
Homework 12: mini IBM Q project
Traitement Quantique de l’Information

In this project, we are going to study the problem of sampling a classical probability
distribution thanks to a NISQ device. At the end of this handout we provide some
motivations for looking at such problems and a pointer to recent literature. The project
is entirely self-contained and it is not necessary to read any literature beyond what was
taught in class.

Login to https://quantum-computing.ibm.com/ and create an account with your epfl
email. Accept the End User Agreement and at some point ask for a ”token” that you
can save (you can use the same one afterwards). Start getting familiar with this website
after going through the material reviewed in class.

Useful (but not mandatory to go through) material is also
https://youtu.be/a1NZC5rqQD8 (a series of short videos to start working with qiskit)
and https://qiskit.org/textbook/ch-algorithms/teleportation.html (this link shows how
to implement quantum teleportation, and it is good for learning how to build circuits
and run experiments).

Deadline Friday 18 december at 23h59: You will follow the guided questions in
section ?? below, and hand in a small report. You are allowed to collaborate but your
report and results of experiments must be individual. If you collaborated with somebody
indicate it on your report. Detail the theoretical calculations and give the various plots
asked for. Document what you do as well as the plots (machine used, number of runs etc)
and write down short comments on your observations. Hand in also your Qiskit code.
Upload your material in a single pdf file on moodle.

Important: Since you will have to run jobs on the IBM Q real devices
you should start well in advance in order not to miss the deadline. This means
that you should count one week to understand the theory and write a first version of the
code. Then count one week to run the jobs and perform experiments. Typically your job
might be in a queue for a few minutes or a few hours. Also depending when the machines
are periodically calibrated it might be necessary to run your jobs a few times to get nice
results. Note also that the practical part can be done without having succeeded at all the
theoretical calculations.

1 The general principle

Consider a probability distribution p(c1, c2, . . . , cn) over n binary variables ci ∈ {0,+1}.
In other words there are 2n entries and for each entry 0 ≤ p(c1, c2, . . . , cn) ≤ 1 and∑

c1,...,cn∈{0,+1}n p(c1, c2, . . . , cn) = 1. Suppose we have (as a ressource) n quantum bits.

They live in the Hilbert space C⊗n. We denote by |c1c2 . . . cn〉 the states of the computa-
tional basis where ci ∈ {0, 1}. Given the probability distribution p, suppose we can find
a unitary matrix U : C⊗n → C⊗n such that

|〈c1c2 . . . cn|U |0, 0, . . . 0〉|2 = p(c1, c2, . . . , cn). (1)
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If we can implement U by a quantum circuit with reasonable (say polynomial in n) number
of elementary logical gates then we can produce samples of the probability distribution
p in polynomial time (for each sample).

In other words we seek a quantum circuit such that: 1) the input is |0〉⊗n; 2) the
output is U |0〉⊗n; 3) the measurement of the output in the computational basis yields
|c1c2 . . . cn〉 with probability given by equation (??).

The quantum circuit implements a sampler. For n less than approximately 20 we will
be able to implement it physically on NISQ devices.

2 A probability distribution

We consider the following probability distribution for n ≥ 3:

p(c1, . . . , cn) =
1

22n

∣∣∣∣∣ ∑
b1,...,bn∈{0,1}n

(−1)
∑n

i=1 cibi exp
{
iθ
( n−1∑
i=1

(−1)bi(−1)bi+1 + (−1)bn(−1)b1
)}∣∣∣∣∣

2

(2)

where θ ∈ [0, π]. Of particular interest is

p(0, . . . , 0) =
1

22n

∣∣∣∣∣ ∑
b1,...,bn∈{0,1}n

exp
{
iθ
( n−1∑
i=1

(−1)bi(−1)bi+1 + (−1)bn(−1)b1
)}∣∣∣∣∣

2

≡ |Z(iθ)|2

22n

(3)

The quantity Z(iθ) is the normalisation factor (or ”partition function”) of the so-called
Ising model probability distribution where si ∈ {−1,+1}

π(s1, s2, . . . , sn) =
1

Z(J)
exp

{
J
( n−1∑
i=1

sisi+1 + sns1

)}
(4)

computed for J = iθ. Here the partition function can be computed exactly and we will
admit the following result (see appendix for the details)

Z(J) = 2n
(

(cosh J)n + (sinh J)n
)

and Z(iθ) = 2n
(

(cos θ)n + in(sin θ)n
)

(5)

This gives us the explicit formula

p(0, . . . , 0) = |(cos θ)n + in(sin θ)n|2. (6)

3 The quantum circuit for sampling p(c1, . . . , cn)

Consider the circuit in figure ??. The input state is |0〉⊗n, then we apply an Hadamard
gate on each qubit, then we apply a unitary matrix D, and then a second series of
Hadamard gates. Finally we perform measurements in the computational basis, which
output a random string of classical bits c1, . . . , cn.

In section ?? we guide you through a series of questions whose main goals are:
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Figure 1: Circuit for sampling: time evolves from left to right

• To discover which unitary matrix D is such that the measurement outputs are
samples of the distribution (??). In other words for which D do we have:

|〈c1, . . . , cn|H⊗nDH⊗n|0, . . . , 0〉|2 = p(c1, . . . , cn) (7)

• To find a simple circuit for D ?

• To implement the circuit on the publicly available NISQ machines of IBM Q expe-
rience and to produce histograms for small values of n and a few values of θ.

• To compare the theoretical curve for p(0, . . . , 0) as a function of θ with the experi-
mental curve (points).

4 Guided questions

4.1 Circuit ouput for diagonal D

Consider the class of diagonal matrices D. In other words on computational basis states
we have D|b1, . . . , bn〉 = eiϕ(b1,··· ,bn)|b1, . . . , bn〉 for some real-valued function ϕ : {0, 1}n →
R.

a) Compute |ψ1〉 and then |ψ2〉. Hint: start with n = 1, n = 2, and then generalize
to any n.

b) Prove that the output of the circuit just before the measurement is

|ψ3〉 =
1

2n

∑
c1,...,cn∈{0,1}

{ ∑
b1...bn∈{0,1}n

(−1)
∑n

i=1 bicieiϕ(b1...bn)

}
|c1 . . . cn〉 (8)

Hint: check that H|bi〉 = 1√
2

∑
ci=0,1(−1)bici |ci〉 and use this formula.

c) What is the probability distribution produced by the measurements in the compu-
tational basis ?

4.2 Finding the matrix D

Comparing with equation (??) we must find a 2n×2n matrix D such that ϕ(b1, . . . , bn) =

θ
(∑n−1

i=1 (−1)bi(−1)bi+1 + (−1)bn(−1)b1
)

.

d) Check that for two qubits eiθZ1⊗Z2|b1b2〉 = eiθ(−1)
b1 (−1)b2 |b1b2〉 where Z =

(
1 0
0 −1

)
.

Deduce D in terms of Pauli matrices Zi acting on the qubits i = 1, . . . , n.
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e) The circuit for D is represented on figure ?? where denotes the eiθZ⊗Z gate. Show
that this gate is equivalent (up to a global unimportant phase) to CNOT(I⊗R(θ))CNOT

where R(θ) is the ”phase gate”

(
1 0
0 e−2iθ

)
.
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Figure 2: circuit for sampling with the implementation of D

4.3 Implementation on the IBM Q experience

First you familiarize yourself with the web site of the IBM Q experience https://quantum-
computing.ibm.com/ . Play with the composer to get familiar with circuits and use the
simulator as well as real NISQ machines. Get familiar also with the basics of the Qiskit
language thanks to examples given in class and through the numerous tutorials.

f) First use the composer (graphical interface) to implement the circuit for a small
number of qubits and use the simulator to produce the theoretical histograms p(c1, . . . , cn).
Then run the experiment on a real machine and compare the histograms. Do this for
n = 3, θ = π/5, π/3 and n = 4, θ = π/5, π/3 (the machine can have more than 3 or 4
qubits; you just ignore the extra bits and do not operate on them; however you may still
do measurement operations on these qubits).

Remark: the eiθZ⊗Z gate is already implemented in Qiskit. However we prefer that
you use the implementation of question e) above instead.

g) Write a Qiskit code implementing the circuit. Check that

p(0, · · · , 0) = |(cos θ)n + in(sin θ)n|2

by running the simulator and the experiment on real NISQ machines for θ ∈ [0, π] for
n = 4, 5, 6, 7, 8, 9, 10. Take a step size of δθ = π/32 for the experimental points (i.e. for
each n there are 32 experimental points). We leave open to you to use various machines
and compare the levels of noise (for up to 5 qubits there are lots of machines available,
so choose two or three, but for n ≥ 6 currently there is only one).

5 Motivations and further information

Recently Google announced that it demonstrated a quantum advantage (they called it
quantum supremacy) in the problem of sampling a distribution made out of the permanent
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of a special class of matrices. They used a NISQ device with about 50 qubits and
therefore sampled from a distribution with 250 (classical) states. Since it is unknown how
to compute permanents efficiently with classical methods and since the state space is
huge it is a non-trivial problem to produce certificates that certify that the NISQ device
truly outputs correct samples.

The problem studied in this mini-project is too simple to address questions related to
a quantum advantage. Nevertheless it is a non-trivial illustration how a quantum device
can in principle be used as a sampler.

For further information see the review article: ”Quantum sampling problems, Boson-
Sampling and quantum supremacy” by A. P. Lund, M. J. Bremner and T. C. Ralph; npj
Quantum Information (2017)3:15; www.nature.com/npjqi

6 Appendix: partition function of the one-dimensional

Ising model

Reading this section is not needed for the project and is here for completeness.

The Ising model is a mathematical model in statistical physics for the phenomenon of
magnetism. We consider that a magnet is constituted by the collection of a macroscopic
number of magnetic degrees of freedom of atoms. These magnetic degrees of freedom are
grossly modelled by n variables si, 1 ≤ i ≤ n, taking values in {±1}. Here we consider
just a simple version of the model where the atoms are arranged in a ”one-dimensional”
cyclic cristaline array (see figure ??) and each atom interacts with its two neighbours
(this model was introduced by Lenz and studied by Ising in the 1920’s).

J J

J

Figure 3: Ising model with periodic boundary

Here we show how to compute the normalisation factor of the distribution (??). This
normalization factor is called the ”partition function” and plays a central role in the
theory. It equals:

Z(J) =
∑

s1,...,sn∈{−1,+1}n
exp

{
J
( n−1∑
i=1

sisi+1 + sns1

)}
.

We use a method called the transfer matrix method. Consider the matrix T ,

T =

(
eJ e−J

e−J eJ

)
≡
(
T++ T+−
T+− T−−

)
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With a slight change in notation that si = +,−, and sn+1 = s1 the partition function
can be written as

Z(J) =
∑

s∈{±}n

n∏
i=1

Tsi,si+1

One notices that this is equivalent to

Z = tr[T n]

To compute the trace of T n one computes first the eigenvalues of T , and call them λ1
and λ2. Note that

T = eJI + e−JX

where I =

(
1 0
0 1

)
is the identity matrix and X =

(
0 1
1 0

)
one of the Pauli matrices.

The eigenvalues are therefore λ1 = eJ + e−J = 2 cosh J and λ2 = eJ − e−J = 2 sinh J .
Thus

Z(J) = trT n = λn1 + λn2 = 2n
(
(cosh J)n + (sinh J)n

)
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