and class 2 may borrow, the available
capacities for class 2 are 9 Mb/s, 8 Mb/s and 8 Mb/s.

60

10 Mb/s 10 Mb/s 10 Mb/s

PC1 PC2

S1

class 2
low prio

9	Mb/s	available
7.5	Mb/s	guaranteed 8 Mb/s available

7.5 Mb/s guaranteed
8 Mb/s available

7.5 Mb/s guaranteed

So
lu

tio
n

So
lu

tio
n

TCP allocates rates $! and $" so as to maximize % $! + %($") where % is the utility
function of TCP; the function % is the same for PC1 and PC2 because RTTs are the
same.
The constraints are $! ≤ 9 Mb/s, $! + $" ≤ 8 Mb/s, $! + $" ≤ 8 Mb/s.
Thus TCP solves the problem :
maximize % $! + %($") subject to $! + $" ≤ 8 Mb/s
By symmetry, $! = $" = 4 Mb/s
You can also check max-min fair allocation ($! = $" = 4 Mb/s) and proportionally
fair allocation ($! = $" = 4 Mb/s) .
Answer B.

61

10 Mb/s 10 Mb/s 10 Mb/s

PC1 PC2

S1

class 2
low prio

max	9	Mb/s
7.5	Mb/s	guaranteed max 8 Mb/s

7.5 Mb/s guaranteed
max 8 Mb/s

7.5 Mb/s guaranteed

The Future of Congestion Control

Most TCP versions rely on loss or ECN as negative signal. Some versions also
rely on delay only (TCP Vegas) or use delay as well as loss (PCC)

Congestion control today is based on “per-flow fairness”. Is the flow the right
abstraction ?

Traffic shaping (e.g. with class based queuing) is a possible future alternative
packet dropping /ECN marked as a function of which aggregate a packet
belongs to [Brown et al, 2020].

Network neutrality (ISPs provide no competitive advantage to specific
apps/services, either through pricing or QoS) should be maintained.

62

Brown, L., Ananthanarayanan, G.,
Katz-Bassett, E., Krishnamurthy, A.,
Ratnasamy, S., Schapira, M. and
Shenker, S., 2020, November. On the
future of congestion control for the
public internet. In Proceedings of the
19th ACM Workshop on Hot Topics in
Networks (pp. 30-37).

Conclusion
Congestion control is in TCP or in a TCP-friendly UDP application.

Traditional TCP:
• uses the window to control the amount of traffic: additive increase or cubic (as

long as no loss); multiplicative decrease (following a loss).
• uses loss as congestion signal.

Too much buffer is as bad as too little buffer – bufferbloat provokes large latency
for interactive flows.
• ECN can be used to avoid bufferbloat – it replaces loss by an explicit

congestion signal; partly deployed in the internet; part of Data Center TCP.
• TCP-BBR aims at avoiding the problem by probing available bandwidth.

Class based queuing is used to separate flows in enterprise networks or classes of
flows in provider networks.

42

