

2

H A C K - r u n - l e a r n

s h a r e - l o v e - p l a y

code-create-draw

m a k e - d e s i g n - B E

think-write-break

participate-retry

CONTENTS

3		 Minimalism Pays Double
5		 Notes on Creating Succer
12	Dom8verse
18	Minigame Collection
30	Blasteroids
48	Sumo Pico
51 Cheat Sheet

PICO-8 is a fanzine made by and for PICO-8 users.
The title is used with permission from Lexaloffle Games LLP.
For more information: www.pico-8.com
Contact: @arnaud_debock
Cover illustration by @JUSTIN_CYR
Special thanks to @dan_sanderson and @lexaloffle

3

MINIMALISM PAYS DOUBLE
What do you love most about PICO-8?

For me, it’s the constraints. A blank canvas can be paralyzing.
It’s easy to feel the love with which PICO-8 limits you. When we
“play” this wonderful little console, we hope to pass some of that
love over to our audience. It’s counter-intuitive, but it seems to
me that enabling creativity is as much about setting smart con-
straints as it is about breaking down barriers.

When we started my local multiplayer project TowerFall, I chose a
lot of constraints to help focus our work. For example, I decided
we would work with Game Boy Advance inputs (A, B, L, R, and d-pad)
and resolution (320x240). In those early days I didn’t know what
“the point” of TowerFall was. I was asking myself a lot of big
questions, like “Why do I love local multiplayer, and how do I
explore those concepts with my game’s design?” Digging like this
through your prototype and yourself is tough work. Constraints
force you to confront tough decisions about what deserves to live
in the limited design space you have.

Some amount of enforced simplicity can help us create more effec-
tively, but more importantly this approach bleeds into the play-
er’s experience. In a local multiplayer game you often want people
to feel comfortable jumping in with very little ceremony or intro-
duction - worse yet, with spectators! - so minimalism pays double.
Our goal with TowerFall became facilitating creative play, giving
players the confidence to experiment with very little knowledge.

If you’re using PICO-8, you probably know this. You must already

4

love the colorful fence that circles its playground. I just want
to confirm that the minimal design philosophy of the console ex-
tends beautifully to local multiplayer design, perhaps more than
most genres.

Have fun (:

-Matt
www.mattmakesgames.com
@MattThorson

@JctWood

5

NOTES ON CREATING SUCCER
Succer (http://www.lexaloffle.com/bbs/?tid=2614) is an old-school
soccer game inspired by Kick-off and Sensible Soccer.

Making a local multiplayer sport game
How to decide which player is human controlled? Simple : take the
one closer to the ball. A better method may be to take the ball’s
velocity into account.
sidenote: measuring distance in a fixed float 16 bits format can
be quite painful... My solution : use Manhattan distance to avoid
the power and sqrt when precision is not necessary... It was sug-
gested to me that I could use smaller units when doing such com-
putations, but I’m not that smart :D

function manhattan(a,b)

	 return abs(b.x-a.x)+abs(b.y-a.y)

end

It may be a good idea to be able to locate the controlled play-
er when he is outside the screen. In an earlier version of the
game when there was no AI to move uncontrolled players, that was
still possible. At that time, I used an indicator drawn on the
border of the screen in the direction of the controlled player.
The size of the indicator was relative to the distance to the
border of the screen: the closer the bigger.

To avoid having to draw too many sprites, use pal to change the
player's jersey colors.

Controls
I really wanted the game to feel like Kick-Off and Sensible
Soccer. That’s the reason the game only uses one button for all
actions.
I have fond memories of me and my friends running around the
ball trying to control it without much success. So at first, I
made the ball not sticky at all. The only way to control it was
pushing it (or kicking it.)

6

But as I let people play early versions of the game, the feed-
back was clear: Control was a nightmare.

So, I spent a little time playing the original Sensible Soccer
to reflect on the control scheme, and surprisingly as I redis-
covered the game after so many years, controls were much more
friendly than I remembered!
So, I added ball stickiness by lerping the ball position to be
in front of the player that controls it by a small amount (20%).
After that change, the game was much more enjoyable. Even the AI
became less stupid as it was able to recover a ball running to
the touch when it would have just pushed it to the exit before.

AI
Even in two player mode, a soccer game needs AI to control all
the other little footballers around!

The AI is made of simple rules:
The closest player to the ball is the main player.
The main player AI is:
1. Try to get the ball.
2. If he has the ball, try to shoot to the goal.

7

3. If he is too far away, try to pass the ball to a teammate.
4. If he can't pass, just dribble to the goal.

This high level behavior is implemented using simpler functions
like run_to which makes a player run to a specified position.
This function acts like a gamepad input adding to the velocity
of the player in the wanted direction until it reaches the maxi-
mum speed value.
It is called each frame until it returns true when the player
is within a minimum distance to the desired location.

The other ones are just supporting, trying to get to a helpful
position. There are two formations in the game that define the
wanted location of each player in one team. The first formation
contains the positions to use during the kick-off. These are
offset for the team with the ball in order to align the players
with the middle of the field.
The other formation contains the positions the players try to
reach relative to the ball. Those positions are clamped to avoid
players wandering outside the field.

There are special cases for the other phases of the game such
as playing a throw-ins, goal-kicks or corners. The positions are
offset and the point of interest moved from the ball to ensure
a better placement (in the center of the field for a goal-kick,
near the goal for a corner and halfway between the position of a
throw-in and the median vertical line.

Finite-State Machine (FSM)
(see picozine 2 for an introduction or just google it!)
FSM are everywhere! The game state management uses them. They're
put to use to control the match phases.
The little men running all over the place use them.

Here is the game FSM :
Boxes are the states, arrows are the transitions between states.
Each of this states defines an Init and Update function. The Init
function is called whenever the game changes state to prepare the
state execution.

8

The update function is called each frame to apply the state’s
behavior. For example in the “Goal Marked” state, the Init func-
tion resets a timer and the Update function handles the timer
increment and checks if its limit has been reached in which case
it transitions to the “To Kick Off” state.

Note: Throw-in, corner kick and goal kick share the same state.
It’s not the cleanest way to handle those situations, but they
are similar enough to re-use the same state and it saves a lot
of tokens.
The player can be in these states depending if it is a goal
keeper or field player : Only the down state is common to both.
A player state is made of 4 functions:
- A Start function called whenever a player enters this state to
setup things like the timer for example.
- An AI function is used to specify what the behavior of the
player will be when considered the main player.
- An Input function is used to specify which player should re-
spond to the player's input (when considered the main player).
- All the other players use a more generic behavior which just
tries to give them an interesting position and takes into ac-
count the game state.

The Corner state and the GoalKick state are exactly the same.
But they’re kept separate as they are used to define what kind

9

of ball exit has happened. I don’t think I could have saved a
lot of tokens by not duplicating these states as the logic in-
volved surely would have added more tokens and the duplicated
parts are already defined in functions, so there is not so much
duplication after all.

General notes
8192 tokens isn't that much... Cramming in all soccer's rules
and all that AI is very tricky...

Here are a few hints: Leveraging global/object variables : ex-
ample: if an object variable needs to be referred to using the
object, make it a global:

10

 match.timer = 0

 ...

 local first_half = match.timer<45

 match.timer+=1

 local second_half = match.timer>=45

becomes :

 matchtimer = 0

 ...

 local first_half = matchtimer<45

 matchtimer+=1

 local second_half = matchtimer>=45

and saves 8 tokens!

On the opposite, having variables embedded into object can also
save tokens: For example, 2D coordinates are stocked into ob-
jects and these objects are passed around to some vector math
functions. If those functions are called several times it be-
comes token saving efficient and worth the cost of the function
declaration :

a = {x=0,y=0,...}

dot(a,b)

instead of

ax=0 ay=0 bx=0 by=0

ax*bx+ay*by

Finally, a good way to save tokens is to just cut what is not
useful. One of the first things I did in the game was a particle
system that spawned puffs of smoke whenever a player kicked the
ball. It was fun and all, but as the camera system took shape,
the particles became hardly visible. I could have made them more
present by changing their size, colors, lifetime, whatever, but
I think it would not have helped the action’s readability. So, I
just squeezed them.

11

Conclusion
That’s all! But, remember: There's no fault system implemented
so don't hesitate to tackle other players! Have fun!

Laury MICHEL
@RylauChelmi

12

DOM8VERSE
In this tutorial, you will learn how to shoot bullets, those
bullets will move and detect collision to be destroyed by a
wall.

1 Define the bullet skeleton

First of all, we define a function that creates a bullet. We won't
define a global variable at the start of the program for the bul-
lets, because they will be created on the fly when the player
shoots. To do that, let's define a function that creates an object
that represents a newly created bullet with all the attributes
that this bullet will need.

bulletconstruct = function(x, y)

	 local obj = {}

	 --an array containing x and y position

	 obj.position = {x=x, y=y}

	 --the sprite number used to draw the bullet

	 obj.sprite = 3

--Define an ‘update’ function that will be called by the program

	 obj.update = function(this)

		 --move the bullet to the right

		 this.position.x += 1

	 end

	 --Return the bullet

	 return obj

end

2 Shoot the bullets
This code is just a definition, you have to call it in order to
create a bullet, let’s say that the player has to hit a button to
create a new bullet.

13

--array with all objects present in the game

objects = {}

function _update()

	 --first player press the shoot button

	 if btnp(5, 0) then

	 --create a new bullet and add it in the ‘objects’ of the game

 	 --we pass the player position as a parameter, so the bullet will 	

	 --appear at the player position

	 add(objects, bulletconstruct(player1.position.x,player1.

position.y))

	 end

end

But the program will also need to update this bullet. Add a loop
into the _update function to update all the objects present in
the game.

function _update()

	 --launch update() method on each object

	 foreach(objects, function(obj)

		 obj.update(obj)

	 end

end

This foreach special syntax allow to loop into the objects of
an array. Here we define an anonymous function that executes
code direction on the object received (here named obj). We will
do exactly the same kind of thing to draw all the objects of the
game.

function _draw()

	 foreach(objects, function(obj)

		 spr(obj.sprite, obj.position.x, obj.position.y)

	 end

end

3 Adding a hitbox to the bullet
Now we can shoot bullets, and they will be automatically updated
and drawn. But we need them to be destroyed on a wall or to kill

14

another player on hit. To do that, we will need to complete the
bulletconstruct by adding collision detection.
First of all, we do not want the whole sprite size (8x8) to col-
lide. The bullet is much smaller, so let's define a hitbox for
the bullet:

bulletconstruct = function(x, y)

	 ...

	 obj.hitbox = {x=2, y=4, w=4, h=3}

	 ...

end

This hitbox array defines a rectangle on the sprite that will be
used to detect collision. X and Y define the top left corner po-
sition of the rectangle. W and H define the width and the
height. See image for a better understanding.

4 Mark the wall sprite
The game must know which sprites are walls. To do that, we will
use the sprite flags in PICO-8. This allow us to manage differ-
ent kinds of sprite in the game. To do that, simply check one or

15

more of the little circles in the sprite editor. Here we will
check only the first circle, this means that the flag selected
is 0. I suggest you to check the fget documentation on PICO-8
manual in order to understand how the flag number is calculated.

So we will just define a global variable determining the wall
flag:

fwall = 0

5 Detect collision
Now the difficult part: we want to detect if this hitbox hit a
wall, so on each frame we will execute a function that detects
if each corner of the bullet is positioned inside a wall. If at
least one of the corner is in, then the bullet is considered on
the wall and we destroy it. First, we create a global function
that will detect if an object is on a wall, this object will of
course need to have the ‘position’ and ‘hitbox’ attributes. The
function mget is a PICO-8 builtin function allowing us to get a
sprite on the map. This function will check on the map at X and
Y position and returns the sprite number. The function fget is
another builtin function that return the flag value of a sprite,
so coupled with mget, you can know if there is a wall at a X

16

and Y position. The code of the top left corner is simplified
for a better understanding. We will of course check other cor-
ners only if previous one are not detected as walls.
-- detect if hitbox of object ‘o’ does hit the a wall map sprite

function checkwall(o)

	 --detect each corner of the hitbox one by one if it collide

	 --the <skin> allow to not detect floor on the side if we are

	 --standing on the ground

	 --top left corner

	 --position of the top left corner of the hitbox is calculated

	 --by adding the X position of the object and his hitbox this 		 		

 --number is divided by 8, because ‘mget’ use sprite position and 	

	 --not pixel position, and all sprite in PICO-8 are 8 pixels wide

	 --flr() allow to get a integer without decimal

	 local xpos = flr((o.position.x + o.hitbox.x)/8)

	 local ypos = flr((o.position.y + o.hitbox.y)/8)

	 --get the sprite at the calculated position

	 local foundsprite = mget(xpos, ypos)

	 --stock in ‘d’ variable is the found sprite is a wall or not

	 local d = fget(foundsprite , fwall)

	 -- top right corner

	 if d == false then

		 d = fget(mget(flr((o.position.x + o.hitbox.x +

o.hitbox.w)/8),flr((o.position.y + o.hitbox.y)/8)),fwall)

	 end

	 --bottom left corner

	 if d == false then

		 d = fget(mget(flr((o.position.x +

o.hitbox.x)/8),flr((o.position.y + o.hitbox.y +

o.hitbox.h)/8)),fwall)

	 end

	 --bottom right corner

	 if d == false then

		 d = fget(mget(flr((o.position.x + o.hitbox.x +

o.hitbox.w)/8),flr((o.position.y + o.hitbox.y +

o.hitbox.h)/8)),fwall)

	 end

	 return d

end

17

6 If you want more...
To complete the code, you can tell the bullet the direction you
are shooting it, or even which player is shooting. You can also
write a function that will detect collisions between objects
instead of sprites on the map. To do that, simply loop on all the
objects of the game, and check both hitboxes. Ok ok, I already
made it, check this out!

--DETECT if 2 objects with hitbox are colliding

function collide(obj, other)

	 if other.position.x+other.hitbox.x+other.hitbox.w >

obj.position.x+obj.hitbox.x and

		 other.position.y+other.hitbox.y+other.hitbox.h >

obj.position.y+obj.hitbox.y and

		 other.position.x+other.hitbox.x <

obj.position.x+obj.hitbox.x+obj.hitbox.w and

		 other.position.y+other.hitbox.y <

obj.position.y+obj.hitbox.y+obj.hitbox.h then

		 return true

	 end

end

@schminitz
http://hauntedtie.be

18

MINIGAME COLLECTIONS
Deep, skill-driven games such as Street Fighter, Starcraft or Cru-
sader Kings are great, but they’re not always the best choice for
a Friday night with friends. As a general rule, the more complex
a game is, the steeper the barrier to entry is going to be. If
you’re looking for something more inclusive, you can’t get much
more accessible than a minigame collection - think Pokémon Stadi-
um, WarioWare, Sega Superstars, Mario Party, etc.
They’ve been around since pretty much the dawn of video games
- the Video Action machines made by Universal Research Labs in
the '70s (clearly a time when SEO was not important!) allowed
four players to choose from a range of Pong-like sports includ-
ing Hockey, Volleyball and Soccer. Typically the games in these
collections are very simple, consisting of a single mechanic and
a few inputs. This means that anyone can join in - even people
that don’t usually play video games! They also have the benefit
of still being entirely playable after a few beers.

1. Design
Over the last few weeks I’ve been working on my own minigame col-
lection inspired by the minigames of Pokémon Stadium. Even now,
we still brush the dust off the N64 every now and again to revisit
such classics as ‘Clefairy Says!’, ’Snore War’ and ‘Rock Harden’!
Looking at the systems behind these games, I was able to identify
a few common mechanics that form the ‘building blocks’ of a good
minigame. Search the examples on YouTube if you want to see them
in action!
Timing
• Rock Harden, Snore War
Memory
• Clefairy Says
Dexterity
• Ekans’ Hoop Hurl, Sushi-Go-Round
Button Mashing!
• Dig! Dig! Dig!, Thundering Dynamo
This is by no means an exclusive list - pretty much anything goes
in a minigame, just keep it simple and bitesize. Combining these
mechanics can be great too, for instance ‘Run, Rattata, Run!’

19

uses both button-mashing and timing to great effect. As a rule of
thumb, if you can explain how to play in a single sentence you’re
probably on the right track!

2. Implementation - Players
So let’s get building! As of 0.1.2, PICO–8 supports up to eight
players using gamepads (or getting very cosy around a keyboard!).
I designed my minigames for four players, but I wanted to make
sure that my code was flexible to allow two, three or four players
to use the same application. We’re going to use a table to store
the game values we need for each player (e.g. colour, position),
then another table to store all of our players. Here’s a simple
example that you can run in PICO–8:
-- config

n_players = 2

start_pos = {8, 40, 72, 104}

colours = {8, 11, 12, 10}

alt_colours = {2, 3, 1, 9}

-- core functions

function _init()

	 init_one()

end

function _update()

	 for p in all(players) do

		 update_one(p)

	 end

end

function _draw()

	 cls()

	 for p in all(players) do

		 draw_one(p)

	 end

end

function init_one()

	 cls()

20

	 create_players(n_players)

end

function update_one(p)

	 -- vertical movement, alter the player position

	 if btn(2, p.num-1) then

		 p.pos[2] -= 1

	 elseif btn(3, p.num-1) then

		 p.pos[2] += 1

	 end

end

function draw_one(p)

	 -- define local variables

	 local x = p.pos[1]

	 local y = p.pos[2]

	 local colour = colours[p.num]

	 local alt_colour = alt_colours[p.num]

	 -- do something with the values stored in the player table

	 rectfill(x-5, y-15, x+5, y+15, 0) -- clear screen!

	 circfill(x, y, 5, colour) -- draw!

	 print(p.num, x-1, y-12, alt_colour) -- print!

end

function create_players(n)

	 players = {}

	 for i=1,n do

		 p = {}

		 p.num = i

		 p.pos = {start_pos[i], 64}

		 add(players, p)

	 end

end

This is all made possible because of the all iterator. This
piece of code lets us call a function for every player in our
players table, regardless of how many players we have:
for p in all(players) do

something(p)

21

end

This particular program is valid for a maximum of four players,
though, as I’ve only specified four possible positions and co-
lours in the config section. If you wanted to support more play-
ers, you’d just need to increase the number of items in those
tables (or don’t use them, or have duplicate colours, etc). From
a design perspective, you’d also need to think about how you
partition the screen space!

3. Implementation - Structure
So now you’ve got your program receiving input and drawing
players. But we want more than one game in our collection, of
course! There are lots of ways to structure a minigame collec-
tion, but the simplest approach I’ve found is to create each
game as its own discrete application and then to have a manage-
ment layer above the games that handles scoring, game selection,
etc. However, in PICO–8 this isn’t a viable option, so we have
to get a bit clever! :]
As you know, PICO–8 has three main functions that form the game
loop, _init, _update and _draw. When we’re making a minigame col-
lection, we want those functions to do different things depend-
ing on whether we’re in the menu or in one of multiple different
games. We can achieve this by creating a table that holds refer-
ences to versions of these core functions for each of the games.
Our menu then simply needs to set a variable that tells the game
loop which of these sets of functions it should call. We can al-
ter our existing program (above) to support this approach. First,
let’s set up our function tables in the _init function, and call
init_menu to start the menu running:

function _init()

	 cls()

	 games = {

		 "game 1",

		 "game 2"

	 }

	 init_functions = {

		 init_one,

		 init_two

22

	 }

	 update_functions = {

		 update_one,

		 update_two

	 }

	 draw_functions = {

		 draw_one,

		 draw_two

	 }

	 init_menu()

end

Next, let’s alter our core _update and _draw functions to point
at our function tables instead of calling a function directly.
We’ll also use the menu boolean to control whether we run menu
or game functions, and the complete boolean to return to the
menu:

function _update()

	 if menu then

		 update_menu()

	 elseif complete then

		 init_menu()

	 else

		 for p in all(players) do

			 update_functions[select_game](p)

		 end

	 end

end

function _draw()

	 if menu then draw_menu()

	 else

		 for p in all(players) do

			 draw_functions[select_game](p)

		 end

	 end

end

23

This is all we need to alter in the core program loop. Next, we
will define the specific init, update and draw functions we’re
using for our menu. The menu functions allow the first
player to view & select from our list of games:

function init_menu()

	 cls()

	 menu = true

	 complete = false

	 select_game = 1

end

-- if button is pressed, menu is false and the init function for the

--selected game is run. otherwise change selected game, if valid.

function update_menu()

	 if btnp(4, 0) then

		 menu = false

		 init_functions[select_game]()

	 elseif (btnp(2, 0) and select_game > 1) then

		 select_game -= 1

	 elseif (btnp(3, 0) and select_game < #games) then

		 select_game += 1

	 end

end

-- print out all of the games in our list

function draw_menu()

	 local y = 32

	 for i=1, #games do

		 if i == select_game then

			 print(games[i], 52, y, 12)

		 else

			 print(games[i], 52, y, 6)

		 end

		 y += 16

	 end

	 print("select a game!", 37, y, 7)

end

24

Next up, we need to create specific init, update and draw func-
tions for the games we want to include. In this example, we need
to add definitions for init_two, update_two and draw_two. For
now, you can copy the code from the existing init_one, update_
one and draw_one functions.

Finally, we need to add a way to return to the menu from the
running game. To achieve this, we can add the following snippet
to our update_one & update_two functions:
-- When player one presses button one, we’ll return to the menu.

if btnp(4, 0) then

	 complete = true

end

In this example I’ve included two games, but there’s really no
limit to how many games you could include this way (apart from
the line/token count on the cart!). Persistent variables
(such as player scores) can be created in the core _init func-
tion and altered by the game-specific functions as you go along.

4. Implementation - Dig! Dig! Dig!

25

I hope you’re still with me! I thought I’d show you how I used
these lessons in the development of an actual game. Building
on our previous program once more, I’ll create a clone of the
classic Pokémon Stadium game ‘Dig! Dig! Dig!’. To keep things
simple, I’ve avoided using any additional assets (e.g. sprites,
sfx) outside of the code shown in this article.

First, we’re going to make some alterations to our generic cre-
ate_players function. The game requires some additional player
variables, but it’s pretty simple to add these in.

function create_players(n)

	 players = {}

	 for i=1,n do

		 p = {}

		 p.num = i

		 p.pos = {start_pos[i], 0}

		 p.last = {false, false}

		 p.timer = 0

		 add(players, p)

	 end

end

Next up, we’ll create another generic function that draws co-
loured borders around each player’s section of the screen. These
functions are great and should be used wherever possible, as
they can be used across multiple games to save tokens!

function draw_borders()

	 for i = 0, 3, 1 do

		 rect(i*32, 0, (i*32)+31, 127, colours[i+1])

	 end

end

Next up, we’ll rewrite our init_one function to set up the new
game:

function init_one()

26

	 cls()

 -- game design parameters

	 penalty_time = 20

	 finish_line = 107

	 -- simple background, replace with a nice map in your game!

	 rectfill(0, 16, 127, finish_line+16, 4)

	 rectfill(0, finish_line+16, 127, 127, 9)

	 create_players(n_players)

	 draw_borders()

end

The update_one function is where all of our game logic sits. As
before, it’s called once for each player and we pass the player
p to it.

First, we check for the win condition - has a player moved down
below the ‘finish_line’ distance that we set in init_one? If so,
we store the winning player number and mark the game as com-
plete.

If not, we check whether the player is on timeout. In Dig! Dig!
Dig!, clumsy mashers are penalised with a short timeout if they
press the same button twice. If they are on timeout, we reduce
the timer but don’t let them move. Otherwise, we check the input
received from that player and compare it with the last accepted
input. If it’s a repeat, we apply the timeout penalty, otherwise
we increase the player’s vertical position (let them dig!) and
update the last accepted input.

function update_one(p)

	 -- check if finished

	 if p.pos[2] >= finish_line then

		 complete = true

	 -- if on timeout, reduce timeout

	 elseif p.timer > 0 then

27

		 p.timer -= 1

	 -- if not on timeout, check for input and DIG

	 elseif p.timer == 0 then

		 local btns = {btnp(4, p.num-1), btnp(5, p.num-1)}

		 if (btns[1] or btns[2]) then

			 -- if it's a repeat input, apply penalty, else dig!

			 if (btns[1] == p.last[1] and btns[2] == p.last[2]) then

				 p.timer = penalty_time

				 p.last = {false, false}

			 else

				 p.pos[2] += 1

				 p.last = btns

			 end

		 end

	 end

end

Drawing is relatively simple - instead of drawing circles as be-
fore, we’re drawing rectangles. If the player is on timeout, we
draw a flattened rectangle with the alternative colour.

function draw_one(p)

	 -- define local variables (this isn't necessary, but it makes 		 	

	 --our code clearer)

	 local x = p.pos[1]

	 local y = p.pos[2]

	 local colour = colours[p.num]

	 local alt_colour = alt_colours[p.num]

	 -- simple block graphics - replace with sprites in your game!

	 rectfill(x+1, y+2, x+14, y+15, 0) -- clear screen!

	 if p.timer > 0 then

		 rectfill(x+3, y+12, x+12, y+15, alt_colour)

	 else

		 rectfill(x+4, y+10, x+11, y+15, colour)

	 end

end

28

At this point the game works, but it quits back to the menu as
soon as a player reaches the finish line. Ideally, we’d want a
short break to celebrate their win before moving on to the next
game! We can implement this by creating a new variable, post-
game_timeout, in our config section. Here, we will define the
number of frames to wait after a player has won before returning
to the menu (I’ve found 180, which is about 6 seconds, to be a
good amount). In our core _init function, we will define anoth-
er new variable, global_timer. In our update_one function, as
well as setting complete = true we will set the global_timer

equal to our postgame_timeout value. We’ll also record the
winning player number in the winner variable.

-- check if finished

	 if p.pos[2] >= finish_line then

		 complete = true

		 global_timer = postgame_timeout

		 winner = p.num

Now, in our core _update function, we’ll make a small change to
make use of the global_timer. Instead of calling init_menu as
soon as complete becomes true, it now has to decrement the

global_timer down to zero first.

function _update()

	 if menu then

		 update_menu()

	 elseif complete and global_timer > 0 then

		 global_timer -= 1

	 elseif complete and global_timer == 0 then

		 init_menu()

	 else

		 for p in all(players) do

			 update_functions[select_game](p)

		 end

	 end

end

29

We’ll also define a function to display the winning player on a
banner:

function victory_banner()

	 rectfill(0, 56, 127, 72, 0)

	 rectfill(0, 58, 127, 70, 7)

	 print("player " .. winner .. " wins!", 36, 62, 0)

end

All that remains is to add the following line to the core _draw
function!

if (complete) victory_banner()

That’s it! You’ve got a working minigame and a loop that allows
you to jump into successive games from a single menu. Pretty
cool! If you want to see what a more complex implemetation of
this looks like, you can check out my full game here:
http://www.lexaloffle.com/bbs/?tid=2782
It includes four different minigames, complete with music, sfx
and art!
I hope you’re inspired to make your own weird, eclectic minigame
collections for you & your friends. Please share them with me if
you do!

-- Jack Harrison
-- @jhrrsn

30

BLASTEROIDS
Hey folks, I'm Lulu Blue.
I've made a bunch of games (even some for the Pico-8) and you
can check them out at bluesweatshirt.itch.io if you want. More
importantly, I'm here to guide your hand in creating a little
game I've came up with called Blasteroids. Imagine Asteroids,
if you're familiar with that, except it's two-player and you're
trying to blast each other.

If you're not familiar with it, Asteroids is one of those “clas-
sic games”, it originally came out in the arcades in '79. The
gist of it is that you're a lone spaceship in a field of float-
ing asteroids, and your goal is to shoot down all of them while
not being hit by the errant debris. Check out a video of it or
something if you're curious, it's super neat.

Our goal here is not just going to be adding a multiplayer layer
on top of Asteroids, it's to explore what it's like to design a
multiplayer game. Adding an extra layer on top of something fa-
miliar is a perfect place to start. I arbitrarily consider this
an intermediate-advanced guide, so you should be pretty comfort-
able with Pico-8 and a code editor before tackling this, just
to get the most out of it. Instead of focusing on the act of
construction we're going to be focusing on how each bit we add
contributes to the design of the game.

1. FROM NOTHING TO SOMETHING: THE PLAYER

The first thing we should do to have our game is to have the
thing we're controlling. From there, we can design all the oth-
er game's mechanics around that. To start off, we need to first
write a bit of initializing code.

function p_make(x, y, r)

	 return {

		 x=x,--position

		 y=y,

		 vx=0,--velocity

31

		 vy=0,

rot=r,--rotation

col=14,--color

p=0--controller index

}

end

We need to track the player's position, velocity, rotation, color
and player index - we'll use that for identifying whether you're
Player 1 or Player 2 and for input handling. We're using tables
here to define players instead of writing out variables manually,
such as “p1_x”. It saves us from writing all the same player code
twice over when they're going to behave the same anyway. We can
initialize our players like this:

function _init()

p1=p_make(32,64,0)

p2=p_make(96,64,0.5)

p2.col=12

p2.p=1

end

In addition to being a lot cleaner, it also saves cartridge space.
If this were made outside the Pico-8 though, it would easily allow
for supporting more than 2 players if you stored their tables in
an index.
Before moving on, let's write some constants the player will use.
Just stick this at the top of your code.

p_len = 7 --length, front to back, of the player's ship.

p_wid = 3 --width, from center to side, of the player's ship.

p_spd = 1-- max speed the player can travel.

p_acl = 0.075 -- how muchto increase velocity every frame

p_drg = 0.025 --how much friction to act on the player every frame

p_rad = 2.5 --player hitbox radius

This is all pretty simple stuff, but it's going to get more com-
plex from here on out. There's some vaguely involved math we'll be
using to calculate drag for very purposeful ends. In competitive
games, the nuance of every little action becomes important. It's
not just the fact things move, but the way they move that makes
the difference. We'll go deep into all the game's minutia and see
how they contribute to the whole.

32

Before jumping headfirst into play though, let's get our ships
drawing:
function p_draw(p)

-- how much the ship extends in front

local lenx = cos(p.rot)*p_len

local leny = sin(p.rot)*p_len

-- how much the ship extends to the side

local sidex = cos(p.rot+0.25)*p_wid

local sidey = sin(p.rot+0.25)*p_wid

-- point at front of ship

local pfx=p.x+lenx*0.6 - - 60% of the ship's length is in front of its center

point (x,y)

local pfy=p.y+leny*0.6

-- point at left of ship

local plx=p.x-lenx*0.4+sidex - - 40% of the ship's length is behind its center

point (x,y)

local ply=p.y-leny*0.4+sidey

-- point at right of ship

local prx=p.x-lenx*0.4-sidex

local pry=p.y-leny*0.4-sidey

-- thats a lot of math! easy part now!

line(pfx,pfy,plx,ply,p.col)

line(pfx,pfy,prx,pry,p.col)

line(plx,ply,prx,pry,p.col)

end

Quite a bit just for a little triangle, huh? But that's not just
any triangle, it's our triangle. And it rotates. Most importantly,
it rotates around roughly the center of the triangle, which will
let us fit a circular hitbox inside it pretty snugly.
Let's get it on screen:

function _update()

- - empty :)

end

function _draw()

rectfill(0,0,127,127,1) - - clear the screen

rectfill(0,0,127,8,0) - - draw the status bar

p_draw(p1)

p_draw(p2)

end

33

Now run it, and you should see an image that resembles the image
at the top of this chapter. Wonderful! Seeing the first few things
appear on the screen in a game never stops being exciting for me.
Now let's write update code:
function p_update(p)

	 -- turning

	 if btn(0,p.p) then

		 p.rot+=0.0125

	 end

	 if btn(1,p.p) then

		 p.rot-=0.0125

	 end

	 -- acceleration

	 if btn(2,p.p) then

		 p.vx+=cos(p.rot)*p_acl

		 p.vy+=sin(p.rot)*p_acl

		 -- velocity capping

		 if abs(p.vx)+abs(p.vy) > 1 then

			 local d=atan2(p.vx,p.vy)

			 p.vx=cos(d)

			 p.vy=sin(d)

		 end

	 end

	 -- drag

	 local vel=(abs(p.vx)+abs(p.vy))/p_spd

	 local sx=sgn(p.vx)

	 local sy=sgn(p.vy)

	 p.vx-=p_drg*p.vx*vel

	 p.vy-=p_drg*p.vy*vel

	 if(sx != sgn(p.vx))p.vx=0

	 if(sy != sgn(p.vy))p.vy=0

	 -- movement

	 p.x+=p_spd*p.vx

	 p.y+=p_spd*p.vy

	 -- wrapping

	 p.x=p.x%127

	 if(p.y>127)p.y=8

	 if(p.y<8)p.y=127

end

And then add it to the update loop:

34

function _update()

	 p_update(p1)

	 p_update(p2)

end

While writing this you probably got a good idea of what this
code's doing, but let's go through it anyway. As you saw in the
draw function, we're using cos and sin to rotate our coordinates.
You'll see more of these as we go on.

The first thing we do after accelerating is cap the velocity.
This serves two functions: It keeps the ships from accelerating to
light speed, and it keeps the velocity capped the same no matter
which direction you're moving or facing.

Next is drag. First, we're taking a proportional readout of the
ship's speed, where 0 is still and 1 is maximum velocity. We use
this to apply more drag as the ship speeds up, giving a nice curve
to the acceleration and sparing us the logistics of applying more
drag than acceleration at any given moment —then we couldn't move!
Next we take the sign, “sgn()”, of each velocity component, which
is whether the given number is positive, negative, or zero, ex-
pressed as 1, -1, or 0. First we use this to make sure drag is
always reducing the velocity value, whether it's positive or neg-
ative, then we use it to check if the drag has completely decel-
erated the ship. If the sign has crossed a threshold, then it's
done its work.

To wrap it all up, we're using a couple simple statements to loop
the ship around the screen, so that when you leave it from one end
you come out the other. The differing Y looping is to account for
the health bar display we'll be making later on. Looping contex-
tualizes the space in a really interesting way, and it gives room
for some really tricksy competitive strategies.

This is a lot of backbone for just flying around space, right? You
could omit all the velocity and acceleration and drag stuff and
just leave it at moving forward when you press forward. I think
it's worth it though, a little effort in the right places can go
a long way. The core of this game is maneuvering; you're dodging
asteroids and the other player while positioning yourself for the
best shot. To really flesh that out, the game needs interesting
movement mechanics. Here, it's very floaty. And while there's a
lot of inherent fun to that, it also adds to the feeling of flying

35

a ship in space and adds another layer to the game's strategy:
A key part of multiplayer games is being able to read your oppo-
nents, (the fighting game community calls this “yomi”) to get in
their head, predict them, and ultimately outwit one or the other.
Floatiness adds a predictable trajectory to your ship's motions,
and this creates a dynamic of being able to mislead and juke your
opponents as well. These kinds of mind-games are the backbone of
competitive games, and we'll add more elements to the game to
flesh this out as we go on.

If you haven't already, run the game. Revel in the fun movement
mechanics you just made! Get a real feel for them, and then start
thinking about the sorts of things you could add to make an in-
teresting versus game. Grab a nice warm beverage, chill out, and
get ready for the next chapter.

2. AGENTS OF CHAOS: THE ASTEROIDS
Most multiplayer games have some element of chaos to keep things
interesting play-to-play. For a game like Street Fighter it's the
sheer size of the possibility space. For a card game like Mag-
ic: The Gathering it's the randomness of which card you and your
opponent will draw next. (and also the sheer size of the possi-
bility space. Magic is a lot.) Think of the possibility space as
the total range of theoretical outcomes produced from your game's
mechanics interacting with each other. Learning to keep the pos-
sibility space of your game in mind is kind of like seeing the
Matrix.

But more importantly, what possibility spaces and card draws have
in common is impredictability, and that is your chaos element.
Impredictability does not necessarily mean randomness, though it
can. Many consider too much randomness counter-productive for a
competitive game because it makes the outcome of the game more
dependent on luck. The key here is flavor. Interest. Variety. Pi-
zazz. In some multiplayer games, this might mean having different
stages with different level geometry, or a roster of characters
to play as, or a million-and-one different cards which all have
unique mechanics associated with them. (terrifying!).

In our game, that chaos element is the asteroids themselves. Not
only do they enter the play field differently each game, they
break apart into smaller chunks that get sent flying around.
For the sake of competitiveness, you'll notice we take specific
measures to add a deterministic element to rocks splitting apart,

36

adding a layer of complexity that skilled players may harness com-
petitively. Competitive scenes often call this a “skill ceiling”,
where the higher the ceiling is the more potential there is to
harness the game's mechanics competitively. Games with high skill
ceilings are things like Chess, Street Fighter and League of Leg-
ends, where games with low skill ceilings are ones like Tic-Tac-
Toe and Rock, Paper, Scissors.

Let's dive into some code:
function a_new(a,x,y,s,vx,vy)

	 a = a or {}

	 a.on=true

	 a.x=x

	 a.y=y

	 a.s=s

	 a.vx=vx

	 a.vy=vy

	 return a

end

You'll notice we're handling asteroids a bit differently—you can
pass in a pre-existing table.
Here's why:

function a_init()

	 -- initialize asteroid pool

	 -- we do this for consistent performance

	 rocks={}

37

	 for i=1,20 do

		 local rock=a_new(nil,-16,-16,5,0,0)

		 rock.on=false

		 rocks[#rocks+1]=rock

	 end

	 rocks_on=0

end

Here, we're using a pool of asteroids. There will always be at
least 20 in memory, but it will expand the collection if neces-
sary. Rather than initializing a new table when we want to put
a new asteroid on the screen, we reuse old ones first. This way
we're not constantly initializing and freeing data at the whims
of the garbage collector, the part of Lua that cleans up no-lon-
ger used data now and then. It's good not to lean on the garbage
collector too much, activating it comes with a performance over-
head and memory is so limited on the Pico-8. It's important for
competitive games to run smoothly and consistently.

function a_recycle(x,y,s,vx,vy)

	 -- recycle an old piece of data

	 -- before making a new one

	 for a in all(rocks) do

		 if a.on == false then

			 a = a_new(a,x,y,s,vx,vy)

			 rocks_on+=1

			 return a

		 end

	 end

	 rocks[#rocks+1]=a_new(nil,x,y,s,vx,vy)

	 rocks_on+=1

	 return rocks[#rocks+1]

end

Now we have a really convenient way to recycle asteroids. In-
stead of using a _new() to add an asteroid into the play field,
we'll be using a_recycle()

function a_update()

	 if rocks_on < 4 then -- keep the play field from being empty

		 local r=rnd(1)

		 local x=64+cos(r)*100 -- choose a point outside the screen, radially

38

		 local y=64+sin(r)*100

		 a_recycle(x,y,8,cos(r+rnd(0.1)-0.05)*-0.6,sin(r+rnd(0.1)-0.05)*-0.6)

-- add some random deviation so they don't all move directly towards the center

end

for rock in all(rocks) do

	 -- very simple behaviour for the asteroids

	 rock.x+=rock.vx

	 rock.y+=rock.vy

	 --wrapping

	 if(rock.x>127 and rock.vx>0)rock.x=0

	 if(rock.x<0 and rock.vx<0)rock.x=127

	 if(rock.y>127 and rock.vy>0)rock.y=0

	 if(rock.y<8 and rock.vy<0)rock.y=127

	 end

end

function a_draw()

	 for rock in all(rocks) do

		 if rock.on then

		 circfill(rock.x,rock.y,rock.s,4)

		 end

	 end

end

That took a bit of scaffolding, but we finally did it. Make sure
to add a_init(), a_update() and a_draw() into your code, and then
give it a run! Asteroids should start barreling in from the edg-
es of the screen.

39

Except there's no collision. Let's fix that right now. First, put
this somewhere in your code:

function dist(x1,y1,x2,y2)

	 return sqrt((x2-x1)^2+(y2-y1)^2)

end

We'll use this to check the distance between any two entities, and
if their circle hitboxes are intersecting (meaning, that distance
is less than both of their radius put together) then we'll know
they're touching.
Add this to the end of p_update():

-- collide rock

	 for r in all(rocks) do

	 if r.on then

		 if dist(p.x,p.y,r.x,r.y) < r.s+p_rad and p.inv==0 then

		 p_hurt(p,10) - - hurt the player

		 p.vx=r.vx*2

		 p.vy=r.vy*2

		 --can rock

		 r.on=false

		 rocks_on-=1

	 --split rocks

	 local size=r.s*0.65 -- the two rocks that come out shall be smaller

	 if size > 3 then -- but they shall only get so small

		 a_recycle(r.x,r.y,size,r.vy,-r.vx)

		 -- rocks split perpendicular to the rock's motion vector

		 a_recycle(r.x,r.y,size,-r.vy,r.vx)

		 end

		 break

		 end

	 end

end

As you may have noticed, there's a couple things in here we hav-
en't defined yet. We'll do that in a minute, but first, I want to
recall the ship hitbox size. Maybe it occurred to you in passing
that it was a bit small. It totally is! A rule I like to follow
is to always round down when deciding player hitboxes. Why? Be-
cause otherwise getting hit might feel less fair. Human perception
is bound to misjudge time to time, especially when our eyes are
trained on a screen and not a tangible object in front of us.

	

40

Instead of having people make snap judgements on the razor's edge,
a little leeway makes everything feel a bit more well-rounded. We
make up for the smallness of the player ship by making everything
else in the game big. But it's not a zero-sum game. People are
experiencing the visual and aural information of the game, and
that informs how they understand your game's systems. They will
not be acutely aware of the numbers acting behind the scenes like
you might. I find it really important to keep this in mind.

Moving on, we've yet to implement damage-taking elements to the
player, so let's do that now.

Add this to p_make:
hp=100

inv=0

Add this to p_update:
p.inv=max(0,p.inv-1)

Add this to p_draw around the three line() commands:
if p.inv % 6 < 3 then

	 --make ship flash while invulnerable

	 --line()

	 --line()

	 --line()

end

And finally:

function p_hurt(p,dmg)

	 p.hp-=dmg

	 p.inv=45

end

That's not it though, we need to be able to see the hp, so add
this to p_draw():
-- hp bar

if p.p==0 then

	 local bx1=1

	 local by1=2

	 local bxw=56

	 local by2=by1+4

41

	 rectfill(bx1,by1,bx1+bxw*(p.hp/100),by2,p.col)

else

	 local bx1=126

	 local by1=2

	 local bxw=-56

	 local by2=by1+4

	 rectfill(bx1,by1,bx1+bxw*(p.hp/100),by2,p.col)

	 end

Now update your _draw():
function _draw()

	 rectfill(0,0,127,127,1)

	 a_draw()

	 rectfill(0,0,127,8,0)

	 print("vs",60,2,7)

	 p_draw(p1)

	 p_draw(p2)

end

You did it. Now run the game, and you should be able to experi-
ence to glory of being smashed by space debris in real-time and
observing its effects. This was a big milestone, and that's fan-
tastic! Give your brain a rest before we go into the final part.
Everything's about to come together.

3. TOOLS OF WAR: THE SHOOTING
There's two major things you do in this game, move and shoot.
We've got the moving, and the big rocks which make you really got-
ta move, so now we need shooting.

We're not just gonna smash a button to shoot though.

We're doing charged shots.

Okay, that isn't a huge enough deal to justify dramatic line-
breaks, but it is important! The concept of charging up adds a
whole new layer to the competitive dynamic—”When are they going
to shoot?” Now shooting becomes a question of taking the time for
a well-placed shot, or firing early to catch your opponent off-
guard, or even barraging them with a hail of weak shots as a dis-
traction mechanism for the big one-two. It creates a definitive
line of strategy to think in terms of, and as a consequence, get
into each others' heads over.

42

s_spd_min = 2 - - minimum shot speed

s_spd_chg = 1.5 - - speed to add as the charge gets higher

function s_new(t,x,y,s,d,p)

	 t = t or {}

	 t.x=x

	 t.y=y

	 t.s=s--size(0 to 1)

	 t.sz=1+s*3--pixel size in radius

	 t.d=d --facing direction

	 t.dst=50-- distance to travel before dissipating

	 t.on=true

	 t.p=p--player who shot this

	 t.spd=s_spd_min+s_spd_chg*s

	 t.vx=cos(d)*t.spd

	 t.vy=sin(d)*t.spd

	 return t

end

And then we'll use the recycling method, just like before with
the asteroids:

function s_recycle(...)

	 shots_on+=1

	 for s in all(shots) do

		 if s.on==false then

		 s = s_new(s,...)

	 return s

43

		 end

	 end

	 local s = s_new(nil,...)

	 shots[#shots+1]=s

	 return s

end

function s_init()

	 shots={}

	 shots_on=0

	 -- initialize shot pool

	 for i=1,10 do

		 local s = s_new(nil,0,0,0,0,0)

		 s.on=false

		 shots[#shots+1]=s

	 end

end

You'll notice that our techniques mirror a lot of what we did with
the asteroids. In a more complex game, you might even consolidate
them into a single cohesive entity system. For this though, we
have a very specific idea of what we want to do, so that would
just eat up our time and introduce more moving parts than neces-
sary. This is the last big code block there is. And it looks like
more than it is! Most of what we're doing here will look familiar.

function s_update()

	 for s in all(shots) do

	 if s.on then

	 -- motion

	 s.x+=s.vx

	 s.y+=s.vy

	 -- wrapping

	 s.x=s.x%127

	 if(s.y>127)s.y=8

	 if(s.y<8)s.y=127

	 -- dissipation

	 s.dst-=s.spd

	 if s.dst<0 then

		 s.on=false

		 shots_on-=1

	 end

44

	 -- collide rock

	 for r in all(rocks) do

	 if r.on then

	 if dist(s.x,s.y,r.x,r.y) < r.s+s.sz then

		 sfx(3)

	 --remove objects

	 s.on=false

	 r.on=false

	 shots_on-=1

	 rocks_on-=1

	 --split rocks, just like with ship colliding

	 s.vx*=0.3

	 s.vy*=0.3

	 local size=r.s*0.65

	 if size > 3 then

		 a_recycle(r.x,r.y,size,s.vy,-s.vx)

		 a_recycle(r.x,r.y,size,-s.vy,s.vx)

	 end

	 break

	 end

end

end

	 -- collide player

	 local p = nil

	 if(s.p==0)p=p2--enemy player

	 if(s.p==1)p=p1

	 if dist(s.x,s.y,p.x,p.y) < p_rad+s.sz and p.inv==0 then

		 s.on=false

		 shots_on-=1

		 p_hurt(p,10+15*s.s)

		 p.vx+=s.vx*0.4*s.s

		 p.vy+=s.vy*0.4*s.s

	 end

	 -- end shot update

	 end

	 end

end

There's a couple notable design choices in here. First, when as-
teroids collide with shots they don't split perpendicular to the
asteroid's motion vector, they split perpendicular to the shot's.
This adds a layer to the competitive dynamic where players can

45

manipulate crumbling asteroids as an offensive tactic. This adds
to the mind-gaming of charged shots and sneaky screen-looping
tactics.

We're also making it so that shots push around the ship they hit.
Now you can interfere with the other player's maneuvering on a
whole other level, possibly pushing them into unfavorable posi-
tions or overwhelming them with the mere threat of losing their
bearings.

They're such small choices too, yet they can go a long way to ex-
panding the possibility for interesting plays. A little effort in
the right places! If I'm getting obnoxious with that phrase it's
only because I see a lot of worth in it. Anyway, let's put the
shots on-screen now.

function s_draw()

	 for s in all(shots) do

	 if s.on then

	 local col=0

	 if(s.p==0)col=p1.col

	 if(s.p==1)col=p2.col

	 circfill(s.x,s.y,1+s.s*3,col)

	 circfill(s.x,s.y,s.s*3,7)

	 end

	 end

end

Update _init(), _update(), and _draw() now to incorporate the shot
functions. You can go ahead and test it, but we haven't added a
way to shoot yet. Let's fix that. This is the last step, and then
you have a game.

Add this property to p_init():
chrg=0

Add this to the top of p_update():

-- shooting

	 if btn(4,p.p) then

		 p.chrg=min(1,p.chrg+0.05)

	 end

46

	 if not btn(4,p.p) and p.chrg > 0 then

		 local s = s_recycle(

			 p.x+cos(p.rot)*p_len*0.6, -- shoot it from the tip of the ship

			 p.y+sin(p.rot)*p_len*0.6,

			 p.chrg,

			 p.rot,

			 p.p

)

		 s.vx+=p.vx-- in addition to the shot's own velocity

		 s.vy+=p.vy-- let it inherit yours

		 --pushback

		 p.vx-=cos(p.rot)*p.chrg*0.8

		 p.vy-=sin(p.rot)*p.chrg*0.8

		 --sfx

		 if p.chrg==1 then

			 sfx(1)

		 else

			 sfx(0)

	 end

	 --reset chrg

	 p.chrg = 0

	 end

And this to the bottom of p_draw(), to represent charging a shot:
-- charge graphic

if p.chrg > 0 then

	 circfill(pfx,pfy,p.chrg*3,10)

end

We could talk about this, but you could also just play it. You've
earned it. Talk can wait. Pull aside a loved one and shout “Hey!
I made a versus game and it's probably really cool play it with
me NOW” and they shall surely answer your summons.

If it does not live up to their or your hopes, then I challenge
you:
Make it better. This is yours, so own it and take it as far as
you want it to go. I've shared as much as I can without lecturing
your head off (hopefully), so if what I've offered has impacted
you, take it forth with everything else you have in you and bring
a cool new thing into this world.

47

4. HERE WE LIE AT JOURNEY'S END
You have a game now. It is Blasteroids, or maybe it is something
entirely your own instead. Many would say it's missing things like
a “win state” or a “title screen”, but do not listen to them,
those are window dressings you may adorn as your please. Your game
is only ever what you want it to be, so pay no mind to anyone who
presumes your interest in one value system or form of presentation
or another.

Here are some additional goals I've thought of that you can pursue
if you like:
• Add visual and sound effects to make all the game's little in-
teractions pop
• Tweak the physics around to create an entirely different play
dynamic
• Add a new mechanic which takes advantage of btn5 in an inter-
esting way
• Make objects loop around the screen more smoothly
• Create a simple AI for 1-player mode. The trick is to not con-
fine yourself into thinking it has to behave just like a player!
Let it exist on its own.
• Do something entirely outside the boundaries of my other sug-
gestions.

Before we part ways, I'd like to offer a closing thought: Mul-
tiplayer games are wonderful things that bring people together.
Much like a dinner with loved ones, they are never uncomplicat-
ed or without squabbles and tension, but that's what makes them
special. You bicker, you laugh, your body probably does something
gross at some point, and ultimately it brings us closer to one
another. We close gaps and wounds we suffer from the frustrations
of daily life that sometimes threaten to push us apart. At every
opportunity we must hold close these precious rituals which remind
us that we love each other.
	 Yours,

-- Lulu Blue
@luluisbluetoo

http://www.lexaloffle.com/bbs/?tid=2458

SUMO PICO
Sumo Pico is actually a demake of a small jam game I made with my
partner, Britt, called “Sumo Puckii”. Sumo Puckii is an inertia
driven bumper-boat-meets-sumo-wrestling game that we put out to
test a bunch of stuff in Game Maker, including how little friction
we could put on something and still have the player feel in con-
trol, pythagorean distance, exporting to android, and of course,
multiplayer. It is funny then that remaking Sumo Puckii has kind
of become my benchmark for testing new development environments,
especially the multiplayer side of things, particularly with PICO-
8, which until a recent announcement, hasn’t been branded so much
as a local-multiplayer powerhouse.

Sumo Pico was my very first game made with PICO-8, so as such, if
you were to dig through the source code, it would be an utter
mess. Because I had essentially made this game before, I knew
what to do, just not how to do it. In fact, before this game, I
had never even touched Lua before. I will not pretend to be a
professional, but the code’s design did have a plan, and works a
little like this:
A container for information about both players is initialized.
PICO-8 calls them “tables” I believe.
actors={}

This allows us to treat each object contained in the “actors”
table essentially the same, while still being able to refer to
each individual one as a separate instance. In the init() loop,
I initialize a variable for each player, and tell it to run a
function that sets up a bunch of necessary variables for them.

48

49

function _init()

p1 = create_actor(32,64,2,0)

p2 = create_actor(96,64,3,1)

end

function create_actor(x,y,img,n)

	 local p = {}

	 p.x = x

	 p.y = y

	 p.dx = 0

	 p.dy = 0

		 p.img = img

	 p.n = n

	 p.h = 3

	 p.w = 3

	 add(actors,p)

	 return p

end

The function requires that we pass in an x and y position at which
to create the player, an image (or the index of which sprite to
use), and “n”, the identifier of which player is in control of
the object (0 being player 1). Then, it creates a new table “p”,
which will contain all of the variables about the instance of the
player, adds a bunch of variables into that table, and then adds
that table to our “actors” table, finally returning “p” so that our
variable “p1” or “p2” can easily refer to it.
In the update() loop, I use the “foreach” loop, which applies the
function to all objects in a table, to call a function “move_ac-

tor()” which will check the input from a controller with the id
number (n) of each of the players, and then make them move ac-
cordingly.
function _update()

	 foreach(actors, move_actor())

end

function move_actor(p)

	 p.dx += (0- p.dx) * 0.05

	 p.dy += (0- p.dy) * 0.05

	 if (btn(0,p.n)) then

		 p.dx += (-4-p-p.dx) * 0.1

	 end

	 if (btn(1,p.n)) then

50

		 p.dx += (4- p.dx) * 0.1

	 end

	 if (btn(2,p.n)) then

		 p.dy += (-4-p.dy) * 0.1

	 end

	 if (btn(3,p.n)) then

		 p.dy += (4- p.dy) * 0.1

	 end

	 p.x += p.dx

	 p.y += p.dy

end

For the sake of simplicity, I have removed the collisions from
this code example, and because this is about multiplayer in
PICO-8, I wanted to focus more on the input here. To get input
in PICO-8, you use the built in function “btn(button, control-

ler#)”.
Because the foreach loop automatically fed the variable “p”
(which player) to the function “move_actor”, and because we as-
signed each “p” a variable “n” to refer to which controller will
be in control of them, when querying input, instead of individu-
ally checking if player 1’s controller is doing xyz, and player
2’s controller is doing abc, we can just check if p’s controller
is doing something, because p contains both the information about
who is in control and the velocities and the x and y positions.
This is particularly useful for expansion. When PICO-8 adds up
to 8 player support, all that I would have to change is how many
players I initialize in order to support it! In fact they could
add up to an infinite number of possible players and it would still
work (in theory). I’ve been making multiplayer games for quite
some time now, and I’ve found that the best way to manage multiple
player objects and inputs is to make them dynamic, meaning, if the
objects are meant to behave the same way and only require a few
changes between them, it will make your life easier to have them
be the same, and make the changes based on an identifier number.
PICO-8 is surprisingly accommodating with this, and I hope that
everyone embraces the new multiplayer expansions with love and
caring!

--Cullen Dwyer
@cullenddwyer

http://www.lexaloffle.com/bbs/?tid=2191

51

System
load filename

save filename

export filename.html

folder

ls

run

resume

reboot

stat x

info

flip

printh str

Graphics
clip [x y w h]

pget x y

pset x y [c]

sget x y

sset x y [c]

fget n [f]

fset n [f] v

print str [x y [col]]

cursor x y

color col

cls

camera [x y]

circ x y r [col]

circfill x y r [col]

line x0 y0 x1 y1 [col]

rect x0 y0 x1 y1 [col]

rectfill x0 y0 x1 y1 [col]

pal c0 c1 [p]

palt c t

sspr sx sy sw sh dx dy [dw

dh] [flip_x] [flip_y]

Collections
add table val

del table val

all table

foreach table func

pairs table

#table

Input

btn [i [p]]

btnp [i [p]]

Audio
sfx n [ch [offset]]

music [n [fade [ch_mask]]]

Map
mget x y

mset x y v

map cel_x cel_y sx sy cel_w

cel_h [layer]

Memory
peek addr

poke addr val

memcpy dest src len

reload dest src len

cstore dest src len

memset dest val len

Math
max x y

min x y

mid x y z

flr x

cos x

sin x

atan2 dx dy

sqrt x

abs x

rnd x

srand x

band x y

bor x y

bxor x y

bnot x

shl x y

shr x y

Strings
#str

str0..str1

sub str start [end]

Cartridge Data
cartdata id

dget inde		 x

dset index val

RAM layout
0x0000 gfx

0X1000 gfx2/map2

(shared)

0X2000 map

0X3000 gfx_props

0X3100 song

0X3200 sfx

0X4300 user-de-

fined

0X5f00 draw state

0x5f80 persistent

cart data

0x5fc0 (reserved)

0x6000 screen (8k)

Colour palette

@obono

52

