
Artificial Neural Networks (Gerstner). Solutions for week 1

Simple Perceptrons, Geometric interpretation, Discriminant function

Exercise 1. Gradient of quadratic error function

We define the mean square error in a data base with P patterns as

EMSE(w) =
1

2

1

P

∑
µ

[tµ − ŷµ]2 (1)

where the output is

ŷµ = g(aµ) = g(wTxµ) = g(
∑
k

wkx
µ
k) (2)

and the input is the pattern xµ with components xµ1 . . . x
µ
N .

a. Calculate the update of weight wj by gradient descent (batch rule)

∆wj = −η dE
dwj

(3)

Hint: Apply chain rule

b. Rewrite the formula by taking one pattern at a time (stochastic gradient descent). What is the
difference to the batch rule?

c. Rewrite your result in b in vector notation (hint: use the weight vector w and the input vector
xµ). Show that the update after application of pattern µ can be written as

∆w = ηδ(µ)xµ

where δ(µ) is a scalar number that depends on µ. Express δ(µ) in terms of tµ, ŷµ, g′.

Solution:

a.

dE

dwj
=

d

dwj

1

2
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∑
µ

[
tµ − g

(∑
k

wkx
µ
k

)]2

=
1

2

1

P

∑
µ

2 [tµ − ŷµ]
d

dwj

[
tµ − g

(∑
k

wkx
µ
k

)]

=
1

P

∑
µ

[tµ − g(aµ)] (−xµj )g′(aµ)

hence

∆wj = η
1

P

∑
µ

[tµ − g(aµ)]xµj g
′(aµ)

b.
∆wj(µ) = η [tµ − g(aµ)]xµj g

′(aµ)

Here, the weight update is performed on the error signal of a single pattern. While in (a),
the error signal is averaged over all patterns. From a geometric perspective, the batch rule
updates the separation hyperplane in the direction so that the hyperplane linearly separates all



points. On the other hand, the stochastic online rule, will update the hyperplane so that a
single randomly chosen point is pushed on the correct side of the hyperplane. Looking at the
hyperplane updates, the stochastic rule leads to more noisy updates (the hyperplane moves in
many different direction depending on the selected example) than the batch rule.

c. We know that w = [w1, . . . , wd] where d is the dimensionality of the input space. ∆w =
[∆w1, . . . ,∆wd] and therefore the update rule in b in the vector form can be written as

∆w = η
[
[tµ − g(aµ)]xµ1g

′(aµ), . . . , [tµ − g(aµ)]xµdg
′(aµ)

]
.

Taking the common scalar terms outside and substituting g(aµ) with ŷµ, we have

∆w = η [tµ − ŷµ] g′(aµ)xµ

and thus δ(µ) = [tµ − ŷµ] g′(aµ).

Exercise 2. Perceptron Algorithm as stochastic gradient descent

We work in n + 1 dimensions (in other words the threshold is integrated in the weight vector). We
define the Heaviside step function θ(x) = 1 for x > 0 and zero otherwise. We define t̃µ = 2(tµ − 0.5).
Hence t̃ = ±1.

The classic perceptron has a gain function g(a) = θ(a).

Show that the perceptron algorithm performs stochastic gradient descent on the (piecewise) linear
error function:

Eperc(w) = −
∑
µ

[
t̃µaµ

]
θ
[
−t̃µaµ

]
(4)

where aµ =
∑

k wkx
µ
k .

Hint: Show first that the error function vanishes for all patterns that are correctly classified. It is non–
negative for misclassified patterns. Then calculate the gradient for one of the misclassified pattern.

Solution:

We first express the error function in terms of correctly classified patterns µc and misclassified patterns
µm:

Eperc(w) = −
∑
µc

[
t̃µcaµc

]
θ
[
−t̃µcaµc

]
−
∑
µm

[
t̃µmaµm

]
θ
[
−t̃µmaµm

]
= −

∑
µm

[
t̃µmaµm

]

where the first term vanishes because, for correctly classified patterns, t̃µcaµc ≥ 0 and therefore
θ
[
−t̃µcaµc

]
= 0. For the remaining misclassified terms, t̃µmaµm ≤ 0. Therefore, the overall error will

always be greater than or equal to 0.

For stochastic gradient descent, we consider the component of the error due to a single pattern µ and
take the gradient with respect to the weights, giving us

∆Eperc,µ(w) =

{
0 if µ ∈ µc and

−t̃µxµ if µ ∈ µm .



Noting that tµc − θ[aµc ] = 0 for correctly classified patterns and, for misclassified patterns,

tµm = 1− θ[aµm ]

2tµm − 1 = tµm − θ[aµm ]

t̃µm = tµm − θ[aµm ],

we can rewrite the gradient as

∆Eperc,µ(w) = −(tµ − θ[aµ]) · xµ

corresponding to the update rule

wt+1 = wt − η ·∆Eperc,µ(w)

= wt + η · (tµ − θ[aµ]) · xµ

which is the perceptron learning algorithm.

Exercise 3. Apply the Perceptron Algorithm

A data base (xµ, tµ) with 1 ≤ µ ≤ 6 contains three positive examples (tµ = +1) at the points
x1 = (2,−1);x3 = (2, 0.5);x5 = (0.5,−1)
and three negative examples (tµ = 0) at the points
x2 = (−1, 1);x4 = (0.2,−0.2);x6 = (2, 1).

a. Construct one of the possible separating hyperplanes by hand. Express the parameters of the
hyperplane in terms of the three weight parameters (where the third weight parameter is the
threshold) of the perceptron.

b. A perceptron algorithm which takes patterns sequentially one after the other starting with
pattern µ = 1 is applied to the above problem using an initialization w = (1, 0) and threshold
θ = 0.

Consider a learning rate η = 2 and give the resulting weight vector during the first 6 steps of
the iteration.

c. Draw a figure on paper and plot the separating hyperplane before learning w(0), and immediately
after the first change w(1), (not every iteration leads to a change)

d. repeat the same with learning rate η = 0.5 and plot the result in a separate figure.

Solution:

a. One possible hyperplane, given by 1x1 − 1x2 − 1.2 = 0 (parameters [1,−1, 1.2]).



b. The perceptron output and weight updates for the first 6 steps are given by:

θ[aµ] = θ[([1., 0., 0.]) · ([2.,−1.,−1.])] = 1

w1 = ([1., 0., 0.]) + 2 · (1− 1) · ([2.,−1.,−1.]) = ([1., 0., 0.])

θ[aµ] = θ[([1., 0., 0.]) · ([−1., 1.,−1.])] = 0

w2 = ([1., 0., 0.]) + 2 · (0− 0) · ([−1., 1.,−1.]) = ([1., 0., 0.])

θ[aµ] = θ[([1., 0., 0.]) · ([2., 0.5,−1.])] = 1

w3 = ([1., 0., 0.]) + 2 · (1− 1) · ([2., 0.5,−1.]) = ([1., 0., 0.])

θ[aµ] = θ[([1., 0., 0.]) · ([0.2,−0.2,−1.])] = 1

w4 = ([1., 0., 0.]) + 2 · (0− 1) · ([0.2,−0.2,−1.]) = ([0.6, 0.4, 2.])

θ[aµ] = θ[([0.6, 0.4, 2.]) · ([0.5,−1.,−1.])] = 0

w5 = ([0.6, 0.4, 2.]) + 2 · (1− 0) · ([0.5,−1.,−1.]) = ([1.6,−1.6, 0.])

θ[aµ] = θ[([1.6,−1.6, 0.]) · ([2., 1.,−1.])] = 1

w6 = ([1.6,−1.6, 0.]) + 2 · (0− 1) · ([2., 1.,−1.]) = ([−2.4,−3.6, 2.])

c.

Initial hyperplane. First weight update (from x4).



d. Using η = 0.5,

θ[aµ] = θ[([1., 0., 0.]) · ([2.,−1.,−1.])] = 1

w1 = ([1., 0., 0.]) + 0.5 · (1− 1) · ([2.,−1.,−1.]) = ([1., 0., 0.])

θ[aµ] = θ[([1., 0., 0.]) · ([−1., 1.,−1.])] = 0

w2 = ([1., 0., 0.]) + 0.5 · (0− 0) · ([−1., 1.,−1.]) = ([1., 0., 0.])

θ[aµ] = θ[([1., 0., 0.]) · ([2., 0.5,−1.])] = 1

w3 = ([1., 0., 0.]) + 0.5 · (1− 1) · ([2., 0.5,−1.]) = ([1., 0., 0.])

θ[aµ] = θ[([1., 0., 0.]) · ([0.2,−0.2,−1.])] = 1

w4 = ([1., 0., 0.]) + 0.5 · (0− 1) · ([0.2,−0.2,−1.]) = ([0.9, 0.1, 0.5])

θ[aµ] = θ[([0.9, 0.1, 0.5]) · ([0.5,−1.,−1.])] = 0

w5 = ([0.9, 0.1, 0.5]) + 0.5 · (1− 0) · ([0.5,−1.,−1.]) = ([1.15,−0.4, 0.])

θ[aµ] = θ[([1.15,−0.4, 0.]) · ([2., 1.,−1.])] = 1

w6 = ([1.15,−0.4, 0.]) + 0.5 · (0− 1) · ([2., 1.,−1.]) = ([0.15,−0.9, 0.5])

Initial hyperplane. First weight update (from x4).

Exercise 4. Apply the stochastic gradient descent algorithm from Exercise 1

Use a transfer function g(a) = 1/[1 + exp(−βa)] and take patterns from Exercise 3 in the same order
and with the learning rate η = 0.5 as you did for the perceptron algorithm. What are the differences
to the perceptron algorithm? What are the problems?

Hint: Choose first β = 0.5 and then β = 5. Consider a pattern that is correctly classified and one that
is misclassified, for example patterns 5 and 6. Evaluate the gradient g′ and comment on its absolute
value for cases where a pattern is misclassified.

Solution:

The gradient of the transfer function is g′(a) = βg(a)(1 − g(a)), we can now rewrite the update
equation as

∆wj = η [tµ − g(aµ)]xµj g
′(aµ)

= η [tµ − g(aµ)]xµj βg(aµ)(1− g(aµ))

Using β = 0.5,



g[a1] = g[(1., 0., 0.) · (2.,−1.,−1.)] = 0.731

w1 = (1., 0., 0.) + 0.5 · (1− 0.73) · (2.,−1.,−1.) · 0.098 = (1.026,−0.013,−0.013)

g[a2] = g[(1.026,−0.013,−0.013) · (−1., 1.,−1.)] = 0.374

w2 = (1.026,−0.013,−0.013) + 0.5 · (0− 0.374) · (−1., 1.,−1.) · 0.117 = (1.048,−0.035, 0.009)

g[a3] = g[(1.048,−0.035, 0.009) · (2., 0.5,−1.)] = 0.738

w3 = (1.048,−0.035, 0.009) + 0.5 · (1− 0.738) · (2., 0.5,−1.) · 0.097 = (1.074,−0.029,−0.004)

g[a4] = g[(1.074,−0.029,−0.004) · (0.2,−0.2,−1.)] = 0.528

w4 = (1.074,−0.029,−0.004) + 0.5 · (0− 0.528) · (0.2,−0.2,−1.) · 0.125 = (1.067,−0.022, 0.029)

g[a5] = g[(1.067,−0.022, 0.029) · (0.5,−1.,−1.)] = 0.565

w5 = (1.067,−0.022, 0.029) + 0.5 · (1− 0.565) · (0.5,−1.,−1.) · 0.123 = (1.080,−0.049, 0.002)

g[a6] = g[(1.080,−0.049, 0.002) · (2., 1.,−1.)] = 0.742

w6 = (1.080,−0.049, 0.002) + 0.5 · (0− 0.742) · (2., 1.,−1.) · 0.096 = (1.009,−0.084, 0.038)

Here, the weight update is performed even for correctly classified points and the amplitude of each
update depends on the distance from the hyperplane. The gradient of the sigmoid function g′ is always
positive. For small βs, the slope of the central part of the sigmoid - around the decision threshold
of 0.5 - is small, almost linear, and for a big range of values. Therefore, the gradient is similar for
most points. For bigger βs, the gradient around the decision is bigger. Therefore, examples falling
close to the decision threshold will result in a higher weight update amplitude. However, the range of
the saturated regime, where the gradient is close to 0, is increased. Once a data point falls into this
regime it can be trapped if no other points can change the parameters.

with w = (1, 0) and θ = 0:

β µ tµ g(aµ) g′(aµ)

0.5 5 1 0.562 0.123
0.5 6 0 0.731 0.076
5 5 1 0.924 0.351
5 6 0 0.999 0.0002

Exercise 5. Adaline algorithm

A friend of yours argues as follows: in a perceptron with ŷµ = θ(aµ), a sufficient condition that all
patterns are correctly classified is that aµ = +1 for all positive examples tµ = +1, and aµ = −1 for
all negative examples tµ = 0.

He therefore suggests to directly optimize the error function

EAda(w) =
1

2

∑
µ

[
t̃µ − aµ

]2
(5)

where t̃µ = 2(tµ − 0.5) and aµ =
∑

k wkx
µ
k .

To convince him that this error function is not a good idea, show him the following example.

A data base (xµ, tµ) with 1 ≤ µ ≤ 12 contains six positive examples (tµ = +1) at the points
x1 = (1, 1);x2 = (1,−1);x3 = (α, 2);x4 = (α, 1);x5 = (α,−2);x6 = (α,−1) where α ≥ 1 is a
parameter; and six negative examples (t̃µ = −1) at the points
x7 = (−1, 3);x8 = (−1, 2);x9 = (−1, 1);x10 = (−1,−1);x11 = (−1,−2);x12 = (−1,−3).

a. Plot the points.

b. Choose a weight vector (w, 0, b) that gives rise to a linear discriminant function d(x) = wTx
which separates positive and negative examples. Does your solution depend on the choice of α?



c. Insert the data points and the weight vector (w, 0, b) with arbitrary w and b into the error
function EAda and find those w and b that minimize the error function. Express your result as
a function of α.

d. Determine the maximal value of the parameter α for which the optimization in (c) still gives a
correct discriminant function.

e. Conclude the argument.

Remark: EAda(w) was called the error function of the historical ’Adaline’ algorithm.

Solution:

a.

Plot of points, where we have chosen α = 1.25.

b. We note that the constraints give x1 = b/w. One possible solution is b = 0, w = 1, and therefore
x1 = 0, which would separate the points (see figure). Since α ≥ 1, the positive examples
parameterized by α will always be correctly separated by this function. In fact, the choice of α
does not affect whether any vertical–line solution is correct.

c.

EAda(w) =
1

2

∑
µ

[
t̃µ − aµ

]2
=

1

2

[
2 · (1− (w − b))2 + 4 · (1− (αw − b))2 + 6 · (−1− (−w − b))2

]
Taking the derivatives with respect to w and b and setting to 0 gives

w =
3(α+ 2)

2α2 + 2α+ 5

b =
α2 + α− 2

2α2 + 2α+ 5

d. The points will only be separated by a vertical discriminant defined by x1 = b/w < 1. Rear-
ranging the above equations we get

b

w
=
α2 + α− 2

3(α+ 2)
< 1

α− 1

3
< 1

α < 4



Therefore, for any α ≥ 4, the discriminant that minimizes EAda will not separate the two classes.

e. Based on what we found in (d), there exist linearly separable classes of points for which EAda is
minimized by an incorrect solution (i.e. a discriminant that does not separate the two classes).
We therefore conclude that it is a poor error function.

Intuitively, we note that aµ is proportional to the signed distance to the discriminant. Even
correctly classified points can contribute to the error function if they are far from the discriminant
(i.e. |aµ| > 1). This has the effect of pulling the discriminant towards outlier points.


