
Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: RL3

Policy Gradient Methods

Objectives of this lecture:

- basic idea of policy gradient: learn actions, not Q-values

- log-likelihood trick: getting the correct statistical weight

- policy gradient algorithms

- why subtract the mean reward?

- reinforce with baseline (see actor critic)

Part 1: First steps toward deep reinforcement learning

Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading: none

Chapter: 13.1-13.5

Where is the supervisor?

Where is the labeled data?

Review: Artificial Neural Networks for action learning

Replaced by:

‘reward or value of action’

- ‘goodie’ for dog

- ‘success’

- ‘compliment’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence

Chess Artificial neural network

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats Lee Sedol

Go

First steps toward Deep reinforcement learning

Backprop for deep Q-learning

action and Q-values:
Advance king

input

output
Outputs are Q-values

 actions are easy to choose

For example:

Softmax strategy: take action a’

with prob exp[(')]
(')

exp[()]
a

Q a
P a

Q a

(previous slide)

Last week we have seen that we can model Q-values in continuous state space

as a function of the state s, and parameterized with weights w.

But in fact, a model of Q-values also works when the input space is discrete, such

as it is in chess. Suppose that each output corresponds to one action (e.g. one

type of move in chess).

We can use a neural network where the output are the Q-values of the different

actions while the input represents the current state s.

Thus, an output unit n represents Q(an,s).

action and Q-values:

Neural network parameterizes Q-values

as a function of continuous state s.

One output for each action a.

Learn weights by playing against itself.

Backprop for deep Q-learning

E = 0.5 [r + g Q(s’,a’)- Q(s,a)]2
Error function for SARSA

(Backprop = gradient descent rule in multilayer networks)

input

output

(previous slide)

Suppose that each output corresponds to one action (e.g. one type of move in

chess). Parameters are now the weights of the artificial neural network.

Actions are chosen, for example, by softmax on the Q-values in the output.

Weights are learned by playing against itself – doing gradient descent on an error

function E.

Last week we finished by stating the error function:

This error function will depend on the weights w (since Q(s,a) depends on w).

We can change the weights by gradient descent on the error function. This leads

to the Backpropagation algorithm of ‘Deep learning’ (will be discussed next week).

E = 0.5 [r + g Q(s’,a’)- Q(s,a)]2

Error function for continuous input representation

Q(s,a) = r + g Q(s’,a’)

𝑠

𝑠′

a

𝑠"

a‘

𝑃𝑠′→𝑠"
𝑎3

Q(s,a)

'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ g

Q(s’,a’)

rt

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]2

take gradient w.r.t 𝒘ignore

target

On-line consistency condition
(should hold on average)

Consistency condition of Bellman Eq.

yields (online) Error function

(previous slide)

During the discussion of the Bellman equation and SARSA, we stated repeatedly

that essentially we formulate a consistency condition.

Where the equality sign has to be interpreted as ‘should ideally on average be

close to’ and the right hand side is the ‘target of learning’

The quadratic error function E measures how close we are to such an ideal case.

This error function works not just for continuous state space, but also for a

discrete state space such as in chess.

IMPORTANT NOTE: Since the ‘target of learning’ should be considered as

momentarily fixed, we optimize the error function by taking the derivative of E with

respect to the w in Q(s,a) but ignore that the target Q(s’,a’) also depends on w. In

other words, during the optimization step we consider Q(s’,a’) as fixed.

Taking the derivative with fixed target yields SARSA; see Exercise 5 of RL2.

Taking the derivative with fixed target is also called: semi-derivative.

Q(s,a) = r + g Q(s’,a’)

Deep Neural Network for Value function

output: V-values:

input

TD-Gammon

Tesauro, 1992,1994, 1995, 2002

- Neural network parameterizes V-values

as a function of state s.

- One single output.

- Learn weights by playing against itself.

- Minimize TD-error of V-function

- use eligibility traces

Action: move piece by epsilon

greedy so as to increase V-value

in each step

(previous slide)

The very same ideas can also be applied to learning the V-values, instead of Q-

values. The advantage is that we have one single output. The disadvantage is that

we need to look ahead (next possible states) to choose the action. But for games

with a small number of ‘possible next states’ this is not a problem.

The analogous Bellman equation for the V-values leads to a consistency condition

characterized by an error function

Eligibility traces enable to connect the reward at the end to states several steps

before.

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑉 𝑠′|𝒘 - V 𝑠|𝒘]2

Neural networks to model input space

- for control problems, input space is naturally continuous

generalize to neighboring states

- for discrete games, the input space often too big

 generalize via hidden states in neural networks

Chess

Example: moon lander

Aim: land between poles

Go Backgammon

(previous slide)

Why is it useful to use a continuous (as apposed to tabular) description of input

space even in cases where the input is naturally discrete such as in games?

The reason is that describing Q-values as a SMOOTH function of the input

enables generalization. Hidden layers of neural networks are able to extract

compressed representations of the input space that introduce heuristic but useful

notion of what it means that two states are ‘similar’ or ‘neighbors.

Related ideas have been used in many other applications, beyond chess

backgrammon or Go. We will study some of these later in this class.

TD learning where Q-values are V-values are described by a smooth function, is

also called ‘function approximation in TD learning’. The family of functions can be

defined by the parameters of a Neural Network or by the parameters of a linear

superposition of basis functions.

Summary: Deep Neural Network for TD learning

In all TD learning methods

(includes n-step SARSA, Q-learning, TD(l))

- V-values OR Q-values are the central quantities

- actions are taken with softmax, greedy, or

epsilon-greedy policy derived from Q-values/V-values

(previous slide)

In the previous two weeks, we have seen many different versions of TD learning.

This includes SARSA and Q-learning, TD learning, with eligibility traces (decay

factor lambda<1) or without, or n-step V-learning.

In all of these algorithms the V-values or Q-values are the central quantities. We

first learn the V-values (or Q-values) and then the policy is based on these values.

Aim of this lecture:

- learn actions directly

- no need for Q-value estimation

 Policy Gradient

TD learning versus Policy Gradient

 A glimpse into Deep Reinforcement Learning

(previous slide)

The question for today is: Can we learn directly the policy – without taking the

detour via the Q-values or V-values? The answer is yes and leads to a family of

methods that are called ‘policy gradient’.

A secondary aim is to give a preparation of modern developments in Deep

Reinforcement Learning.

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks

Policy Gradient Methods

1. First steps toward deep reinforcement learning

2. Basic idea of policy gradient

Part 2: Basic idea of policy gradient

(previous slide)

Let us start with the reasons to work with policy gradients rather than V-values or

Q-values.

Disadvantages of Q-learning, SARSA, or TD-learning

- For continuous states, function approximation is necessary

(which is potentially unstable).

- Even in fully observable (Markov) settings, off-policy TD
algorithms (e.g. Q-learning) can diverge using function
approximation.

- In partially observable environments (non-Markov), TD
algorithms are problematic

- Continuous actions are difficult to represent

using TD methods.

World is not a Markov Process

World is not fully observable

World is not tabular (not discrete states)

a1 a2

s

'

a

s sP

(,)s a

(previous slide)

Q-values and V-values work best in an environment that has Markov properties, in

particular discrete, distinguishable states, and transition probabilities between

these states. Building V-values (or Q-values) then means building a table of these

states (or state-action pairs).

But the world is not Markovian; however, if we use the Markovian assumptions in

an environment where this is not true, then there is no guarantee that these

algorithms converge.

• Forget Q-values

• Optimize directly the reward

• Associate actions with stimuli
stochastically

Table in Q-learning:

(state,action) Q

Q(s1,,,a1)

Table in Policy gradient:

state Prob(action|state)

s1

s2

s3

s4

Q(s2,,,a1)

Q(s1,,,a2)

Policy Gradient methods: basic idea

(previous slide)

Difference between Q-learning and policy gradient:

In Q- learning you build a table of Q(s,a) for each state-action pair.

Then you derive the policy from this (e.g., epsilon-greedy).

In policy gradient you learn directly the probability of taking action a in state s.

Since these are probabilities, they must sum to one.

Table in Policy gradient:

state Prob(action|state,parameters)

s1

s2

s3

s4

• Forget Q-values

• Optimize directly the reward

• Associate actions with stimuli using a
stochastic policy

• Change parameters so as to

maximize rewards

Policy Gradient methods: basic idea

stochastic policy

(a|s,q)

parameter

.

(a|s,q)

(previous slide)

The basic ideas are now that

(i) these probabilities will depend on a set of parameters q

(ii) these probabilities can be directly interpreted as the policy (a|s,q)

Note sometimes the policy is written with parameters suppressed, or parameters

added as an index:

(a|s,q) q(a|s)

Prob(action|state,parameters)

Summary: idea of Policy Gradient

1. stochastic policy

(a|s,q)

parameter

.

2. Change parameters so as to

maximize rewards

3. Different from TD learning:

No need for Q-values or V-values

Summary.

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks

Policy Gradient Methods

1. First steps toward deep reinforcement learning

2. Basic idea of policy gradient

3. Example: 1-step horizon

Part 3: Policy gradient with 1-step horizon

(previous slide)

To make these abstract notions concrete, we start with a simple example.

Stimulus number 9

actor

reward

𝑎1

𝑎2

𝑠9

𝑅(𝑠9, 𝑎1)=3

• Associate actions with stimuli

• Optimize directly the reward

Policy Gradient methods: 1-step horizon

(previous slide)

As always in reinforcement learning, the goal is to optimize rewards. We start with

a one-step horizon and a binary choice.

For each stimulus (here stimulus number 9) there is the choice of two actions.

For example if the agent takes action a1 in response to stimulus s9, it receives a

reward of value 3.

Stimulus number 9 is a vector

actor

𝑎1

𝑎2

𝑠9 = 𝑥
9

𝑥9 = (𝑥1
9, 𝑥2
9,…𝑥𝑁

9)𝑇

Policy Gradient methods: 1-step horizon

𝑅(𝑥9, 𝑎1)=3

stimulus=state=input vector

(previous slide)

We model the stimulus s as in input vector (input pattern 𝑥).

The actor can take two possible actions.

Stimulus number 9

actor

=neuron

Output of neuron

𝑎1 → 𝑦 = 1

𝑎2 → 𝑦 = 0
𝑠9 = 𝑥

9

𝜋 𝑎1| 𝑥, 𝑤 = 𝑝𝑟𝑜𝑏(𝑦 = 1| 𝑥, 𝑤) = 𝑔(

𝑘

𝑁

𝑤𝑘𝑥𝑘)

Choice of actions

policy:

𝑥9 = (𝑥1
9, 𝑥2
9,…𝑥𝑁

9)𝑇

Policy Gradient methods: 1-step horizon

Aim: change weights of neuron

Maximize expected reward!

𝑅 = 𝑥 𝑦= 0,1 𝜋 𝑦| 𝑥 𝑝(𝑥)𝑅 𝑦, 𝑥

(previous slide)

We now model the policy as a single sigmoidal neuron with transfer function g

and weight vector 𝑤.

It is convenient to introduce a binary output variable: y takes the value of 1 if

action a1 is taken and zero otherwise.

The question now is:

How should we adapt the weight vector so that (averaged over all possible stimuli)

the reward is maximal?

Define the mean reward as 𝑅 =

𝑥

𝑦= 0,1

𝜋 𝑦| 𝑥 𝑝(𝑥)𝑅 𝑦, 𝑥

and use 𝜋 𝑦 = 1| 𝑥 = 𝑔(𝑘
𝑁𝑤𝑘𝑥𝑘)

Exercise 1: maximize expected reward

𝑎1 → 𝑦 = 1

𝑎2 → 𝑦 = 0
 𝑥9

𝑥9 = (𝑥1
9, 𝑥2
9,…𝑥𝑁

9)𝑇

actor

=neuron

𝜋(𝑦 = 1| 𝑥, 𝑤) = 𝑔(

𝑘

𝑁

𝑤𝑘𝑥𝑘)

Exercise 1 now (10min)

Next Lecture at 11h47

(your calculations)

blackboard1

𝑎1 → 𝑦 = 1

𝑎2 → 𝑦 = 0

 𝑥

𝜋 𝑦 = 1|𝑥, 𝑤 = 𝑔(
𝑘

𝑁

𝑤𝑘𝑥𝑘)

Policy Gradient methods: 1-step horizon

policy

𝑅(𝑦, 𝑥)

reward

𝑅 =

𝑥

𝑦= 0,1

𝜋 𝑦| 𝑥 𝑝(𝑥)𝑅 𝑦, 𝑥

𝜋 𝑦 = 1|𝑥, 𝑤 = 𝑔(𝑤 𝑥)
policy

T

𝜋 𝑦 = 0|𝑥, 𝑤 = 1 − 𝑔(𝑤 𝑥)T

(your calculations)

blackboard1

From Batch rule to Online rule (pedestrian approach)

𝑅 =

𝑥

𝑦= 0,1

𝜋 𝑦| 𝑥 𝑝(𝑥)𝑅 𝑦, 𝑥

∆𝑤𝑗 = 𝛼

𝑥

𝑝 𝑥 [𝑅 1, 𝑥 𝑔′ − 𝑅 0, 𝑥 𝑔′]𝑥𝑗

batch

𝜋 𝑦 = 1|𝑥, 𝑤 = 𝑔(𝑤 𝑥)
policy

T

𝜋 𝑦 = 0|𝑥, 𝑤 = 1 − 𝑔(𝑤 𝑥)

(1)

(2)T

? (3)

(*)

From Batch rule to Online rule

𝑅 =

𝑥

𝑦= 0,1

𝜋 𝑦| 𝑥 𝑝(𝑥)𝑅 𝑦, 𝑥

∆𝑤𝑗 = 𝛼

𝑥

𝑝 𝑥 [𝑅 1, 𝑥 𝑔′ − 𝑅 0, 𝑥 𝑔′]𝑥𝑗

batch

𝜋 𝑦 = 1|𝑥, 𝑤 = 𝑔(𝑤 𝑥)
policy

T

𝜋 𝑦 = 0|𝑥, 𝑤 = 1 − 𝑔(𝑤 𝑥)T

(1)

(2)

?

Note: This is the pedestrian approach (see video for step-by step

calculation) – there are more elegant ways of arriving at this result

(4)

𝑎1 → 𝑦 = 1

𝑎2 → 𝑦 = 0

 𝑥

𝜋 𝑦 = 1|𝑠, 𝑤 = 𝑔(

𝑘

𝑁

𝑤𝑘𝑥𝑘)

Policy Gradient methods: 1-step horizon (summary)

D𝑤𝑗 = αIf 𝑦 = 1:
𝑔′
𝑔
𝑅(1, 𝑥)𝑥𝑗

D𝑤𝑗 = αIf 𝑦 = 0:
−𝑔′
(1−𝑔)
𝑅(0, 𝑥)𝑥𝑗

policy

𝑅(𝑦, 𝑥)

reward

Update parameters to maximize rewards

Next Lecture at 12h15

(4)

(previous slide)

The optimal update rule (last two lines) has a simple interpretation:

The weight wj in moved in direction of xj if the reward is positive.

The notation g’ refers to the derivative of the sigmoidal function g.

𝑔′ 𝑅 𝑦, 𝑥 [
𝑦

𝑔
−
1 − 𝑦

1 − 𝑔
] 𝑥𝑗 (4)

Equation (4) can be written using the if condition (main slide), or alternatively

D𝑤𝑗 = α

Here, the if condition is implemented by y and (1-y), respectively.

Summary: Policy Gradient methods, from Batch-to-Online

Attention at transition ‘Batch to Online’:

 natural statistical weight must be correct!

We have a stochastic starting point with weight p(s)
as well as stochastic transitions and a stochastic policy

𝑎′

𝜋 𝑎′|𝑠, 𝑤

𝑠′

𝑃𝑠→𝑠′
𝑎

weighting factor

for ‘next state’
weighting factor

for ‘next action’

(previous slide)

Batch rule (like in standard ANN): a single update is performed after having

processed many patterns (minibatch) or all patterns (standard batch rule).

Online rule (like in standard ANN): an update is performed at every time step (after

each pattern.

The example (and your calculations in the exercise) show that the transition from

batch to online is not always possible by deleting the sum signs. In fact, it is only

possible if the statistical weighting factor is correct.

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks

Policy Gradient Methods

1. First steps toward deep reinforcement learning

2. Basic idea of policy gradient

3. Example: 1-step horizon

4. From Batch to Online: Log-likelihood trick

Part 4: From Batch to Online: Log-likelihood trick

(previous slide)

Is there a more systematic way to perform the transition from batch to online?

The answer is yes and given by (what I call) the log-likelihood trick

From Batch to Online

Is there an ‘elegant’ way to keep a correct

statistical weight when

averaging a gradient in ‘online’ mode?

𝑅 =

𝑥

𝑦

𝑝 𝑥 𝜋 𝑦| 𝑥 𝑅 𝑦, 𝑥

Change parameters w to maximize average reward

w w

(previous slide)

The aim is to maximize the gradient of a reward function which involves

averaging.

Is there a more systematic way to perform the transition from batch to online?

The answer is yes. How to implement this elegant derivation is explained next.

Log-likelihood trick Blackboard 2

𝑅 =

𝑥

𝑦

𝑝 𝑥 𝜋 𝑦| 𝑥 𝑅 𝑦, 𝑥
w w

∆𝑤𝑗 = 𝛼𝑅 𝑦, 𝑥
𝑑

𝑑𝑤𝑗
ln 𝜋 𝑦| 𝑥

w

optimization yields online rule

(your comments)

Log-likelihood trick

J = function you want to optimize

H = ensemble over which you integrate

(previous slide)

From BATCH to ONLINE (review of calculation with different notation).

Suppose you want to optimize some function J which is given by the integral over

the statistical ensemble H. Instead of an integral you often have the discrete

sum over all possible patterns, for example.

You want to do optimization by gradient ascent, therefore you need to calculate

the gradient.

For the correct statistical weight you need the weight factor p(H).

Normally this factor disappears when you naively take the gradient. However, if

you rewrite this as the gradient of (log p) and then multiply by p(H), you have the

exactly the same result – but now the correct weight factor p(H) is explicit. Once

the weighting factor is visible, you can cut out the integral and p(H) and get a

valid online rule.

Policy gradient derivation

(previous slide)

Delete the integral and p(H) and sum over all examples, and you have a good

approximation to your original integral. It works because the examples appear with

their natural statistical weight!

Summary: Log-likelihood trick (1-step horizon)

𝑅 =

𝑥

𝑦

𝑝 𝑥 𝜋 𝑦| 𝑥 𝑅 𝑦, 𝑥w w

∆𝑤𝑗 = 𝛼𝑅 𝑦, 𝑥
𝑑

𝑑𝑤𝑗
ln 𝜋 𝑦| 𝑥w

Optimization by gradient decent yields online rule

Aim: change weights so as to maximize

The derivative of log of policy plays an important role!

(online policy gradient)(5)

(previous slide)

In the setting of a 1-step-horizon, a policy gradient algo adapts the parameters w so

as to maximize the expected reward

Our aim is to arrive at an online update rule with the correct statistical weight. To

achieve this we use the derivative of the logarithm of the policy. Then the we can cut

out the natural statistical weight and find the online rule

Note that 𝑤𝑗 is one of the many parameters that together form the parameter

vector 𝒘

𝑅 =

𝑥

𝑦

𝑝 𝑥 𝜋 𝑦| 𝑥 𝑅 𝑦, 𝑥w w

∆𝑤𝑗 = 𝛼𝑅 𝑦, 𝑥
𝑑

𝑑𝑤𝑗
ln 𝜋 𝑦| 𝑥w

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks

Policy Gradient Methods

1. First steps toward deep reinforcement learning

2. Basic idea of policy gradient

3. Example: 1-step horizon

4. From Batch to Online: Log-likelihood trick

4* Example (1-step horizon) revisited

Part 4*: From Batch to Online: Log-likelihood trick

(previous slide).

We now return to our one-dimensional example!

Policy gradient evaluation: Example (1-step horizon]

Blackboard 2b

𝑦 = 1

𝑦 = 0

 𝑥

𝜋 𝑦 = 1| 𝑥, 𝑤 = 𝑔(𝑤 𝑥)

policy

𝑅(𝑦, 𝑥)

reward

𝜋 𝑦 = 0| 𝑥, 𝑤 = 1 − 𝑔(𝑤 𝑥)

T

T

𝑔′ 𝑅 𝑦, 𝑥 [
𝑦

𝑔
−
1 − 𝑦

1 − 𝑔
] 𝑥𝑗D𝑤𝑗 =a

=a

Claim: log-likelihood trick yields

online rule

Proof: use Eq. (5)

∆𝑤𝑗 = 𝛼𝑅 𝑦, 𝑥
𝑑

𝑑𝑤𝑗
ln 𝜋 𝑦| 𝑥w

(online policy gradient)

𝑔′

𝑔(1 − 𝑔)
𝑅 𝑦, 𝑥 𝑦 − 𝑦 𝑥𝑗

(4)

(6)

(your comments)

D𝑤𝑗 = aIf 𝑦 = 1:
𝑔′
𝑔
∙ 𝑅(1, 𝑥)𝑥𝑗

D𝑤𝑗 =a If 𝑦 = 0:

𝑔′

𝑔 1−𝑔
𝑅 𝑦, 𝑥 [𝑦 − 𝑦]𝑥𝑗

Earlier result, Eq. (4):

Now rewritten as:

D𝑤𝑗 =a

−𝑔′
(1−𝑔)
𝑅(0, 𝑥)𝑥𝑗

Update rule of example

observe input 𝑥, output y, and reward 𝑅 𝑦, 𝑥

Note: 𝑦 = 𝑔(𝑘
𝑁𝑤𝑘𝑥𝑘)

𝑦 = 1

𝑦 = 0

 𝑥

𝜋 𝑦 = 1|𝑠, 𝑤 = 𝑔(

𝑘

𝑁

𝑤𝑘𝑥𝑘)
policy

(6)

(previous slide)

Using the log-likelihood trick we arrive at the same result as before but faster and,

importantly, via a systematic sequence of steps.

Last line – two important comments:

(i) The two cases (y=+1) and (y=0) can be summarized in a single update rule

(ii) <y> is the expectation of the output, given the input vector 𝑥

Comparison with Perceptron

parameter = weight wj

Weight vector turns in direction of input

𝑅 𝑦, 𝑥 [𝑦 − 𝑦]𝑥𝑗D𝑤𝑗 ∝

∆𝒘 ∝ ± 𝒙
x

x x
x

𝒘

R>0 and y=1 ∆𝒘 ∝ +𝒙

(previous slide)

Similar to the perceptron update rule, the update with gradient descent can be

interpreted as a weight vector that turns in direction of an input pattern (with

positive or negative sign)

Comparison with Biology

Stimulusparameter = weight wj

Weight vector turns in direction of input

Three factors: reward post pre

postsynaptic factor is

‘activity – expected activity’

pre

post
ij

reward

𝑔′

𝑔 1−𝑔
𝑅 𝑦, 𝑥 [𝑦𝑖 − 𝑦𝑖]𝑥𝑗D𝑤𝑖𝑗 =h

𝑅 𝑦, 𝑥 [𝑦 − 𝑦]𝑥𝑗D𝑤𝑗 ∝

(previous slide)

The update rule give also rise to an interesting biological interpretation.

The learning rule depends on three factors:

(i) The reward

(ii) The ‘state’ of the postsynaptic neuron where ‘state’=activity minus expected

activity

(iii) The presynaptic activity

Presynaptic cell: the neuron that sends a signal across the connection (sender)

Postsynaptic cell: the neuron that receives the signal (receiver).

We will come back to the link between reinforcement learning and the brain in

lexture 12.

Generalization: subtract a reward baseline

we derived this online gradient rule

𝑅 𝑦, 𝑥 [𝑦 − 𝑦]𝑥𝑗D𝑤𝑗 ∝

But then this rule is also an online gradient rule

[𝑅 𝑦, 𝑥 − 𝑏][𝑦 − 𝑦]𝑥𝑗D𝑤𝑗 ∝

with the same location of maximum

is irrelevant if we take the gradient)

𝑅 =

𝑥

𝑦

𝑝 𝑥 𝜋 𝑦| 𝑥 𝑅 𝑦, 𝑥maximizing

(start with 𝑅 − 𝑏 , but the baseline shift

𝑤𝑗

𝑅

(previous slide)

Note that the we are interested in finding the set of weights that optimize the

expected reward <R>.

The update rule has been derived by taking the gradient on

the mean reward <R>.

But a function <R-b> with constant bias b would have exactly the same location of

the maximum.

If we repeated the gradient steps, the results would lead to an update rule with a

factor [R-b] instead of R. Therefore, the rule with [R-b] is also a valid online rule.

Why subtract a baseline?

Subtracting an appropriate baseline makes an online algorithm

less noisy so that it converges better. Good baseline is mean.

Example: estimate mean of product of two indep. variables

mean: mean:

with substraction

Sample k: Sample k:

without substraction

𝑥(𝑦 − 𝑦)

𝑥(𝑦 − 𝑦)

𝑥𝑘(𝑦𝑘 − 𝑦)

𝑥(𝑦 − 𝑦) = 0(𝑥 − 𝑥)(𝑦 − 𝑦) = 0

(𝑥𝑘− 𝑥)(𝑦𝑘 − 𝑦)
= (𝑥𝑘 − 𝑥)(𝑦𝑘 − 𝑦) + 𝑥(𝑦𝑘 − 𝑦)

𝑥𝑘 = 5 ± 1
𝑦𝑘 = 8 ± 1

𝑛𝑜𝑖𝑠𝑒 = ±5order = ±1

(previous slide)

Why is it useful to subtract the mean?

Whatever the choice of baseline, the algorithm should eventually converge to the

same set of parameters. However, since the algorithm is based on stochastic gradient

descent (i.e., the online rule instead of the full batch rule), the algorithm makes noisy

steps that only go on average in the right direction.

Subtracting a baseline that is close to the mean generally reduces the noise.

The example with a product of independent variables shows that by subtracting the

mean of x, the noise is considerable reduced in each of the samples!

Note that we have seen earlier that the update rule of policy gradient can be written as

a product of R and something like 𝑦 − 𝑦 for fixed input. Replace x by R and you are

done, assuming independence of the two variables.

Quiz: Policy Gradient and Reinforcement learning

Your friend has followed over the weekend a tutorial in

reinforcement learning and claims the following. Is he right?

[] All reinforcement learning algorithms work either

with Q-values or V-values

[] The transition from batch to online is always easy:

you just drop the summation signs and bingo!

[] Both TD algorithms and policy gradient algorithms aim to

optimize the expected total reward (potentially discounted

if there are multiple time steps)

[] The derivative of the log-policy is some abstract quantity

that has no intuitive meaning.

[]

[]

[X]

[]

(your comments)

Exercise 2: Subtract baseline

𝑎1 → 𝑦 = 1

𝑎2 → 𝑦 = 0
𝑠

actor

=neuron

Exercise 2 now

Next Lecture at 14h15

(your calculations)

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks

Policy Gradient Methods

1. First steps toward deep reinforcement learning

2. Basic idea of policy gradient

3. Example: 1-step horizon

4. Log-likelihood trick

5. Multiple time steps

Part 5: Multiple time steps

(previous slide)

So far the discussion has been restricted to scenarios with a one-step horizon.

The agent takes an action, gets a reward, and the episode ends.

Now we need to generalize to scenarios that extend over multiple time steps.

Teaching monitoring – monitoring of understanding

[] today, up to here, at least 60% of material was new to me.

[] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture.

(previous slide)

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑎|𝑠, 𝜃

Policy Gradient methods over multiple time steps

Aim:

update the parameters q

of the policy (a|s,q)

so as to maximize the average

total discounted reward from s

(expected Return)

𝑅𝑠𝑡→𝑠𝑒𝑛𝑑 = 𝑟𝑡 + 𝛾
1𝑟𝑡+1 +𝛾

2𝑟𝑡+2 +𝛾
3𝑟𝑡+3

(previous slide)

We use the same graph of the multistep Markov decision model as for the

derivation of the Bellman equation.

However, now we work directly on a policy (a|s,q) which depends on

parameters q.

Policy Gradient methods over multiple time steps
Blackboard 3

𝑠

𝑠′

a1

𝑃𝑠→𝑠′
𝑎1

a2

a1

𝜋 𝑎|𝑠, 𝜃𝑅𝑠𝑡→𝑠𝑒𝑛𝑑 = 𝑟𝑡 + 𝛾
1𝑟𝑡+1 +𝛾

2𝑟𝑡+2 +𝛾
3𝑟𝑡+3

Policy Gradient methods over multiple time steps

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]D𝜃𝑗 ∝

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

Calculation yields several terms of the form

+𝛾[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1] 𝑑

𝑑𝜃𝑗
ln 𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃

+ …

(previous slide)

We consider a single episode that started in state 𝑠𝑡 with action 𝑎𝑡 and ends after

several steps in the terminal state 𝑠𝑒𝑛𝑑
The result of the calculation gives an update rule for each of the parameters.

The update of the parameter 𝜃𝑗 contains several terms.

(i) the first term is proportional to the total accumulated (discounted) reward, also

called return 𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡

(ii) the second term is proportional to g times the total accumulated (discounted)

reward but starting in state 𝑠𝑡+1
(iii) the third term is proportional to g -squared times the total accumulated

(discounted) reward but starting in state 𝑠𝑡+2
(iv) We can think of this update as one update step for one episode. Analogous to

the terminology last week, Sutton and Barto call this the Monte-Carlo update for

one episode.

Note that each of the terms is proportional to ln

Different states S0, S1, S2, … during one episode

G = total accumulated reward during the episode starting at St;

All updates done AT THE END of the episode

Algorithm maximizes expected discounted rewards starting at S0

Pseudo-code for algo REINFORCE (Policy Gradient)

methods over multiple time steps:

The algo ‘REINFORCE’ From book:

Sutton and Barto, 2018

𝑟1 𝑟𝑇

𝑟𝑘

(previous slide)

The algorithm in Pseudocode taken from the book of Sutton and Barto. The

update concerns a single episode.

The only notational difference with respect to the earlier slide is a rewrite of the

factors gamma – you can check the equivalence by taking a piece of paper.

Note that for an implementation it would be most convenient to start at the

terminal state of the episode and work backwards so as to reuse the return

calculations.

Variations of this algorithm are the basis of policy gradient methods and widely

used in applications.

IMPORTANT: This version of the algo is derived for the situation where we

optimize the return from a known starting state and a known terminal state.

In practice it works better to optimize the return from ALL possible states

(appropriately weighted).

Summary: Policy Gradient methods over multiple time steps:

-derivative of log-policy at different

states visited during episode,
𝑑
𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]

𝑑
𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃]

𝑑
𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+2 𝑠𝑡+2, 𝜃]

𝑠

𝑠′

a1

𝑃𝑠→𝑠′
𝑎1

a2

a1

𝜋 𝑎|𝑠, 𝜃-starting at st

- Multiplied with the returns from each state

𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡

𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1

𝑅𝑠𝑡+2→𝑠𝑒𝑛𝑑
𝑎𝑡+2

- discounted with g

+𝛾2

+𝛾1

(previous slide)

Summary of the basic algorithmic principle of a policy gradient method over multiple

time steps, if many episodes start in the same state s, and you optimize return for this

state s. Episodes end at the terminal state. This is called the episodic case.

In practice algorithms that optimize the return from all states work better, because this

version of the episodic algorithm puts most weight on rewards in states close to the

starting state. However, if the only reward is at the end (at the terminal state) then it is

better to either use a discount very close to 1, or to optimize the return from ALL states

(i.e., also from those closer to the target).

We will come back to this in the lecture on deep reinforcement learning

Here we optimize

where the return is averaged over paths starting in st

Later we optimize

where the return is averaged over all states encountered

during the path. Thus we optimize the MEAN return. This usually works better.

𝑅𝑠𝑡→𝑠𝑒𝑛𝑑

𝑅𝑠 →𝑠𝑒𝑛𝑑

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks

Policy Gradient Methods

1. First steps toward deep reinforcement learning

2. Basic idea of policy gradient

3. Example: 1-step horizon

4. Log-likelihood trick

5. Multiple time steps

6. Subtracting the mean via the value function

Part 6: Subtracting the mean via the value function

(previous slide)

In the simple one-step scenario we have seen that we can subtract a bias b from

the reward.

Review: subtract a reward baseline (1-step horizon)

we derived this online gradient rule (for 1-step horizon)

𝑅 𝑦, 𝑥 [𝑦 − 𝑦]𝑥𝑗D𝑤𝑗 ∝

But then this rule is also an online gradient rule

[𝑅 𝑦, 𝑥 − 𝑏][𝑦 − 𝑦]𝑥𝑗D𝑤𝑗 ∝

with the same expectation

(because a baseline shift drops out if we take the gradient)

(previous slide)

The question arises whether the same is true in the multi-step episodes.

The answer is YES.

Subtract a reward baseline

online gradient rule for multi-step horizon

has many terms of form

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡] 𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]D𝜃𝑗 ∝

But then this rule is also an online gradient rule

with the same optimum

(because a baseline shift drops out if we take the gradient)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑏(𝑠𝑡)]

𝑑
𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]D𝜃𝑗 ∝

(previous slide)

Please remember that the full update rule for the parameter 𝜃𝑗
in a multi-step episode contains several terms of this form; here only the first of

these terms is shown.

Similar to the case of the one-step horizon, we can subtract a bias b from the

reward without changing the location of the maximum of the total expected return.

Moreover, this bias 𝑏(𝑠𝑡) can itself depend on the state 𝑠𝑡.
Thus the update rule now has terms

D𝜃𝑗 ∝ [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑏(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]

+g[𝑅𝑠𝑡+1→𝑠𝑒𝑛𝑑
𝑎𝑡+1 −𝑏(𝑠𝑡+1)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+1 𝑠𝑡+1, 𝜃]

+g2[𝑅𝑠𝑡+2→𝑠𝑒𝑛𝑑
𝑎𝑡+2 − 𝑏(𝑠𝑡+2)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+2 𝑠𝑡+2, 𝜃]

+ …

Subtract a reward baseline

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −𝑏(𝑠𝑡)]

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡, 𝜃]+…D𝜃𝑗 ∝

- The bias b can depend on state s

- Good choice is b =‘mean of [𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡]’

 take 𝑏 𝑠𝑡 = 𝑉 𝑠𝑡
 learn value function V(s)

Total accumulated discounted reward

collected in one episode starting at 𝑠𝑡, 𝑎𝑡

(previous slide

Is there a choice of the bias 𝑏 𝑠𝑡 that is particularly good?

One attractive choice is to take the bias equal to the expectation (or empirical

mean). The logic is that if you take an action that gives more accumulated

discounted reward than your empirical mean in the past, then this action was good

and should be reinforced.

If you take an action that gives less accumulated discounted reward than your

empirical mean in the past, then this action was not good and should be

weakened.

But what is the expected discounted accumulated reward? This is, by definition,

exactly the value of the state. Hence a good choice is to subtract the V-value.

And here is where finally the idea of Bellman equation and TD learning comes in

through the backdoor: we can learn the V-value, and then use it as a bias in policy

gradient.

Deep Reinforcement Learning: Lunar Lander and other games

advance push

left

actions

value

Aim: land between poles

V(s)

𝒙 𝒙

(previous slide)

And the value can for example be estimated (=learned) in a separate network.

Actions:

-Learned by

Policy gradient

- Uses V(𝒙) as baseline

Value function:

- Estimated by Monte-Carlo

-provides baseline b=V(𝒙)
for action learning

V(𝒙)

𝒙 𝒙

Learning two Neural Networks: actor and value

𝒙 = states from

episode:

𝑠𝑡, 𝑠𝑡+1, 𝑠𝑡+2,

Parameters

are the network

weights q

Parameters

are the weights w

(previous slide)

In the latter case we have two networks:

The actor network learns a first set of parameters, called 𝜃 in the algorithm of

Sutton and Barto.

The value network learns a second set of parameters, with the label w .

The value b(𝑥 = 𝑠𝑡+𝑛) =V(𝒙) is the estimated total accumulated discounted reward

of an episode starting at 𝑥 = 𝑠𝑡+𝑛

The total accumulated discounted ACTUAL reward in ONE episode is 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛

‘REINFORCE’ with baseline From book:

Sutton and Barto, 2018

𝑟1 𝑟𝑇

𝑟𝑘

(previous slide)

Algorithm in pseudocode taken from the book of Sutton and Barto.

For the actor, the algorithm evaluates terms of the form

Where the return is 𝐺 = 𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛

And the bias estimate is v(𝑠𝑡+𝑛) = 𝑏(𝑠𝑡+𝑛)

The terminal state in their notation occurs at time T and

the initial state has index 0.

For the value function, they use Monte-Carlo estimation of the total accumulated

reward in one episode (see last week).

[𝑅𝑠𝑡+𝑛→𝑠𝑒𝑛𝑑
𝑎𝑡+𝑛 −𝑏(𝑠𝑡+𝑛)]

𝑑
𝑑𝜃𝑗
ln[𝜋 𝑎𝑡+𝑛 𝑠𝑡+𝑛, 𝜃]

Why subtract the mean?

Subtracting the expectation provides estimates

that have (normally) smaller variance (look less noisy)

Note: in multi-step RL, the minimal variance is not exactly at

bias=expection.

Reason: correlations

(previous slide)

Why is it useful to subtract the mean?

Whatever the choice of baseline, the algorithm should eventually converge to the

same set of parameters. However, since the algorithm is based on stochastic gradient

descent (i.e., the online rule instead of the full batch rule), the algorithm makes noisy

steps that only go on average in the right direction.

Subtracting a baseline that is close to the mean generally reduces the noise.

The example with a product of independent variables shows that by subtracting the

mean of x, the noise is considerable reduced in each of the samples! (Exercise 2)

Unfortunately, in a multi-step reinforcement learning scenario, the minimal noise is not

exactly the situation where one subtracts the mean because of correlations, but it is

close to it.

Policy gradient involves many terms of the form:

Output of network: policy

Parameters are the weights of the network.

𝑑

𝑑𝜃𝑗
ln[𝜋 𝑎𝑡 𝑠𝑡 , 𝜃]

V(𝑠𝑡)

𝑠𝑡 𝑠𝑡

𝜋 𝑎𝑡 𝑠𝑡 , 𝜃

Outlook: Deep Reinforcement Learning

Output of network:

value (baseline)

[𝑅𝑠𝑡→𝑠𝑒𝑛𝑑
𝑎𝑡 −(𝑉(𝑠𝑡)]

Learning signal:

[actual Return - V(s)]

(previous slide)

Both actor and critic are optimized by changing the parameters according to a

gradient descent rule.

Gradient descent in a multi-layer network is called BackProp or Deep Learning.

We start with Deep Learning next week.Algorithm in pseudocode taken from the

book of Sutton and Barto.

For the actor, the algorithm evaluates terms of the form

Outlook: Deep reinforcement learning: alpha-zero

Network for choosing action

2e output for value of state:

input

output

action:
Advance king

learning:

 change connections

aims:

- learn value V(s) of position

- learn action policy to win

𝑉 𝑠

Learn V(s) with TD learning!

(previous slide)

Very schematically is this one of the ideas of deep reinforcement learning. We

construct a deep network with multiple layers. We use the output units for action

choice and optimize the parameters via policy gradient. We have a further output

unit to estimate the V-value, and use it as a bias.

- The model of the V-value can share some units with the model of the actions

- The model of the V-value can be learned with tools from TD learning

This gives rise to actor-critic and ‘advantage actor critic’, to be discussed in the

lecture on Deep Reinforcement Learning.

Learning outcomes and Conclusions:
- basic idea of policy gradient: learn actions, not Q-values

 gradient ascent of total expected discounted reward

- log-likelihood trick: getting the correct statistical weight

 enables transition from batch to online

- policy gradient algorithms

 updates of parameter propto (several terms)

- why subtract the mean reward?

 reduces noise of the online stochastic gradient

- Reinforce with baseline

 a further output to subtract the mean reward

[𝑅] 𝑑
𝑑𝜃𝑗
ln[𝜋]

[𝑅(𝑠) −𝑉(𝑠)] 𝑑
𝑑𝜃𝑗
ln[𝜋]

(previous slide) Your notes

Quiz: Policy Gradient and Reinforcement learning

Your friend has followed over the weekend a tutorial in

reinforcement learning and claims the following. Is she right?

[] Even some policy gradient algorithms use V-values

[] V-values for policy gradient are calculated in a separate

network (but some parameters can be shared with the actor network)

[x]

[x]

Teaching monitoring – monitoring of understanding

[] today, up to here, at least 60% of material was new to me.

[] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture.

The End

