Introduction to Differentiable Manifolds	
EPFL – Fall 2021	M. Cossarini, B. Santos Correia
Exercise series 3	2021 – 10 – 05

Exercise 3.1. Prove that for any open cover $\mathcal{U} = \{U_j\}_{j \in J}$ of a \mathcal{C}^k manifold M there exists a partition of unity $(\xi_j)_{j \in J}$ such that $\operatorname{supp}(\xi_j) \subseteq U_j$ for all j.

Exercise 3.2. A continuous map $f: X \to Y$ is called *proper* if $f^{-1}(K)$ is compact for every compact set $K \subseteq Y$. Show that for every \mathcal{C}^k manifold M there exists a \mathcal{C}^k map $f: M \to [0, +\infty)$ that is proper.

Hint: Note that f must be unbounded unless M is compact. Use a function of the form $f = \sum_{i \in \mathbb{N}} c_i f_i$, where $(f_i)_{i \in \mathbb{N}}$ is a partition of unity and the c_i 's are real numbers.

Exercise 3.3. Let M be a \mathcal{C}^k manifold and let U be an open neighborhood of the set $M \times \{0\}$ in the space $M \times [0, +\infty)$. Show that there exists a \mathcal{C}^k function $f: M \to (0, +\infty)$ whose graph is contained in U.

Exercise 3.4. Let M be a \mathcal{C}^k manifold with $k \geq 1$. Show that:

(1)

$$(p,\varphi,v) \sim (\widetilde{p},\widetilde{\varphi},\widetilde{v}) \quad \iff \quad \widetilde{p} = p \quad \text{and} \quad \widetilde{v} = \mathcal{D}_{\varphi(p)}(\widetilde{\varphi}\,\varphi^{-1})(v)$$

is an equivalence relation between coordinatized tangent vectors.

- (2) Fixed a point $p \in M$ and a \mathcal{C}^k chart φ defined on p, the function $\mathbb{R}^n \to T_p M$ sending $v \mapsto [p, \varphi, v]$ is a bijection.
- (3) Vector addition and scalar multiplication are well defined and make T_pM a real vector space of dimension n.
- (4) The differential of a \mathcal{C}^k map $f: M \to N$ at a point $p \in M$ is a well-defined linear map $D_p f: T_p M \to T_p N$.
- (5) Chain rule: for \mathcal{C}^k maps $f: M \to N, g: N \to L$ and a point $p \in M$,

$$D_p(g \circ f) = D_{f(p)}g \circ D_p f.$$

In particular, if f is a diffeo, then $D_p f$ has inverse $(D_p f)^{-1} = D_{f(p)}(f^{-1})$.

(6) Change of coordinates: Let $X \in T_p M$ be a tangent vector and let φ , $\tilde{\varphi}$ be \mathcal{C}^k charts of M defined at a p. Let $(X^i)_i$ be coordinate tuple of X with respect to the basis $\left(\frac{\partial}{\partial \varphi^i}\Big|_p\right)_i$, and let $(\tilde{X}^j)_j$ be the coordinate tuple of X with respect the basis $\left(\frac{\partial}{\partial \tilde{\varphi^j}}\Big|_p\right)_i$, so that

$$X = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}} \Big|_{p} = \sum_{j} \widetilde{X}^{j} \frac{\partial}{\partial \widetilde{\varphi}^{j}} \Big|_{p}.$$

Show that

$$\widetilde{X}^{j} = \sum_{i} X^{i} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \Big|_{\varphi(p)},$$

where $\frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}}\Big|_{\varphi(p)}$ is the coefficient (j, i) of the matrix expression of the linear transformation $D_{\varphi(p)}(\widetilde{\varphi} \circ \varphi) : \mathbb{R}^{n} \to \mathbb{R}^{n}$.

Exercise 3.5 (Velocity vectors of curves). Let M be a \mathcal{C}^k differentiable manifold. The velocity vector of a differentiable curve $\gamma : I \subseteq \mathbb{R} \to M$ at an instant $t \in I$ is the vector $g'(t) := D_t g(1) \in T_{\gamma(t)} M$. Show that for any tangent vector $X \in TM$ there exists a \mathcal{C}^k curve $\gamma : (-\varepsilon, \varepsilon) \to M$ such that $\gamma'(0) = X$.

Exercise 3.6 (Spherical coordinates on \mathbb{R}^3). Consider the following map defined for $(r, \varphi, \theta) \in W := \mathbb{R}^+ \times (0, 2\pi) \times (0, \pi)$:

$$\Psi(r,\varphi,\theta) = (r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta) \in \mathbb{R}^3.$$

Check that Ψ is a diffeomorphism¹ onto its image $\Psi(W) =: U$. We can therefore consider Ψ^{-1} as a smooth chart on \mathbb{R}^3 and it is common to call the component functions of Ψ^{-1} the **spherical coordinates** (r, φ, θ) .

Express the coordinate vectors of this chart

$$\frac{\partial}{\partial r}\Big|_p, \frac{\partial}{\partial \varphi}\Big|_p, \frac{\partial}{\partial \theta}\Big|_p$$

at some point $p \in U$ in terms of the standard coordinate vectors $\frac{\partial}{\partial x}\Big|_p, \frac{\partial}{\partial y}\Big|_p, \frac{\partial}{\partial z}\Big|_p$.

Exercise 3.7 (The tangent plane of the sphere). Consider the inclusion $\iota: S^2 \to \mathbb{R}^3$, where we endow both spaces with the standard smooth structure. Let $p \in S^2$. What is the image of $D_p\iota: T_pS^2 \to T_p\mathbb{R}^3$? (Identify $T_p\mathbb{R}^3$ with \mathbb{R}^3 in the standard way. So the result should be the equation for a plane in \mathbb{R}^3 .)

Hint: Use Exercise 6 on spherical coordinates.

¹Here "diffeomorphism" is meant in the standard sense of maps between open subsets of \mathbb{R}^3 . The inverse function theorem can be useful here.