Deep 3D Surface Meshes

P. Fua EPFL Computer Vision Lab Lausanne Switzerland

3D Shape Design

- Design a shape.
- Simulate its performance.
- Redesign.

It works but:

It takes hours or days to produce a single simulation.

This constitutes a serious bottleneck in the exploration of the design space.

Designs are limited by humans' cognitive biases.

Kriging

• Drag

. . .

- Pressure Coefficients
- Boundary Layer Velocities

The response surface is approximated by a GP, which only works well when the model **has few parameters.**

Deep Surrogate Method

Boundary Layer Velocities

of a GP.

—> The model can have any number of parameters.

GCNN

Operates directly on the mesh vertices.

Lift Prediction

Full Simulation (1 h)

GCNN Prediction (30 ms)

Physics Type	External Aerodynamics
Dataset size	~1000 shapes
R2-accuracy	95 %

EPFL

Drag Prediction

- The predicted results are very close to the simulated ones.
- \bullet The aerodynamic drag ${\mathscr D}$ can be estimated from these predictions.
- $\bullet\, \mathscr{D}$ is a differentiable function of the surface mesh vertices.

EPFL

Minimizing Drag Under Constraints

Drag 51.66 N

Minimizing drag while enclosing a sphere.

UAV Design

From UAV To Lifting Body

Sensefly drone (L/D 11.9)

Optimize the wings (L/D 13.7)

Optimize the fuselage as well

(Lab

Bicycle Shell

Altair 6, IUT Annecy, 2018

World Human Powered Speed Challenge Battle Mountain Nevada, 2019

Women world record: 126,48 km/h Men student world record: 136.74 km/h

EPFL

Introducing Priors

Train an auto-decoder using ShapeNet cars.

Drag Minimization

Minimize $\mathcal{D}(C)$ with respect to C under constraint.

From Pickup-Truck to Sports Car

Interactive Design

Hybrid Shape Representation

Different types of primitives

Optimization results

—> Individual parts adapt to each other.

From Latent Vector to Primitives

We use SDFs to represent:

- Simple geometric primitives, such as spheres and cylinders.
- Primitives that bear a close resemblance to the simple ones but can deviate from them.
- Free form primitives that have arbitrarily complex shapes.

(Lab

Shared Latent Vector

Disentangled Latent Vector

Car Wheels

The wheels are better separated from the car body.

Shape Manipulation

Changing the explicit parameters

Changing the implicit parameters

Interactive Shape N

(JrLab

Dynamic Soaring

- We plan to design for ease of control.
- We will use dynamic soaring to prove the concept.

Conclusion

- Combining explicit and implicit representations early makes it possible to exploit the strength of both representations.
- Deep Signed Distance Functions can be used to implement 3D surface meshes that can change their topology while preserving end-to-end differentiability.

—> This opens the door for new applications in fields as diverse as Computer Assisted Design and Medical Imaging.

