

2

H A C K - r u n - l e a r n

s h a r e - l o v e - p l a y

code-create-draw

m a k e - d e s i g n - B E

think-write-break

participate-retry

CONTENTS
3		 Hello everyone
5		 Game Of Life
14	3d demo
18	Shrinking your code
24	Shodo
32	Water Waves
39	Screensaver
41 PicoJump
48 Color palette

PICO-8 is a fanzine made by and for PICO-8 users.
The title is used with permission from Lexaloffle Games LLP.
For more information: www.pico-8.com
Contact: @arnaud_debock
Cover Illustration by @johanvinet
Special thanks to @nerial, @dan_sanderson and @lexaloffle

3

Hello everyone,
The first Pico-Zine was an incredible, unexpected success.
People from all over the world downloaded the PDF and I have had
to repeatedly flood my local mailing office with hundreds of paper
copies. This is an amazing achievement for the Pico-8 community,
both the newcomers and those who shared their knowledge and code.

In Pico-8, there is no real reason to make a distinction between
the player, the consumer and the maker. If you can play, you can
also make: the source and assets are always a single image you can
share and change as much as you want to.

Through its well-thought-out constraints and limits, Pico-8 breaks
a lot of frontiers, and that is what is amazing about it. It’s a
tool to make games in the largest and most inclusive way possible.

You know what? I have never been very knowledgeable about coding.
I messed around with BASIC when I was younger, but since then code
has lost most of its appeal to me, it became obfuscated, compli-
cated and not-so-logical. From an outsider’s point of view, code
is very similar to magic. It’s an arcane formulae rendering the
most amazing interactions and stories. It’s necessarily encrypt-
ed, protected and out of reach. It’s the sacred language of an
illuminated cast, the developers.

Pico-8 has broken that feeling. For the first time, I have had
this amazing ability to “follow the trail” of code, directly and
instantaneously. For example, I am able to look at a piece of
code made by a well-known developer and change the way a charac-
ter jumps.

Compared to other game engines, Pico-8 has a very specific phi-
losophy: it’s a “Fantasy console” and a walking utopia of making.
This is because of two features : it’s an all-in-one swiss army
knife style of game-making (everything is done within the space
of the engine, no plug-in, no dependencies) and it’s an extremely
shareable format (if you can make you can share). This means that

4

@lucyamorris handheld mockup

Pico-8 is the best tool to build an open community around a shared
knowledge of making for the sake of making.

Thanks for reading !

Arnaud DE BOCK

5

GAME OF LIFE
Mathematician John Conway published a description of his “Game of
Life” in the October 1970 issue of Scientific American, spawning
cellular automata as a field of research. Ever since, Game of Life
has been a staple of recreational mathematics and computation.
Let’s build one for PICO-8!

The Rules of the Game

The Game of Life takes place on a grid of cells, where each cell
is either alive or dead. Given an arrangement of alive cells, the
next generation of cells is computed from simple rules.

1.A cell has eight neighbors on the grid, including the
		 diagonal 	directions.
2.If an alive cell has either two or three alive neighbors, 			
 	 then the cell survives to the next generation. Otherwise, it 	 	
		 becomes a dead cell (due to “starvation” or “overcrowding”).
3.If a dead cell has exactly three alive neighbors, then 			
	 the cell becomes alive in the next generation (“reproduction”).
 Otherwise, it remains a dead cell.

These simple rules produce a wide variety of patterns over
multiple generations.

The rules of the Game of Life.

6

Even simple patterns can have unpredictable behavior. The “r-pen-
tomino” starts with five alive cells, then explodes in all direc-
tions, refusing to stabilize until 1,103 generations have elapsed.

Storing and Drawing the Board

Let’s start with an implementation that’s easy to understand. We
store the current state of the board in a two-dimensional array,
where each element is a cell that is either alive (1) or dead
(0). We store numbers (instead of, say, Booleans) to make it easy
to count a cell’s neighbors by adding up the values.

We need two boards, one to represent the current state and anoth-
er to represent the next generation. We can represent this as two
arrays, and switch which one is considered to be the current board
at the end of each generation.

The “block” pattern is stable from one generation to the next.

The “blinker” pattern oscillates in place over two generations

Some patterns, such as the “block,” are stable, and do not change
from one generation to the next. Some patterns oscillate over a
period, such as the “blinker”. Some patterns repeat themselves
but in a different position, giving the appearance of a moving
organism.

7

The following code sets up the boards, draws a blinker on the
first board, then draws the first board repeatedly:

alive_color = 7

width = 128

height = 128

board_i = 1

boards = {{}, {}}

for y=1,height do

	 boards[1][y] = {}

	 boards[2][y] = {}

	 for x=1,width do

		 boards[1][y][x] = 0

		 boards[2][y][x] = 0

	 end

end

-- draw a blinker

boards[1][60][64] = 1

boards[1][61][64] = 1

boards[1][62][64] = 1

cls()

while true do

	 for y=1,height do

		 for x=1,width do

			 pset(x-1,y-1,boards[board_i][y][x] * alive_color)

		 end

	 end

	 flip()

end

Run this code. A blinker appears, but does not evolve.

8

The while true loop runs forever. It walks over the entire board
and draws a single pixel for each cell at the corresponding lo-
cation on the screen. The flip() function call tells PICO-8 to
copy its screen data to the actual display.
(When using the _update() and _draw() special functions to imple-
ment a game loop, flip() is called automatically after _draw().)

The Next Generation			

To calculate the next generation, we iterate over the cells of the
current board. For each cell, we count the neighbors by reading
from the board array, then set the corresponding cell on the next
board according to the rules.

We have a small problem on the edges of the board. Consider what
happens when we try to read the top neighbor for a cell on the
top edge, like this:

cell = boards[board_i][0][1]

PICO-8 arrays have indexes starting at 1, not 0. In PICO-8, when
you access an array index out of range, the value is nil. Be-
cause boards[board_i][0] is nil , treating that value like an
array by trying to access an element ([1]) is a runtime error.

In this implementation, we’ll treat the cells past the edges as
dead cells. Let’s use a helper function to read cells from the
board that returns 0 for coordinates that are out of range:

function get(bi,x,y)

	 if ((x < 1) or (x > width) or (y < 1) or (y > height)) then

		 return 0

	 end

	 return boards[bi][y][x]

end

At the end of the while true loop, add the following code to
calculate the next generation:

9

	 other_i = (board_i % 2) + 1

	 for y=1,height do

		 for x=1,width do

			 neighbors = (

				 get(board_i,x-1,y-1) +

				 get(board_i,x,y-1) +

				 get(board_i,x+1,y-1) +

				 get(board_i,x-1,y) +

				 get(board_i,x+1,y) +

				 get(board_i,x-1,y+1) +

				 get(board_i,x,y+1) +

				 get(board_i,x+1,y+1))

			 if ((neighbors == 3) or

					 ((boards[board_i][y][x] == 1) and neighbors == 2)) then

				 boards[other_i][y][x] = 1

			 else

				 boards[other_i][y][x] = 0

			 end

		 end

	 end

	 board_i = other_i

board_i is the index of the current board in the boards array,
either 1 or 2. other_i is the index of the other board. The ex-
pression (board_i % 2) + 1 means “take the remainder of dividing
board_i by 2, then add 1,” which does what we want: if board_i
is 1, then other_i is 2, and vice versa.

Run this code. The blinker evolves, oscillating between its two
states.

For a more interesting display, replace the code that draws the
blinker with the following code, then run the program:

-- draw an r pentomino

boards[1][60][64] = 1

boards[1][60][65] = 1

boards[1][61][63] = 1

10

boards[1][61][64] = 1

boards[1][62][64] = 1

The Line Buffer Method

The implementation above stores two boards and copies the active
board to the screen for each iteration. The purpose of the second
board is to keep a record of the neighbors around the current cell
as we go down the board calculating updates. If we only had one
board, changing a cell would interfere with the calculation for
the cells immediately beneath and to the right of it. But we don’t
need to keep the entire previous board to avoid this. Instead, we
could just remember the original state of the previous line and
the current line as we walk down the board. This technique uses
less memory than storing two boards.

We can save more memory and some time by using the screen itself
as storage for the board data. The pset() and pget() functions
can set and read pixels on the screen. Combined with the two-line
buffer, this technique requires no additional storage, and does
not require copying a board array to the screen because updates
are written to the screen directly.

Here is a version that uses the line buffer method and writes di-
rectly to the screen:

alive_color = 7

width = 128

height = 128

prev_i = 1

line_i = 2

lines = {{}, {}}

cls()

-- draw an r pentomino

pset(64,60,alive_color)

11

pset(65,60,alive_color)

pset(63,61,alive_color)

pset(64,61,alive_color)

pset(64,62,alive_color)

function get(x,y)

	 if ((x < 1) or (x > width) or (y < 1) or (y > height)) then

		 return 0

	 end

	 return pget(x,y)

end

function getb(i,x)

	 if ((x < 1) or (x > width)) then

		 return 0

	 end

	 return lines[i][x]

end

while true do

	 flip()

	 -- clear line buffer

	 for x=1,width do

		 lines[1][x] = 0

		 lines[2][x] = 0

	 end

	 for y=1,height do

		 -- swap line buffers

		 prev_i = line_i

		 line_i = (line_i % 2) + 1

		 -- copy current line to buffer

		 for x=1,width do

			 lines[line_i][x] = pget(x,y)	

		 end

12

		 for x=1,width do

			 neighbors = (

				 getb(prev_i,x-1) +

				 getb(prev_i,x) +

				 getb(prev_i,x+1) +

				 getb(line_i,x-1,y) +

				 getb(line_i,x+1,y) +

				 get(x-1,y+1) +

				 get(x,y+1) +

				 get(x+1,y+1))

		 if ((neighbors == alive_color * 3) or

				 ((pget(x,y) == alive_color) and

				 neighbors == alive_color * 2))

		 then

			 pset(x,y,alive_color)

		 else

			 pset(x,y,0)

		 end

		 end

	 end

end

Notice that because we’re reading cell data directly from the
screen, our neighbor count is now expressed as a multiple of
alive_color, which happens to be 7 (white). We could tell the
get() and (new) getb() functions to convert from the color val-
ue returned by pget() to 0 or 1, but that’s CPU time we can
save just by using the multiple.

In my unscientific timing tests, I noticed a savings of about 5
seconds over 50 generations with this new method compared to the
two-board version.

Toroidal Game Boards?

Our implementation considers the cells beyond the edges to be dead
cells. Another option is to have the board “wrap around” as if it
were a torus shape, so the cells on the bottom are adjacent to
the cells on the top, and the left edge is similarly adjacent to

13

the right edge. In the two-board version, this would be easy to
implement with a small modification to the get() function.
Give it a try!

More Information

Wikipedia:
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

The Game of Life wiki:
http://www.conwaylife.com/wiki/Main_Page

My Game of Life for PICO-8, including a built-in map editor:
http://www.lexaloffle.com/bbs/?tid=2158

by dddaaannn (@dan_sanderson)

Try this pattern with a toroidal game board.

14

3d demo
simple 3d demo by @NoahRosamilia

-- Here is the data for the 3d model

-- The first section is the 3d location

-- of each point on the cube, and the

-- second section is the lines that

-- connect the points

cube = {{{-1,-1,-1}, -- points

 {-1,-1,1},

 {1,-1,1},

 {1,-1,-1},

 {-1,1,-1},

 {-1,1,1},

 {1,1,1},

 {1,1,-1},

 {-0.5,-0.5,-0.5}, -- inside

 {-0.5,-0.5,0.5},

 {0.5,-0.5,0.5},

 {0.5,-0.5,-0.5},

 {-0.5,0.5,-0.5},

 {-0.5,0.5,0.5},

 {0.5,0.5,0.5},

 {0.5,0.5,-0.5}},

	 {{1,2}, -- lines

 {2,3},

 {3,4},

 {4,1},

 {5,6},

 {6,7},

 {7,8},

 {8,5},

 {1,5},

 {2,6},

 {3,7},

 {4,8},

 {8+1,8+2}, -- inside

15

 {8+2,8+3},

 {8+3,8+4},

 {8+4,8+1},

 {8+5,8+6},

 {8+6,8+7},

 {8+7,8+8},

 {8+8,8+5},

 {8+1,8+5},

 {8+2,8+6},

 {8+3,8+7},

 {8+4,8+8},

 {1,9},

 {2,10},

 {3,11},

 {4,12},

 {5,13},

 {6,14},

 {7,15},

 {8,16}}}

function _init()

	 cam = {0,0,-2.5} -- Initialise the camera position

	 mult = 64 -- View multiplier

	 a = flr(rnd(3))+1 -- Angle for random rotation

	 t = flr(rnd(50))+25 -- Time until next angle change

end

function _update()

	 -- Handle the inputs

	 if btn(0) then cam[1] -= 0.1 end

	 if btn(1) then cam[1] += 0.1 end

	 if btn(2) then cam[2] += 0.1 end

	 if btn(3) then cam[2] -= 0.1 end

	 if btn(4) then cam[3] -= 0.1 end

	 if btn(5) then cam[3] += 0.1 end

	 t -= 1 -- Decrease time until next angle change

	 if t <= 0 then -- If t is 0 then change the random angle and restart the timer

16

	 t = flr(rnd(50))+25 -- Restart timer

	 a = flr(rnd(3))+1 -- Update angle

	 end

	 cube = rotate_shape(cube,a,0.01) -- Rotate our cube

end

function _draw()

	 cls() -- Clear the screen

	 print("t="..t,0,6*0) -- Print time until angle change

	 print("x="..cam[1],0,6*1) -- Print x, y, and z location of the camera

	 print("y="..cam[2],0,6*2)

	 print("z="..cam[3],0,6*3)

	 draw_shape(cube) -- Draw the cube

end

function draw_shape(s,c)

	 for l in all(s[2]) do -- For each line in the shape...

		 draw_line(s[1][l[1]], s[1][l[2]], c) -- Draw the line

	 end

end

function draw_line(p1,p2,c)

		 x0, y0 = project(p1) -- Get the 2d location of the 3d points...

		 x1, y1 = project(p2)

	 line(x0, y0, x1, y1, c or 11) -- And draw a line between them

end

function draw_point(p,c)

	 x, y = project(p) -- Get the 2d location of the 3d point...

	 pset(x, y, c or 11) -- And draw the point

end

function project(p)

	 x = (p[1]-cam[1])*mult/(p[3]-cam[3]) + 127/2

	 -- Calculate x and center it

	 y = -(p[2]-cam[2])*mult/(p[3]-cam[3]) + 127/2

	 -- Calculate y and center it

	 return x, y -- Return the two points

end

17

function translate_shape(s,t)

 	 ns = {{},s[2]}

	 -- Copy the shape, but zero out the points and keep the lines

	 for p in all(s[1]) do -- For each point in the original shape...

 		 add(ns[1],{p[1]+t[1],p[2]+t[2],p[3]+t[3]})

		 -- Add the displacement to the point and add it to our new shape

 	 end

	 return ns -- Return the new shape

end

function rotate_shape(s,a,r)

 	 ns = {{},s[2]}

	 -- Copy the shape, but zero out the points and keep the lines

	 for p in all(s[1]) do -- For each point in the original shape...

 		 add(ns[1], rotate_point(p,a,r))

		 -- Rotate the point and add it to the new shape

 	 end

 	 return ns -- Return the new shape

end

function rotate_point(p,a,r)

	 -- Figure out which axis we’re rotating on

	 if a==1 then

 		 x,y,z = 3,2,1

 	 elseif a==2 then

 		 x,y,z = 1,3,2

	 elseif a==3 then

		 x,y,z = 1,2,3

	 end

	 _x = cos(r)*(p[x]) - sin(r) * (p[y])

	 -- Calculate the new x location

 	 _y = sin(r)*(p[x]) + cos(r) * (p[y])

	 -- Calculate the new y location

	 np = {}

	 -- Make new point and assign the new x and y to the correct axes

 	 np[x] = _x

	 np[y] = _y

	 np[z] = p[z]

	 return np -- Return new point

end

18

SHRINKING YOUR CODE
Here are some tips to help you squeeze every last byte out of
pico-8. Not only will this allow you to fit more code in your
game, but it will reduce the amount of scrolling you have to do
in the pico-8 editor.

a word on token-counting

Starting with version 0.1.1, pico-8 uses a token-counting system
rather than simply counting characters. This allows developers to
fit more code on a cartridge, but it’s also a little bit compli-
cated. Here’s how it works.

First, pico-8 counts tokens. Variables, functions, and operators
(=, +, -, [,], (,) , etc.) are one token each. Strings are
also one token. Comments are ignored. Each cartridge has room
for 8192 tokens.

There is also a limit on the number of characters (32768), but
tokens are usually the bottleneck.

> Note: You don’t have to use the default pico-8 editor. You can
load your `.p8` file in any text editor you like!

use pico-8’s built-in shorthands

if

	 -- 7 tokens, 31 characters

	 if value then

		 do_thing()

	 end

	

	 -- 7 tokens, 20 characters

	 if(value) do_thing()

	 -- savings: 0 tokens, 11 characters

19

foreach

	 -- 13 tokens, 43 characters

	 for e in all(enemies) do

		 take_damage(e)

	 end

	

	 -- 6 tokens, 29 characters

	 foreach(enemies, take_damage)

	

	 -- savings: 7 tokens, 14 characters

operator

	 -- 6 tokens, 19 characters

	 size = count(table)

	

	 -- 4 tokens, 13 characters

	 size = #table

	

	 -- savings: 2 tokens, 6 characters

math

	 -- 5 tokens, 9 characters

	 a = a + 3

	

	 -- 3 tokens, 6 characters

	 a += 3

	

	 -- savings: 2 tokens, 3 characters

use single-character variable and function names

You can reduce your character count by using shorter variable
names, at the cost of readability. Note that variable names take
up the same number of tokens regardless of length.

20

	 -- 3 tokens, 20 characters

	 longvariablename = 3

	

	 -- 3 tokens, 5 characters

	 a = 3

	

	 -- savings: 0 tokens, 15 characters

If you run out of letters, you can also use an underscore (_) as
a single-character name. After that, you’ll have to start using
two characters per name.

reduce spaces

Although it looks pretty, you don’t need to include spaces be-
tween operators in Lua.

	 -- 3 tokens, 5 characters

	 a = 3

	

	 -- 3 tokens, 3 characters

	 a=3

	

	 -- savings: 0 tokens, 2 characters

Similarly, you can save on characters (at the cost of readability)
by removing indentations.

Since grouping symbols also count as operators in Lua, spaces be-
fore and after grouping symbols can be omitted.
For example, you don’t need spaces after the parentheses in a
pico-8 shorthand if:

	 -- 7 tokens, 20 characters

	 if(value) do_thing()

	 -- 7 tokens, 19 characters

	 if(value)do_thing()

	 -- savings: 0 tokens, 1 character

21

remove comments

Comments don’t use up any tokens, but they still count as charac-
ters! Remove them to gain some space.

set constants

If there’s a particular value or function you find yourself using
a lot, you can assign it to a single-character variable and save
characters every time you refer to it.

Initially, this will cost you an additional 3 tokens, but you will
save characters over the course of your program.

	 -- costs 3 tokens, but saves 7 characters every time rectfill is used

	 r = rectfill

	

	 t = true

	 f = false

	 -- etc.

use multiple returns

You can return more than 1 value from a function by separating
them by commas.

	 function md(a, b)

		 return a * b, a / b

	 end

In certain situations, this can allow you to call one function
instead of two. You can also choose how many of these values you
want to use.
	 -- take both values

	 a, b = md(8, 4)

	

	 -- take only one value

	 a = md(8, 4)

22

If you’re calling a function with multiple returns as an argument
to another function (or as part of a `return` statement), it will
automatically expand to use all its return values. You can prevent
this by surrounding it with parentheses.

-- calls f with 3 arguments: the 2 values returned by md, and the constant 3

	 f(md(8, 4), 3)

	

-- calls f with 2 arguments: the first value returned by md, and the constant 3

	 f((md(8, 4)), 3)

don’t use parentheses for strings or tables

If you’re passing a string or table to a function, the parentheses
are optional.

	 -- 4 tokens, 15 characters

	 print(“string”)

	

	 -- 2 tokens, 13 characters

	 print”string”

	

	 -- savings: 2 tokens, 2 characters

Note that this only works if the string or table is the only
argument to the function.

take advantage of logic (and/or)

and returns the left argument if it is false (or nil). Other-
wise, it returns the right argument.

or returns the left argument if it is not false (or nil).
Otherwise, it returns the right argument.

23

You can use these in conjunction to create a ternary operator.
	
	 -- only open lock if multiple conditions are satisfied

	 lock_open = has_key and collide(player, chest)

	 -- use default value for variable

	 name = player_name or “Joe”

	 -- will print “dead” if dead, “alive” otherwise

	 print(dead and “dead” or “alive”)

	

	 -- sets speed

	 speed = (falling and -1 or 1) * acceleration

	

	 -- you can do it for functions too!

	 (frozen and thaw or move)()

	

	 -- don’t forget about not!

	 stand_still = not moving

- Jonathan Stoler
@jonstoler

24

SHODO
@oinariman

I introduce a painting tool that I made with PICO-8,
Shodo(書道). This is a demake of the 80’s Macintosh software, Mac
書道(MacCalligraphy in U.S.) that simulates Japanese traditional
ink-dipped brush calligraphy. Since you cannot use a mouse with
PICO-8 when it runs a program, it may appear to be ridiculous to
imitate brush drawings using only D-pad and AB buttons.
However, it can draw brush-like lines unexpectedly well.

In this article, I describe how to implement the brushlike line
drawings, and the memory processing needed to make a painting
tool.

The brush movements

To draw lines that dynamically change their thickness, I added
inertia to the brush. When you press an arrow key, the brush will
move in the direction. When you release the key, the brush will
gradually slow its speed, and then will stop.
Pressing the Z button will cause the line to grow thick.

25

The line will decrease its thickness after you release the button.
Operating these controls at the same time will allows you to draw
brushlike lines.

The memory processing

Painting tool must save its drawing data somewhere in the memory.
Because the PICO-8’s screen resolution is 128 x 128, we need to
find space to store 128 x 128 = 16,384 pixels. Although you may
save this data in a Lua array, this is not recommended idea.
I think that it will cause complications and run slowly. So, I use
memset() and memcpy() . These PICO-8 API functions allow you to
access continuous memories immediately.

The space to save your picture

According to PICO-8.txt, memset() and memcpy() may only access the
32k memory area called “base ram.” The list below from PICO-8.txt
describes the layout of the base ram.

26

		 0x0 gfx

		 0x1000 gfx2/map2 (shared)

		 0x2000 map

		 0x3000 gfx_props

		 0x3100 song

		 0x3200 sfx

		 0x4300 userdefined

		 0x5f00 draw state [,cart data] (192 bytes incl. unused)

		 0x5fc0 (reserved for persistent data in development)

		 0x6000 screen (8k)

The area that begins with 0x4300 is the “user-defined”
area. That is what programmers can use freely. The area occupies
896 bytes (0x4300 to 0x5eff). Because the PICO-8’s color format is
2 pixels per byte, we need 16,384 / 2 = 8,192 bytes (4 kilobytes)
of memory area to save all of the pixels on the screen.
The userdefined area is not sufficient at all. So, I use the area
from 0x1000 to 0x2fff. This area is basically for sprites and maps
copied from a cart. I don’t need it because Shodo uses just five
sprites, and the first gfx area (from 0x0 to 0x0fff) has enough
memory to store them.

The sprites used in Shodo

27

The screen updating
I named the 4k area from 0x1000 “paper area.” PICO-8 displays
the pixel data in the “screen area” (beginning at 0x6000) to the
screen. So, in order to display the userdrawn picture, we should
just copy the data that is stored in the paper area to the screen
area.
The list below is the procedure to update the screen in
the _draw() function which is called every 1/30 seconds.
1. Copy whole data in the paper area to the screen area (using
memcpy())
2. Add the changes made by the user to the screen
3. Copy all of the data in the screen area to the paper area (us-
ing memcpy())
4. Draw an image of a brush on the screen

In order to keep the only user-drawn content in the paper area, it
is important to follow these instructions in the order in which
they are listed.
The entire program appears below. It’s not very long or compli-
cated. I didn’t implement any undo/redo functionality or eraser
tool to respect the Japanese shodo tradition.
However, it might be fun to add these things or a color palette.

Ryosuke Mihara

28

-- shodo 1.0.1

-- by ryosuke mihara

-- brush attributes

--

-- x 		 : x-coordinate

-- y 		 : y-coordinate

-- vx	 	 : x component of velocity

-- vy 		 : y component of velocity

-- down : when true, the brush is put down to the paper

-- r			 : brush thickness

brush = {}

brush.x = 64

brush.y = 64

brush.vx = 0

brush.vy = 0

brush.down = false

brush.r = 0

-- brush constants

--

-- brush_acc : acceleration

-- brush_brake : brake value

-- brush_mul : speed magnification when the brush is down

-- brush_rmax : maximum thickness

-- brush_racc : accerelation of thickness changes

brush_acc = 0.175

brush_brake =- 0.1

brush_mul = 0.65

brush_rmax = 3

brush_racc = 0.2

-- paper attributes and constants

paper = {}

paper.y = 0

paper.vy = 0

paper_init_vy = 5

paper_acc = 0.3

29

function replace_paper ()

	 if paper.y > 0 then

		 rectfill (0 , 0 , 127 , 127 , 7)

		 local y = flr (paper.y)

		 memcpy (0 x6000, 0 x1000 + y * 64 , 64 * (128 - y))

		 line (0 , 127 - y - 1 , 127 , 127 - y - 1 , 6)

		 paper.y += paper.vy

		 paper.vy += paper_acc

		 if paper.y >= 127 then

			 memset (0 x1000, 0 x0077, 128 * 64)

			 paper.y = 0

		 end

	 end

end

function draw_brush ()

	 if brush.down then

		 spr (3 ,brush.x,brush.y - 23 , 1 , 3)

		 spr (2 ,brush.x,brush.y)

	 else

		 spr (3 ,brush.x,brush.y - 24 , 1 , 3)

		 spr (1 ,brush.x,brush.y)

	 end

end

function draw_line ()

	 if brush.r > 0 then

		 circfill (brush.x + 4 ,brush.y + 6 ,brush.r, 0)

	 end

end

function move_brush ()

	 -- when the brush is put down to the paper, slow its speed

	 local mul = 1

	 if brush.down then

		 mul = brush_mul

	 end

30

	 brush.x += brush.vx * mul

	 brush.y += brush.vy * mul

	 -- brake the brush

	 -- stop the brush when its x/y component of velocity is inverted

	 local prev

	 if brush.vx ~= 0 then

		 prev = brush.vx

		 brush.vx += brush.vx * brush_brake

		 if prev * brush.vx < 0 then brush.vx = 0 end

	 end

	 if brush.vy ~= 0 then

		 prev = brush.vy

		 brush.vy += brush.vy * brush_brake

		 if prev * brush.vy < 0 then brush.vy = 0 end

	 end

	 -- stop the brush when it reaches the edge of the screen

	 if brush.x <- 4 then brush.x =- 4 end

	 if brush.x > 123 then brush.x = 123 end

	 if brush.y <- 6 then brush.y =- 6 end

	 if brush.y > 123 then brush.y = 123 end

end

function update_line_width ()

	 if brush.down then

		 brush.r += brush_racc

	 else

		 brush.r -= brush_racc

	 end

	 if brush.r < 0 then brush.r = 0 end

	 if brush.r > brush_rmax then brush.r = brush_rmax end

end

function input ()

	 brush.down = btn (4)

	 if btn (0) then brush.vx -= brush_acc end

	 if btn (1) then brush.vx += brush_acc end

31

	 if btn (2) then brush.vy -= brush_acc end

	 if btn (3) then brush.vy += brush_acc end

	 if paper.y == 0 and btnp (5) then

		 sfx (0)

		 paper.y = 1

		 paper.vy = paper_init_vy

	 end

end

function _init ()

	 memset (0 x1000, 0 x0077, 128 * 64)

end

function _update ()

	 input ()

	 move_brush ()

	 update_line_width ()

end

function _draw ()

	 if paper.y > 0 then

		 replace_paper ()

	 else

		 -- copy whole pixels in the paper to the screen

		 memcpy (0 x6000, 0 x1000, 128 * 64)

		 -- add changes made by the user to the screen

		 draw_line ()

		 -- copy whole pixels in the screen to the paper

		 memcpy (0 x1000, 0 x6000, 128 * 64)

	 end

	 draw_brush ()

end

32

Water Waves
Add some visual flair to your game with a wave distortion.

1. Assumptions
This tutorial makes use of a sprite flag to know where to warp the
screen pixels. It assumes the whole available area of the tile-
map is draw to the screen at the 0,0 coordinate. If you draw your
tilemaps in a different manner, you will need to adjust the code
accordingly.

Three variables are required to determine the warp effect, t is
for time, which is updated by 1 each _update(), and cam_x & cam_y
which are used to offset the camera position in the _draw() func-
tion.

2. Tiles
Draw some sprites to use in your game, I drew a light blue square,
a solid block and a ball. The blue square will be the tile that
waves apply to; the lines and dots in the blue square will help
accentuate the wave’s ripple. Set the 5th (light blue) sprite flag
to be true for each sprite that you want to ripple (sprite flags
are set with the little circles below the color palette).

Draw a tilemap which includes areas of the ripple tiles, as well
as non-wavy tiles.

33

3. The Warp Function
This is the meat of our exercise, I’ll show the whole function,
then explain line by line what is going on. You should be able to
add this to existing games, as you can add this to your _draw()
function.

function warp_w()

	 local wave_speed=0.1667

	 local displace_dist=0.5

	 for y=max(0,flr(cam_y/8)),min(flr(cam_y/8)+16,16*2) do

 		 for x=max(0,flr(cam_x/8)),min(flr(cam_x/8)+16,16*8) do

			 local val=mget(x,y)

 			 if (fget(val,4)) then

				 for y1=0,7 do

				 local line={0,0,0,0,0,0,0,0,0}

				 for x1=0,8 do

 				 line[x1]=pget(x*8-flr(cam_x)+x1,y*8-flr(cam_y)+y1)

 			 end

				 local newx=sin((t*wave_speed+y1)/8)*displace_dist

 			 for x1=0,8 do

 				 pset(x*8+x1+newx,y*8+y1,line[x1])

 			 end

 			 end

34

		 end

	 end

 end

 end

What does all this code do then? Let’s start at the top.

 	 local wave_speed=0.1667

	 local displace_dist=0.5

Here we define two variables which affect the displacement effect.
wave_speed affects how fast the ripples go, displace_dist changes
how far the pixels are moved in either direction. The value of
0.5 allows a pixel to be moved from -0.5 to 0.5, a max distance
of 1 total pixel. Change these numbers to see the different ef-
fects they can have, but I would suggest keeping the numbers quite
small.

 for y=max(0,flr(cam_y/8)),min(flr(cam_y/8)+16,16*2) do

 		 for x=max(0,flr(cam_x/8)),min(flr(cam_x/8)+16,16*8) do

The next two lines begin loops, starting at the current camera
position (or zero if negative), and end a screen later. Since we
are using tilemaps (remember the sprite flag?) to mark the effect,
we only need to check a maximum of 16 tiles in either direction
(one tile is an 8 pixel image, screen res of 128, 128/8=16)

	 local val=mget(x,y)

This line gets the number of the sprite used at the position of
x,y which we will use in the next line

	 if (fget(val,4)) then

where we check if the sprite has the light blue flag selected. If
it does, then we will continue

	 for y1=0,7 do

		 local line={0,0,0,0,0,0,0,0,0}

35

The first line starts a loop where we are going to iterate through
each vertical slice of our 8x8 tile. The second line creates a
collection of values for the pixels we are going to move.

	 for x1=0,8 do

		 line[x1]=pget(x*8-flr(cam_x)+x1,y*8-flr(cam_y)+y1)

 end

These lines loop through the horizontal pixels, recording the
not-yet-manipulated values to the line collection. Notice that
we subtract the value of cam_x (or y) from our current x (or y)
values. This is because we are grabbing the current pixels from
the frame buffer and need the values to be within 0-127. Our code
will affect anything already drawn to the screen, and it will not
affect anything we draw after applying this effect.

	 local newx=sin((t*wave_speed+y1)/8)*displace_dist

Now we need a new x offset for our line of pixels. We use a wave
formula to smoothly adjust our offset back and forth as time (t)
increases. The wave formula is: value = sin(angle) * range. Our
formula has a slight adjustment in the angle, as we add y1 and
then divide by 8. The reason for that is to make a smooth tran-
sition between each of our 8 vertical pixels, each one offset
by 1/8th the angle of the previous pixel. This also makes it so
multiple wavy tiles above and below each other will all appear to
seamlessly match motion.

	 for x1=0,8 do

 		 pset(x*8+x1+newx,y*8+y1,line[x1])

	 end

This last loop then sets the screen pixels to the values at the
newx position.

36

4. Other code
As I mentioned earlier, we need to have some variables in our game
for this to work. At the top of your code, outside of any func-
tions, add these lines:

 	 t=0

 	 cam_x=0

 	 cam_y=0

These will initialize our variables, and start each at default
values of zero.

At the very end of our _update() function, we need to be sure that
time is increasing. If you started a project from an example like
Jelpi, this may already be in there.

 function _update()

	 t+=1

 -- all your update code goes here

 -- example code, moves camera

 if (btn(0,0)) cam_x-=0.4

	 if (btn(1,0)) cam_x+=0.4

	 if (btn(2,0)) cam_y-=0.4

	 if (btn(3,0)) cam_y+=0.4

The last bit of code is that our _draw() function needs to call
warp_w() at the appropriate time. Most likely, you want to call
it after all tilemaps and sprites have been drawn, but before any
HUD elements, such as scores or lives have been drawn. Below is
an example _draw() function, yours will most likely have more.

function _draw()

	 -- clear screen

	 rectfill (0,0,127,127,0)

	
	 -- move camera

	 camera(cam_x,cam_y)

	 -- draw whole tilemap

37

	 map (0,0,0,0,16*8,16*2,0)

	 -- draw ball, wave position up/down

	 local y_wave=(cam_y+8*8)+sin(t*0.0025)*32

	 spr(3,cam_x+8*8,y_wave,1,1)

	

	 -- warp

	 warp_w()

	

	 -- reset camera

	 camera (0,0)

	

	 -- draw hud above warp, it will not distort

	 print(“score: 000”,8,8,7)

end

I added some code to this which will help show how the affect
works.

	 -- draw objects

 	 local y_wave=(cam_y+8*8)+sin(t*0.0025)*32

 	 spr(3,cam_x+8*8,y_wave,1,1)

These lines make use of the wave function again, this time as a
way of moving our object up and down. spr() is the drawing call
for drawing a sprite (#3 in this case) to the screen. Since it is
drawn before calling warp_w(), the ripple effect will apply to it
when over one of the marked tiles.

	 -- draw hud above warp, it will not distort

	 print(“score: 000”,8,8,7)

This line adds some text to the screen, a score counter that does
nothing at the moment. It will not be affected when placed over
a marked tile, since its drawn after the ripple effect occurs.

38

5. Taking it further
You can use this effect to show different needs, such as water,
lava, heat, gravity or whatever you would like. The effect looks
really great when you add vertical elements to your drawings such
as seaweed or pipes. Try changing the code so the ripple effect is
vertical instead of horizontal, or maybe change the speed based
on objects inside the tile area.

I’d love to see what cool things you make with this code. Send me
some gif’s on twitter to @mattfox12. Happy coding!

Matthew Klundt

39

Screensaver
point1 = {}

point1.x = 64

point1.y = 64

point1.a = 90

point1.s = 2

point2 = {}

point2.x = 64

point2.y = 64

point2.a = 270

point2.s = 2

point3 = {}

point3.x = 64

point3.y = 64

point3.a = 180

point3.s = 2

point4 = {}

point4.x = 64

point4.y = 64

point4.a = 0

point4.s = 2

point5 = {}

point5.x = 64

point5.y = 64

point5.a = 0

point5.s = 2

function _update()

	 point1 = animate(point1)

	 point2 = animate(point2)

	 point3 = animate(point3)

	 point4 = animate(point4)

	 point5 = animate(point5)

end

40

function animate(point)

	 angleoffset = ((point.a) % 360)/360

	 point.x = point.x + point.s * cos(angleoffset)

	 point.y = point.y + point.s * sin(angleoffset)

	 --collision detection

	 if point.x > 128 then

		 point.a = 135 + flr(rnd(90))

	 end

	 if point.x < 0 then

		 point.a = 45 - flr(rnd(90))

	 end

	 if point.y > 128 then

	 point.a = 45 - flr(rnd(90))

	 end

	 if point.y < 0 then

		 point.a = 225 + flr(rnd(90))

	 end

	 return point

end

function _draw()

	 rectfill(0,0,127,127,0)

	 --main prism

	 line(point1.x,point1.y,point3.x,point3.y,8)

	 line(point2.x,point2.y,point4.x,point4.y,8)

	 line(point3.x,point3.y,point5.x,point5.y,8)

	 line(point4.x,point4.y,point1.x,point1.y,8)

	 line(point5.x,point5.y,point2.x,point2.y,8)

	 --red lines

	 line(point1.x,point1.y,point2.x,point2.y,7)

	 line(point2.x,point2.y,point3.x,point3.y,7)

	 line(point3.x,point3.y,point4.x,point4.y,7)

	 line(point4.x,point4.y,point5.x,point5.y,7)

	 line(point5.x,point5.y,point1.x,point1.y,7)

end

	 Devine Lu Linvega
@aliceffekt

41

PicoJump
Platformers have appeal. They are quite literally the pixel-mani-
festation of the Hero’s Journey and have shaped the gaming land-
scape over for decades. I grew up with an Amiga 500 and games like
Turrican, Prince of Persia and The Shadow of the Beast! Well, and
let’s not forget about Sonic and Super Mario, right?

This tutorial assumes you know the basics of PICO-8 programming,
how to draw sprites, the ​_INIT(), _UPDATE() and ​ ​_DRAW() func-
tions and how to write simple programs with them.​	

At first it is always good to think about what we want the charac-
ter (I think I will name him Tutorial-Bob) in our platformer game
will be able to do. For the time being, let’s start with walking,
jumping, falling and being idle. To model this behaviour, we will
make use of a mechanism generally used in computing and engineer-
ing. We will build a finite state machine or in short FSM. And in
our case it looks like this: the boxes represent the states out
player can be in. The arrows between them are the transitions,
which - when a certain condition is met - will point to the next
state Bob will be in.

42

For example, if Bob walks along and suddenly there is no more
ground, he will start falling. Once he hits ground again, he will
stop falling and be idle. Or if the user presses the left or right
arrow, Bob will start walking. When we have made up our state ma-
chine, it is very straightforward to start writing code.

Before we begin, here some sprites and a little world in prepa-
ration for the game. Any map sprite that we want to use as a
ground Bob can stand on, is tagged with the first sprite flag
being set to True​. This way we can​ easily determine with what to
collide using FGET()​ on the map tile.​	

Lets start writing the program. Here the player initialization and
drawing routines for the game.

43

function _init()

	 px=20 -- x-position

	 py=64 -- y-position

	 pstate=0 -- current player state

	 pspr=0 -- current sprite

	 pdir=0 -- current direction

	 pat=0 -- player state timer

end

function _draw()

	 -- draw the world

 	 map(0,0,0,0,16,16)

 	 -- draw the player, we use dir to mirror sprites

	 spr(pspr,px,py,1,1,pdir==-1)

end

In the ​_init() method we are setting a whole lot of variables
to keep track of Bob.​	
We have PX and PY for the world position in pixel, ​PDIR is for
the direction we are looking at, we have ​	 ​PSPR to​ store the
current sprite and a PSTATE for the active state itself.​	
Look at the state machine graph again. See the numbers in the
corner of the boxes? This is the identifier for each state which
will be assigned to ​PSTATE.​
We also hold a variable called PAT​, which is the state counter
or sometimes called state clock. Every time we​	 run ​_update()

that counter will increase by one. On every change of state, the
counter will be reset to zero.​	This way we always know how long
bob has been in his current state and use that information for
animation and movement calculations.

Before we write the state machine behaviour, we need one more
helper function to tell us, if Bob is hovering in the air (​

True)​ or standing on the ground (​False).​
Be aware that ​MGET() wants map coordinates, so we have to di-
vide the player position by 8.​	

44

function canfall()

 	 -- get the map tile under the player

	 v=mget(flr((px+4)/8),flr((py+8)/8))

	 -- see if it’s flagged as wall

	 return not fget(v,0)

end

Now we get to the state machine part.
Each time we move from one state to another, we have to set the
PSTATE ​ variable to the new state id and also​	 reset the PAT ​
counter. Let’s do this in a dedicated function. Later on, when
things get more complex, we could​ also implement state OnEnter​ ​
behaviour in here. For now, this is beyond the scope of this tu-
torial and our function just looks like this.

function change_state(s)

	 pstate=s

	 pat=0

end

Our ​_update() function will deal with all the actual state be-
haviour and starts like this​	

function _update()

	 b0=btn(0) -- button0 state

	 b1=btn(1) -- button1 state

	 b2=btn(2) -- button2 state

	 px=(px+128)%128 -- no bounds left and right

	 pat+=1 -- increment state clock
We capture what buttons are pressed by the user and also make sure
that when Bob leaves the screen on one side, he will come back in
on the other. Also notice, that we increment the PAT ​on every
call of _update()

 Next, we gonna implement the four states, one by one.
For each state we will write what is happening to Bob while he is
in the state, as well as define the conditions under which we are
transitioning into another behaviour.

45

	 -- idle state

	 if pstate==0 then

		 pspr=0

		 if (b0 or b1) change_state(1)

		 if (b2) change_state(3)

		 if (canfall()) change_state(2)

	 end

If Bob is in the Idle state, we set the current sprite to idle.
This is pretty much all that happens here.
The three if-statements check for user input and send Bob into the
walking, jumping or falling state according to our diagram above.

	 -- walk state

	 if pstate==1 then

		 if (b0) pdir=-1

		 if (b1) pdir=1

		 px+=pdir*min(pat,2)

 		 pspr=flr(pat/2)%2

		 if (not (b0 or b1)) change_state(0)

		 if (b2) change_state(3)

		 if (canfall()) change_state(2)

	 end

The walk state is a little more elaborate. Based on what button
the user pressed, we set the sprite direction. We also increment
or decrement Bobs x position PX​. Note that we are using ​	PAT ​ to
make him move just one pixel in​	the first tick of the state and
then two in any following, to create a sense of acceleration.
We also set the current sprite alternating between 0 and 1 based
on the PAT ​ again. See that I also have divided​	the PAT ​ by 2
two to slow down the sprite change to not get too flickery.​	
This - again - is followed by the transitions into falling, jump
and idle.

The state implementation for falling looks a bit more complicated,
as it has to deal with collisions and intersections.

46

	 -- fall state

	 if pstate==2 then

		 pspr=2

		 if (canfall()) then

			 if (b0) px-=1 -- steer left

			 if (b1) px+=1 -- steer right

			 py+=min(4,pat) -- move the player

			 if (not canfall()) py=flr(py/8)*8 -- check ground contact

		 else

			 py=flr(py/8)*8 -- fix position when we hit ground

			 change_state(0)

		 end

	 end

Inside the fall state, we check for ground contact - which is the
only transition out of here into the idle state.
If we are falling, we allow the player to move left and right to
steer the fall.
Like in the real world, with every tick falling, we accelerate
to fall a little bit faster. This is done by adding the PAT to
the y-position of Bob, that speed is capped at a terminal veloc-
ity of 4.​	
In case Bob is hitting a ground tile, we need to make sure to fix
his position back on top of a tile.
The mechanism used here is kept rather simple, but works. We just
round the y-position back to the tile under Bob. That way we can-
not get stuck halfway inside the ground

The last state is the JUMP state. It works similar to the FALL
state.
 	 -- jump state

	 if pstate==3 then

		 pspr=2

		 py-=6-pat

		 if (b0) px-=2

		 if (b1) px+=2

		 if (not b2 or pat>7) change_state(0)

	 end

47

And let’s not forget about this one

end -- end of the update function

Now you have a character driven by a simple state machine. The
movement is still a bit jerky and we can’t run, shoot, duck or
slide.
But the biggest benefit of an FSM is, it is easy to add other
states and transitions and also more complicated math to smoothen
out the animation of the character later on.

Happy Coding!

Johannes Richter
http://www.lexaloffle.com/bbs/?tid=2520

PICO-8 Colour Palettes
PICO-8’s limited colour palette creates an interesting challenge
when creating art for your games/cartridges. Here are some of my
favourite examples of colour palettes used in PICO-8.

Gabby DaRienzo

“Baron Figs”
by zep

“Naughty Painters”
by oinariman

Unnamed project by-
Christina Antoinette

“Mortuary Simulator”
by gabdar

“Across the River”
by Benjamin Soule

“Celeste”
by Noel Berry and
Matt Thorson

