
Solution 12: mini IBM Q project- Theoretical part
Traitement Quantique de l’Information

1 Circuit output for diagonal D

a) For n = 1, 2, we have

H|0〉 =
1√
2

(|0〉+ |1〉) (1)

(H ⊗H)|00〉 = (H|0〉)⊗ (H|0〉)

=
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)

=
1

2

(
|00〉+ |01〉+ |10〉+ |11〉

) (2)

As we can see, H⊗2|00〉 is an equal superposition of all computational basis states. For
any n, we have

|ψ1〉 = H⊗n|0〉⊗n = (H|0〉)⊗ . . .⊗ (H|0〉)︸ ︷︷ ︸
n times

=
1√
2

(|0〉+ |1〉)⊗ . . .⊗ 1√
2

(|0〉+ |1〉)︸ ︷︷ ︸
n times

=
1

2n/2

∑
b1...bn∈{0,1}n

|b1b2 . . . bn〉

(3)

And, for |ψ2〉 we obtain

|ψ2〉 = D|ψ1〉

= D
{ 1

2n/2

∑
b1...bn∈{0,1}n

|b1b2 . . . bn〉
}

=
1

2n/2

∑
b1...bn∈{0,1}n

D|b1b2 . . . bn〉

=
1

2n/2

∑
b1...bn∈{0,1}n

eiϕ(b1,...,bn)|b1b2 . . . bn〉

(4)

In the second line, we use the linearity of D to get the third line, in which D|b1b2 . . . bn〉
is by assumption eiϕ(b1,...,bn)|b1b2 . . . bn〉.

1

b) Generalizing the formula H|bi〉 = 1√
2

∑
ci=0,1(−1)bici |ci〉 for arbitrary n, we get

H⊗n|b1 . . . bn〉 = (H|b1〉)⊗ . . .⊗ (H|bn〉)

=
(1√

2

∑
c1=0,1

(−1)b1c1|c1〉
)
⊗ . . .⊗

(1√
2

∑
cn=0,1

(−1)bncn|cn〉
)

=
1

2n/2

∑
c1...cn∈{0,1}n

(−1)
∑n

i=1 bici |c1 . . . cn〉

(5)

Using this formula, we have

|ψ3〉 = H⊗n|ψ2〉

= H⊗n
{ 1

2n/2

∑
b1...bn∈{0,1}n

eiϕ(b1,...,bn)|b1b2 . . . bn〉
}

=
1

2n/2

∑
b1...bn∈{0,1}n

eiϕ(b1,...,bn)H⊗n|b1b2 . . . bn〉, (linearity)

=
1

2n/2

∑
b1...bn∈{0,1}n

eiϕ(b1,...,bn)
{ 1

2n/2

∑
c1...cn∈{0,1}n

(−1)
∑n

i=1 bici|c1 . . . cn〉
}

(6)

Interchanging two summations, we get

|ψ3〉 =
1

2n

∑
c1...cn∈{0,1}n

{ ∑
b1...bn∈{0,1}n

(−1)
∑n

i=1 bicieiϕ(b1,...,bn)
}
|c1 . . . cn〉 (7)

c) Measuring |ψ3〉 in the computational basis, we obtain a distribution on bit strings of
length n with probabilities

p(c̄1, . . . , c̄n) = |〈c̄1, . . . , c̄n|ψ3〉|2

=

∣∣∣∣ 1

2n

∑
c1...cn∈{0,1}n

{ ∑
b1...bn∈{0,1}n

(−1)
∑n

i=1 bicieiϕ(b1,...,bn)
}
〈c̄1, . . . , c̄n|c1 . . . cn〉

∣∣∣∣2
(8)

〈c̄1, . . . , c̄n|c1 . . . cn〉 is 1 only when c̄1 = c1, . . . , c̄n = cn, otherwise it is zero. Thus, we
have

p(c̄1, . . . , c̄n) =
1

22n

∣∣∣∣ ∑
b1...bn∈{0,1}n

(−1)
∑n

i=1 bic̄ieiϕ(b1,...,bn)

∣∣∣∣2 (9)

2 Finding the matrix D

d) We have

Z|0〉 = |0〉, Z|1〉 = −|1〉 (10)

So, |bi〉 is an eigenvector of Z with eigenvalue (−1)bi . So, |b1b2〉 is the eigenvector of
Z1 ⊗ Z2 with eigenvalue (−1)b1(−1)b2 .

Z1 ⊗ Z2|b1b2〉 = Z1|b1〉 ⊗ Z2|b2〉 = (−1)b1|b1〉 ⊗ (−1)b2|b2〉 = (−1)b1(−1)b2 |b1b2〉 (11)

2

Definition of matrix exponential implies that |b1b2〉 is the eigenvector of eiθZ1⊗Z2 with
eigenvalue eiθ(−1)b1 (−1)b2 .
One may use the fact that Z1 ⊗ Z2 is diagonal and deduce that

Z1 ⊗ Z2 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⇒ eiθZ1⊗Z2 =


eiθ 0 0 0
0 e−iθ 0 0
0 0 e−iθ 0
0 0 0 eiθ

 (12)

So eigenvectors of eiθZ1⊗Z2 are |b1b2〉 with eigenvalues eiθ(−1)b1 (−1)b2 .

We have that ϕ(b1, . . . , bn) = θ
(∑n−1

i=1 (−1)bi(−1)bi+1 + (−1)bn(−1)b1
)
, so we deduce

that D is the equivalent to applying the eiθZ⊗Z on every two consecutive qubits qi, qi+1 and
qn, q1. So, we can write D ≡ eiθZ1⊗Z2eiθZ2⊗Z3 . . . eiθZn−1⊗ZneiθZn⊗Z1 , where by eiθZi⊗Zi+1 we
mean the gate applies on qubits i, i+ 1 and leaves the rest of the qubits unchanged. Note
that, since the matrices are diagonal the order of matrices (or gates) does not matter.

D|b1 . . . bn〉 = eiθZ1⊗Z2eiθZ2⊗Z3 . . . eiθZn−1⊗ZneiθZn⊗Z1|b1 . . . bn〉

= eiθZ1⊗Z2eiθZ2⊗Z3 . . . eiθZn−1⊗Zn

(
eiθ(−1)bn (−1)b1 |b1 . . . bn〉

)
= eiθ(−1)bn (−1)b1eiθZ1⊗Z2eiθZ2⊗Z3 . . . eiθZn−1⊗Zn|b1 . . . bn〉

= eiθ(−1)bn (−1)b1eiθ(−1)bn−1 (−1)bneiθZ1⊗Z2eiθZ2⊗Z3 . . . eiθZn−2⊗Zn−1 |b1 . . . bn〉
...

= eiθ(−1)b1 (−1)b2eiθ(−1)b2 (−1)b3 . . . eiθ(−1)bn−1 (−1)bneiθ(−1)bn (−1)b1 |b1 . . . bn〉

= eiθ
(∑n−1

i=1 (−1)bi (−1)bi+1+(−1)bn (−1)b1
)
|b1 . . . bn〉

= eiϕ(b1,...,bn)|b1 . . . bn〉

(13)

e)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 I ⊗R(θ) =


1 0 0 0
0 e−2iθ 0 0
0 0 1 0
0 0 0 e−2iθ



CNOT (I ⊗R(θ))CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 e−2iθ 0 0
0 0 1 0
0 0 0 e−2iθ




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 e−2iθ 0 0
0 0 0 1
0 0 e−2iθ 0



=


1 0 0 0
0 e−2iθ 0 0
0 0 e−2iθ 0
0 0 0 1



(14)

3

⇒ eiθCNOT (I ⊗R(θ))CNOT =


eiθ 0 0 0
0 e−iθ 0 0
0 0 e−iθ 0
0 0 0 eiθ

 = eiθZ⊗Z (15)

3 Implementation on the IBM Q experience

f) Circuit for n = 3 and θ = π/3 is shown in figure (1).

Figure 1: Circuit for n = 3, θ = π/3

Simulation and experiment (from ibmq athens machine) results for n = 3, 4 and
θ = π/3, π/5, and for 8192 shots, are shown in figure (2).

Comparing the plots, we see that in the experiment, the measured probabilities are
quite different from simulations. Also, there are states such that in simulation, the prob-
ability of measuring them is zero. However, by running experiments on a real machine,
these states have been measured. This observation indicates that the real quantum ma-
chines are noisy.

g)First, we briefly explain the Qiskit code to run the simulations and experiments.

First part is to import necessary libraries.

4

Simulation Experiment

(a) n = 3, θ = π/3

Simulation Experiment

(b) n = 3, θ = π/5

Simulation Experiment

(c) n = 4, θ = π/3

Simulation Experiment

(d) n = 4, θ = π/5

Figure 2: Part f. Simulation and experiment results for n = 3, 4 and θ = π/3, π/5

5

The function to construct a circuit for a given n and θ is as follows. The first
and the third for loops place the series of Hadamard gates. The second loop puts the
CNOT (I⊗R(θ))CNOT for each of two consecutive qubits. The last for loop inserts the
measurements gates for each of the qubits.

Then, we construct a list of circuits for a given n, for various values of θ.

Once we obtain the list of circuits, we can run our simulations. For this, we use
qasm simulator . The simulation results for each circuit are a dictionary with bit strings
of length n as keys (here n = 4). For each bit string, the value is the number of shots that
it has been measured. Thus, by dividing by the number of shots, we get the probability.

6

To run the experiments on a real machine, we first need to load our accounts using the
token we are given when creating our account. Then, we need to determine the machine
we want to use. We can set it manually (the commented line) or use the least busy
machine with as least n qubits.

Once we have our results, we can compute P (0 . . . 0) the same way as simulation
results.

Now, we have the simulation and experiment probabilities and we compare them with
the theoretical probability P (0 . . . 0) = |cos(θ)n + insin(θ)n|2. Plots for different values
of n are shown in figure 3.

From the figures, we can see that the simulation probabilities perfectly match the
theoretical one (since the number of shots is large enough). In experiment, for n = 4, 5
experiments are executed on ibmq athens, and P (0, . . . , 0) is close to theoretical and have
similar curve. However, for n ≥ 6, the results are too noisy. Experiments for n ≥ 6 are
executed on ibmq melbourne, which is the only available machine for n > 5. To compare
the quality of this machine, we run the experiment for n = 4 on this machine. From figure
4, we can see that this machine has poor performance comparing to other machines.

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

P(
00

00
)

n=4
Theory
Experiment
Simulation

(a) n = 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
00

00
0)

n=5
Theory
Experiment
Simulation

(b) n = 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
00

00
00

)

n=6
Theory
Experiment
Simulation

(c) n = 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
00

00
00

0)

n=7
Theory
Experiment
Simulation

(d) n = 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
00

00
00

00
)

n=8
Theory
Experiment
Simulation

(e) n = 8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
00

00
00

00
0)

n=9
Theory
Experiment
Simulation

(f) n = 9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

P(
00

00
00

00
00

)

n=10
Theory
Experiment
Simulation

(g) n = 10

Figure 3: Part g. P (0 . . . 0) for n = 4, . . . , 10, θ ∈ [0, π]

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

P(
00

00
)

n=4 Melbourne machine
Theory
Experiment
Simulation

Figure 4: P (0000) on ibmq melbourne

9

