FPICDO-H

e P

LR
o

e D g W
B RN YRR N

B RN Wi W R
e RO WA A
e e d® aly

I e ‘i?!lih iniﬁa'ﬁrﬂ

I ke Tl AR O TR B R B
*Hh BB m ¥ REe

e L EL LY

fm PR

"
=

CODE-PLAY-5HARE-EE-THINK-DESTROY-LERRN-ERERK-LOVE-ARKE

OCTOEER 2015

CONTENTS

3 Hello everyone

5 Game Of Life

14 34 demo

18 Shrinking your code
24 Shodo

32 Water Waves

39 Screensaver

41 PicoJdump

48 Color palette

ACkE-RUN-LERFN
sHARRE-LOUE-PLRY

_ODE-CREATE-DFAL

AERE-DESILN-EE
HINK-HRITE-ERERR

PICO-8 is a fanzine made by and for PICO-8 users.

The title is used with permission from Lexaloffle Games LLP.
For more information: www.pico-8.com

Contact: @arnaud_debock

Cover Illustration by @johanvinet

Special thanks to @nerial, @dan_sanderson and @lexaloffle

Hello everyone,

The first Pico-Zine was an incredible, unexpected success.

People from all over the world downloaded the PDF and I have had
to repeatedly flood my local mailing office with hundreds of paper
copies. This is an amazing achievement for the Pico-8 community,
both the newcomers and those who shared their knowledge and code.

In Pico-8, there is no real reason to make a distinction between
the player, the consumer and the maker. If you can play, you can
also make: the source and assets are always a single image you can
share and change as much as you want to.

Through its well-thought-out constraints and limits, Pico-8 breaks
a lot of frontiers, and that is what is amazing about it. It’s a
tool to make games in the largest and most inclusive way possible.

You know what? I have never been very knowledgeable about coding.
I messed around with BASIC when I was younger, but since then code
has lost most of its appeal to me, it became obfuscated, compli-
cated and not-so-logical. From an outsider’s point of view, code
is very similar to magic. It’s an arcane formulae rendering the
most amazing interactions and stories. It’s necessarily encrypt-
ed, protected and out of reach. It’s the sacred language of an
illuminated cast, the developers.

Pico-8 has broken that feeling. For the first time, I have had
this amazing ability to “follow the trail” of code, directly and
instantaneously. For example, I am able to look at a piece of
code made by a well-known developer and change the way a charac-
ter jumps.

Compared to other game engines, Pico-8 has a very specific phi-
losophy: it’s a “Fantasy console” and a walking utopia of making.
This is because of two features : it’s an all-in-one swiss army
knife style of game-making (everything is done within the space
of the engine, no plug-in, no dependencies) and it’s an extremely
shareable format (if you can make you can share). This means that

k|

Pico-8 is the best tool to build an open community around a shared
knowledge of making for the sake of making.

Thanks for reading !

Arnaud DE BOCK

@lucyamorris handheld mockup

GAME OF LIFE

Mathematician John Conway published a description of his “Game of
Life” in the October 1970 issue of Scientific American, spawning
cellular automata as a field of research. Ever since, Game of Life
has been a staple of recreational mathematics and computation.
Let’s build one for PICO-8!

The Rules of the Game

The Game of Life takes place on a grid of cells, where each cell
is either alive or dead. Given an arrangement of alive cells, the
next generation of cells is computed from simple rules.

1.A cell has eight neighbors on the grid, including the
diagonal directions.

2.If an alive cell has either two or three alive neighbors,
then the cell survives to the next generation. Otherwise, it
becomes a dead cell (due to “starvation” or “overcrowding”).

3.1f a dead cell has exactly three alive neighbors, then
the cell becomes alive in the next generation (“reproduction”).
Otherwise, it remains a dead cell.

0@
> @

il
Y s

=
el l‘\.
! 1
A #
Ly

The rules of the Game of Life.

These simple rules produce a wide variety of patterns over
multiple generations.

Some patterns, such as the “block,” are stable, and do not change
from one generation to the next. Some patterns oscillate over a
period, such as the “blinker”. Some patterns repeat themselves
but in a different position, giving the appearance of a moving
organism.

o0 A 00
00 " o0

The “block” pattern is stable from one generation to the next.

PR

I]

fa
l"ﬁ_‘ l‘,"m-_||I
1 ' 1 '
k" £ b ¥
- -

FR

I i

LS

"1‘-"

The “blinker” pattern oscillates in place over two generations

Even simple patterns can have unpredictable behavior. The “r-pen-
tomino” starts with five alive cells, then explodes in all direc-
tions, refusing to stabilize until 1,103 generations have elapsed.

Storing and Drawing the Board

Let’s start with an implementation that’s easy to understand. We
store the current state of the board in a two-dimensional array,
where each element is a cell that is either alive (1) or dead
(0). We store numbers (instead of, say, Booleans) to make it easy
to count a cell’s neighbors by adding up the values.

We need two boards, one to represent the current state and anoth-
er to represent the next generation. We can represent this as two
arrays, and switch which one is considered to be the current board
at the end of each generation.

The following code sets up the boards, draws a blinker on the
first board, then draws the first board repeatedly:

ALIVE_COLOR =1
HIODTH=128
HEILHT =128

EORROD-I=1

EOARDS = L1} - {1}

FOR 4=1..HEIGCHT OD
EOARODSCLICYI =1}
EORRODSCEI[YI=1T
FOR #=1.UIOTHDOO

EOARDSCLICYICHI=0
EORRDSCE2 LY ILH]=10
END
ENO

--ORAU A ELINKER

EOAROSLL IIbOILRYI=1
EORRODSLL I[BL IIbYI=1
EOAROSLL b2 IIbY1=1

CL5CD

HHILE TRUE OO
FOR Y4=1 -HEIGHT OO
FOR #=1.-.UIOTHOO
PSETCH-1.4-1 EO0ARODSCEORRD-I JCYILK] % ALIVE_COLOR 3
EnD
END
FLIPLCD
END

Run this code. A blinker appears, but does not evolve.

The MWHILE TRUE loop runs forever. It walks over the entire board
and draws a single pixel for each cell at the corresponding lo-
cation on the screen. The FLIPILI function call tells PICO-8 to
copy its screen data to the actual display.
(When using the _UPOATELY and _ORAULY special functions to imple-
ment a game loop, FLIPL]} is called automatically after _ORRAHCY.)

The Next Generation

To calculate the next generation, we iterate over the cells of the
current board. For each cell, we count the neighbors by reading
from the board array, then set the corresponding cell on the next
board according to the rules.

We have a small problem on the edges of the board. Consider what
happens when we try to read the top neighbor for a cell on the
top edge, like this:

CELL =EOARDSLECORRO-IICOIC1]

PICO-8 arrays have indexes starting at 1, not 0. In PICO-8, when
you access an array index out of range, the value is nil. Be-
cause BOARODSLEORRO_II[O] is NIL , treating that value like an
array by trying to access an element ([1]1) is a runtime error.

In this implementation, we’ll treat the cells past the edges as
dead cells. Let’s use a helper function to read cells from the
board that returns 0 for coordinates that are out of range:

FUNCTIONGETCEI -6 Y2
IF (0 <130FR (R >UIODTHYOR (Y4<120F (4 >HEIGHT 12 THERN
RETURN O
END
RETURN EORRDSCEI I0Y 1CH]
END

At the end of the WHILE TRUE loop, add the following code to
calculate the next generation:

OTHER-I = (EOARD-I<21+1
FOR Y4=1 -HEIGHT OO
FOR %=1.WUIOTHOOQ
NEIGCHEORS =«
GETC(EORRD-I.vi-1.4-11+
CETCEORARD-I .3 -4-11+
CETCEOARD-I W+l .4-11+
GETCEORRD-I.v-1.42+
CETCEORARD-I -H+1 .Y+
CETCEOARD-I .H-1.4Y+11+
GETCEORRD-I.v. Y4+11+
CETCEORARD-I -H+1.Y4+111
IF (CNEIGHEORS ==310R
CCEOARODSCEOARD-IICYILRI==13ANDNEIGHEORS ==221 THEN
EOARDSIOTHER-II[YIL[K]=1
ELSE
EORRDSIOTHER-IICYILHI=0O
ENO
END
END
EOARD-I =OTHER-I

EOARO_I is the index of the current board in the boards array,
either 1 or 2. OTHER_-I is the index of the other board. The ex-
pression LEOARO_I# 21+1 means “take the remainder of dividing
board i by 2, then add 1,” which does what we want: if EOARO-I
is 1, then OTHER-I is 2, and vice versa.

Run this code. The blinker evolves, oscillating between its two
states.

For a more interesting display, replace the code that draws the
blinker with the following code, then run the program:

--DODRAUANKE PENTOAINQ
EOARDSCL IO I[bYI=1
EOARDSLL IO I[LS1=1
EORRODSLI1I[RL I[b31=1

EOAROSLL I[b1 I[RYI=1
EORROSIL I[BE IIbY1=1

The Line Buffer Method

The implementation above stores two boards and copies the active
board to the screen for each iteration. The purpose of the second
board is to keep a record of the neighbors around the current cell
as we go down the board calculating updates. If we only had one
board, changing a cell would interfere with the calculation for
the cells immediately beneath and to the right of it. But we don't
need to keep the entire previous board to avoid this. Instead, we
could just remember the original state of the previous line and
the current line as we walk down the board. This technique uses
less memory than storing two boards.

We can save more memory and some time by using the screen itself
as storage for the board data. The PSETL) and PLETL) functions
can set and read pixels on the screen. Combined with the two-line
buffer, this technique requires no additional storage, and does
not require copying a board array to the screen because updates
are written to the screen directly.

Here is a version that uses the line buffer method and writes di-
rectly to the screen:

ALIVE-COLOR =1
MIDTH=128
HEILHT =128

PREU_I=1
LINE-I=¢&
LINES = {1} . {}}
CL5CD

--DODRAUANFE PENTOAINQ
PSET CbY .60 -ALINE_COLOR 2

10

PSET (b5 .b0 -ALINE_COLOR 2
PSET (b3 .kl -ALINE_COLOR 2
PSET (b4 .b1 -ALINE_COLOR 2
PSET (b4 .b2 -ALINE_COLOR 2

FUNCTIONGETCH -4
IF (0 <130FR (R >UIODTHYOR (H4<120F (4 >HEIGHT 11 THERN
RETURN O
END
RETURN PCET 03 Y1
END

FUNCTIONGETECI -5 3
IF (i< 130R (i >UIOTHXITHEN
RETURN O
END
RETURNLINESCI ICH 1
END

WHILE TRUE OO
FLIPC

--CLEAR LINE EUFFER
FOR #=1.UIOTHOO
LINESC1ICHI=0
LINESI[Z2ILRI=10
END

FOR Y=1 -HEIGHT OO
--5SURAPLINE EUFFERS
PREN_I=LINE-I
LINE-I=C(LINE-IXE21+1

== COPY CURRENT LINE TO EUFFER
FOR W=1.UIOTHDOO

LINESILINE-TII[H]=PLETCH -4
EnD

11

FOR #=1.UIODTHOO
NEICHEORS =

GETECPREU_I.H-11+
LETECPREU_I.H]+
GETECPREU_I .fi+1]+
GETECLINE-I.v-1.42+
GETECLINE-I.%+1.Y2+
GETC(H-1.4+10+
GETCH H+11+
GETC(H+1 . 4+12)

IF (CNEICHEORS == ALINE-COLOR %31 0R
CCPCETOH 43 ==ALIVE_COLORYAND
NEIGHEORS == ALINE_COLOR ¥21)

THEN

PSET (i -4 -ALINE_COLOR 3

ELSE

PSET (i 4.0
END
END
END
END

Notice that because we'’re reading cell data directly from the
screen, our neighbor count is now expressed as a multiple of
ALIVE_COLAOR, which happens to be T ILHHITE)l. We could tell the
LETL) and (new)LETECLl functions to convert from the color val-
ue returned by PLETL) to 0 or 1, but that’s CPU time we can
save just by using the multiple.

In my unscientific timing tests, I noticed a savings of about 5
seconds over 50 generations with this new method compared to the
two-board version.

Toroidal Game Boards?

Our implementation considers the cells beyond the edges to be dead
cells. Another option is to have the board “wrap around” as if it
were a torus shape, so the cells on the bottom are adjacent to
the cells on the top, and the left edge is similarly adjacent to

12

the right edge. In the two-board version, this would be easy to
implement with a small modification to the LETLI function.
Give it a try!

Try this pattern with a toroidal game board.

More Information

Wikipedia:
https://en.wikipedia.org/wiki/Conway%27s_Game of Life

The Game of Life wiki:
http://www.conwaylife.com/wiki/Main Page

My Game of Life for PICO-8, including a built-in map editor:

http://www.lexaloffle.com/bbs/?2tid=2158

by dddaaannn (@dan_sanderson)

13

3d demo

simple 3d demo by @NoahRosamilia

--HERE IS THEDATA FOF THE 30 AODEL
== THEFIRST SECTIONIS THE A0 LOACATION
== 0F EACHPOINT 0N THE CUEE - AND THE
== SECONDSECTION IS THELINES THAT
== CONNECT THE POINTS
CUEE ={{{-1.-1.-1}.--POINTS
i-1.-1.1%}.
{1 .-1.1%}-
1.-1.-1%.
i-1.1.-1%}.
i-1.1.1%}-
f1.1.1%}.-
11.1.-1}-
i-0.5.-0.5.-0.5}.--INSIODE
i-0.5.-0.5.0.5%F-
i0.5.-0.5.0.5%-
i0.5.-0.5.-0.5%-
i-0.5.0.5.-0.5%}-
i-0.5.0.5.0.5%-
i0.5.0.5.0.5%-
i0.5.0.5.-0.5F%F-
i1l .2}.--LINES
ig .3t .
13 .4} -
i4.1F.
15 .kt
ib -1} -
i1.8F.-
iH .5t .
11 .5%.-
igd .kl -
13.17% .
iy -8%1 -
i8+1 -B+2} . -- INSIOE

1y

iB+2 -B+3% .
{8+3 -B+4% .
i8+Y4 . B+1}.
{B+5 B+hb} -
{B+b -B+1% -
i8+7.8+8% -
i8+H -B+5% -
{8+l -B+5% .
i8+2 -B+h1} -
i18+3 .B+1% -
i8+Y .B+8% -
i1 .9t

ig .10%F -
13.11%}-
i4.12%} -
15.13%} -

ib -14% -
11.15%F -
iH.-1b}11}

-

1331 Ll

!
=

FUNCTION -INITC
CAR=10.0.-2.5F --INITIALISE THE CAAERAPOSITION
AULT =bY --UIEU AULTIPLIER

A=FLRCRNDCI 33+1 -- ANGLE FOR RANDOA ROTATION
T=FLRCRNDCSO32+285 -- TIAE UNTIL NEXT ANGLE CHANGE
ENnO

FUNCTION -UPOATECL}
== HANDLE THE INPUTS
IFETNCOTHEN CAAC1I1-=0.1 END
IFETNC1 2 THEN CAAC1I1+=0.1 END
IFETNC2 2 THEN CAAC21+=0.1 END
IFETNC32THEN CAAC21-=0.1 END
IFETNCY 2 THEN CAAC31-=0.1 END
IFETNCS 2 THEN CAAC31+=0.1 END
T=-=1--DECRERSE TIARE UNTIL NEXT ANGLE CHANCGE
IF T<=0THEN--IFTIS0THEN CHANGE THE RANODOAANGCLE AND RESTART THE TINER

15

T=FLRCRNDCSO12+285 -- RESTART TIRER

A=FLRCRNDOC323+1 -- UPDATE ANGLE

END

CUEE =ROTATE-SHAPEC(CUEE -A.0.012--ROTATE OUR CUEE
END

FUNCTION -ORAM)
CL5C)--CLEAR THE SCREET
PRINTC"T="..T.0. .60 --PRINT TIAE UNTIL ANGCLE CHANGE
PRINTC"W="..CAAC1].0.b*¥11--PRINTH®.Y4.ANDZLOCATION OF THE CAAERA
PRINTC"Y=""..CAAL2]1.0. k%22
PRINT("2="..CAAL3].0. k%3]
DFRAU_-SHAPE CCUEE Y -- DRAM THE CUEE

END

FUNCTION ODRAU-SHAPECS -C
FORLINALLCSC2I12O0--FOREACHLINE INTHE SHAPE...
ODRAM-LINECSCL JICLE11].SCLICLEE1].-Ch--DORAM THELINE
END
END

FUNCTION ODRAM-LINECPL1 .P2.C1
nll.-Y40 =PROTECTCPLl) --GET THE 20 LOCATION OF THE 30 POINTS...
nl .41 =PROTECT (P22
LINECHD - Y90.+x1.-41.-COR11)--ANDORAUALINE EETUEEN THER
END

FUNCTIONODRAU-POINTCP -C
f-4=PROTECTC(P)--GET THE 20 LOCATION OF THE 30 POINT...
PSETCH -Y.-COR113--ANDORAY THE POINT

END

FUNCTIONPROTECT (P
= (PLLI-CAACL]3%AULTS CPLII-CAACLA] +127rE
== CALCULATE % AND CENTER IT
Y=-(P[21-CARC2 10%ANLTY (PLI1-CAACI 1D+ 127702
--CALCULATE Y AND CENRTER IT
RETURN % -4 -- RETURN THE TUD POINTS

END

lh

FUNCTION TRANSLATE-SHAPECS T
ns=1i{ir.5[21%}
== COPY THE SHAPE - EUT ZERD OUT THE POINTS AND KEEP THE LINES
FORPINALLCSCLID OO0 --FOR EACHPOINT INTHE ORIGINAL SHAPE...
AODCNSCL]-1PC11+TL11.-PL21+TI21.-P[31+TL[31} 1D
== RAOD THE DISPLACERENT TO THE POINT AND ADD IT TO OUR NEW SHAPE
END
RETURN NS -- RETURN THE NEY SHAPE
END

FUNCTION ROTATE-SHAPECS AR}
ns=1i{ir.s5[21}
== COPY THE SHRAPE - EUT ZERO OUT THE POINTS AND KEEP THE LINES
FORPINALLCSELIMDOO--FOREACHPOINT INTHE ORIGINAL SHAPE...
AODCNSCEL].- ROTATE-POINTCP -A-R2
== ROTATE THEPOINT AND ADDO IT TO THE NEW SHAPE
END
RETURN NS -- RETURN THE NEY SHAPE
ENO

FUNCTION ROTATE-POINTCP AR}
==FIGURE OUT UHICH ARIS HE'RE ROTATING ON
IF A==1 THEN
n-.4.2=3.2.1
ELSEIF A==2 THEN
n.4.2=1.3.d
ELSEIF A==3 THEN
n-4.2=1.2.3
END
N ECOSCRIECPLNIN-SINCRY % CPLY]D
== CALCULATE THE NEM & LOCATION
SH4=SINCRIECPLRIN+ COSCRY % (PLY]
== CALCULATE THE NEW Y LOCATION
ne=1}
== ARKE NEYUPOINT ANDASSIGH THE NEW S AND Y TO THE CORRECT AXES
NPLH1=_H
nPLY41=_4
NPL21=PLZ]
RETURN NP -- RETURN NEYU POINT
END

11

SHRINKING YOUR CODE

Here are some tips to help you squeeze every last byte out of
pico-8. Not only will this allow you to fit more code in your
game, but it will reduce the amount of scrolling you have to do
in the pico-8 editor.

a word on token-counting

Starting with version 0.1.1, pico-8 uses a token-counting system
rather than simply counting characters. This allows developers to
fit more code on a cartridge, but it’s also a little bit compli-
cated. Here’'s how it works.

First, pico-8 counts tokens. Variables, functions, and operators
(=, ¥+, =, [, 1, 0, 1, etc.) are one token each. Strings are
also one token. Comments are ignored. Each cartridge has room
for 8192 tokens.

There is also a limit on the number of characters (32768), but
tokens are usually the bottleneck.

> Note: You don’t have to use the default pico-8 editor. You can
load your ~.p8 file in any text editor you like!

use pico-8’s built-in shorthands
if

== 1 TOKENS - 31 CHARACTERS
IF URLUE THEN

DO-THINGCD)
ENO

-=T1TORENS . 20 CHARACTERS
IF CUALME Y DO_THINGC)

== SAUINGS:0 TOKENS - 11 CHARACTERS

18

foreach
-=13TOKENS - Y3 CHARACTERS
FOREINALLCEREAIESXON
TAKE_DOAAALGE CE 2
Eno

-=b TORENS - 29 CHARACTERS
FOREACHCENEAIES - TAKE-DARAGE 2

--SANINGS: 1 TARENS - 14 CHARACTERS
operator

--=b TOKENS - 19 CHARACTERS
SIZE=COUNTCTAELE)

==Y TOKENS - 13 CHARACTERS
SIZE =HTRELE

-=SHUINCS: 2 TOKENS - B CHAFACTERS
math

=-S5 TORENS -9 CHARACTERS
A=A+13

== 3 TORENS - b CHARACTERS
A+=13

-=-SAUINGS: 2 TOKENS - 3 CHARACTERS
use single-character variable and function names
You can reduce your character count by using shorter wvariable

names, at the cost of readability. Note that variable names take
up the same number of tokens regardless of length.

19

== 3 TOKENS - 20 CHARACTERS
LONGCUARIAELENAANE = 3

== 3 TOKENS - 5 CHARACTERS
A=13

== SAUINGCS:0 TOKENS - 15 CHARACTERS

If you run out of letters, you can also use an underscore (-) as
a single-character name. After that, you’ll have to start using
two characters per name.

reduce spaces

Although it looks pretty, you don’t need to include spaces be-
tween operators in Lua.

== 3 TORENS -5 CHARACTERS
A=13

== 3 TORENS -3 CHARACTERS
A=3

== SAUINGS: 0 TOKENS - 2 CHARACTERS

Similarly, you can save on characters (at the cost of readability)
by removing indentations.

Since grouping symbols also count as operators in Lua, spaces be-
fore and after grouping symbols can be omitted.

For example, you don’t need spaces after the parentheses in a
pico-8 shorthand IF:

== TORENS - 20 CHARACTERS
IFCURLUE I OO-_THING)

== 1 TORENS - 19 CHARACTERS
IF CURLME JDO_THINGCD
== SAUINGS: 0 TOKENS -1 CHARACTER

remove comments

Comments don’t use up any tokens, but they still count as charac-
ters! Remove them to gain some space.

set constants

If there’'s a particular value or function you find yourself using
a lot, you can assign it to a single-character variable and save
characters every time you refer to it.

Initially, this will cost you an additional 3 tokens, but you will
save characters over the course of your program.

== CO5TS I TOKENS - ENT SAVES T CHARACTERS EVERY TIAE RECTFILL IS USED
R=RECTFILL

T =TRUE
F =FALSE
-=ETLC.

use multiple returns

You can return more than 1 value from a function by separating
them by commas.

FUNCTIOOADCA-ED
RETURNAXE-ASE
END

In certain situations, this can allow you to call one function
instead of two. You can also choose how many of these values you
want to use.

--TAREEOTH UALUES

A-E=A0OCH.-Y2

== TAKE ONLY ONE UALNE
A=A0OCE.-Y2

2l

If you're calling a function with multiple returns as an argument
to another function (or as part of a “return statement), it will
automatically expand to use all its return values. You can prevent
this by surrounding it with parentheses.

==CALLSF UITH3IARCUAENTS: THE 8 UALUES RETURNED EY AD - ANRD THE CONSTANT 3
FCADCH.-Y2.-31

== CALLSF UITHZ2 ARCUAENTS: THE FIRST UALUE RETURNED EY AD - AND THE CONSTANT 3
FCOAODCE.-Y22.31

don’t use parentheses for strings or tables

If you're passing a string or table to a function, the parentheses

are optional.

--YTORENS .15 CHARACTERS
PRINT("STRING™ 2

--2 TORENS . 13 CHARACTERS
PRINT"STRING"

-=-SAUINGS: 2 TOKENS - 2 CHARACTERS

Note that this only works if the string or table is the only
argument to the function.

take advantage of logic (and/or)

AND returns the left argument if it is FALSE (or NIL). Other-
wise, it returns the right argument.

OF returns the left argument if it is not FALSE (or NIL).
Otherwise, it returns the right argument.

You can use these in conjunction to create a ternary operator.

==0nNLY OPENLOCKE IF AULTIPLE CONODITIONS ARE SATISFIED
LOCH_OPEN =HAS_-KEY AND COLLIDE (PLAYER - CHEST)

== USEDEFAULT UALUE FOR VARIAELE
NAAE = PLAYER-NARE OF “"TOE"

== UILLPRINT "DEAD" IF DEAD - "ALIVE" OTHERWISE
PRINT CODEAD AND "DEARD" OR “ALIMNE"}

-=-SETS SPEED
SPEED = (FALLINCAND-10R 1% ACCELERATION

==YOUCAN OO ITFOR FUNCTIONS TOO!
CFROZEN AND THAW OR AQUE X C)

==00Nn“T FORGET AEQUT NOT!
STAND-STILL =NOTAOUING

- Jonathan Stoler
@jonstoler

23

SHODO

@oinariman

I introduce a painting tool that I made with PICO-8,

Shodo(EiE). This is a demake of the 80’s Macintosh software, Mac
£38 (MacCalligraphy in U.S.) that simulates Japanese traditional
ink-dipped brush calligraphy. Since you cannot use a mouse with
PICO-8 when it runs a program, it may appear to be ridiculous to
imitate brush drawings using only D-pad and AB buttons.

However, it can draw brush-like lines unexpectedly well.

In this article, I describe how to implement the brushlike 1line
drawings, and the memory processing needed to make a painting
tool.

The brush movements

To draw lines that dynamically change their thickness, I added
inertia to the brush. When you press an arrow key, the brush will
move in the direction. When you release the key, the brush will
gradually slow its speed, and then will stop.

Pressing the Z button will cause the line to grow thick.

24

The line will decrease its thickness after you release the button.
Operating these controls at the same time will allows you to draw
brushlike lines.

SPEELD

ot l B L L

F F 4
THICKRESS

The memory processing

Painting tool must save its drawing data somewhere in the memory.
Because the PICO-8's screen resolution is 128 x 128, we need to
find space to store 128 x 128 = 16,384 pixels. Although you may
save this data in a Lua array, this is not recommended idea.

I think that it will cause complications and run slowly. So, I use
memset () and memcpy() . These PICO-8 API functions allow you to
access continuous memories immediately.

The space to save your picture
According to PICO-8.txt, memset() and memcpy() may only access the

32k memory area called “base ram.” The list below from PICO-8.txt
describes the layout of the base ram.

0RO GFH

0R1000 cFR2 yARPE (SHARED)

Ox20oo nApP

0R3000 GFR-PROPS

0R3100 50NG

O0R3200 SFy

O0X4300 USERDEFINED

ORSFO0DRAM STATEL-CART DATA1 (192 EYTES INCL. UNUSED 2
OWSFCO CRESERUVED FOR PERSISTENT DATA IN DEVELOPAENT 3
O0RbOO0 SCREEN CHKE D

The area that begins with 0x4300 is the *“user-defined”

area. That is what programmers can use freely. The area occupies
896 bytes (0x4300 to 0x5eff). Because the PICO-8’'s color format is
2 pixels per byte, we need 16,384 / 2 = 8,192 bytes (4 kilobytes)
of memory area to save all of the pixels on the screen.

The userdefined area is not sufficient at all. So, I use the area
from 0x1000 to 0x2fff. This area is basically for sprites and maps
copied from a cart. I don’t need it because Shodo uses just five
sprites, and the first gfx area (from 0x0 to 0x0fff) has enough
memory to store them.

The sprites used in Shodo

2h

The screen updating

I named the 4k area from 0x1000 “paper area.” PICO-8 displays
the pixel data in the “screen area” (beginning at 0x6000) to the
screen. So, in order to display the userdrawn picture, we should
just copy the data that is stored in the paper area to the screen
area.

The 1list below is the procedure to wupdate the screen in
the draw() function which 1is called every 1/30 seconds.
1. Copy whole data in the paper area to the screen area (using
memcpy ())

2. Add the changes made by the user to the screen

3. Copy all of the data in the screen area to the paper area (us-
ing memcpy())

4. Draw an image of a brush on the screen

SCREEN PRPER

{-- COPY --

= AOO CHANGES

L

-- COPY --3
L] L
y - DRAU ERUSH

In order to keep the only user-drawn content in the paper area, it
is important to follow these instructions in the order in which
they are listed.

The entire program appears below. It’s not very long or compli-
cated. I didn’t implement any undo/redo functionality or eraser
tool to respect the Japanese shodo tradition.

However, it might be fun to add these things or a color palette.

Ryosuke Mihara

21

--5HOODO01.0.1
-- EY RYOSUKE AIHARA

--ERUSHATTRIEUTES

--n H-COORODINATE

--4 :Y-COORODINATE

== CHCOAPORENT OF VELOCITYH
--Uu4 HCOAPORENT OF VELOCITYH
== D0O0UN : WHEN TRUE - THE ERUSH IS PUT DOMN TO THE PAPER
--H :ERUSH THICKNESS

ERUSH =1}

ERUSH.H = bY

ERUSH.Y = bY

ERUSH.UG =0

ERUSH.UY =10

ERUSH.OOWN = FALSE

ERUSH.R =10

== ERUSH CONSTANTS

== ERUSH-ACC : ACCELERATION

== ERUSH-ERAKE : ERAKE UALUE

== ERUSH-AUL : SPEED AAGNIFICATION MHEN THE ERUSH IS ODOMN
== ERUSH-FARS : ARKIAUA THICKNESS

== EBERUSH_FRACC : ACCERELATION OF THICKNESS CHANGES
ERUSH_-ACC =0.175

ERUSH-ERAKE =-0.1

ERUSH-AUL =0.b5

ERUSH-FRARY =13

ERUSH_-RACC =10.2

--PAPER ATTRIEUTES AND CONSTANTS
PAPEFR = L}

PAPER .4=10

PAPER.UY =0

PAPER-INIT-UY =5

PAPER-ACC =0.3

FUNCTION REFLACE-PAPER (1
IF PAPER .Y > 0 THEN
RECTFILL O .0 -127.127.712
LOCAL Y4 =FLF CPAPEF .41
AEACPY (0 nbOO0.-0R1000+Y%bY -bY % C12B-YH12
LINE 0O -127-4-1.127.1287-4-1.hk1

PAPEFR .4 += PAPEFR .UY4

PAPEFR .UY += PAPER-ACC

IF PAPEFR .4 >= 127 THEN
AEASET ¢ 0 #1000.0%0077.-128 %bY 3
PAPER .4 =10

EnD

END
END

FUNCTION DRAU_ERUSH 1)
IF ERUSH.OOWN THEN
SPR €3 .ERUSH.W -ERUSH.4-23 .1 -3 1
SPR (2 -ERUSH.W -ERUSH . Y2
ELSE
SPR 3 .ERUSH.W -ERUSH.4-24 -1 -3 1
SPR C1 -ERUSH.W -ERUSH . Y2
END
END

FUNCTION DRAU-LINE ¢
IF ERUSH.R >0 THEN
CIRCFILL CERUSH.% +Y ERUSH. Y4+ b -ERUSH.R .01
END
END

FUNCTION AOVE_ERUSH)
== UHEN THE ERUSH IS PUT ODOUN TO THE PAPER - SLOM ITS SPEED
LOCAL AUL =1
IF ERUSH.OOWN THEN
AUL = ERUSH-AUL
END

2q

ERUSH.H += ERUSH . UK £ AUL
ERUSH.Y += ERUSH.UY % AUL

-- ERAKE THE ERUSH
==5TOP THE ERUSH HHEN ITS S04 COAPORENT OF WELOCITY IS INVERTED
LOCAL PREL
IF ERUSH.UE == 0 THERD

PREW = ERUSH .UH

ERUSH .U\ += ERUSH.IW £ ERUSH_ERAKE

IF PREW £ ERUSH.UW < 0 THEN ERUSH. UE =0 END
END
IF ERUSH.UY »= 0 THERN

PREW = ERUSH .Y

ERUSH.UY += ERUSH.UY ¥ ERUSH_ERAKE

IF PREV £ ERUSH.UY < 0 THEN ERUSH. U4 =0 END
END

-=-5TOP THE ERUSH UHEN IT REACHES THE EDGE OF THE SCREEN
IF ERUSH.H <-4 THEN ERUSH.¥ ==Y END

IF ERUSH.W > 123 THEN ERUSH.R = 123 END

IF ERUSH.Y4 <-b THENERUSH. .4 =- b END

IF ERUSH.Y =123 THEN ERUSH. Y4 =123 END

END

FUNCTION UPDATE-LINE-UIOTH 3

IF ERUSH.OOWN THEN
ERUSH.R += ERUSH_RACC
ELSE
ERUSH.R -= ERUSH-RACC
END
IF ERUSH.R <0 THENERUSH.R=D0END
IF ERUSH.R > ERUSH-RARY THEN ERUSH.R = ERUSH-RARY END

END

FUNCTIONINPUT C3

ERUSH.OOWN =ETH CY 1
IFETh (0 3 THEN ERUSH. UK -= ERUSH_-ACC END
IFETh (1 3 THENERUSH . UG += ERUSH_ACC END

ao

IFETN 2 JTHENERUSH.UY -= ERUSH-ARCCEND
IFETh C3 3 THENERUSH.UY += ERUSH_ACC END

IF PRPER.4==O0RNODETNP C5) THEN
SFnc0 3
PAPER.4=1
PAPEFR .UY = PAPER-INIT-UY
END
END

FUNCTION -INIT C3}
AEASET ¢ 0X1000.0%0077-128%hbY 2
END

FUNCTION -UPDATE €}
INPUT 3
AOUE_ERUSH €
UPODATE-LINE-UIOTH 2

END

FUNCTION -OFAM 3
IF PAPER .Y > 0 THEN
REPLACE-PRPER L1
ELSE
== COPYUHOLE PIRELS IN THE PAPER TO THE SCREEN
AEACPY (0 wbOO0.0A1000.-128 %BY 2
-- AOD CHANGES AADE EY THE USER TO THE SCREEN
DRAU-LINE 3}
== COPY UHOLE PIRELS IN THE SCREEN TO THE PAPER
AEACPY ¢ 0 x1000.0 A b0O00.- 128 %bBY 2
END
DRAU-ERUSH €
END

il

Water Waves

Add some visual flair to your game with a wave distortion.

1. Assumptions

This tutorial makes use of a sprite flag to know where to warp the
screen pixels. It assumes the whole available area of the tile-
map is draw to the screen at the 0,0 coordinate. If you draw your
tilemaps in a different manner, you will need to adjust the code
accordingly.

Three variables are required to determine the warp effect, t is
for time, which is updated by 1 each update(), and cam X & cam y
which are used to offset the camera position in the draw() func-
tion.

2. Tiles

Draw some sprites to use in your game, I drew a light blue square,
a solid block and a ball. The blue square will be the tile that
waves apply to; the lines and dots in the blue square will help
accentuate the wave’s ripple. Set the 5th (light blue) sprite flag
to be true for each sprite that you want to ripple (sprite flags
are set with the little circles below the color palette).

Draw a tilemap which includes areas of the ripple tiles, as well
as non-wavy tiles.

3. The Warp Function

This is the meat of our exercise, I’'ll show the whole function,
then explain line by line what is going on. You should be able to
add this to existing games, as you can add this to your _draw()
function.

FUNCTION UARP-HCD
LOCAL HAUE-SPEED=0.1bh1
LOCAL DISPLACE-OIST=0.5

FOR Y=ARW 0 -FLRCCAR-YYB) AINCFLRCCAN-YYBI+1b . 1bE2 200
FOR #=ARW (0 .FLRCCAR_NXBID -AINCFLRCCAR-RYBI+1b . 1bZB) OO
LOCAL UAL=ACET 0¥ .41
IF (FGETCUAL .42 THEN
FOR 41=0.700
LOCAL LINE=i0D.0.0.0.0.0.0.0.0%
FOR W1=0.800
LINECWL I=PCET(n#B-FLRCCAA-SH 1+l - HEB-FLRCCAA-Y1+41)
ENO
LOCAL NEMR=SINCCTXUAVE _SPEED+Y1)0B X0ISPLACE-ODIST
FOR #nl=0.800
PSET(H¥B+H1+NEUN -Y%B+Y]1 -LINELK1]}
END
ENO

33

END
END
END
END

What does all this code do then? Let’s start at the top.

LOCAL WAVE-SPEED=0.1bhk1
LOCAL OISPLACE-ODIST=0.5

Here we define two variables which affect the displacement effect.
wave_speed affects how fast the ripples go, displace dist changes
how far the pixels are moved in either direction. The wvalue of
0.5 allows a pixel to be moved from -0.5 to 0.5, a max distance
of 1 total pixel. Change these numbers to see the different ef-
fects they can have, but I would suggest keeping the numbers quite
small.

FOR Y=AAW (0 -FLRCCAR-_YYBID -AINCFLRCCAR-YYE)+1lb.-1bE2100
FOR W=ARW (0 -FLRCCAR-RYB YD AINCFLRCCAA-HYBE)+1b -1b%B 2 OO0

The next two lines begin loops, starting at the current camera
position (or zero if negative), and end a screen later. Since we
are using tilemaps (remember the sprite flag?) to mark the effect,
we only need to check a maximum of 16 tiles in either direction
(one tile is an 8 pixel image, screen res of 128, 128/8=16)

LOCAL UAL=AGET £ -4 1

This line gets the number of the sprite used at the position of
X,y which we will use in the next line

IF (FGETCUAL -4 23 THEN

where we check if the sprite has the light blue flag selected. If
it does, then we will continue

FORY1=0.700
LOCALLINE=i{0.0.0.0.0.0.0.0.0%

ay

The first line starts a loop where we are going to iterate through
each vertical slice of our 8x8 tile. The second line creates a
collection of values for the pixels we are going to move.

FOR nl1=0.80O0
LINELHL I=PCET CH¥B-FLRCCAR-H 1+H1 -H¥B-FLRCCAR-Y 1+41 1
END

These lines loop through the horizontal pixels, recording the
not-yet-manipulated values to the line collection. Notice that
we subtract the value of cam x (or y) from our current x (or y)
values. This is because we are grabbing the current pixels from
the frame buffer and need the values to be within 0-127. Our code
will affect anything already drawn to the screen, and it will not
affect anything we draw after applying this effect.

LOCAL NEUR=5INCCTXUAVE_SPEED+Y1 2 0B)0DISPLACE-OIST

Now we need a new x offset for our line of pixels. We use a wave
formula to smoothly adjust our offset back and forth as time (t)
increases. The wave formula is: value = sin(angle) * range. Our
formula has a slight adjustment in the angle, as we add yl and
then divide by 8. The reason for that is to make a smooth tran-
sition between each of our 8 vertical pixels, each one offset
by 1/8th the angle of the previous pixel. This also makes it so
multiple wavy tiles above and below each other will all appear to
seamlessly match motion.

FOR nl1=0.80O0
PSETCHEE+HL1+NEMUS -Y%B+Y41 .LINELR1]
END

This last loop then sets the screen pixels to the values at the
newx position.

a5

4. Other code

As I mentioned earlier, we need to have some variables in our game
for this to work. At the top of your code, outside of any func-
tions, add these lines:

T=0

CAR_X=0

CAN_4Y4=0

These will initialize our variables, and start each at default

values of zero.

At the very end of our update() function, we need to be sure that
time is increasing. If you started a project from an example like
Jelpi, this may already be in there.

FUNCTION -UPDATE
T+=1
== ALL HOUR UPODATE CODE COES HERE

--EXRAPLE COLDE - AOUVES CARERA

IF CETheO.033CAA-%-=0.4

IF (ETNC1-0)2CAA_W+=0.4

IF (ETNC2-022CAA_Y4-=0.4

IF CEThC3..032CAAN_Y4+=0.4
The last bit of code is that our _draw() function needs to call
warp w() at the appropriate time. Most likely, you want to call
it after all tilemaps and sprites have been drawn, but before any
HUD elements, such as scores or lives have been drawn. Below is
an example draw() function, yours will most likely have more.

FUNCTION -ORAUC
== CLERF SCREEN
RECTFILL ¢0.0.127.127.01

--A0OUE CARERRA

CARERACCAR-& -CAR-Y2
--OFRAU UHOLE TILERAAP

db

AAP (0.0.0.0.1b*¥8.1b*:2 .01

== ORAU EALL - HAUE POSITION UPXOOWN
LOCAL H_URUE=CCAR_Y+BxB2+SINCT0.00251%32
SPRC3.CAN-W+HB%E -4_UAUE .1.11

-- UAFRP
UARP_H

-- RESET CRAEFA
CAREFRA <0 .03

-=- ORAU HUD AEOUE UARP - ITUILL NOTODISTORT
PRINT(“SCORE: OO0 -B.-B.72
ENO

I added some code to this which will help show how the affect
works.

--DORAU OETECTS
LOCAL H_WURUE=C(CAR_Y+BxB+5INCT0.0025 %32
SPRCI.CAN-W+B%*H -4_HAUE .1 .11

These lines make use of the wave function again, this time as a
way of moving our object up and down. spr() is the drawing call
for drawing a sprite (#3 in this case) to the screen. Since it is
drawn before calling warp w(), the ripple effect will apply to it
when over one of the marked tiles.

== ORAU HUD AEOVE UARP - ITUILL NOT DISTORT
PRINT("SCORE: OO0 -B.-B.-11

This line adds some text to the screen, a score counter that does
nothing at the moment. It will not be affected when placed over
a marked tile, since its drawn after the ripple effect occurs.

a1

5. Taking it further

You can use this effect to show different needs, such as water,
lava, heat, gravity or whatever you would like. The effect looks
really great when you add vertical elements to your drawings such
as seaweed or pipes. Try changing the code so the ripple effect is
vertical instead of horizontal, or maybe change the speed based
on objects inside the tile area.

I'd love to see what cool things you make with this code. Send me

some gif’s on twitter to @mattfoxl2. Happy coding!

Matthew Klundt

e
i il il i

3g

Screensaver

POINT1 =1}

POINTL.H = bY
POINT1.Y4=hY
POINT1.A =190
POINTL.

POINTE
POINTE.
POINTE.
POINTE.
POINTE.

POINT3
POINT3.
POINT3.
POINT3.
POINT3.

POINTH
POINTH.
POINTY.
POINTH.
POINTH.

POINTS
POINTS.
POINTS.
POINTS.
POINTS.

FUNCTION -UPOATECL

POINTL=ANIAATECPOINTL)

POINTE =ANIARTECPOINTZ)

POINTI=ANIARTECPOINTI)

POINTY =ANIAATECPOINTY 2

POINTS =ARIARTECPOINTS)
ENO

N
11
1]

-

'J'n:l.'ll.l::i::.: '.h:ﬂl:“::l
e (R TR TR TR
neHo o nmuo o
m Lt r 4 £ &
= =

iy
[

nnome = !
Hnouonou

n oo m
L

1]
iy
[

=

m mn mun
n oo o

n o3 LwE o
£ =

aq

FUNCTION ANIAATE CPOINT 3

ANGCLEOFFSET = CCPOINT.A2 360 35360

POINT.A =POINT.H + POINT.5 £ COSCANGLEOFFSET 3
POINT . H=POINT.Y4+POINT.5S % SINCANGCLEOFFSET X
==COLLISIONOETECTION

IF POINT .\ > 1

2l THEN

POINT.A=135+FLRCRNOCAO D}

END
IF POINT .0 <0

THEN

POINT.A=Y45-FLRCRNDCAO 1)

END
IFPOINT.H>1

2l THEN

POINT.A=Y45-FLRCRNDCAO 1)

END
IFPOINT . Y0

THEN

POINT.A=2285+FLRCRNOCAO D}

END

RETURN POINT
ENO
FUNCTION -ORAW

£l

RECTFILLO.0.127.127.02

--AAINPRISA

LINECPOINTL.
LINECPOINTE.
LINECPOINTI.
LINECPOINTY.
LINECPOINTS.

--REODLINES

LINECPOINTL.

LINECPOINTE.

LINECPOINTI.

LINECPOINTY.

LINECPOINTS.
ENO

fn-POINTL.
n-POINTE.
n-POINT3.
n-POINTY.
n-POINTS.

fn-POINTL.
n-POINTE.
n-POINT3.
n-POINTY.
n-POINTS.

Y.POINT3
H.POINTYH
H.POINTS
H.POINT1
H.POINTH

Y.POINTE
H.POINT3
H.POINTYH
Y.POINTS
H.POINT1

4o

2 -POINT3
o APOINTY
4 APOINTS
4 APOINTL
s APOINTE

4 APOINTE
2 APOINT3
2 APOINTY
4 -POINTS
2 APOINTL

4B
MBI
MBI
4B
MBI

A0
A0
A0
A0
A0

Devine Lu Linvega
Qaliceffekt

PicoJump

Platformers have appeal. They are quite literally the pixel-mani-
festation of the Hero’s Journey and have shaped the gaming land-
scape over for decades. I grew up with an Amiga 500 and games like
Turrican, Prince of Persia and The Shadow of the Beast! Well, and
let’s not forget about Sonic and Super Mario, right?

This tutorial assumes you know the basics of PICO-8 programming,
how to draw sprites, the_INITCJ. _UPODATEL)Y and _ORAUL)Y func-
tions and how to write simple programs with them.

At first it is always good to think about what we want the charac-
ter (I think I will name him Tutorial-Bob) in our platformer game
will be able to do. For the time being, let’s start with walking,
jumping, falling and being idle. To model this behaviour, we will
make use of a mechanism generally used in computing and engineer-
ing. We will build a finite state machine or in short FSM. And in
our case it looks like this: the boxes represent the states out
player can be in. The arrows between them are the transitions,
which - when a certain condition is met - will point to the next
state Bob will be in.

|OLe ||
L
z-//,,’ ! L\\A

]MMP {} \J
o | WAy
L 3 ‘ a// 1|

D%Pz

Hl

For example, if Bob walks along and suddenly there is no more
ground, he will start falling. Once he hits ground again, he will
stop falling and be idle. Or if the user presses the left or right
arrow, Bob will start walking. When we have made up our state ma-
chine, it is very straightforward to start writing code.

Before we begin, here some sprites and a little world in prepa-
ration for the game. Any map sprite that we want to use as a
ground Bob can stand on, is tagged with the first sprite flag
being set to True. This way we can easily determine with what to
collide using FLETL) on the map tile.

Lets start writing the program. Here the player initialization and
drawing routines for the game.

Ha

FUNCTION -INITC
Ph=g0 --W-POSITION
PY4=bY --Y-POSITION
PSTATE=0 -- CURRENT PLAYER STATE
PSPR=0 --CURRENT SPRITE
POIR=0 --CURRENT DIRECTION
PAT=0 -- PLAYER STATE TINEFR

END

FUNCTION -ORAUC
-- DORAW THE WORLDO
AAPCO.0.0.0.1b.-1k2
-- OFRAU THE PLAYEFR - HE USE ODIR TO AIRROR SPRITES
SPRIP5SPR -PW -PY.1.1. .POIR==-11
END

In the _INITL) method we are setting a whole lot of variables
to keep track of Bob.

We have PH and PY for the world position in pixel, POIR is for
the direction we are looking at, we have PS5PR to store the
current sprite and a PSTATE for the active state itself.

Look at the state machine graph again. See the numbers in the
corner of the boxes? This is the identifier for each state which
will be assigned to PSTRTE.

We also hold a variable called PAT, which is the state counter
or sometimes called state clock. Every time we run -UPORTEC]
that counter will increase by one. On every change of state, the
counter will be reset to zero. This way we always know how long
bob has been in his current state and use that information for
animation and movement calculations.

Before we write the state machine behaviour, we need one more
helper function to tell us, if Bob is hovering in the air &
TRUE 1 or standing on the ground LFRALSEX.

Be aware that ALETC() wants map coordinates, so we have to di-
vide the player position by 8.

H3

FUNCTION CANFALL ¢
== LET THE AAP TILE UNOER THE PLAYER
U=AGETCFLRCCPR+Y 7B . FLRCCPY+BEISE DD
--SEEIF IT"'SFLAGGED AS WALL
RETURN NOT FGET LW .00

END

Now we get to the state machine part.

Each time we move from one state to another, we have to set the
PSTATE variable to the new state id and also reset the PRAT
counter. Let’s do this in a dedicated function. Later on, when
things get more complex, we could also implement state OnEnter
behaviour in here. For now, this is beyond the scope of this tu-
torial and our function just looks like this.

FUNCTION CHANGE-STATE (S
PSTATE=S
PAT=0

ENO

our -UPOATELY function will deal with all the actual state be-
haviour and starts like this

FUNCTION -UPDATE 3
EO=ETNCO0Y--ENTTONOSTATE
EL1=ETNC13--ENTTONL STATE
E2=ETNC2 3 --ENTTONZ STATE

PR=(Pi+128 24128 --NOEOUNDS LEFTAND RIGHT

PAT+=1-- INCREAENT STATE CLOCK
We capture what buttons are pressed by the user and also make sure
that when Bob leaves the screen on one side, he will come back in
on the other. Also notice, that we increment the PRT on every
call of _UPOATEL]

Next, we gonna implement the four states, one by one.
For each state we will write what is happening to Bob while he is
in the state, as well as define the conditions under which we are
transitioning into another behaviour.

4y

-- IOLE STATE
IF PSTATE==0 THEN
PSPR=0
IF (EODORELl Y CHANGE-STATECL)
IF (E2 3 CHANGE-STATEC3}
IF CCANFALLC3) CHANGE-STATECE)
END

If Bob is in the Idle state, we set the current sprite to idle.
This is pretty much all that happens here.

The three if-statements check for user input and send Bob into the
walking, jumping or falling state according to our diagram above.

== UALK STATE

IF PSTATE==1 THEN
IF (EDJPOIR=-1
IF (E1JPDOIFR=1
PH+=POIRXAINCPAT .21
PSPR=FLRCPATY2)2

IF (T CEOOREL) CHANGE-STATECO)

IF (E2JCHANGE-STATEC3}

IF CCANFALL 3 CHANGE-STATE (2]
END

The walk state is a little more elaborate. Based on what button
the user pressed, we set the sprite direction. We also increment
or decrement Bobs x position PH. Note that we are using PRAT to
make him move just one pixel inthe first tick of the state and
then two in any following, to create a sense of acceleration.

We also set the current sprite alternating between 0 and 1 based
on the PAT again. See that I also have dividedthe PAT by 2

two to slow down the sprite change to not get too flickery.

This - again - is followed by the transitions into falling, jump
and idle.

The state implementation for falling looks a bit more complicated,
as it has to deal with collisions and intersections.

H5

== FALL STATE
IF PSTATE==2 THEN
PSPR=¢2
IF CcCANFALLC 23 THEN
IF (EDPH-=1--5TEERLEFT
IF (E13PH+=1--5TEER RIGHT
PY+=AINCH.PAT) -- AOUE THE PLAYER
IF (nOT CANFALLC Y)Y PY=FLRCPYYH)%H -- CHECE GROUND CONTACT
ELSE
PY=FLRCPYsB 1% --FIX POSITION UHENUEHIT GROUND
CHANGE-STATE O}
END
END

Inside the fall state, we check for ground contact - which is the
only transition out of here into the idle state.

If we are falling, we allow the player to move left and right to
steer the fall.

Like in the real world, with every tick falling, we accelerate
to fall a little bit faster. This is done by adding the PAT to
the y-position of Bob, that speed is capped at a terminal veloc-
ity of 4.

In case Bob is hitting a ground tile, we need to make sure to fix
his position back on top of a tile.

The mechanism used here is kept rather simple, but works. We just
round the y-position back to the tile under Bob. That way we can-
not get stuck halfway inside the ground

The last state is the JUMP state. It works similar to the FALL
state.
--TUAP STATE
IF PSTATE==3 THEN
PsPR=2
PY-=h-PRT
IF (EO0)PH-=2
IF (E1)Px+=C
IF cNOTE2OR PAT*T 31 CHRNGE_STRATECO
END

Hh

And let’s not forget about this one
END--ENDOF THE UPODATE FURCTION

Now you have a character driven by a simple state machine. The
movement is still a bit jerky and we can’t run, shoot, duck or
slide.

But the biggest benefit of an FSM is, it is easy to add other
states and transitions and also more complicated math to smoothen
out the animation of the character later on.

Happy Coding!

Johannes Richter
http://www.lexaloffle.com/bbs/?tid=2520

PICO-8 Colour Palettes

PICO-8's limited colour palette creates an interesting challenge
when creating art for your games/cartridges. Here are some of my
favourite examples of colour palettes used in PICO-8.

Gabby DaRienzo

AOWES:0

v
 ER i

- s mmnmn

+OR0F CREEACE

“Baron Figs” Unnamed project by- “Across the River”
by zep Christina Antoinette by Benjamin Soule

HAA... ANOTHER
"FATALITY HUHT

“Naughty Painters” “Mortuary Simulator” “Celeste”
by oinariman by gabdar by Noel Berry and
Matt Thorson

