Introduction to I	Differentiable Manifolds
$EPFL - Fall \ 2021$	M. Cossarini, B. Santos Correia
Exercise series 2	2021 - 09 - 28

Exercise 2.1 (Stereographic projection.). Let $N = (0, ..., 0, 1) \in \mathbb{R}^{n+1}$ be the north pole and S = -N the south pole of the sphere \mathbb{S}^n . Define stereographic projection $\sigma : \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ by

$$\sigma(x_0, \dots, x_n) = \frac{1}{1 - x_n} (x_0, \dots, x_{n-1}).$$

Let $\tilde{\sigma}(x) = \sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$.

(a) Show that σ is bijective, and

$$\sigma^{-1}(u_0,\ldots,u_{n-1}) = \frac{1}{|u|^2 + 1} (2u_0,\ldots,2u_{n-1},|u|^2 - 1).$$

- (b) Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that $\{\sigma, \tilde{\sigma}\}$ is a smooth atlas for \mathbb{S}^n .
- (c) Show that the smooth structure defined by the atlas $\{\sigma, \tilde{\sigma}\}$ is the same as the one defined via graph coordinates in the lecture.

Exercise 2.2. Show that \mathbb{P}^n is a smooth manifold. (Use exercise from series 1.)

Exercise 2.3 (Open submanifolds). Let N be an open subset of a \mathcal{C}^k manifold M, and let \mathcal{A} be the set of charts of M whose domain is contained in N. Prove that:

- (1) \mathcal{A} is a \mathcal{C}^k structure for N, making N into a \mathcal{C}^k manifold. We call the smooth manifold (N, \mathcal{A}) an *open submanifold* of M.
- (2) The inclusion map $\iota : N \hookrightarrow M$ is \mathcal{C}^k .
- (3) A function $f: L \to N$ (where L is a \mathcal{C}^k manifold) is \mathcal{C}^k if and only if the composite $\iota \circ f$ is \mathcal{C}^k .

Use this to show that the general linear group $GL(n, \mathbb{R})$, i.e. the set consisting of invertible $n \times n$ matrices is naturally a smooth manifold.

Exercise 2.4 (Some basic properties of \mathcal{C}^k manifolds). Let M be a topological manifold and let \mathcal{A} be a \mathcal{C}^k atlas, with $k \geq 1$. Show that:

- (1) Let \mathcal{A}' be another smooth atlas on M. Then \mathcal{A} and \mathcal{A}' determine the same smooth structure on M if and only if their union is a smooth atlas.
- (2) Every \mathcal{C}^k chart $\varphi: U \to V$ of M is a \mathcal{C}^k diffeomorphism.
- (3) The composite $g \circ f$ of two \mathcal{C}^k maps $f: M \to N, g: N \to P$ is a \mathcal{C}^k map.
- (4) Let \mathcal{A}_0 , \mathcal{A}_1 be two \mathcal{C}^k atlases on M, defining two \mathcal{C}^k manifolds $M_i = (M, \overline{\mathcal{A}_i})$. Then the two atlases \mathcal{A}_i are equivalent iff the following holds: For every function $f : N \to M$ (where N is a \mathcal{C}^k manifold), the function fis \mathcal{C}^k as a map $N \to M_0$ if and only if it is \mathcal{C}^k as a map $N \to M_1$.

Exercise 2.5 (Smooth structures on \mathbb{R}). On the real line \mathbb{R} (with the standard topology) we define two atlases $\mathcal{A} = \{ \mathrm{id}_{\mathbb{R}} \}, \mathcal{B} = \{ \varphi \}$, where $\varphi : \mathbb{R} \to \mathbb{R}$ is given by $\varphi(x) = x^3$.

- Convince yourself that \mathcal{B} defines a smooth structure on \mathbb{R} .
- \bullet Show that ${\mathcal A}$ and ${\mathcal B}$ define distinct smooth structures.
- Find a diffeomorphism $(\mathbb{R}, \overline{\mathcal{A}}) \to (\mathbb{R}, \overline{\mathcal{B}})$.

Exercise 2.6 (Product manifolds). Let M_0 and M_1 be \mathcal{C}^k manifolds of dimension m_0 and m_1 respectively. Recall that $M_0 \times M_1$ (with the product topology) is a topological manifold of dimension $m_0 + m_1$.

- Find a natural \mathcal{C}^k structure on $M_0 \times M_1$ such that two projections $\pi_i : M_0 \times M_1 \to M_i$ are \mathcal{C}^k maps.
- Show that a map $f: N \to M_0 \times M_1$ (where N is another \mathcal{C}^k manifold) is \mathcal{C}^k if and only if the two composite maps $\pi_i \circ f$ are \mathcal{C}^k .