

2

R O G U E - r u n - l e a r n

s h a r e - l o v e - p l a y

code-create-draw

m a k e - d e s i g n - B E

think-write-break

participate-retry

CONTENTS

3		 DON'T WAIT
6		 AI MOVE SPECIAL ROGUELIKE
8		 A* pathfinding in PICO-8
19	Traps For Absolutely Every Imaginable Occasion
23	The Roguelike *shiny* game-feel
29 Dungeon walls
36	Sharing music between carts
40 DONUT MAZE

PICO-8 is a fanzine made by and for PICO-8 users.
The title is used with permission from Lexaloffle Games LLP.
For more information: www.pico-8.com
Contact: @arnaud_debock
Cover illustration by @pietepiet
Special thanks to @dan_sanderson and @lexaloffle

3

DON'T WAIT
I made this to illustrate some of my reasoning behind a particular
design decision in the roguelike games I've made. It's probably
better to play it before reading this, it only takes a couple of
minutes.

posted on the bbs: http://www.lexaloffle.com/bbs/?tid=2991

I hope it speaks for itself fairly well but I'll put it in con-
text. In Rogue, and many other games following in its lineage,
you could press a key (often ".") to skip a turn. In my games
Zaga-33 and 868-HACK (and the unreleased Imbroglio) you can't (at
least, not freely - there are ways). This goes against the genre
expectations and so I sometimes get complaints - "why can't I wait
in place?", "i can't find the wait button", "how do you wait?",
"this game is bad because sometimes the enemy hits you", etc.

4

The three levels of this little game demonstrate three different
approaches to "wait".

Level 1: you can't wait. All you can do is take a step or hit
an enemy. Both player and enemies die in just one hit - this
wouldn't be ideal for a more complex roguelike because a lot of
the play in these games is making decisions about which resources
to sacrifice ("do I take some damage or do I use up an item?") but
it helps make everything very clear for this example. It means
if an enemy is an even number of steps away it is guaranteed to
get the first hit and kill you, if an odd number you can safely
kill it. The twist is that you don't move when you hit an ene-
my, allowing you to convert those evens to odds if you're careful
about the order you meet them in. (See Aaron Steed's Ending for
a fully fleshed out game based around this idea.)

Level 2: you can wait. You can just press a key and all the ene-
mies move closer, turn scary evens to nice safe odds. Depending
on the order you hit them in you might need to wait a lot or very
little, but it doesn't matter because you can complete it either
way. The tactics in this level end up being a lot simpler; maybe
it makes more sense that you can wait but something interesting
has been lost. I'd also say there's a loss in simplicity - an ex-
tra control is an extra thing to tell you about, extra text on the
screen. But a lot of games have this rule and it works well for
them. (In Rogue and many classic roguelikes waiting to get the
first hit isn't free the way it is here because there are various
timers that tick up each turn even as you wait, governing hunger,
enemy spawns, corruption, etc. - you'll starve to death in 100
turns so maybe you don't want to spend one of them standing still.
These costs tend to be quite minor compared to being damaged, but
still they do sometimes create situations where it's better to
take an extra hit than an extra turn. But when you're making a
smaller game that doesn't have so many ornate systems counterbal-
ancing each other these costs might need to be made explicit.)

Level 3: the enemies can wait too. I've been told that it's unre-
alistic to not have a wait button, but if so then it's unrealistic
for enemies not to wait as well - very unrealistic for the player

5

to always get the first hit. One of the elements cited in the
Berlin Interpretation as a common characteristic of roguelikes is
"Rules that apply to the player apply to monsters as well". And
of course they do exactly what you've been doing in the previous
level - waiting whenever you're two steps away, refusing to get
hit first. Maximum realism! This fundamentally doesn't work
with the "one hit point" rule, leaving the level impossible, but
you can see how unpleasant it would be to have this tactic turned
against you in a less strict game too.

Part of the enjoyment of roguelikes is outwitting enemies who
outnumber you. The capacity to patiently wait while they blindly
charge in can be one expression of this, but I don't think it's a
very good one because it's always the right choice. Applying one
simple method every time doesn't express much cleverness, better
to have to think up new solutions to different situations.

Michael Brough
@smestorp

6

AI MOVE SPECIAL ROGUELIKE
Here's a tutorial on how design a basic AI for monsters moving on
a grid.

http://www.lexaloffle.com/bbs/?pid=18367&tid=2986&autoplay=1#pp

We will focus on two behaviors :
- fighters : follow hero to hit him
- archers : try to reach a line of sight and aim at hero

In the _init() function I read the map information to draw lev-
el, spawn hero/monsters and store useful data in a squares col-
lection.

The expand(a,did) function takes all squares in <a> as a start
position (= 0) and then computes the distance from all others
squares.

7

You can see the values by pressing (z) during the test.
run_mon(e) will move the monster by checking the 4x nearby
squares.If it finds a square with a lower distance it will move
in this direction.Once they reach a square with a distof 0 ar-
cher will aim at hero by defining a shoot_dir value.

Benjamin Soule
@benjamin_soule_

8

A* pathfinding in PICO-8

A* pathfinding is an efficient way to find the shortest path from
one position to another if possible. It is widely used in video
games but also in the transportation and computer networking in-
dustries.

We are going to implement A* pathfinding in PICO-8 in a sim-
ple single screen application by first implementing a simpler
breadth-first pathfinding algorithm then extending it into an 	
A* pathfinding algorithm.

1.The Map

Let's first draw a map in PICO-8 using this code:

function _init()

end

function _update()

end

function _draw()

	 cls()

 	 mapdraw(0,0,0,0,16,16)

end

Next we will draw some basic sprite

9

They include:
	 - Blank - 000
	 - Wall - 001
	 - Goal - 016
	 - Start - 017
	 - Path - 018

The Walls block the path from the Start to the Goal, we will draw
a path with the Path sprite.

Now we can create a map with a Start and Goal position somewhere
and walls that will block the path.

10

2. Breadth-first Pathfinding
Next we want to search through the locations starting from the
Start using breadth first search, this will find the neighbours
of each location searched and then search the neighbours ignor-
ing the walls. This code doesn’t look for anything just yet, it
just iterates through each map position in a kind of expanding
circle outward starting at Start.

Update _init() with this code.

function _init()

	 start = getSpecialTile(17)

 	 goal = getSpecialTile(16)

 	 frontier = {}

 	 insert(frontier, start)

 	 came_from = {}

	 came_from[vectoindex(start)] = "none"

11

	 while #frontier > 0 do

 		 current = popend(frontier)

 		 local neighbours = getNeighbours(current)

 		 for next in all(neighbours) do

 			 if came_from[vectoindex(next)] == nil then

 			 insert(frontier, next)

 			 came_from[vectoindex(next)] = current

 		 end

 	 end

 end

I’ve added a few helper functions as well. Some of these such as
popEnd() and reverse() are added because pico-8 uses a subset
of the lua language. I won’t go into detail about these because
this article is about the A* search.

-- find all existing neighbours of a position that are not walls

function getNeighbours(pos)

	 local neighbours={}

	 local x = pos[1]

	 local y = pos[2]

 	 if x > 0 and (mget(x-1,y) != wallId) then

 		 add(neighbours,{x-1,y})

 	 end

	 if x < 15 and (mget(x+1,y) != wallId) then

 		 add(neighbours,{x+1,y})

	 end

	 if y > 0 and (mget(x,y-1) != wallId) then

 		 add(neighbours,{x,y-1})

	 end

 	 if y < 15 and (mget(x,y+1) != wallId) then

 		 add(neighbours,{x,y+1})

	 end

 return neighbours

end

-- find the first location of a specific tile type

12

function getSpecialTile(tileid)

	 for x=0,15 do

 		 for y=0,15 do

			 local tile = mget(x,y)

			 if tile == tileid then

				 return {x,y}

 			 end

		 end

	 end

	 printh("did not find tile: "..tileid)

end

-- insert into start of table

function insert(t, val)

	 for i=(#t+1),2,-1 do

		 t[i] = t[i-1]

	 end

	 t[1] = val

end

-- pop the last element off a table

	 function popEnd(t)

		 local top = t[#t]

 		 del(t,t[#t])

 		 return top

end

function reverse(t)

	 for i=1,(#t/2) do

		 local temp = t[i]

		 local oppindex = #t-(i-1)

		 t[i] = t[oppindex]

		 t[oppindex] = temp

	 end

end

-- translate a 2d x,y coordinate to a 1d index and back again

function vectoindex(vec)

	 return maptoindex(vec[1],vec[2])

13

end

function maptoindex(x, y)

	 return ((x+1) * 16) + y

end

	 function indextomap(index)

 		 local x = (index-1)/16

 		 local y = index - (x*w)

 	 return {x,y}

end

Additionally add this code to the end of getNeighbours(), just
before the return, to make the paths walk in a diagonal instead
of in a square, this is the same distance but it looks shorter
when walking a diagonal.

	 if (x+y) % 2 == 0 then

 		 reverse(neighbours)

 	 end

Now we can add some code to stop searching if we find the Goal,
add this just below current = popEnd(frontier) in the while
loop.

	 if vectoindex(current) == vectoindex(goal) then

		 break

	 end

This will break out of the while loop if the current map posi-
tion is the goal, no need to search the rest of the map.

We can now draw a line using the Path tiles along the points in
came_from. We will reverse them so they are drawn from Start to
Goal.

Add this below the while loop.
	 current = came_from[vectoindex(goal)]

 	 path = {}

 	 local cindex = vectoindex(current)

14

This is great! the path goes straight from the Start to the Goal
but if we add a new sprite at position 19 and add this to the
while loop.

	 local sindex = vectoindex(start)

while cindex != sindex do

	 add(path, current)

	 current = came_from[cindex]

	 cindex = vectoindex(current)

end

reverse(path)

for point in all(path) do

	 mset(point[1],point[2],18)

end

Now we should see something like this when we run the game.

15

local nextIndex = vectoindex(next)

if (nextIndex != vectoindex(start)) and

	 (nextIndex != vectoindex(goal)) then

	 mset(next[1],next[2],19)

end

Then we can see where the algorithm has searched.
You can see the algorithm has expanded outwards until it found the
goal, not very efficient.

3. A* Pathfinding

A* Pathfinding will find the shortest path quicker by searching
less positions and ranking each position found by how close it is
to the goal. This is done with a priority queue data structure.

Since pico-8 doesn’t have a priority queue built in we can make
a simple insertion sort function for a lua table. This isn’t the
fastest method of sorting but it is fairly simple.

-- insert into table and sort by priority

function insert(t, val, p)

	 if #t >= 1 then

		 add(t, {})

		 for i=(#t),2,-1 do

 			 local next = t[i-1]

 			 if p < next[2] then

				 t[i] = {val, p}

				 return

			 else

				 t[i] = next

			 end

		 end

			 t[1] = {val, p}

		 else

			 add(t, {val, p})

		 end

end

16

We also change the return line of popEnd() so we only return
the value part.

	 return top[1]

Then we need to add a heuristic, this is how far away from the
goal each point is. A* uses this heuristic to calculate the total
cost of traveling to each node as it is searching and will check
the lowest cost paths first.

This implementation of a heuristic function simply uses manhattan
distance.

function heuristic(a, b)

 return abs(a[1] - b[1]) + abs(a[2] - b[2])

end

Finally we will update the while loop to use a running cost and
prioritising the shortest paths. It also updates paths already
checked if a faster way through that tile has been found.

 frontier = {}

 insert(frontier, start, 0)

 came_from = {}

 came_from[vectoindex(start)] = nil

 cost_so_far = {}

 cost_so_far[vectoindex(start)] = 0

 while #frontier > 0 do

 	 current = popEnd(frontier)

	 if vectoindex(current) == vectoindex(goal) then

		 break

 	 end

 	 local neighbours = getNeighbours(current)

 	 for next in all(neighbours) do

 		 local nextIndex = vectoindex(next)

	 local new_cost = cost_so_far[vectoindex(current)]

17

	 if (cost_so_far[nextIndex] == nil) or (new_cost <

cost_so_far[nextIndex]) then

		 cost_so_far[nextIndex] = new_cost

		 local priority = new_cost + heuristic(goal, next)

		 insert(frontier, next, priority)

		 came_from[nextIndex] = current

 			 if (nextIndex != vectoindex(start)) and

			 (nextIndex != vectoindex(goal)) then

 				 mset(next[1],next[2],19)

				 end

 			 end

 		 end

 end

We also added a costPerMove variable, this can be the same for
all moves or can be based on different terrain e.g. walking in
mud is slower.
And if we run it now the map shows a lot less map checked.

18

Congratulations! You have just implemented A* pathfinding! Get
creative and apply it to something amazing and show everybody!

You can find the source for this at article at:

http://www.lexaloffle.com/bbs/?tid=3131

4.What else can we do with A* pathfinding?

-Use a smaller amount of nodes on the map rather than every
	 point e.g. corners.
-	Add different costs for different types of terrain, mud,
	 ice etc.
-	Try costs in one direction different to another e.g. a
	 conveyer 	belt.
-	Try a moving target!

Further reading
http://www.redblobgames.com/pathfinding/a-star/introduction.html
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Priority_queue
http://www.raywenderlich.com/4946/introduction-to-a-pathfinding

Richard Adem
@richy486

19

Traps For Absolutely Every
Imaginable Occasion

So if you are making a roguelike then you are going to put traps
in it, because you must. You must because the only reason anyone
ever makes or attempts to play roguelikes is because they want to
bash against infinite unknowable brick wall universes over and
over again until they find the one brick that is loose and then
they can say, look, I did it, I won. This is the thing to say when
you finally win a roguelike even though it really means "I won
(that time)" and "I gave myself over to be entombed in a random
superstructure but I was able to accurately observe the rules of
its generation" and "I am drawing a map of where the loose brick
is, slowly, blindly: this is what I am doing with my life." You
are going to put traps in your roguelike because you don't just
want a tall beautiful noble and unyielding maze: you want a mean
maze that pushes back. Nobody can contend with mystery and the
unknown without the horror of Unintended Consequences and so you
will include traps.

What Is The Best Sort Of Trap

The absolute best sort of trap you can make for your game will be
instantly recognizable to your player and they will want to step
on it. I recommend a small switch on the ground that counts down
how many steps you need to take in order to step on the trap and
then a large sign that celebrates the player for stepping on the
trap. It might be good to give the player some gold for stepping
on the trap as well. You want the trap to be as exciting as pos-
sible.

Here is a short list of my favorite traps in roguelike games:

20

1. The sink, from NetHack. The ideal trap, taking a friendly form,
having a handful of positive uses (identifying rings, free drinks)
and many horrifying ones (black ooze!!!!), no player can resist
the delightful sink.

2. The statue trap, also in NetHack. Most conventional NetHack
traps just spring out of the darkness and are quite rude but the
statue trap beckons you towards your own demise with sweet songs
and curious rewards. Finally transforms prosaicly into A Real
Monster Where You Assumed There Would Only Be A Statue, e.g., a
Kiwi Statue would become Oh My God An Actual Kiwi. I love statues.

3. The corruption trap, from Ancient Domains of Mystery. Promises
to eventually transform one into a "writhing mass of primal cha-
os", which is exactly the reason we all play computer games isn't
it.

4. The doppelganger staff, from Shiren the Wanderer. Another ex-
ample of Maybe The Best Kind of Trap Ever, the staff resembles a
Useful Item that will transform a monster into the likeness of
the protagonist, which will cause all other monsters to attack the
target of the staff. But! Ta da! A victorious monster levels up
and becomes even stronger after victory, often causing Wonderful
Problems.

5. The bloodwort seed pod, from Brogue. Rendered in a forbidding
crimson, the bloodwort stalk dares the player to approach before
bursting into a cloud of red mist. "Surprise!" it says. "I'm heal-
ing you!"

6. Siphoning in 868-HACK. My favorite trap. Siphoning is necessary
and desirable for so many reasons (new programs, points, money,
energy) but it always produces Bad Things. The player falls glee-
fully again and again into the arms of death.

Other kinds of traps that launch arrows or fireballs or boulders
or poison gas are good too even if they are a bit on the nose.
Your players will learn how to mitigate even the most random and
unfair circumstances, which they will confuse with a kind of

21

prickly complexity or they might think that you have a sense of
humor and that you are attempting to communicate with them. Traps
make a world snap and snarl with brutish life so make as many of
them as possible.

Making As Many Traps As Possible in VNOOFIS

My game VNOOFIS (http://www.lexaloffle.com/bbs/?tid=3039) is
about feeling your way through a slimy writhing fungus cave and
finding luminous spores to press into your flesh. In an effort to
include All Of The Positive Feelings of Traps I decided to make
three kinds of traps:

1. Treasure Trap

2. Boulder Trap

3. Arithmetic Trap

The specific form I chose for Treasure Trap was Every Single Wall
in VNOOFIS. Touching a wall allows a player to See (or Feel)
What's Going On which is a Lovely Treasure that cannot be abided
without beautiful anguish so the wall produces a hostile Slime.
The Slime will hurry along to the place where the player is but
the player can retreat with Powerful Knowledge. This gives a very
nice feeling of Impending Doom That Can Perhaps Be Avoided, so
everyone feels Clever.

The Boulder Trap in VNOOFIS happens when you are confronted by Too
Many Slimes, Maybe so you step into a wall, smashing it with your
body into a carpet of nerves and flesh. You gain an Avenue of Es-
cape but you must keep going because the wall is growing back in
as an Angry Blister which will Explode if you attempt to return.
You have traded Flexibility for Future Complexity and again you
feel Clever.

The Arithmetic Trap is what I think is the most fun part of dying
in Shiren the Wanderer, saying to everyone who can hear you, "oh
no the enemies have killed each other in a fashion that was not

22

advantageous to me, creating an enemy that has statistics that are
far beyond mine." In VNOOFIS there is the Segmented Worm, wander-
ing around, difficult to avoid in their own right, but combined
with a Hostile Slime! Well! You can only imagine the thrill of
encountering this very special opportunity for defeat.

These are the ultimate trap combinations that I conceived for my
gross cave game. They are the best ones but maybe you can think
of another one!
Homework: make a game with FOUR kinds of traps (don't make any
others though because making a PICO-8 game is an exercise in min-
imalism and restraint)!!

Kyle Reimergartin
@mooonmagic

23

The Roguelike*shiny*game-feel
What is the greatest feeling in roguelikes? Winning the game, in
most cases. But what is another greatest feeling in roguelikes?
Finding something *shiny*. The most obvious example would be a
piece of equipment, but new enemies, bosses, or any world design
element has a very large *shiny* potential. Game mechanics like
level-ups or a new ability can also feel *shiny*. Winning the game
is *shiny*. *Shininess* is an amazing game-feel that we all feel
and love and the roguelike genre is the genre that has the best
of it.

1.Roguelikes and *shininess*
You may have understood from the introduction that a great factor
of *shininess* is discovery. But roguelikes are not the only genre
that has good discovery feels. Most RPGs regularly deliver new
equipments and new environments to the player, well-made puzzle
games generally are based on making you discover new ways of us-
ing whatever interaction you have with the game or even changing
their own game-mechanics to give you brand new situations. What
do roguelikes have that makes them so appropriate to the *shiny*
feel?

Roguelikes are RPGs. They can easily use the classic RPG's equip-
ment and environment renewing, and they should. But roguelikes are
also the closest you can get to the arcade genre in RPGs. And the
arcade genre (or the "try again" genre if you prefer) is the best
genre for keeping you very close to the screen, fingers mindlessly
pushing buttons, and indeed having you the closest to the game.
Therefore arcade is the best genre for game-feels in general. And
therefore roguelikes are the best at *shiny* feels.

So how do you make it happen?

2.MacGuffins. MacGuffins everywhere.
A MacGuffin is a plot device that serves as a goal or a motiva-
tion for the main character. The princess Peach in Mario Bros is
a MacGuffin. So are the coins to a further extent. In video games,

24

MacGuffins can be of different importance but they all share that
the player will most likely go for them and when he gets one of
them, it will make him happy. MacGuffins are *shiny*.

In roguelikes, any weapon, armor, potion, book, toilet paper or
indeed any item can potentially serve as a MacGuffin. So, what
makes a good MacGuffin?

First of all, MacGuffins are based on anticipation. If you give
your player a new item without him asking for anything, you failed
your MacGuffin. So first thing is show the item to the player BE-
FORE giving it to him. Then, at least make the player walk to it
and pick it up. You can also make the item the reward for a quest
or slaying a boss. If you chose either of these last ones, you may
chose to not show the item before the deed is done or even make
the reward random. That's ok but do build anticipation anyway,
use your narration to make the player aware he will get something
good. When the player can finally pick up the item, make it ob-
vious. The item must catch the player's eye before he actually
gets it. So use lighting effects, sound, flashing colors, text,
anything flashy.

Then, MacGuffins should not be deceiving. If the player gets an
item he thinks is really good and it's really bad, you broke it
all. The item did feel *shiny* before he got it but now it is the
darkest piece of trash he has ever wanted. There are solutions to
that! One of the simplest is to make all the items tradable for
something else, like money for example. In Dungeons of Dredmor by

25

Gaslamp Games, there is a point in the game where you get a lute-
fisk box, an item that can convert any other item in a quantity of
lutefisk than you can then give to the lutefisk god who would give
you a piece of equipment if you gave him enough lutefisk. Then,
any object has a minimal interest. Another solution is funny/in-
teresting tooltips. These can be information about the game's lore
or bad puns or pop culture references, or anything you think the
player will have some interest in. If you really want an item to
be a waste of the player's inventory, make it so but then better
put a very good pun on its tooltip or not make it shiny at all.

In the very successful roguelites The Binding Of Isaac by Edmund
McMillen, Nuclear Throne by Vlambeer, Spelunky by Derek Yu and
many other roguelites that are not turn-based, where we are even
closer to the arcade genre, the shiny feels of a new item/muta-
tion/weapon/trinket are often accompanied by an effective change
in the mechanics of the player's game. Shooting works differently,
you can hurt enemies by being close to them, etc... Which makes
it even *shinier*!! The more unique the trinket, the more *shiny*
it is.

And if you want ultimate MacGuffins, you have achievements. If one
of your achievements is "find the Wooden Stick of the Doomed",
you made a shitty weapon *shiny*. Well done. But if one of your
achievements is "find the jeweled gold crown of the kingly royal
King Bob Deluxe", you made an epically *shiny* item even *shin-
ier*. Besides, Achievements are pretty easy to implement in a
Pico-8 game: Have a table of strings, one for each achievement,
and display one for a for a few seconds when the player achieves
a thing!

26

Quests, value, lore, puns, achievements... Is there a way to make
something shiny without affecting the game's mechanics or pouring
lots of literary work in it?

3.The more litteral aspect of *shininess*
In Pokémon, the famous RPG by Game Freak where you have to capture
pocket monsters and make them fight with other people's pocket
monsters, there are "shiny" pocket monsters. These particular
pocket monsters have that of different from the regular ones that
they are extremely hard to find and they have a different color
palette. Shiny pocket monsters are among the *shiniest* things to
be found in all RPGs put together.

Guess what! Pico-8 has a wonderful function called pal(c1,c2)
which will make it draw the color c2 instead of the color c1!
Which means that with one 3-colored sprite and Pico-8's 16 col-
ors, you have a potential of 4096 variations of that same sprite!!
And sure some of them are trash and will hurt your eyes but a lot
arenít and won't. Better than that yet, if your game has other
animated sprites (which it definitely should), you can make your
sprite's colors change over time! Why not?

Do keep in mind that these palette tricks work only once the play-
er is accustomed to see the item with its original sprite. But
such a simple trick can make any item *shiny*!! Also note that
this can be used more extensively to make A LOT of items with a
few sprites, take the MMO-roguelite Realm of the Mad God by Wild
Shadow Studio for example, where most tiers of a same piece of
equipment is the same sprite with different palettes. There, the
tier palette is also an indicator that an item is better than what
you currently have and, in direct consequence, *shinier*.

27

It also works with enemies, environments and probably other things
so use your imagination!!

And palette swapping is not the only cheap graphical trick to make
something *shiny*! In fact any graphical or audio effect you can
add to an element of your game can make it more *shiny*. One very
efficient graphical effect is ridiculous lighting.

A good example of ridiculous lighting is light coming from chests
when you open them. Whatever is in there, someone put a lamp with
it just so you know you found something *shiny*. Zelda games do
that. They also make the items levitate out of the chest and put a
catchy jingle over the whole thing. Keep in mind there are lots of
possibility when it comes to lighting though. You could put light
rays coming from the item, or it could be lightning, an aura,
sparkly shapes, fireworks, flames, sparkles, circling sparkles,
glitchiness, rainbows, fireflies, light bulbs, etc and all that
with all the different colors in the world. Do pick one. Don't be
afraid to make it too extravagant, you won't, it's a video game.

And finally, add some animation to the thing when it comes on
screen. Make it hover up, make it roll, make it sway, make it
zoom-out, make it))shake((! Chose whichever or make combos but
when the item/enemy/npc/text/action/death-screen shows up, any
animation will whisper *shiny* to the player's brain in a slightly

28

scary but exciting way. I have a preference for the shaking as it
is generally very easy to implement. Just store two global values
shakeX and shakeY, add them to the coordinates of all the things
when you draw them, and multiply them both by -0.8 each frame.
Make a function add_shake() that gives random values to shakeX and
shakeY and call that function ANYTIME ANYTHING HAPPENS.

4.To sum it up
Roguelikes are the best at *shiny* feels and to achieve making
something *shiny* in one, you should make it a MacGuffin, based on
anticipation and in-game value, and you should add lots of graph-
ical effects to it, such as palette swapping, ridiculous lighting
and simple animations. Along the way have also been mentioned that
like game elements, game mechanics can also be *shiny* and that
you shouldn't be afraid to make things too extravagant.

If you read all of the above, you should now be very capable of
making anything *shiny* in your own roguelike or any other kind
of game really. The *shiny* feel is the most adapted to roguelikes
but you can certainly use it in most, if not all, games. So make
me proud and go do just that!!

Dog Trasevol
@TRASEVOL_DOG

29

Dungeon walls
Hi. My name is Rodrigo Franco, and I'm not a game developer. I
have been building web apps for over a decade — and playing video
games for twice that — but I never got my hands dirty and tried
to code a game. Then I found Pico-8 (http://www.lexaloffle.com/
pico-8.php) — its minimal approach was simple enough to make me
face my own ineptitude. As a blank canvas, it was terrifying but
also inspiring. I was sold.

Since I was a kid, my favorite gaming genre has been RPGs. From
tabletop to early computer incursions, like Atari's adventure and
the Ultima series, being able to live a classic "dungeon crawl"
experience fascinated me. I think that's why I knew that when I
finally started working on a game, it would be something like a
roguelike.

Inspired by Pico-8's minimalism, I decided to strip down my game
to the bare essentials, but not graphically — I was lucky enough
to be able to commission Christina Antoinette (@castpixel) to con-
jure lovely sprites for me — but since I had no idea how I would
implement the game, I imposed severe restrictions on the mechanics
to actually accomplish something. With that in mind, I came up
with a random one-room-per-floor dungeon romp.

Like many before me, I started my gaming career (fancy eh?)
by studying Zep's collision demo (http://www.lexaloffle.com/
bbs/?tid=2119). From it I understood the "pico way" of map drawing
and the use of sprite flags to define and check for solid areas.
This approach worked well for my early prototypes, since every-
thing was made of crude 8x8 sprites like this:

30

Everything was fine, until Christina sent me the final art:

31

These are not your grandma's 8x8 sprites. How could I handle that?
Besides everything being 16x16, I wanted just part of the wall
tiles to be solid. This would allow me to accomplish an isometric
feel:

The way I was doing this (using the sprite flags) didn't work well
with that. I did some research, but never found a proper solu-
tion, so I decided to come up with something myself. Here's how
I solved it.

1.Setting the stage

First, I created some tables to hold the props I was about to cre-
ate, all the objects that would be added to the world and what I
called 'solid regions':

solids = {}

props = {}

world = {}

32

Then I came up with an ideal way to add items to the world. I
wanted it to be something like this:

add(world, props.muddy_wall(0,15))

This call would add a muddy_wall to the world and position it on
the screen at x=0 and y=15.

To make this work, I added the following to props:

props ={

muddy_wall = function (_x,_y)

	 local prop = {sprite=64, width=16, height=24, solidwidth=16, 		

 solidheight=16, x=_x, y=_y}

	 add(solids, {prop.x, prop.y, prop.solidwidth, prop.solid-

height})

	 return prop

end

}

props.muddy_wall is the code representation of a graphical element
store at position 64 of the sprite sheet. The element has 16px of
width and 24px of height, from what 16 by 16 are solid. By calling
it with 0 and 15 as params, the function also adds a new element
into solids, like this:

add(solids, {0, 15, 16,16})

By returning local variable prop, the function also allows it to
be added to the world table.

From there I could just add elements to my game by passing
muddy_wall multiple times with different x and y coordinates. I
could also create new props by creating functions like bright_

wall, greek_column or stairs. The sky's the limit!

33

2.Drawing the elements

With everything in the memory, it was now time to draw things.
Again I tried to come up with the method signature first, then
come up with a strategy on how to implement it. Here's what I
wanted to do:

foreach(world, props._draw)

To be able to do that, I added the following method to props:

_draw = function (p)

 spr(p.sprite, p.x, p.y, (p.width/8), (p.height/8))

end

A simple spr method call with the prop params. That was easy!

3.Making things solid

Now the real deal: How can we make props solid? As I said earli-
er, for each prop added to the world table, we also added an item
to solids with x and y coordinates and width and height of a solid
area. It's time to put this to good use.

I'm not going to enter in details about how my actors traverse the
dungeon. Just imagine I have a function called mov that expects
an actor as param. This function calculates the actor's attempted
position, and if the position is valid, moves the actor there.
Something like this:

function move(actor)

 if valid_move(actor.attempted_x, actor.attempted_y)

 do_move(actor)

 end

end

Now imagine this other version:

34

function move(actor)

 if solid_area(actor.attempted_x, actor.attempted_y)

 do_not_move(actor)

 else

 do_move(actor)

 end

end

How would I implement solid_area? Here's how I did
it:

function solid_area(x,y, a)

 local x = x + a.h

 local y = y + a.w

 for element in all(solids) do

 if (x >= element[1]) and ((element[1]+element[3]) >= x) and

 (y >= element[2]) and ((element[2]+element[4]) >= y) then

 return true

 end

 end

end

Let's break this down. Here's what I'm doing, bullet by bullet:

* Add the actor's height to the attempted x

* Add the actor's width to the attempted y

* Iterate all items in solids, and for each one check if the 	
 x and y point is inside the solid area
* If we find the point inside of at least one element, returns 	
 true

If solid_area returns true, I don't move the actor.
Otherwise, do_move is executed.

35

3. Wrapping up

That is it. I know there are probably a million better or more
"gamedev-y" ways to do it. For me, doing this was more for the
challenge then anything else, and I'm happy with the result. Un-
fortunately, my game isn't ready yet—hell, I don't even know if
I will be able to finish it, but if you follow me on twitter (@
caffo) I will make sure to let you know when I make it available.
Happy Pico-8'ing!

Rodrigo Franco
@caffo

36

Sharing music between carts
I’ve written an album, “9 Songs for PICO-8” with the intention
that other people can use the songs in their PICO-8 games. They’re
in a bunch of different styles, but nothing far from what you’ve
heard before. That being said, it’s not as easy as just taking an
audio file and dropping it into your own project. Let’s have a
look at how to take a song from one cart and put it in another!

The first thing we need to do is open up the cart in an external
code editor. I like to use Sublime Text, and set to View the Syn-
tax as “Lua” - this way everything becomes nicely colour coded.
You could also just use Notepad or TextEdit if you wanted. In the
file, you’ll see a few sections denoted with double underscores
before and after the title (e.g.lua). We’re interested in the sfx
and musicsections, but let’s get into a little bit of the theory
before we start moving things around.

Music in PICO-8 is made up of sound effects. The music player can
play up to four sound effects at once, making your song. On a cart
with no sounds, the sfx section is followed by a ton of zeroes.
If you’re looking at a cart which already has sound effects and

37

music in it, you’ll see what looks like a bunch of gibberish. Each
of these lines is one of sixty-four “sound effects,” (numbered
from 0 to 63). The numbers and letters are the code which tells
the audio system what notes to play, in what order, using what
articulation, and how fast.

Underneath the music section is much easier to understand. Again,
it’s 64 lines of information for the audio system, but because
all the heavy lifting is taken care of by the sound effects them-
selves, this section is almost readable. The first two digits tell
the tracker if the music is supposed to loop from that point,
continue or stop, then the 8 digits following are hexadecimal for
which sound effects will be triggered.

Sharing music between carts

Sharing music between carts. The easiest way to share music be-
tween carts is to open them both up in the external editor, and
copy and paste the entire sfx and music sections onto the second
cart. Then, when you open it in PICO-8, you’ll see all the music
and sounds from one cart on the other. This is great for collab-
orative work, but be careful because if two people are working on
sounds separately, you certainly risk overwriting someone’s work.
That brings us to the more precise and careful way of doing this:
copying specific lines. This is easy with the sound effects them-
selves, you just count from the first line after sfx (starting at
0, see diagram below). That number will correspond to the name of
the sound effect when it was in PICO-8. You can pick and choose
which sounds to copy over. Be careful to paste them on the same
line they came from! Repeat this process for the relevant music
lines as well, and you’re all set.

38

If you want to take it a step further, you can paste the sound ef-
fects to whatever line you want. This is good if you want to con-
solidate, or if you want to move a song from a high tracker number
to a lower one. Remember how the music steps just point to sound
effects? Well, if you copy over the relevant sound effects to
whatever line you want (and you’re like me and can’t easily write
out hexadecimal), it’s not hard to just open the file in PICO-8
and point the tracker to the relevant sounds after the fact.

@RobbyDuguay.
 Robby

Editor's note: In PICO-8 v0.1.5, it is now also possible to copy
and paste music between carts, but the following methods can be
used for finer control when manipulating audio data.

39

DONUT MAZE
function addcel(x,y,dx,dy)

 x += dx*2 y += dy*2 -- move along path

 -- already visited or outside?

 if (pget(x,y) == 0) return

 if (pget(x-1,y)==7 or pget(x+1,y)==7) return

 if (pget(x,y-1)==7 or pget(x,y+1)==7) return

 -- draw the new cel and a joining pixel

 pset(x,y,0)

 pset(x-dx,y-dy,0)

 if ((x+y)%4 == 0) flip() -- slow down!

 -- visit neighbours (favour right)

 d = flr(rnd(4))/4

 if (rnd(1.15)<1) d=0

 for i = 0, 0.75, 0.25 do

 addcel(x,y,

 cos(i+d),sin(i+d))

 end

end

-- set up donut shape

pal(6,7,1) -- white walls

rectfill(0,0,127,127,7)

circfill(64,64,48,6)

circfill(64,64,16,7)

-- start maze from left

addcel(17,63,0,0)

while (btn()==0) do end

--zep
@lexaloffle

