Lecture 9: Network Security

Katerina Argyraki, EPFL

Security properties

- Confidentiality
 - * only the sender and the receiver understand the contents of the message
- Authenticity
 - * the message is from whom it claims to be
- Integrity
 - * the message was not changed along the way

Outline

- Building blocks
- Providing security properties
- Securing Internet protocols
- Operational security

Outline

- Building blocks
- Providing security properties
- Securing Internet protocols
- Operational security

Encryption & decryption

- Encryption: plaintext in, ciphertext out
- Decryption: ciphertext in, plaintext out
- Ciphertext: ideally, should reveal no information about the plaintext

Symmetric key cryptography

- Alice and Bob share the same key
 - * used both for the encryption and decryption algorithm
- Use key to "scramble" the plaintext
 - * stream ciphers & block ciphers
 - * RC4, AES, Blowfish

Symmetric key cryptography

- Challenge: how to share a key?
 - * out of band
 - * not always an option

Asymmetric key cryptography

- Alice and Bob use different keys
 * public (key+) and private (key-) key
- There is a special relationship between them
 - * key-{ key+{ plaintext } } = plaintext
 - * key+{ key-{ plaintext } } = plaintext
 - * RSA, DSA

Asymmetric key cryptography

• Public key is not secret

- * only private key is secret
- * enough to guarantee secrecy
- But you can't guess one from the other
 - * Alice/Bob can share key+ with everyone
 - * without revealing information about key-

Asymmetric key cryptography

- Challenge: computationally expensive
 - * sophisticated encryption/decryption algorithms based on number theory

Two approaches to crypto

- Symmetric: faster but out-of-band secret sharing
- Asymmetric: no out-of-band secret sharing but slower

Cryptographic hash function

- Maps larger input space to smaller hash space
- Hash ideally reveals no information on input
- Should be hard to identify two inputs that lead to the same hash

How is hashing different from encryption?

Building blocks

- Symmetric key encryption/decryption
 - * Alice and Bob share the same secret key
 - * challenge: exchanging the secret key
- Asymmetric key encryption/decryption
 - * Alice and Bob use different keys
 - * challenge: computationally more expensive
- Cryptographic hash function
 - * produces a hash of the original message

Outline

- Building blocks
- Providing security properties
- Securing Internet protocols
- Operational security

Providing confidentiality

Providing confidentiality

- With symmetric key crypto
 - * Alice encrypts message with shared key
 - * only Bob can decrypt it (with shared key)
- With asymmetric key crypto
 - * Alice encrypts message with Bob's public key
 - * only Bob can decrypt it (with his private key)

Providing authenticity

Message Authentication Code

- hash { key, plaintext }
- Proof that this particular plaintext was sent by an entity that knows the key

Digital signature

- Generate: key-{ hash{ message } }
- Verify: key+{...} == hash { message }
- Proof that this particular message was sent by an entity who knows the private key that matches public key key+

Alice

Computer Networks

Providing authenticity

- With symmetric key crypto
 - * Alice appends MAC
 - * Bob checks that it is correct (using shared key)
- With asymmetric key crypto
 - * Alice appends digital signature (using her private key)
 - * Bob checks that it is correct (using Alice's public key)

Providing authenticity

- Use nonce to prevent replay attacks
 - * Alice appends MAC of nonce + message
 - * Bob verifies that it is correct (using shared key)

Providing data integrity

Providing integrity

• With exactly the same mechanisms that provide authenticity

Preventing man-in-the-middle attacks

"10h00" "10h00"

"10h00"

Man in the middle

- Can break confidentiality
 - * Manuel convinces Alice to use his public key instead of Bob's
 - * decrypts and re-encrypts Alice-Bob messages
- Cause: no way to verify public-keys
 * when Alice learns Bob's public key, she must verify that it is indeed his

Man in the middle

- Can break authenticity/data integrity
 - * Manuel convinces Bob to use his public key instead of Alice's
 - * re-computes the digital signatures on Alice-Bob messages
- Cause: no way to verify public-keys
 * when Bob learns Alice's public key, he must verify that it is indeed hers

Solution: public-key certificates

- Rely on trusted certificate authority (CA)
 * an entity that both Alice & Bob trust
- CA produces certificate of Bob's public key
 * { Bob owns Bob-key+ }
- CA digitally signs the certificate
 * CA-key-{ hash{ Bob owns Bob-key+ } }

Solution: public-key certificates

- Alice needs Bob's true public key
 - * to communicate with Bob with confidentiality and/or authenticity/data integrity
- Bob sends public key & certificate
 - * CA-key-{ hash{ Bob owns Bob-key+, ... } }
 - * guarantees this is Bob's public key
- Alice needs CA's true public key
 - * to check CA-key-{ hash{ Bob owns Bob-key+, ... } }

Bootstrapping is unavoidable

- Secure communication requires some form of shared state
- Symmetric crypto: secret key
- Asymmetric crypto: CA's public key
 - * typically stored in browser

Asymmetric crypto reduces bootstrapping information

Outline

- Building blocks
- Providing security properties
- Securing Internet protocols
- Operational security

Computer Networks

Securing TCP applications

- Server sends its public key & certificate
- Client creates and sends a shared master key
 * encrypts it with server's public key
- Both use master key to create 4 session keys
 - * 1 key for encrypting client --> server data
 - * 1 key for creating MAC for client --> server data
 - * same for server --> client data

Securing TCP applications

- Client organizes data in records
 * each record has a sequence number
- Creates MAC for each record + sequence #
 * using one of the 4 session keys
- Encrypts the data + MAC for each record
 * using (another) one of the 4 session keys

Key ideas

- Combination of symmetric/asymmetric keys
 - * asymmetric key crypto to exchange shared keys
 - * symmetric key crypto for confidentiality, authenticity, & integrity
 - * symmetric key crypto is faster
- Seq. numbers to avoid reordering attacks
 - * organize data in records with seq. numbers
 - * compute MAC on record data + seq. number

Outline

- Building blocks
- Providing security properties
- Securing Internet protocols
- Operational security

action	src IP	dst IP	proto	src port	dst port
allow	167.67/16	any	ТСР	any	80
allow	any	167.67/16	TCP	80	any
deny	all	all	all	all	all