Introduction to Differentiable Manifolds	
$EPFL - Fall \ 2021$	M. Cossarini, B. Santos Correia
Exercise series 1	2021 - 09 - 21

Convention: We understand a subset of a topological space to be automatically endowed with the subspace topology and a product of topological spaces to be endowed with the product topology (unless stated otherwise).

Exercise 1.1 (Locally Euclidean spaces). Show that the following definition of "locally Euclidean space" is equivalent to the one given in the lecture notes:

Definition. Let $n \in \mathbb{N} = \{0, 1, ...\}$. A topological space M is **locally Euclidean** of dimension n if every point $p \in M$ has a neighbourhood that is homeomorphic to \mathbb{R}^n .

Exercise 1.2 (Examples of locally Euclidean spaces). Which of the following spaces are locally Euclidean? Which are (globally) homeomorphic to Euclidean space?

- an open ball in $\mathbb{R}^n, n \in \mathbb{N}$
- the closed interval $[0,1] \subset \mathbb{R}$
- the circle $S^1 \subset \mathbb{R}^2$
- the zero set of the function $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = xy$
- the "corner" $\{(x, y) \in \mathbb{R}^2 \mid x, y \ge 0, xy = 0\}.$

Exercise 1.3 ("The line with two origins"). Let $X := \{\pm 1\} \times \mathbb{R}$ and let M be the quotient of X by the equivalence relation generated by $(1, x) \sim (-1, x)$ iff $x \in \mathbb{R} \setminus \{0\}$. We endow M with the quotient topology. Show that M is locally Euclidean and second countable, but not Hausdorff.

Exercise 1.4 (New manifolds from old). Convince yourself that¹:

- (a) A subset of a Hausdorff (resp. second countable) topological space is a Hausdorff (resp. second countable) space.
- (b) An open subset of a topological *n*-manifold is a topological *n*-manifold.
- (c) The product of two Hausdorff (resp. second countable) spaces is Hausdorff (resp. second countable).
- (d) The product of two topological manifolds is a topological manifold. What is its dimension?

Exercise 1.5 (Projective space). We define \mathbb{P}^n as the quotient space of $\mathbb{R}^{n+1} \setminus \{0\}$ by the equivalence relation $x \sim y$ iff $x = \lambda y$ for some $\lambda \in \mathbb{R}$.

Show that \mathbb{P}^n , endowed with the quotient topology, is a topological manifold. *Hint: For* $x \in \mathbb{R}^{n+1} \setminus \{0\}$ *let* [x] *denote its equivalence class in* \mathbb{P}^n .

To show that \mathbb{P}^n is locally Euclidean consider for i = 0, 1, ..., n the sets

$$U_i := \{ [x] \in \mathbb{P}^n \mid x_i \neq 0 \}$$

and the coordinate chart on U_i :

$$\varphi_i: U_i \to \mathbb{R}^n: [(x_0, \dots, x_n)] \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

Exercise 1.6. Show that the torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, defined as the quotient of \mathbb{R}^n by the equivalence relation

 $x \sim y \quad \iff \quad y - x \in \mathbb{Z}^n,$

is a topological n-manifold.

¹This means that if you find the exercise trivial you don't have to write down a detailed proof.