Exercise 4.1

$\underline{1 \Rightarrow 2}$: Assume for every $\epsilon, \delta>0$ there exists $m(\epsilon, \delta)$ such that $\forall m \geq m(\epsilon, \delta)$

$$
\begin{equation*}
\mathbb{P}_{S \sim \mathcal{D}^{m}}\left(L_{\mathcal{D}}(A(S))>\epsilon\right)<\delta \tag{1}
\end{equation*}
$$

Then using the definition of expectation

$$
\begin{aligned}
\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}(A(S))\right] & \leq \mathbb{P}_{S \sim \mathcal{D}^{m}}\left(L_{\mathcal{D}}(A(S))>\epsilon\right) \cdot 1+\mathbb{P}_{S \sim \mathcal{D}^{m}}\left(L_{\mathcal{D}}(A(S)) \leq \epsilon\right) \cdot \epsilon \\
& \leq \mathbb{P}_{S \sim \mathcal{D}^{m}}\left(L_{\mathcal{D}}(A(S))>\epsilon\right)+\epsilon \\
& \leq \delta+\epsilon,
\end{aligned}
$$

where the last inequality follows from the assumption (1). Now set $\delta=\epsilon$. We have for every $\epsilon>0$ there exists $m(\epsilon, \epsilon)$ such that $\forall m \geq m(\epsilon, \epsilon)$

$$
\begin{equation*}
\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}(A(S))\right] \leq 2 \epsilon \tag{2}
\end{equation*}
$$

So it is valid to pass both sides of (2) to the limit $\lim _{m \rightarrow \infty} \lim _{\epsilon \rightarrow 0}$, which gives

$$
\lim _{m \rightarrow \infty} \mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}(A(S))\right] \leq 0
$$

Also by definition $\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}(A(S))\right] \geq 0$. Thus we conclude $\lim _{m \rightarrow \infty} \mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}(A(S))\right]=0$. $\underline{2 \Rightarrow 1}$: Assume that $\lim _{m \rightarrow \infty} \mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}(A(S))\right]=0$. For every $\epsilon, \delta \in(0,1)$ there exists some $m_{0} \in \mathbb{N}$ such that for every $m \geq m_{0}, \mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}(A(S))\right] \leq \epsilon \delta$. By Markov's inequality,

$$
\begin{aligned}
\mathbb{P}_{S \sim \mathcal{D}^{m}}\left(L_{\mathcal{D}}(A(S))>\epsilon\right) & \leq \frac{\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{\mathcal{D}}(A(S))\right]}{\epsilon} \\
& \leq \frac{\epsilon \delta}{\epsilon} \\
& =\delta
\end{aligned}
$$

Exercise 4.2

Applying Hoeffding's inequality to $L_{S}(h)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(h,\left(x_{i}, y_{i}\right)\right)$ yields:

$$
\mathbb{P}_{S \sim \mathcal{D}^{m}}\left(\left|L_{S}(h)-\mathbb{E} L_{S}(h)\right|>\epsilon\right)=\mathbb{P}_{S \sim \mathcal{D}^{m}}\left(\left|L_{S}(h)-L_{\mathcal{D}}(h)\right|>\epsilon\right) \leq 2 \exp \left(-\frac{2 m \epsilon^{2}}{(b-a)^{2}}\right)
$$

We then use this upper bound in the step where we use the union bound to obtain:

$$
\begin{aligned}
\mathbb{P}_{S \sim \mathcal{D}^{m}}\left(\exists h \in \mathcal{H}:\left|L_{S}(h)-L_{D}(h)\right|>\epsilon\right) & \leq \sum_{h \in \mathcal{H}} \mathbb{P}_{S \sim \mathcal{D}^{m}}\left(\left|L_{\mathcal{D}}(h)-L_{S}(h)\right|>\epsilon\right) \\
& \leq 2|\mathcal{H}| \exp \left(-\frac{2 m \epsilon^{2}}{(b-a)^{2}}\right) .
\end{aligned}
$$

The desired bound on the sample complexity follows from requiring $2|\mathcal{H}| \exp \left(-\frac{2 m \epsilon^{2}}{(b-a)^{2}}\right) \leq \delta$.

Solution to ExtraHomework 2: 1 March 2022

CS-526 Learning Theory

1. A function f which is convex on an interval $I \subseteq \mathbb{R}$ satisfies $\forall(a, b) \in I^{2}, \forall \alpha \in[0,1]$: $f(\alpha a+(1-\alpha) b) \leq \alpha f(a)+(1-\alpha) f(b)$. Substituting $f(x)=e^{\lambda x}$ and $\alpha=\frac{b-X}{b-a} \in[0,1]$ into this inequality, we get:

$$
e^{\lambda X} \leq \frac{b-X}{b-a} e^{\lambda a}+\frac{X-a}{b-a} e^{\lambda b} .
$$

Taking the expectation on both sides and using $\mathbb{E}[X]=0$, we have

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq \frac{b}{b-a} e^{\lambda a}-\frac{a}{b-a} e^{\lambda b}
$$

2. With $p=-a /(b-a)$ and $h=\lambda(b-a)$, we have

$$
\begin{aligned}
\log \left(\frac{b}{b-a} e^{\lambda a}-\frac{a}{b-a} e^{\lambda b}\right) & =\log \left(e^{\lambda a}\right)+\log \left(\frac{b}{b-a}-\frac{a}{b-a} e^{\lambda(b-a)}\right) \\
& =\lambda a+\log \left(1+\frac{a}{b-a}-\frac{a}{b-a} e^{\lambda(b-a)}\right) \\
& =-h p+\log \left(1-p+p e^{h}\right) .
\end{aligned}
$$

3. Let $\theta(h)=\frac{p e^{h}}{1-p+p e^{h}}$. We can compute:

$$
L^{\prime}(h)=-p+\theta(h) \quad, \quad L^{\prime \prime}(h)=\theta(h)(1-\theta(h))=-\left(\theta(h)-\frac{1}{2}\right)^{2}+\frac{1}{4} \leq \frac{1}{4} .
$$

We can also verify that $L(0)=L^{\prime}(0)=0$. Plugging these computations back in the equation $L(h)=L(0)+h L^{\prime}(0)+\left(h^{2} / 2\right) L^{\prime \prime}(\xi)$ yields $L(h) \leq h^{2} / 8$. Combining this upper bound with the previous step gives:

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq e^{L(\lambda(b-a))} \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right)
$$

4. Let $X_{i}=Z_{i}-\mathbb{E} Z_{i}$ and $\bar{X}=\frac{1}{m} \sum_{i=1}^{m} X_{i}$. First using the monotonicity of the exponent function and then Markov's inequality, we have:

$$
\mathbb{P}(\bar{X} \geq \epsilon)=\mathbb{P}\left(e^{\lambda \bar{X}} \geq e^{\lambda \epsilon}\right) \leq e^{-\lambda \epsilon} \mathbb{E}\left[e^{\lambda \bar{X}}\right]
$$

As X_{1}, \ldots, X_{m} are independent we have $\mathbb{E}\left[e^{\lambda \bar{X}}\right]=\prod_{i=1}^{m} \mathbb{E}\left[e^{\frac{\lambda x_{i}}{m}}\right]$. We have shown in the previous step that $\forall i \in\{1, \ldots, m\}: \mathbb{E}\left[e^{\lambda X_{i} / m}\right] \leq e^{\lambda^{2}(b-a)^{2} /\left(8 m^{2}\right)}$. We conclude that:

$$
\mathbb{P}(\bar{X} \geq \epsilon) \leq \exp \left(-\lambda \epsilon+\frac{\lambda^{2}(b-a)^{2}}{8 m}\right) .
$$

5. The inequality is obtained by optimizing over λ the upper bound of step 4 . The exponent $-\lambda \epsilon+\frac{\lambda^{2}(b-a)^{2}}{8 m}$ is a quadratic (convex) function of λ. It is minimized when $\lambda=4 m \epsilon /(b-a)^{2}$. Choosing λ this way gives the desired bound, i.e., Hoeffding's inequality.
